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Theorem. (Hardy, Robinson, Bourbaki)

Let K be a Hardy field.

e The real closure of K is again a Hardy field.

e Given f €K, the sets K([ f) and K (e') are again Hardy fields.

Examples. £ — oc
e K=R

. R(z)
o R(x,e”)

R(log x, x,e")
=R(logz,z,e%, e )
=R(

—X

logz,z,e%, e % erf )

o K — RLiouville
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Orders at infinity

f=yg <= [f=o0(yg)

<— VeeR~”,|f|<elg]

<= Ve >0,3dxg, Vo >z, |f(2)| <e|g(zx)
f<sg = [f=0(g)

< dCeR~, |f|<C|g]

!

AC > 0, dzg, Vo >z, | f(2)| < C |g(x)|

~+ Any Hardy field K is a valued field for the valuation ring O ={f € K: f < 1}.

The big dream

Use L-functions (= elements of RY°"Vile) or a suitable generalization as a universal framework
for the asymptotic analysis of real functions at infinity.
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Du Bois-Reymond (1877)
E(n)=(expo”X oexp)(1)

Kneser (1950)

Real analytic solution to equation F(x + 1) =exp E(x)

vdD—Macintyre—Marker / vdH (1997)

The functional inverse of log x loglog x cannot be expanded w.r.t. Hardy L-functions

Boshernitzan (1986)

For any solution y of

562

y'+y = ",

there exists a Hardy field that contains y. But for two such Hardy fields K7 and K5 there is
generally no Hardy field K that contains both K and K.

Singer (1975)
K: Hardy field, y: solution to ' = ®(y), ® € K(y). Then K(y) is a Hardy field.

How to go beyond first order equations?
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e x 2 —l_ e T 2 _l_e\/E‘i‘ —l_
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(r— +00)

o5 4oV OETOE T+

xS " 9 R
e xT :L'2 _|_ e xT :L'2 _|_ eﬁ—i—e
log x
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l+x 1+ 2+t 2+ 4

e—ﬂ?

I+ —+—gfoote 4254 e 204

x

1 1 2 6 24 120
Rt E T AT E T T

x x2 x3 x4

mem(logm—l) mew(logaz—l) mem(logm—l)
xl/2 * 12 25/2 288 1:5/2

142774370447 ¢ ...

1 o101 1 1

E+90(x)—m+mw+xﬂ2+xﬂ3+

1 log?ay _ 1 1 1 1

xT —|_ w(e ) o xT elog2:c elog4a: elogsaz
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Mmx] use "asymptotix";

Mmx] x == infinity (’x);
1

Mmx] x4+ 1

1 1 1 1 1

T L e |

s 2 B AT <x5>

Mmx] !

expx+x+1
1 x 1 x2 2x 1 3 3 12 3x 1 n ( x4 )

e_:c o 62:1: o erc eBsc eSsc +

374
Mmx ] exp(a*+1)

e.CCS—SCQ—f-SC N e.CCS—SCQ—f-SC e:cg—ch—}-sc Lo e:cS—:cQ—}-:c
e ex 2ex? x’

63:1: o e4:1: o e4sc o e4:1: o e4:1: e5:1:
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Mmx] [exp (z?)dx

e eT” 3e*"  15e% eT”
2z T a T 8 x° * 167 +O<_9>

X

Mmx] [exp (z%)dx

e:clog(:c) exlog(sc) exlog(az) e:clog(:c) <e:clog(:c) ) e:clog(sc)

O 3 exlog(sc) 6 exlog(az)
log(x) log(x)? * log(z)3  log(x)? + log(z)5 zlog(x)3  zlog(x)? x log(x)®
zlog(x) zlog(x) zlog(x) zlog(x) zlog(x) zlog(x)
of — 5| T 2 4 2 510 2 5| T 23e 510 i 6
x log(x) x?log(x)* x?log(x) x? log(x) x3 log(x) x* log(x)
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Mmx] [exp (z?)dx

fL‘2

e eT” 3e*"  15e% eT”
2z T a T 8 x° * 167 +O<_>

Mmx] [exp (z%)dz

zlog(x) zlog(x) e:clog(ac) e:clog(ac) e:clog(ac)
- 7 T+ 3 = r T O\ oors | T
log(x) log(x) log(x) log(x) log(x)

