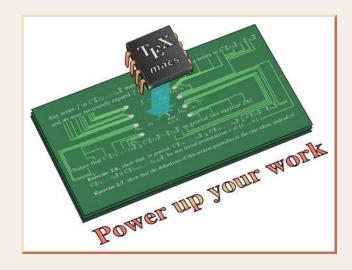
Complexité de l'arithméthique tordue

Joris van der Hoeven

CNRS, École polytechnique



INRIA, Rocquencourt, 2012

http://www.TEXMACS.org

Position des problèmes

Définitions

 \mathbb{K} : corps effectif de caractéristique nulle, $\delta = x \, \partial / \partial x$ $\mathbb{K}[x, \delta]_{n,r} = \{L \in \mathbb{K}[x, \delta] : \deg_x L < n, \deg_\delta L < r\}$

Complexités fondamentales

- $\mathsf{M}(n) = \mathcal{O}(n \log n \log \log n)$: multiplication de deux polynômes dans $\mathbb{K}[x]_n$
- $\mathcal{O}(r^{\omega})$, $\omega < 2.376$: multiplication de matrices dans $\mathbb{K}^{r \times r}$
- $\mathsf{SM}(n,r)$: multiplication de deux opérateurs dans $\mathbb{K}[x,\delta]_{n,r}$
- SV(n,r): application de $L \in \mathbb{K}[x,\delta]_{n,r}$ à $V \in \mathbb{K}[x]_n^r$
- SF(n,r): système fondamental pour $L \in \delta^r + K[x,\delta]_{n,r}$ à l'ordre $\mathcal{O}(x^n)$
- $\mathsf{SA}(n,r)$: annulateur pour $V \in \mathbb{K}[x]_n^r$ dans $\delta^r + K[x,\delta]_{n,r}$ à l'ordre $\mathcal{O}(x^n)$

Autres opérations

- Division exacte, division avec reste, division étendue
- Pgcd, ppcm et « pgcd/ppcm étendu »

Multiplication naïve

Entrées : $K, L \in \mathbb{K}[x, \delta]_{n,r}$

Sortie: $KL \in \mathbb{K}[x,\delta]_{2n-1,2r-1}$

 $\bullet \quad n^2 \, r^2 \, \text{ produits } \, (K_{i,j} \, x^i \, \delta^j) \, (L_{i',j'} \, x^{i'} \, \delta^{j'}) = K_{i,j} \, L_{i',j'} \, x^{i+i'} \, (\delta + i')^j \, \delta^{j'}$

• Complexité : $\mathcal{O}(n^2 r^3)$

Multiplication FFT

Entrées : $K, L \in \mathbb{K}[x, \delta]_{n,r}$

Sortie: $KL \in \mathbb{K}[x,\delta]_{2n-1,2r-1}$

Formule de Takayama

(cas $r \leq n$, complexité en $\mathcal{O}(\mathsf{M}(n\,r)\,r)$)

$$KL = \sum_{k < r} \frac{1}{k!} \left(\frac{\partial}{\partial \delta} \right)^k K * \left(\frac{x \partial}{\partial x} \right)^k L$$
$$K * L = \sum_{i,j,i',j'} K_{i,j} L_{i',j'} x^{j+j'} \delta^{i+i'}$$

Développement de L en x

(cas $n \leq r$, complexité en $\mathcal{O}(\mathsf{M}(n\,r)\,n)$)

$$K(x,\delta) L(x,\delta) = \sum_{k < n} K(x,\delta) (x^k L_k(\delta))$$
$$= \sum_{k < n} x^k K(x,\delta+k) L_k(\delta)$$

Multiplication par évaluation-interpolation

Lemme. Soit $x^{;k} = (1, x, ..., x^{k-1}) \in \mathbb{K}[x]^k$ pour chaque k. Alors $L \in \mathbb{K}[x, \delta]_{n,r}$ est uniquement déterminé par $L(x^{;r}) \in \mathbb{K}[x]_{n+r-1}^r$ et

- 1. On peut calculer $L(x^{r})$ à partir de L en temps $\mathcal{O}(n \mathsf{M}(r) \log r)$.
- 2. On peut calculer L à partir de $L(x^{r})$ en temps $\mathcal{O}(n \, \mathsf{M}(r) \log r)$.

