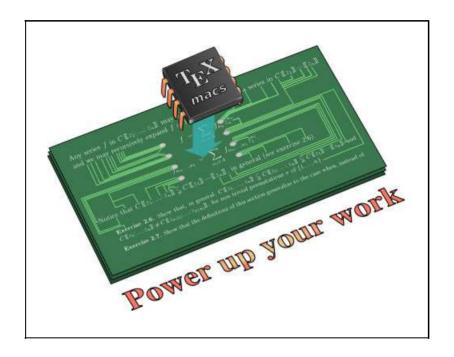
Tutorial: Model Theory of Transseries

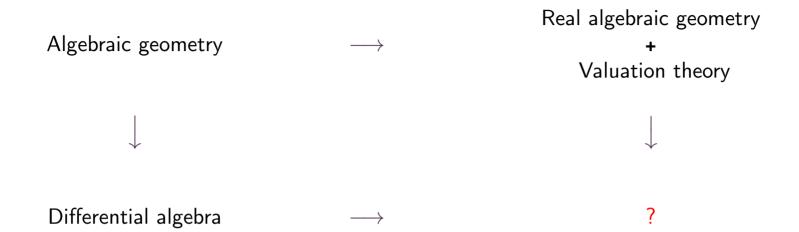
Lecture 1: introduction to transseries



Matthias Aschenbrenner, Lou van den Dries, Joris van der Hoeven

Toronto 2016

http://www.TEXMACS.org



Definition.

Let G be the ring of germs of real differentiable functions at infinity.

A Hardy field K is a subfield of \mathcal{G} that is stable under differentiation.

Definition.

Let G be the ring of germs of real differentiable functions at infinity.

A Hardy field K is a subfield of \mathcal{G} that is stable under differentiation.

•
$$f \in K \setminus \{0\} \Longrightarrow \frac{1}{f} \in K \Longrightarrow \exists x_0, \forall x \geqslant x_0, f(x) \neq 0$$

•
$$f > 0 \iff \exists x_0, \forall x \geqslant x_0, f(x) > 0$$

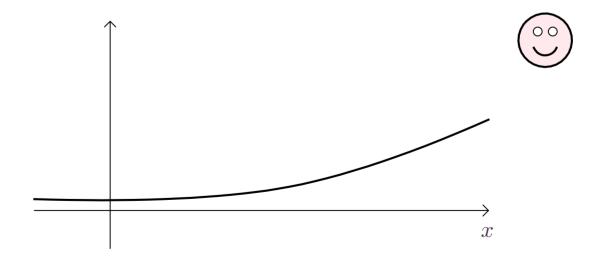
Definition.

Let G be the ring of germs of real differentiable functions at infinity.

A Hardy field K is a subfield of G that is stable under differentiation.

•
$$f \in K \setminus \{0\} \Longrightarrow \frac{1}{f} \in K \Longrightarrow \exists x_0, \forall x \geqslant x_0, f(x) \neq 0$$

•
$$f > 0 \iff \exists x_0, \forall x \geqslant x_0, f(x) > 0$$



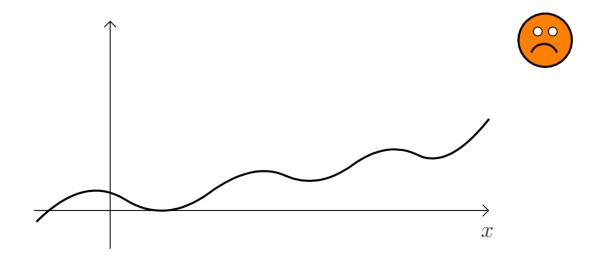
Definition.

Let G be the ring of germs of real differentiable functions at infinity.

A Hardy field K is a subfield of G that is stable under differentiation.

