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e Dahn & Goéring

e Ecalle

e Detailed treatment in LNM 1888: “Transseries and Real Differential Algebra”
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Transseries are transfinite series

f = Z from (T: set of transmonomials, coefficients £, € R)
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Transseries

f'

are transfinite series
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Differentiation
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Ordering
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Differentiation
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Definition. Let K be an ordered differential field and denote

C = {ceK:c'=0}
O = {aeK:|a|<c forsome ce C}
o = {aeK:|a|<c forall c>0in C}.

K is an H-field if:
H1. Forall ae K, if a> C, then a’ > 0.
H2. O=C+o.

The derivation 0 is said to be small, if 0o C o.

Examples.

e T and various of its variants (grid-based, well-based, ...).
e Hardy fields.

e Differential fields of accelero-summable transseries.

e Transserial Hardy fields
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Differentially valued fields [Rosenlicht]

A d-valued field is a valued differential field such that
DV1. a’be b’o forall a,beco.

DV2. O=C+o.

Also: pre-H-fields, pre-d-valued fields, asymptotic fields, ...

Complex transseries
e 'I'[i] is algebraically closed.

o Zeros of L& T[i][0] of order r form a subspace of C[[e™~!!]] of dimension r.

e Any PeT{Y}\C admits a zero in T.

Differentially closed fields?

K is d-closed if for every P € K{Y } of order r and Q € K{Y'} of order s < r, there exists
an y € K with P(y)=0 and Q(y) #0.

Unfortunately [Rosenlicht|: d-closed d-valued fields do not exist.
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e Following Robinson: systematically study the extension theory of H-fields K.

e It suffices to study extensions of K by one element y at a time.

e Reduces to studying the behaviour of differential polynomials P € K{Y'} at y.
e This was done in my book LNM 1888 for K = T&P.

e Generalize this theory to arbitrary H-fields.

e Main obstruction: problem with gaps

1
x log x loglog x -+

Indeed: should we have [y ~1or [y <1 in extensions?
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Systematic study of asymptotic d-algebraic equations
P(y)=0, y=v,
where P € K{Y} and ¢ € K. For example:

e Yy +y?—2xyy' —Te Xy —4+ =0, y~<
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The slopes correspond to dominant monomials of candidate solutions. Two kinds:
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e Natural analogue of usual Newton polygon method.

e Slopes can be read off from the Newton diagram modulo “adjustments”,
e.g. y'=e® implies y ~e® /e*. In general: equalizer theorem.
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The slopes correspond to dominant monomials of candidate solutions. Two kinds:

Approximate solutions of algebraic type. y =42+ -

e Y2y 4y 2xyy —Te Xy —4+ =0, y=<x.

log x

e Natural analogue of usual Newton polygon method.

e Slopes can be read off from the Newton diagram modulo “adjustments”,
e.g. y'=e® implies y~e® /e*. In general: equalizer theorem.

Approximate solutions of differential type. y =c/x + -

X 1
e Y2y 4y 2xyy' —Te Xy ' — 4+ Iogxzo’ y < X.

Cancellation in homogeneous component y —2xyy’=(1— 2xy7) y? ~~ Riccati equation

1-2xyT=0,

whence y' =1, x and y = /x.



Complete algorithm for finding all solutions

Refinements. Given an approximate solution y ~ ¢, performing the refinement
y=¢+y, Y=g

leads to a new asymptotic differential equation in y. Example: y =2+ y, y <1 transforms

x 1
—e* 2 1 2_2 I _7e Xy —4 —0 ~
e -y y' +vy XYy ey +Iogx Y X
into

e—ex.)';2)7//_|_-)72_2X-)7-)7/_|_4e—ex.)7_|_4)7_(4X_|_7e—X).)7/_|_4e—ex.)7//_|_i:0’)7_<1

log x



Complete algorithm for finding all solutions 12/22

Refinements. Given an approximate solution y ~ ¢, performing the refinement
y=¢+y, Y=g

leads to a new asymptotic differential equation in y. Example: y =2+ y, y <1 transforms

e—eXyQy//+y2_2ny/_7e—xy/_4+ 1 =0, y < x
log x
into
1
log x

e YR g2 2xyy +he YAy — (4x+Te X))y +bde Y+ —=0,y<1

Newton degree. [analogue of Weierstrass degree] Abscissa of highest slope of Newton dia-
gram which satisfies the asymptotic side condition (e.g. two in our example).
e Newton degree can only decrease during refinements.

e If Newton degree is one, then the equation is said to be quasi-linear. In that case, it
admits at least one transseries solution.

e Using a suitable generalization of Tschirnhausen transforms, one may reach a quasi-linear
equation after only a finite number of refinements.
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Multiplicative conjugation

Reduce general asymptotic side condition y < v to the case when v =1:
(P(y)=0,y <v)<= (Px.,(y)=P(yv)=0,y <1), y=y/v

Dominant part

Consider P€T{Y } as a series P=}_ . Pum, with P, e R{Y'}.
Then Dp = D(P) is the “leading coefficient” of P.

D<13ex Y2 Y’—%Y2—|—(Y’)2+e_x> — 3Y2—|—(Y’)2,

Requires a cross section of the value group inside K for a general H-field.
Compositional conjugation

Replacing the derivation O by a new derivation 9= ¢ 1.
Corresponds to a postcomposition y = y o u. )
We typically want to take ¢ as small as possible, while preserving the smallness of 0.