Démonstration. Plus précisément : conversion entre L et

$$\mathbf{M}_{L}^{n+r-1,r} = \begin{pmatrix} L(1)_{0} & \cdots & L(x^{r-1})_{0} \\ \vdots & & \vdots \\ L(1)_{n+r-1} & \cdots & L(x^{r-1})_{n+r-1} \end{pmatrix}$$

Écrire $L = \sum_{i,j} L_{i,j} x^j \delta^i$ comme polynôme en x

$$L = x^{n-1} L_{n-1}(\delta) + \dots + L_0(\delta)$$

Pour tout i et j, on a

$$L_i(\delta)(x^j) = x^j L_i(j).$$

Donc $M_L^{n+r-1,r}$ est une matrice bande triangulaire infériere, avec $\leq n$ bandes. La i-ième bande sous diagonale se convertit par une évaluation/interpolation multi-point du polynôme $L_i \in \mathbb{K}[\delta]_r$ en les points 0, ..., r-1.

Résultats de complexité

Théorème. On a :

$$\mathsf{SM}(n,r) \ = \ \left\{ \begin{array}{l} \mathcal{O}(n^{\omega-1}\,r + n\,\mathsf{M}(r)\log r) & si \ n \leqslant r \\ \mathcal{O}(n^2\,r^{\omega-2}) & si \ n \geqslant r \end{array} \right.$$

Démonstration. Soient $K, L \in \mathbb{K}[x, \delta]_{n,r}$. Alors

$$\mathbf{M}_{KL}^{2n+2r-3,2r-1} = \mathbf{M}_{K}^{2n+2r-3,n+2r-1} \mathbf{M}_{L}^{n+2r-2,2r-1}$$

Cas $n \ge r$: décomposition en $\lceil n/r \rceil$ blocs.

Théorème. Si
$$n \geqslant r$$
, alors

$$SM(n,r) = \mathcal{O}(SV(n,r) + n M(r) \log r)$$

$$SV(n,r) = \mathcal{O}(SM(n,r) + n M(r) \log r)$$

Récapitulatif multiplication

$n \preccurlyeq r$	$r \preccurlyeq n \preccurlyeq r^{4-\omega}$	$r^{4-\omega} \preccurlyeq n$
$\mathcal{O}(n^{\omega-1}r + nM(r)\log r)$	$\mathcal{O}(n^2 r^{\omega - 2})$	$ ilde{\mathcal{O}}(nr^2)$

Question (en cours)

Pour $n \succcurlyeq r$, est-ce que l'on a $SM(n,r) = \tilde{\mathcal{O}}(n r^{\omega-1})$?

Désormais

 $n \geqslant r$

Correspondence de Hilbert

Idéal principal d'opérateurs $(L) \longleftrightarrow$ Espace des solutions H_L

Espaces des solutions en des points non singuliers

$$L = L_r \partial^r + \dots + L_0$$
, $L_r(0) \neq 0$, $I \in \mathbb{K}^r \Longrightarrow$
Unique solution $f \in \mathbb{K}[[x]]$ de $Lf = 0$ avec $f^{(i)}(0) = I_i$ $(i = 0, ..., r - 1)$

Système fondamental de solutions $H \in \mathbb{K}[[x]]^r$ avec

$$H_i = x^i + O(x^r)$$

Annulateur de $V \in \mathbb{K}[[x]]^r$

 $\dim V = r \Longrightarrow \exists !$ opérateur unitaire $L \in \delta^r + \mathbb{K}[[x]][\delta]_r$ avec LV = 0

$$L = \operatorname{ppcm}\left(\delta - \frac{\delta V_0}{V_0}, ..., \delta - \frac{\delta V_{r-1}}{V_{r-1}}\right)$$

Solutions locales

Théorème. Soit $L \in \mathbb{K}[x, \delta]_{n,r}$ non singulier. Alors on peut calculer H à l'ordre $\mathcal{O}(x^n)$ en temps $\mathcal{O}(\mathsf{SM}(n,r)\log n)$.