•
$$f \in K \setminus \{0\} \Longrightarrow \frac{1}{f} \in K \Longrightarrow \exists x_0, \forall x \geqslant x_0, f(x) \neq 0$$

•
$$f > 0 \iff \exists x_0, \forall x \geqslant x_0, f(x) > 0$$



Let K be a Hardy field.

- The real closure of K is again a Hardy field.
- Given $f \in K$, the sets $K(\int f)$ and $K(e^f)$ are again Hardy fields.

Let K be a Hardy field.

- The real closure of K is again a Hardy field.
- Given $f \in K$, the sets $K(\int f)$ and $K(e^f)$ are again Hardy fields.

Examples. $x \to \infty$

• $K = \mathbb{R}$

Let K be a Hardy field.

- The real closure of K is again a Hardy field.
- Given $f \in K$, the sets $K(\int f)$ and $K(e^f)$ are again Hardy fields.

- $K = \mathbb{R}$
- $K = \mathbb{R}(x)$

Let K be a Hardy field.

- The real closure of K is again a Hardy field.
- Given $f \in K$, the sets $K(\int f)$ and $K(e^f)$ are again Hardy fields.

- $K = \mathbb{R}$
- $K = \mathbb{R}(x)$
- $K = \mathbb{R}(x, e^x)$

Let K be a Hardy field.

- The real closure of K is again a Hardy field.
- Given $f \in K$, the sets $K(\int f)$ and $K(e^f)$ are again Hardy fields.

- $K = \mathbb{R}$
- $K = \mathbb{R}(x)$
- $K = \mathbb{R}(x, e^x)$
- $K = \mathbb{R}(\log x, x, e^x)$

Let K be a Hardy field.

- The real closure of K is again a Hardy field.
- Given $f \in K$, the sets $K(\int f)$ and $K(e^f)$ are again Hardy fields.

- $K = \mathbb{R}$
- $K = \mathbb{R}(x)$
- $K = \mathbb{R}(x, e^x)$
- $K = \mathbb{R}(\log x, x, e^x)$
- $K = \mathbb{R}(\log x, x, e^x, e^{-x^2})$

Let K be a Hardy field.

- The real closure of K is again a Hardy field.
- Given $f \in K$, the sets $K(\int f)$ and $K(e^f)$ are again Hardy fields.

- $K = \mathbb{R}$
- $K = \mathbb{R}(x)$
- $K = \mathbb{R}(x, e^x)$
- $K = \mathbb{R}(\log x, x, e^x)$
- $K = \mathbb{R}(\log x, x, e^x, e^{-x^2})$
- $K = \mathbb{R}(\log x, x, e^x, e^{-x^2}, \operatorname{erf} x)$

Let K be a Hardy field.

- The real closure of K is again a Hardy field.
- Given $f \in K$, the sets $K(\int f)$ and $K(e^f)$ are again Hardy fields.

- $K = \mathbb{R}$
- $K = \mathbb{R}(x)$
- $K = \mathbb{R}(x, e^x)$
- $K = \mathbb{R}(\log x, x, e^x)$
- $K = \mathbb{R}(\log x, x, e^x, e^{-x^2})$
- $K = \mathbb{R}(\log x, x, e^x, e^{-x^2}, \operatorname{erf} x)$
- •
- $K = \mathbb{R}^{\text{Liouville}}$

Orders at infinity

$$f \prec g \iff f = \mathcal{O}(g)$$

$$\iff \forall \varepsilon \in \mathbb{R}^{>}, |f| < \varepsilon |g|$$

$$\iff \forall \varepsilon > 0, \exists x_{0}, \forall x > x_{0}, |f(x)| < \varepsilon |g(x)|$$

$$f \preccurlyeq g \iff f = \mathcal{O}(g)$$

$$\iff \exists C \in \mathbb{R}^{>}, |f| \leqslant C |g|$$

$$\iff \exists C > 0, \exists x_{0}, \forall x > x_{0}, |f(x)| \leqslant C |g(x)|$$