Notation: K?: the field K with derivation 0, P?: the counterpart of P K{Y} in K?{Y}.



The differential Newton polynomial 14/22

e Y Y (Y e 2 3Y2Y 4 (V)
\LY—?olog
~r o~ ~ )2 ~ ~
(1—§—x)x(Y2Y/)OIog—lY olog,‘ﬂL(Y)XzOIOg e 2o3v?y oy
l\;:\aolog
=~/
3 %2 &/ 1 32 (Y>2o|og2 ., D R
(1—e—X)ongx(Y Y)O|0g2—)—<Y o logy + < loa? x +e™ — —Y

Theorem. For any P c Te®{Y }\ {0}, there exists an N € R[Y] (Y)Y with

DP¢ — N7

1

ST R ¢} with | sufficiently large, where (= log o %X olog.
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The following special cuts will play a crucial role:

1
YT = i, (Vn, (1/€n) <y < £})
N s SO SR
T = T Tty | lolily - T
1 1 1 2 /
— = = Z -2
WT 53—1_535%—1_63@@—1_ T T

Even though vy, Ar and w are not in T, the sets
(T) = {aeT:a<vyr}

A(T) {aeT:a<hp}
Q(T) = {aeT:a<wT}

are definable subsets of T'. For instance,

[(T) = {acT:VbeT,b~1=a+b'}
= {—a""aeT,a>0}.

In other words, v, A and wr are definable cuts in T,
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Gaps

Y=vk €K, but [y ¢& K. In other words, for all a&c K with a1, we have

al=v>=(1/a)"

Theorem. (AvdD) If K admits a gap v, then K admits exactly two “Liouville closures”.

Indirect gaps

K admits no gap (i.e. K is y-free), but A\ € K is such that for all a € K with a>~1, we have

—alf<h<—(1/a)".
In general

Each of the following cases can occur:

vyeK
YEK N AeK
ANEK N weK
wé¢K
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Definition

2

)

w=wk:K— K, w(z):=-22"-z
weK, ifforall a=11in K, we have
w—w(alh) < (ah)2
K is w-free if

Va,3b,[b=1Aa—w(b™) = (b")?.

Examples
o T is w-free.

e If K has asymptotic integration and K is a union of H-subfields, each of which has
a smallest comparability class, then K is w-free.

e There exist Liouville-closed H-fields that are not w-free.
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Differential Newton polynomials

Theorem. If K is w-free, then we can define Np for any P € K{Y'}, and Np € C[Y](Y")™.

Differentially algebraic extensions

Theorem. If L is a d-algebraic extension of an w-free H-field K, then L is w-free.

Relation with theorem of Ecalle

L 4...and Pe R{Y } \IR. Then the first w terms of P(}) either “behave”

x£1£2

Let kz%JrXiele
like )\ or like w.

In particular, we cannot have P(k):X—1n+ L+ 4. forn>3.

x" 07 x" £7 03

Relation with second order linear differential equations
y"" = —y has no non-zero solution y € T.
y" = xy has two R-linearly independent solutions in T.

In general, 4 y”" + fy =0 has a non-zero solution if and only if f < w.
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Definition (for w-free H-field K)
Every P € K{Y } with deg Np =1 admits a zero in O.

Theorem. If K is an H-field, OK = K, and K is a directed union of spherically complete
H-subfields, each having a smallest comparability class, then K is newtonian.

Theorem. [If K is a newtonian H-field with divisible value group, then K has no proper
immediate d-algebraic H-field extension.

Corollary. Let K be a real closed newtonian H-field. Then
1. Each d-polynomial in K[i][{ Y} of positive degree has a zero in K|i].

2. Each linear differential operator in K[i|[0]| of positive order is a composition of such
operators of order 1.

3. Each linear differential operator in K[J| of positive order is a composition of such operators
of order 1 and order 2.
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Theorem. If K is an w-free H-field with divisible value group, then K has an immediate
d-algebraic newtonian H-field extension, and any such extension embeds over K into every
w-free newtonian H-field extension of K.

Theorem. If K is an w-free H-field, then K has a d-algebraic newtonian Liouville closed H-field

extension that embeds over K into every w-free newtonian Liouville closed H-field extension
of K.
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The theory

L = {0717+7_7'787<7$}
T"' = theory of newtonian (w-free) Liouville closed H-fields

Switchmen predicates

Lina=LU{c,],A\ Q} and T,n,l\LQ is 7" with additional axioms

a0 = aua)=1

a=0 — (a)=0

I(a) < [Fy,(axy'Ay=<1)] <= [a=0V (a£0A-A(—a"))]
Aa) < 3y, (y=1Aa=—y'

Q(a) < 3y, (y#0A4y"+ay=0)

Assume that K contains a gap v and that ® € L 0 K such that &' =v.
Then we must have ® <1 if I(y) and ® > 1 otherwise.

A and Q control what happens when adjoining v and A with y' = —) and w(}\) = w.
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Lho=LU{,\,Q} and T}{l}g’f is 7" with above additional axioms for ¢, A and €.

Theorem. The theory T,]{IIQ’ admits elimination of quantifiers.

Theorem. Let T2. ., be the L-theory whose models are the newtonian Liouville closed H-fields
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Theorem. If K is a newtonian Liouville closed H-field, then K has no proper d-algebraic
H-field extension with the same constant field.