Démonstration. Puisque L est non singulier, on peut écrire

$$L = \Delta_r(\delta) + x C_{r-1} \Delta_{r-1}(\delta) + \dots + x^r C_0 \Delta_0(\delta)$$

$$\Delta_k(\delta) = \delta (\delta - 1) \dots (\delta - k + 1).$$

$$(C_i \in \mathbb{K}[x])$$

On a $R = \Delta_r(\delta) - L \in x \mathbb{K}[x, \delta]_{n-1,r} : \mathbb{K}[[x]] \to x^r \mathbb{K}[[x]]$. On a la formule recursive

$$H = \begin{pmatrix} 1 \\ \vdots \\ x^{r-1} \end{pmatrix} + \Delta_r(\delta)^{-1}(R(H)).$$

L'opérateur $\Delta_r(\delta)^{-1}(R(H))$ opère terme par terme :

$$\Delta_r(\delta)^{-1} \left(\sum_{k \geqslant r} A_k x^k \right) = \sum_{k \geqslant r} \frac{A_k}{\Delta_r(k)} x^k.$$

H se calcule donc de façon détendue en temps $\mathcal{O}(\mathsf{SM}(n,r)\log n)$.

S

Annulateurs

Théorème. Supposons
$$H = (H_0, ..., H_{r-1}) \in \mathbb{K}[[x]]^r$$
 avec

$$p := v^{\max}(V) := \max\{v(Y): Y \in \text{Vect}(V) \setminus \{0\}\} < \infty.$$

Étant donnée H à l'ordre $\mathcal{O}(x^{n+p})$, on l'unique annulateur $L = \operatorname{ann}(H) \in \delta^r + \mathbb{K}[[x]][\delta]_r$ de H à l'ordre $\mathcal{O}(x^n)$ se calcule en temps $\mathcal{O}(\mathsf{SM}(n+p,r)\log r)$.

Calcul de $\operatorname{ann}_n(H) \in \delta^r + \mathbb{K}[x, \delta]_{n,r}$:

- Si r = 1, alors $\operatorname{ann}_n(H) := \delta (\delta H_0/H_0) \operatorname{mod} x^n$.
- Sinon, soit r = a + b avec $a := \lceil r/2 \rceil$.
- Calculer $A := \operatorname{ann}_n(H_0, ..., H_{a-1})$.
- Évaluer $I := (A(H_a), ..., A(H_{r-1})) \mod x^n$.
- Caluler $B := \operatorname{ann}_n(I_0, ..., I_{b-1})$.
- Retourner $L = B A \mod x^n$.

Positionnement en un point non singulier

Lemme.

- 1. On peut trouver $x_0 \in \mathbb{K}$ où $L \in \mathbb{K}[x, \partial]$ est non singulier en temps $\mathcal{O}(\mathsf{M}(n))$.
- 2. Soit $L \in \mathbb{K}[x, \delta]_{n,r}$. On peut réécrire $u^r L$ comme opérateur dans $\mathbb{K}[u, \delta_u]_{n+2r,r}$ en temps $\mathcal{O}(r \mathsf{M}(n) \log n)$, où $x = x_0 + u$.

Démonstration.

- 1. Le terme dominant $P = L_{\deg_{\delta} L}$ de L en x admet au plus n racines. On peut trouver une non-racine de P parmi $1, ..., 2^n$ en temps $\mathcal{O}(\mathsf{M}(n))$
- 2. Réécrire L comme opérateur dans $\mathbb{K}[x,\partial]_{n+r,r}$ en temps $\mathcal{O}(r\,\mathsf{M}(n)\log n)$. Réécrire L ,, dans $\mathbb{K}[u,\partial_u]_{n+r,r}$ en temps $\mathcal{O}(r\,\mathsf{M}(n))$. Réécrire u^rL ,, dans $\mathbb{K}[u,\delta_u]_{n+2r,r}$ en temps $\mathcal{O}(r\,\mathsf{M}(n)\log n)$.