Orders at infinity

$$f \prec g \iff f = \mathcal{O}(g)$$

$$\iff \forall \varepsilon \in \mathbb{R}^{>}, |f| < \varepsilon |g|$$

$$\iff \forall \varepsilon > 0, \exists x_{0}, \forall x > x_{0}, |f(x)| < \varepsilon |g(x)|$$

$$f \preccurlyeq g \iff f = \mathcal{O}(g)$$

$$\iff \exists C \in \mathbb{R}^{>}, |f| \leqslant C |g|$$

$$\iff \exists C > 0, \exists x_{0}, \forall x > x_{0}, |f(x)| \leqslant C |g(x)|$$

 \rightsquigarrow Any Hardy field K is a valued field for the valuation ring $\mathcal{O}_K = \{f \in K : f \leq 1\}$.

Orders at infinity

$$f \prec g \iff f = \mathcal{O}(g)$$

$$\iff \forall \varepsilon \in \mathbb{R}^{>}, |f| < \varepsilon |g|$$

$$\iff \forall \varepsilon > 0, \exists x_{0}, \forall x > x_{0}, |f(x)| < \varepsilon |g(x)|$$

$$f \preccurlyeq g \iff f = \mathcal{O}(g)$$

$$\iff \exists C \in \mathbb{R}^{>}, |f| \leqslant C |g|$$

$$\iff \exists C > 0, \exists x_{0}, \forall x > x_{0}, |f(x)| \leqslant C |g(x)|$$

 \rightsquigarrow Any Hardy field K is a valued field for the valuation ring $\mathcal{O}_K = \{f \in K : f \leq 1\}$.

The big dream

Use L-functions (\approx elements of $\mathbb{R}^{\mathrm{Liouville}}$) or a suitable generalization as a universal framework for the asymptotic analysis of real functions at infinity.

Du Bois-Reymond (1877)

$$E(n) = (\exp \circ \overset{n \times}{\dots} \circ \exp)(1)$$

Du Bois-Reymond (1877)

$$E(n) = (\exp \circ \stackrel{n \times}{\dots} \circ \exp)(1)$$

Kneser (1950)

Real analytic solution to equation $E(x+1) = \exp E(x)$

Du Bois-Reymond (1877)

$$E(n) = (\exp \circ \stackrel{n \times}{\dots} \circ \exp)(1)$$

Kneser (1950)

Real analytic solution to equation $E(x+1) = \exp E(x)$

vdD-Macintyre-Marker / vdH (1997)

The functional inverse of $\log x \log \log x$ cannot be expanded w.r.t. Hardy L-functions

Du Bois-Reymond (1877)

$$E(n) = (\exp \circ \stackrel{n \times}{\dots} \circ \exp)(1)$$

Kneser (1950)

Real analytic solution to equation $E(x+1) = \exp E(x)$

vdD-Macintyre-Marker / vdH (1997)

The functional inverse of $\log x \log \log x$ cannot be expanded w.r.t. Hardy L-functions

Boshernitzan (1986)

For any solution y of

$$y'' + y = e^{x^2},$$

there exists a Hardy field that contains y. But for two such Hardy fields K_1 and K_2 there is generally no Hardy field K that contains both K_1 and K_2 .

Du Bois-Reymond (1877)

$$E(n) = (\exp \circ \stackrel{n \times}{\dots} \circ \exp)(1)$$

Kneser (1950)

Real analytic solution to equation $E(x+1) = \exp E(x)$

vdD-Macintyre-Marker / vdH (1997)

The functional inverse of $\log x \log \log x$ cannot be expanded w.r.t. Hardy L-functions

Boshernitzan (1986)

For any solution y of

$$y'' + y = e^{x^2},$$

there exists a Hardy field that contains y. But for two such Hardy fields K_1 and K_2 there is generally no Hardy field K that contains both K_1 and K_2 .

Singer (1975)

K: Hardy field, y: solution to $y' = \Phi(y)$, $\Phi \in K(y)$. Then K(y) is a Hardy field.