2 e:clog(ac)

e:clog(x)

3e:clog(x)

6 e:clog(ac)

x log(x)3

e:clog(x) e:clog(x) e:clog(x) e:clog(ac)

o 5 |t 2 4 .2 50| — g |t
x log(x) x?log(x)* x?log(x) x? log(x)

Mmx ] ﬁxed_point_transseries( f— é + fox2+ fo expx)

_|_

SH

x3log(z)®

1

1

~ xlog(x)?

A

e:clog(:c)

x4 log(z)6

1 1 1 1 1
1

eSa:

1 1 1 1 1
2 x +O 4 x _|_ 2z +O 2x _|_ 2 +O 2 _|_
e e ete e e2e ee” e2e” e

1
>+ ; +
e* e

2
1

)

1

x log(x)®

e

(S]

-+ 0f
& e
+of
€ eZe

1

e

T

1
4:1:2) + ea:4 +

)
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Mmx] []7_,t

+ s— T 7

e:z:log(:z:)—ac ewlog(m)—x ewlog(:z:)—ac B 1396$log($)—:1: +O<ewlog($)x>
sart(z) 1227 288 27 51840 27

2
x2
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Mmx] JTp_qt
zlog(z)—=x zlog(x)—=x zlog(x)—=x zlog(x)—=x zlog(x)—=x
e : L8 4 e - 139e 40 e :
sart(z) 1222 288 22 51840 z2 x?

Mmx] [];_,logt

exlog(IOg(;,;)) Toa(@) loga(vm)Q_lUgQ(z’)fﬁ_i_O 1oga(bm)4>_log(102g(m))+

ewlog(log(m)) Tos (o) log?m)2_10g2(2)3+0 1og?w)4>_log(l;g(m))
12 z log(x) T

ewlog(log(m)) Tos (o) log?w)Q_log2<z)3+0(1og?w)4>_log(l;g(w))
288 2 log(x)? N

ewlog<10g<x)) s o) logé(vm)g_10g2(z)3+0(10g:(:)4>_1og<1(;g(m))
360 log(x) x3 B

emlog<10g<x)) s o) logé(vm)g_10g2(z)3+0(10g:(:)4)_1og<1(;g(m))
240 23 log(x)? T
exlog(log(w}) s o) logfwﬂ_log2<1)3+o(1og?x)4)_logaogg(x))

@)

x3log(z)3
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e (: constant field
e (91, <): totally ordered group of monomials
l.e. log2N is a value group with m < n<=v(logm) > v(logn)

o C[[9M]]: Hahn field of f=3" .- fmm with well-based support.
mp<mo<-- with my,mo,...Esupp f 1is impossible

o C[IMI: field of f=) oy fmm with grid-based support.

supp f CmY - mN n, my,...,m, <1

o C[M]].7: field of f=3" oy fmm with #-based support.
M — Lo € Z (M) functor of well behaved supporters with
— {m} e Sgn forallmeM
—  Y9n closed under taking subsets, unions and multiplication

— Y on closed under power products of infinitesimal sets
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Strong summability
We say that (f;)icr € O[N]’ is (strongly) summable if
1. U, supp fi€S
2. {iel:mesupp f;} is finite for each m € N
Then g=5" f € C[[M]].» with gm=7>"._, fi.m is well-defined.