Division exacte

Théorème. Soient $K, L \in \mathbb{K}[x, \delta]_{n,r}$ tels que L = QK pour $Q \in \mathbb{K}[x, \delta]$. Alors on peut calculer Q en temps $O(\mathsf{SM}(n, r) \log n)$.

Algorithme

- Réduire au cas non singulier.
- Calculer système fondamental H avec L(H) = 0 à l'ordre $\mathcal{O}(x^{n+r})$.
- Évaluer I = K(H) et calculer une \mathbb{K} -base G de $\mathrm{Vect}(I)$ à l'ordre $\mathcal{O}(x^{n+r})$.
- Calculer l'annulateur $\Omega = \operatorname{ann}(G)$ de G à l'ordre $\mathcal{O}(x^n)$.
- Retourner la troncature de $Q_s\Omega$ à l'ordre $\mathcal{O}(x^n)$, où $Q_s = L_{\deg_\delta L}/K_{\deg_\delta K}$.

Lemme. Soit $H = (H_0, ..., H_{r-1}) \in \mathbb{K}[[x]]^r$ tel que $p = v^{\max}(\operatorname{Vect}(H)) + 1 < \infty$. Pour $G \in (x^p \mathbb{K}[[x]])^r$, il existe un unique $L \in \mathbb{K}[[x]][\delta]_r$ avec L(H) = G, et on peut calculer L à l'ordre $\mathcal{O}(x^n)$ en temps $\mathcal{O}(\operatorname{SM}(n+p,r)\log n)$.

Démonstration. Modulo changement de base : $\alpha_0 = v(H_0) < \cdots < \alpha_{r-1} = v(H_{r-1})$ et H_i unitaires. Soient

$$\Phi: \mathbb{K}[[x]]^r \to \mathbb{K}[[x]]^r
\Phi(V_0, ..., V_{r-1}) = (x^{\alpha_0} V_0, ..., x^{\alpha_{r-1}} V_{r-1});
\Psi: \mathbb{K}[[x]][\delta]_r \to \mathbb{K}[[x]]^r
\Psi(K) = \Phi^{-1}(K(\Phi(1)))
= (x^{-\alpha_0} K(x^{\alpha_0}), ..., x^{-\alpha_{r-1}} K(x^{\alpha_{r-1}})).$$

Écrivant $K = \sum_{i,k} K_{i,k} x^k \delta^i$ et $\Psi(K)_{i,k} = (\Psi(K)_i)_k$, on a

$$\begin{pmatrix} \Psi(K)_{0,k} \\ \vdots \\ \Psi(K)_{r-1,k} \end{pmatrix} = \begin{pmatrix} 1 & k + \alpha_0 & \cdots & (k + \alpha_0)^{r-1} \\ \vdots & \vdots & & \vdots \\ 1 & k + \alpha_{r-1} & \cdots & (k + \alpha_{r-1})^{r-1} \end{pmatrix} \begin{pmatrix} K_{0,k} \\ \vdots \\ K_{r-1,k} \end{pmatrix}.$$

Donc, Ψ et Ψ^{-1} opèrent terme par terme et se calculent à l'ordre $\mathcal{O}(x^n)$ et temps $\mathcal{O}(n\,\mathsf{M}(r)\log r)$.

Lemme. Soit $H = (H_0, ..., H_{r-1}) \in \mathbb{K}[[x]]^r$ tel que $p = v^{\max}(\operatorname{Vect}(H)) + 1 < \infty$. Pour $G \in (x^p \mathbb{K}[[x]])^r$, il existe un unique $L \in \mathbb{K}[[x]][\delta]_r$ avec L(H) = G, et on peut calculer L à l'ordre $\mathcal{O}(x^n)$ en temps $\mathcal{O}(\operatorname{SM}(n+p,r)\log n)$.