Du Bois-Reymond (1877)

$$E(n) = (\exp \circ \dots \circ \exp)(1)$$

Kneser (1950)

Real analytic solution to equation $E(x+1) = \exp E(x)$

vdD-Macintyre-Marker / vdH (1997)

The functional inverse of $\log x \log \log x$ cannot be expanded w.r.t. Hardy L-functions

Boshernitzan (1986)

For any solution y of

$$y'' + y = e^{x^2},$$

there exists a Hardy field that contains y. But for two such Hardy fields K_1 and K_2 there is generally no Hardy field K that contains both K_1 and K_2 .

Singer (1975)

K: Hardy field, y: solution to $y' = \Phi(y)$, $\Phi \in K(y)$. Then K(y) is a Hardy field.

How to go beyond first order equations?

$$(x \to +\infty)$$

$$e^{e^x+\cdots}+\cdots$$

$$(x \to +\infty)$$

$$e^{e^x + \frac{e^x}{x} + \cdots} + \cdots$$

$$(x \to +\infty)$$

$$e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \cdots} + \cdots$$

$$(x \to +\infty)$$

$$e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + \frac{2}{\log x} e^{e^x + \dots} + \dots$$

$$(x \to +\infty)$$

$$e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + \frac{2}{\log x} e^{e^x + \frac{e^x}{x} + \dots} + \dots$$

$$(x \to +\infty)$$

$$e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + \frac{2}{\log x} e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + \dots$$

$$(x \to +\infty)$$

$$e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + \frac{2}{\log x} e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + e^{\sqrt{x} + \dots} + \dots$$

$$(x \to +\infty)$$

$$e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + \frac{2}{\log x} e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + e^{\sqrt{x} + e^{\sqrt{\log x} + \dots}} + \dots$$

$$(x \to +\infty)$$

$$e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + \frac{2}{\log x} e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + e^{\sqrt{x} + e^{\sqrt{\log x} + e^{\sqrt{\log \log x} + \dots}}} + \dots$$

$$\frac{1}{1-x^{-1}-x^{-e}} = 1+x^{-1}+x^{-2}+x^{-e}+x^{-3}+x^{-e-1}+\cdots$$

$$\frac{1}{1-x^{-1}+e^{-x}} = 1+\frac{1}{x}+\frac{1}{x^2}+\cdots+e^{-x}+2\frac{e^{-x}}{x}+\cdots+e^{-2x}+\cdots$$

$$-e^x \int \frac{e^{-x}}{x} = \frac{1}{x}-\frac{1}{x^2}+\frac{2}{x^3}-\frac{6}{x^4}+\frac{24}{x^5}-\frac{120}{x^6}+\cdots$$

$$\Gamma(x) = \frac{\sqrt{2\pi}e^{x(\log x-1)}}{x^{1/2}}+\frac{\sqrt{2\pi}e^{x(\log x-1)}}{12x^{3/2}}+\frac{\sqrt{2\pi}e^{x(\log x-1)}}{288x^{5/2}}+\cdots$$

$$\zeta(x) = 1+2^{-x}+3^{-x}+4^{-x}+\cdots$$

$$\varphi(x) = \frac{1}{x}+\varphi(x^\pi)=\frac{1}{x}+\frac{1}{x^\pi}+\frac{1}{x^{\pi^2}}+\frac{1}{x^{\pi^3}}+\cdots$$

$$\psi(x) = \frac{1}{x}+\psi(e^{\log^2 x})=\frac{1}{x}+\frac{1}{e^{\log^2 x}}+\frac{1}{e^{\log^4 x}}+\frac{1}{e^{\log^8 x}}+\cdots$$

```
Mmx] use "asymptotix";

Mmx] x == infinity ('x);

Mmx] \frac{1}{x+1}

Mmx] \frac{1}{\exp x + x + 1}

Mmx] \exp\left(\frac{x^4}{x+1}\right)
```

```
Mmx] use "asymptotix";

Mmx] x == infinity ('x);

Mmx] \frac{1}{x+1}
```