Example

If supp f <1, then (f"),,en is summable, allowing to define

1 n
1—f::Zn€]Nf
Properties
o > (fo)ier=>_(fi)ier
o Y FIIG=) F+> G
e For F:HjeJGj' we have ZjEJZGj:ZF
Strongly linear map

Linear map ©: C' [t — C' [ that preserves strong summation
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Example
R{[z% e = R[[z"]][[e"]]
> Japrvelr = > [Z fa,gx“] efe
a,BeER BER LacR

More generally

Let 91" a convex subgroup of a monomial group 2t and assume that we may decompose
M = Do

Then
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At the beginning, there was
R([z"]].~

Adding logarithms

Ln = R[[’gn]]f:RH%R”'KEHﬂ
l, = (logo*Xolog)(z)

For m=/5°--- 09", logm=cgl1+ -+ anlpi1 ELyyq. For f=cm(1+06) e,
log(f)=log(csos(1+3d)) = logds+logcy+log(1+6y).
Closing off

L = LoULjULyU---
L = RH/SH;/, L=LoULiULoU---

Grid-based case: I = I, A
Well-based case: /o+ 1+ 0o+ €L\ L
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Field of transseries

T < R[]~
log:¥ — To={feT:VmeT m>1}

Exponential extension

Sexp — eXp(rJI‘>-):—>S
rIFexp — R[[‘zeXPHY

Example

2 2
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e g log# x e exp
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Field of transseries

T < R[]~
log:¥ — To={feT:VmeT m>1}

Exponential extension

Sexp — eXp(rJI‘>-):—>S
rIFexp — R[[‘zeXPHY

Example

2 2

:c2—|—10 — 5 +--4+x+loglogx
e g log# x E exp

Closing off

Texpoo — rIFUrIFexpur]rexp,expu"'
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Field of transseries

T C R[%]»
log:¥ — To={feT:VmeT m>1}

Exponential extension

gexp — eXp(T>-):—>‘z
Texp = R|[Texpll.r

Example
:c2—|—

e logz ' logZa +otatlogloga

exp

Closing off

rIFexpoo = TU rIFexp U rIFexp,exp U---

rf[wexpoo R[[Texpm]]fa ‘Zexpoo =TU ‘Zexp U ‘Zexp,exp U---

A

Grid-based case: Lexpoe = Loxpoo
Well-based case: % + eim Ty ]I:expoo \ Lexpoe

ee”
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Alternative construction 17/29

First close off under exponentiation

Eo = ]RHQEQH;/ QEQ — ZER
Eni1 = R[]~ Erp1 = 2 Vexp ((En)-)
E = EqUEUEsU---

Upward shifting
coexp: By, — Eniq
~~ formal identification of f € E,, with (foexp)ologe E, 110loge Eolog

Closure under logarithm
T = EUEologUIEologologU---

Grid-based case: same construction
Well-based case: different construction: x + log x + loglog x + --- ¢ T

Our book

T=U,enEol “standard field of transseries”



Abstract “complete” fields of transseries

Totally ordered field T =R |[[T]] » with a logarithm such that
T1. domlog=T".

T2. logmeTy, forallme¥, ie. Vnesupp (logm),n>- 1.
T3. log(1+5):5—%52+%53+---, forall e T..
T4. see Schmeling’s PhD.
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Strictly increasing transfinite sequence of fields of transseries

T, = L
rI[104—1—1 — (Ta)exp
Tx = R[U,<,%dll

Transfinite sequence of f, € T, with supp fo =2 a and f, & Uﬁ<a T3

f = a°

fa+1 — fa_efaologx
fn = statlim f,
a< A
fi = a7
2
f2 — x2_elog x
f — 22 elogQ:Jc o elogQ:lc—elog log? x L
v =
$2 _ elogQ:Jc _ elogQ:lc—elog log? @ . elogQ:p—elog log?z _ ..

fw—l—l —
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Differentiation 20/29

Let T be standard or T =T, with (T,) as above
Definition. Exp-log derivation: derivation with (e/)’ = f’e/ whenever e/ is defined.
Theorem. There exists a unique strong exp-log differentiation on T" with v’ =1.