Démonstration. Modulo changement de base : $\alpha_0 = v(H_0) < \cdots < \alpha_{r-1} = v(H_{r-1})$ et H_i unitaires. Soient

$$\Phi: \mathbb{K}[[x]]^r \to \mathbb{K}[[x]]^r
\Phi(V_0, ..., V_{r-1}) = (x^{\alpha_0} V_0, ..., x^{\alpha_{r-1}} V_{r-1});
\Psi: \mathbb{K}[[x]][\delta]_r \to \mathbb{K}[[x]]^r
\Psi(K) = \Phi^{-1}(K(\Phi(1)))
= (x^{-\alpha_0} K(x^{\alpha_0}), ..., x^{-\alpha_{r-1}} K(x^{\alpha_{r-1}})).$$

Posant $H_i = x^{\alpha_i} + E_i$ avec $E_i = \mathcal{O}(x^{\alpha_i})$, l'équation L(H) = G se réécrit

$$L(H) = G$$

Lemme. Soit $H = (H_0, ..., H_{r-1}) \in \mathbb{K}[[x]]^r$ tel que $p = v^{\max}(\operatorname{Vect}(H)) + 1 < \infty$. Pour $G \in (x^p \mathbb{K}[[x]])^r$, il existe un unique $L \in \mathbb{K}[[x]][\delta]_r$ avec L(H) = G, et on peut calculer L à l'ordre $\mathcal{O}(x^n)$ en temps $\mathcal{O}(\operatorname{SM}(n+p,r)\log n)$.

Démonstration. Modulo changement de base : $\alpha_0 = v(H_0) < \cdots < \alpha_{r-1} = v(H_{r-1})$ et H_i unitaires. Soient

$$\Phi: \mathbb{K}[[x]]^r \to \mathbb{K}[[x]]^r
\Phi(V_0, ..., V_{r-1}) = (x^{\alpha_0} V_0, ..., x^{\alpha_{r-1}} V_{r-1});
\Psi: \mathbb{K}[[x]][\delta]_r \to \mathbb{K}[[x]]^r
\Psi(K) = \Phi^{-1}(K(\Phi(1)))
= (x^{-\alpha_0} K(x^{\alpha_0}), ..., x^{-\alpha_{r-1}} K(x^{\alpha_{r-1}})).$$

Posant $H_i = x^{\alpha_i} + E_i$ avec $E_i = \mathcal{O}(x^{\alpha_i})$, l'équation L(H) = G se réécrit

$$L(H) = G$$

 $(L(x^{\alpha_0}), ..., L(x^{\alpha_{r-1}})) + L(E) = G$

Lemme. Soit $H = (H_0, ..., H_{r-1}) \in \mathbb{K}[[x]]^r$ tel que $p = v^{\max}(\operatorname{Vect}(H)) + 1 < \infty$. Pour $G \in (x^p \mathbb{K}[[x]])^r$, il existe un unique $L \in \mathbb{K}[[x]][\delta]_r$ avec L(H) = G, et on peut calculer L à l'ordre $\mathcal{O}(x^n)$ en temps $\mathcal{O}(\operatorname{SM}(n+p,r)\log n)$.

Démonstration. Modulo changement de base : $\alpha_0 = v(H_0) < \cdots < \alpha_{r-1} = v(H_{r-1})$ et H_i unitaires. Soient

$$\Phi: \mathbb{K}[[x]]^r \to \mathbb{K}[[x]]^r
\Phi(V_0, ..., V_{r-1}) = (x^{\alpha_0} V_0, ..., x^{\alpha_{r-1}} V_{r-1});
\Psi: \mathbb{K}[[x]][\delta]_r \to \mathbb{K}[[x]]^r
\Psi(K) = \Phi^{-1}(K(\Phi(1)))
= (x^{-\alpha_0} K(x^{\alpha_0}), ..., x^{-\alpha_{r-1}} K(x^{\alpha_{r-1}})).$$

Posant $H_i = x^{\alpha_i} + E_i$ avec $E_i = \mathcal{O}(x^{\alpha_i})$, l'équation L(H) = G se réécrit

$$(L(x^{\alpha_0}), ..., L(x^{\alpha_{r-1}})) + L(E) = G$$

 $\Phi(\Psi(L)) + L(E) = G$

Lemme. Soit $H = (H_0, ..., H_{r-1}) \in \mathbb{K}[[x]]^r$ tel que $p = v^{\max}(\operatorname{Vect}(H)) + 1 < \infty$. Pour $G \in (x^p \mathbb{K}[[x]])^r$, il existe un unique $L \in \mathbb{K}[[x]][\delta]_r$ avec L(H) = G, et on peut calculer L à l'ordre $\mathcal{O}(x^n)$ en temps $\mathcal{O}(\operatorname{SM}(n+p,r)\log n)$.

Démonstration. Modulo changement de base : $\alpha_0 = v(H_0) < \cdots < \alpha_{r-1} = v(H_{r-1})$ et H_i unitaires. Soient

$$\Phi: \mathbb{K}[[x]]^r \to \mathbb{K}[[x]]^r
\Phi(V_0, ..., V_{r-1}) = (x^{\alpha_0} V_0, ..., x^{\alpha_{r-1}} V_{r-1});
\Psi: \mathbb{K}[[x]][\delta]_r \to \mathbb{K}[[x]]^r
\Psi(K) = \Phi^{-1}(K(\Phi(1)))
= (x^{-\alpha_0} K(x^{\alpha_0}), ..., x^{-\alpha_{r-1}} K(x^{\alpha_{r-1}})).$$

Posant $H_i = x^{\alpha_i} + E_i$ avec $E_i = \mathcal{O}(x^{\alpha_i})$, l'équation L(H) = G se réécrit

$$\Phi(\Psi(L)) + L(E) = G$$

$$\Phi(\Psi(L)) = G - L(E)$$

Lemme. Soit $H = (H_0, ..., H_{r-1}) \in \mathbb{K}[[x]]^r$ tel que $p = v^{\max}(\operatorname{Vect}(H)) + 1 < \infty$. Pour $G \in (x^p \mathbb{K}[[x]])^r$, il existe un unique $L \in \mathbb{K}[[x]][\delta]_r$ avec L(H) = G, et on peut calculer L à l'ordre $\mathcal{O}(x^n)$ en temps $\mathcal{O}(\operatorname{SM}(n+p,r)\log n)$.

Démonstration. Modulo changement de base : $\alpha_0 = v(H_0) < \cdots < \alpha_{r-1} = v(H_{r-1})$ et H_i unitaires. Soient

$$\Phi: \mathbb{K}[[x]]^r \to \mathbb{K}[[x]]^r
\Phi(V_0, ..., V_{r-1}) = (x^{\alpha_0} V_0, ..., x^{\alpha_{r-1}} V_{r-1});
\Psi: \mathbb{K}[[x]][\delta]_r \to \mathbb{K}[[x]]^r
\Psi(K) = \Phi^{-1}(K(\Phi(1)))
= (x^{-\alpha_0} K(x^{\alpha_0}), ..., x^{-\alpha_{r-1}} K(x^{\alpha_{r-1}})).$$

Posant $H_i = x^{\alpha_i} + E_i$ avec $E_i = \mathcal{O}(x^{\alpha_i})$, l'équation L(H) = G se réécrit

$$\Phi(\Psi(L)) = G - L(E)
L = \Psi^{-1}(\Phi^{-1}(G - L(E))).$$

Lemme. Soit $H = (H_0, ..., H_{r-1}) \in \mathbb{K}[[x]]^r$ tel que $p = v^{\max}(\operatorname{Vect}(H)) + 1 < \infty$. Pour $G \in (x^p \mathbb{K}[[x]])^r$, il existe un unique $L \in \mathbb{K}[[x]][\delta]_r$ avec L(H) = G, et on peut calculer L à l'ordre $\mathcal{O}(x^n)$ en temps $\mathcal{O}(\operatorname{SM}(n+p,r)\log n)$.