This derivation satisfies:
AD1. f<g= f'<g/ forall f,geT with g#1.
AD2. f>1=(f>0= f'>0), forall feT.
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Composition and inversion 21/29

Let T be standard or T = Ua<>\Ta, A stable under multiplication
Definition. Difference operator § is exp-log: §(ef) =) whenever e is defined.
Theorem. Let g € T~>7. 3 unique strong exp-log difference operator §: T — T with dx = g.

We call ¢ the post-composition operator with g and also write d( f) = f o g. It satisfies:
AAl. f<1=6(f)<1, forall feT.
AA2. f20=46(f)=0, forall feT.

Theorem. Given g€ T~ , there exists a unique g"™¥ € T~ with f = g™ o g=go g™ =u.

Theorem. [, €T withd <x and m’§ <m for all m € supp f. Then

fole+8)=f+f'8+5 "8+
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Integration 22/29

Theorem. The field T=J, . U R[[€,]] oy is stable under integration.

nelN

Fact. The field L.y, is not stable under integration. Indeed, f Y & Lexp, where

= L = exp(—x —logz —loglogx — --+)
[ rlogxloglogx - P 5 5706

Remark. Any f € Ley, with f,, =0 admits an integral in Leyp.
Question. Analytic meaning of {,= [v?7

e Kneser = i real analytic solution to
lool, = £,—1
e Differentiate = v = /{/, indeed a solution to

Yol
xr

e [, grows slowlier than any iterated logarithm




Closure under integration 23/29

Transfinite iterators of the logarithm

1
lo = /—
Hﬁ<o¢gﬁ



Closure under integration 23/29

Transfinite iterators of the logarithm

1
e [
Hﬁ<o¢gﬁ

Generalized transseries

Schmeling—vdH: generalizated transseries that encompass 7,



Closure under integration 23/29

Transfinite iterators of the logarithm

1
lo = /—
Hﬁ<o¢gﬁ

Generalized transseries

Schmeling—vdH: generalizated transseries that encompass 7,

Fork in the road
Let T be a field of transseries with v € T but [y ¢ T
o Possible to construct extension T'( [y) in which [y =1

o Also possible to construct extension T'( [vy) in which [y <1



Closure properties 24/29

Let T be the standard field of transseries

Theorem. (Ecalle / vdD—Macintyre—-Marker / vdH) T is Liouville closed (real closed and
stable under resolution of first order linear differential equations).



Closure properties 24/29

Let T be the standard field of transseries

Theorem. (Ecalle / vdD—Macintyre—-Marker / vdH) T is Liouville closed (real closed and
stable under resolution of first order linear differential equations).

Theorem. (vdH) Any monic linear differential operator L. € T [0]| can be factored into factors
O+ a of order one and factors 0*> +a 0 + b of order 2 with a,bcT.



Closure properties 24/29

Let T be the standard field of transseries

Theorem. (Ecalle / vdD—Macintyre—-Marker / vdH) T is Liouville closed (real closed and
stable under resolution of first order linear differential equations).

Theorem. (vdH) Any monic linear differential operator L. € T [0]| can be factored into factors
O+ a of order one and factors 0*> +a 0 + b of order 2 with a,bcT.

Theorem. (vdH) T is newtonian (differential analogue of henselian).



Closure properties 24/29

Let T be the standard field of transseries

Theorem. (Ecalle / vdD—Macintyre—-Marker / vdH) T is Liouville closed (real closed and
stable under resolution of first order linear differential equations).

Theorem. (vdH) Any monic linear differential operator L. € T [0]| can be factored into factors
O+ a of order one and factors 0*> +a 0 + b of order 2 with a,bcT.

Theorem. (vdH) T is newtonian (differential analogue of henselian).

Theorem. (vdH) T satisfies the differential intermediate value property: let P € T{Y } be a
differential polynomial and assume that f < g in T are such that P(f) P(g) <0. Then there
exists a h € T with f <h < g and P(h)=0.