Démonstration. Modulo changement de base : $\alpha_0 = v(H_0) < \cdots < \alpha_{r-1} = v(H_{r-1})$ et H_i unitaires. Soient

$$\Phi: \mathbb{K}[[x]]^r \to \mathbb{K}[[x]]^r
\Phi(V_0, ..., V_{r-1}) = (x^{\alpha_0} V_0, ..., x^{\alpha_{r-1}} V_{r-1});
\Psi: \mathbb{K}[[x]][\delta]_r \to \mathbb{K}[[x]]^r
\Psi(K) = \Phi^{-1}(K(\Phi(1)))
= (x^{-\alpha_0} K(x^{\alpha_0}), ..., x^{-\alpha_{r-1}} K(x^{\alpha_{r-1}})).$$

Posant $H_i = x^{\alpha_i} + E_i$ avec $E_i = \mathcal{O}(x^{\alpha_i})$, l'équation L(H) = G se réécrit

$$L = \Psi^{-1}(\Phi^{-1}(G - L(E))).$$

Cette équation est récursive $(x^{-\alpha_i}L(E_i) \prec L)$, donc $\Phi^{-1}(L(E)) \prec L$. \leadsto Résolution détendue à l'ordre $\mathcal{O}(x^n)$ en temps $\mathcal{O}(\mathsf{SM}(n+p,r)\log n)$.

Division avec reste (définitions)

Pour $A, B \in \mathbb{K}(x)[\delta]$, uniques $Q = \text{quo}(A, B), R = \text{rem}(A, B) \in \mathbb{K}(x)[\delta]$ avec

$$A = QB + R \qquad (\deg_{\delta} R < \deg_{\delta} B)$$

Si $A, B \in \mathbb{K}[x, \delta]$ et $I = B_{\deg_{\delta} B}$, uniques Q = pquo(A, B), $R = \text{prem}(A, B) \in \mathbb{K}[x, \delta]$ avec

$$I^{\deg_{\delta} A - \deg_{\delta} B + 1} A = QB + R \qquad (\deg_{\delta} R < \deg_{\delta} B)$$

Soit $J = \operatorname{pgcd}(I, Q, R)$. En divisant la dernière relation par J, on obtient

$$CA = QB + R$$
 $(\deg_{\delta} R < \deg_{\delta} B)$ $(\deg_{\delta} R < \deg_{\delta} R)$

 $Q = quo^*(A, B)$: pseudo-quotient simplifié

 $R = \text{rem}^*(A, B)$: pseudo-reste simplifié

Division avec reste (algorithme)

Proposition. Soient $K, L \in \mathbb{K}[x, \delta]_{n,r}$ avec $n \geqslant r$ et $s = \deg_{\delta} K > 0$. Soit

$$JL = QK + R$$

la pseudo-division de L par K avec simplification. Si $n' \geqslant n$ vérifie $A, Q, R \in \mathbb{K}[x, \delta]_{n',r}$, alors A, Q et R se calculent en temps $\mathcal{O}(\mathsf{SM}(n', r) \log n')$.

Algorithme (n' connu)

- Calculer système fondamental H pour K(H) = 0 à l'ordre $\mathcal{O}(x^{2n'+r})$.
- Calculer G = L(H) avec R(H) = JG à l'ordre $\mathcal{O}(x^{2n'+r})$.
- Interpoler $\Omega \in \mathbb{K}[[x]][\delta]_s$ avec $\Omega(H) = x^s G$ à l'ordre $\mathcal{O}(x^{2n'+r})$.
- On a $R = x^{-s} A \Omega$ et $x^{-s} \Omega$ est connu à l'ordre $\mathcal{O}(x^{2n'})$. $x^{-s} \Omega_0, ..., x^{-s} \Omega_{s-1}$ fractions rationnelles tronquées de degrés < n'. Reconstruction rationnelle de J et de R.
- Calculer Q avec QK = JL R par l'algorithme de division exacte.