Closure properties 24/29

Let T be the standard field of transseries

Theorem. (Ecalle / vdD—Macintyre—-Marker / vdH) T is Liouville closed (real closed and
stable under resolution of first order linear differential equations).

Theorem. (vdH) Any monic linear differential operator L. € T [0]| can be factored into factors
O+ a of order one and factors 0*> +a 0 + b of order 2 with a,bcT.

Theorem. (vdH) T is newtonian (differential analogue of henselian).

Theorem. (vdH) T satisfies the differential intermediate value property: let P € T{Y } be a
differential polynomial and assume that f < g in T are such that P(f) P(g) <0. Then there
exists a h € T with f <h < g and P(h)=0.

Corollary. Any differential polynomial P € T{Y } of odd degree admits a root in T.



Closure properties 24/29

Let T be the standard field of transseries

Theorem. (Ecalle / vdD—Macintyre—-Marker / vdH) T is Liouville closed (real closed and
stable under resolution of first order linear differential equations).

Theorem. (vdH) Any monic linear differential operator L. € T [0]| can be factored into factors
O+ a of order one and factors 0*> +a 0 + b of order 2 with a,bcT.

Theorem. (vdH) T is newtonian (differential analogue of henselian).

Theorem. (vdH) T satisfies the differential intermediate value property: let P € T{Y } be a
differential polynomial and assume that f < g in T are such that P(f) P(g) <0. Then there
exists a h € T with f <h < g and P(h)=0.

Corollary. Any differential polynomial P € T{Y } of odd degree admits a root in T.

X

(2016) clogloglogx

17 o 11 0" L T(T 3(,n6__ Y _
vy Yy T v )~ o Teg s
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Other supports 25/29

Theorem. Let P T »{Y } and y € T be such that P(y)=0. Then ye T ».
Corollary. T & is newtonian and it satisfies the differential intermediate value property.

Corollary. ((x) is differentially transcendental over T (and therefore over R).

+ --- is differentially transcendental over T (((x)).

1
22

Corollary. The function % + % +

xT

Corollary. Let .oy be the set of well-ordered supports & such that there exist a finite number
of monomials by, ..., b, with & C b .. b}, Then e + e e 4 s differentially
transcendental over T .

Question. Is = + logx + loglog x + --- differentially transcendental over T'7
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! |

Maximal Hardy field

Asymptotic differential algebra
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R

C e +
C LR

l l

T
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Borel summation

B | x—x
O— —(
~ i n ~ B 1
HO= nzzo (=¢) Analytic continuation fe)= 1+¢
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Borel summation

Pl — — nl Resummation 00 o —x(
Flay=3 fir oo TR @)= [ e
2= () /!
B | x s x r
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Accelero-summation (Ecalle)

O 0@

)= (X ) (X )

n=0 n=0

A

B,

A

Fi(G) — fa(&2)
Aj 2

Y
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)= (X ) (X )
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Accelero-summation (Ecalle)

O

F(z) = (Z x”l) (Z xL;) . Accelerosummation \ F(2)
n=0 n=0
Bi .
F1(G1) == falGe) e > Frea(Gemr) —— Ju(G0)
A2 Ak_1.k

Analyzable functions

Let Taccsum he the subset of T of accelero-summable transseries

Theorem. T2°°"™ js g Hardy field.

Conjecture. T2°“"™ contains the field of all differentially algebraic transseries over RR.
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Definition. ~ A transserial Hardy field is a differential and truncation closed subfield of T
together with an isomorphism with a Hardy field.

Alternative device for the construction of real analytic solutions

oL e T LT

Theorem. The subfield of 'T' of all differentially algebraic transseries over R can be given the
structure of a transserial Hardy field.

Corollary. There exists a Hardy field K such that

e [ is Liouville closed.

e K is newtonian.

e Operators in K[J] can be factored in operators of order one or two.

e KK satisfies the differential intermediate value property.