Pgcd, ppcm (définitions)

Pour $K, L \in \mathbb{K}(x)[\delta]$, il existe des uniques $\Gamma = \operatorname{pgcd}(K, L)$ et $\Lambda = \operatorname{ppcm}(K, L)$ unitaires dans $\mathbb{K}(x)[\delta]$ avec

$$\mathbb{K}(x)[\delta] \Gamma = \mathbb{K}(x)[\delta] K + \mathbb{K}(x)[\delta] L$$

$$\mathbb{K}(x)[\delta] \Lambda = \mathbb{K}(x)[\delta] K \cap \mathbb{K}(x)[\delta] L.$$

Aussi uniques $A, B, C, D \in \mathbb{K}(x)[\delta]$ avec

$$\left(\begin{array}{c}\Gamma\\0\end{array}\right) = \left(\begin{array}{c}A&B\\C&D\end{array}\right) \left(\begin{array}{c}K\\L\end{array}\right),$$

$$\deg_{\delta} A K, \deg_{\delta} B L < \deg_{\delta} \Lambda \text{ et } C K = -D L = \Lambda. \text{ Eucl}(K, L) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

De même qu'au dessus : $pgcd^*(K, L)$, $ppcm^*(K, L)$ et $Eucl^*(K, L)$.

Pgcd (calcul)

Théorème. Soient $K, L \in \mathbb{K}[x, \delta]_{n,r}$ et $n' \geqslant n$ tels que $\Lambda^* = \text{lcm}^*(K, L) \in \mathbb{K}[x, \delta]_{n',r}$. Si K, L et $\text{lcm}^*(K, L)$ sont non singuliers, alors on peut calculer Γ^* en temps $\mathcal{O}(\mathsf{SM}(n', r) \log n')$.

Algorithme

- Systèmes fondamentaux G, H pour K(G) = 0, L(H) = 0 à l'ordre $\mathcal{O}(x^{2n'+2r})$.
- Calculer base B de $V = \text{Vect}(G) \cap \text{Vect}(H)$ à l'ordre $\mathcal{O}(x^{2n'+2r})$.
- Calculer $\Omega = \operatorname{ann}(B) = \operatorname{pgcd}(K, L)$ à l'ordre $O(x^{2n'})$.
- Reconstruire $\Gamma^* = \operatorname{pgcd}^*(K, L)$ à partir de $\Omega \operatorname{mod} x^{2n'}$.

Avertissement

 $K = \operatorname{ann}(1, x)$, $L = \operatorname{ann}(e^x, x)$ et $\operatorname{ppcm}(K, L) = \operatorname{ann}(1, x, e^x)$ tous non singuliers, mais $\operatorname{pgcd}(K, L) = \operatorname{ann}(x) = \delta - 1$ est singulier.

Certification

Arrêt précoce

Si $\operatorname{Vect}(G) \cap \operatorname{Vect}(H) = \emptyset$ modulo $\mathcal{O}(x^{n'})$ pour un certain n', alors $\operatorname{pgcd}^*(K, L) = 1$.

Matrices Euclidiennes

Calcul de $\operatorname{Eucl}^*(K, L)$ donne $\operatorname{pgcd}^*(K, L)$ et certification.

Pseudo-division de K et L par Γ^*

n' trop petit \leadsto l'algorithme donne un $\widetilde{\Gamma}^*$ de degré éventuellement trop élevé Mais $\widetilde{\Gamma}^*$ est correct si $\widetilde{\Gamma}^*$ pseudo-divise à la fois K et L

Bornes effectives

Borne pour $v(L(\phi))$ pour tout $\phi \in \operatorname{Ker} K \setminus \{0\}$ (K, L non singuliers) ?