$$\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3} - \frac{1}{x^4} + O\left(\frac{1}{x^5}\right)$$

$$\mathbf{Mmx} \mathbf{]} \ \frac{1}{\exp x + x + 1}$$

$$\mathbf{Mmx} \mathbf{]} \ \exp\left(\frac{x^4}{x+1}\right)$$

$$Mmx$$
 x == infinity ('x);

$$\mathbf{Mmx} \mathbf{]} \quad \frac{1}{x+1}$$

$$\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3} - \frac{1}{x^4} + O\left(\frac{1}{x^5}\right)$$

$$\mathbf{Mmx} \quad \frac{1}{\exp x + x + 1}$$

$$\frac{1}{e^x} - \frac{x}{e^{2x}} - \frac{1}{e^{2x}} + \frac{x^2}{e^{3x}} + \frac{2x}{e^{3x}} + \frac{1}{e^{3x}} - \frac{x^3}{e^{4x}} - \frac{3x^2}{e^{4x}} - \frac{3x}{e^{4x}} - \frac{1}{e^{4x}} + O\left(\frac{x^4}{e^{5x}}\right)$$

Mmx]
$$\exp\left(\frac{x^4}{x+1}\right)$$

Mmx]
$$\frac{1}{x+1}$$

$$\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3} - \frac{1}{x^4} + O\left(\frac{1}{x^5}\right)$$

$$\mathbf{Mmx} \quad \frac{1}{\exp x + x + 1}$$

$$\frac{1}{e^x} - \frac{x}{e^{2x}} - \frac{1}{e^{2x}} + \frac{x^2}{e^{3x}} + \frac{2x}{e^{3x}} + \frac{1}{e^{3x}} - \frac{x^3}{e^{4x}} - \frac{3x^2}{e^{4x}} - \frac{3x}{e^{4x}} - \frac{1}{e^{4x}} + O\left(\frac{x^4}{e^{5x}}\right)$$

Mmx]
$$\exp\left(\frac{x^4}{x+1}\right)$$

$$\frac{e^{x^3 - x^2 + x}}{e} + \frac{e^{x^3 - x^2 + x}}{e x} - \frac{e^{x^3 - x^2 + x}}{2 e x^2} + O\left(\frac{e^{x^3 - x^2 + x}}{x^7}\right)$$

 $\mathbf{Mmx} \int \exp(x^2) \, \mathrm{d}x$

Mmx] $\int \exp(x^x) dx$

 $\mathbf{Mmx} \int \exp\left(x^2\right) \mathrm{d}x$

$$\frac{e^{x^2}}{2x} + \frac{e^{x^2}}{4x^3} + \frac{3e^{x^2}}{8x^5} + \frac{15e^{x^2}}{16x^7} + O\left(\frac{e^{x^2}}{x^9}\right)$$

Mmx] $\int \exp(x^x) dx$

$$\mathbf{Mmx} \int \exp(x^2) \, \mathrm{d}x$$

$$\frac{e^{x^2}}{2x} + \frac{e^{x^2}}{4x^3} + \frac{3e^{x^2}}{8x^5} + \frac{15e^{x^2}}{16x^7} + O\left(\frac{e^{x^2}}{x^9}\right)$$

Mmx] $\int \exp(x^x) dx$

$$\frac{e^{x\log(x)}}{\log(x)} - \frac{e^{x\log(x)}}{\log(x)^2} + \frac{e^{x\log(x)}}{\log(x)^3} - \frac{e^{x\log(x)}}{\log(x)^4} + O\left(\frac{e^{x\log(x)}}{\log(x)^5}\right) + \frac{e^{x\log(x)}}{x\log(x)^5} - \frac{3e^{x\log(x)}}{x\log(x)^4} + \frac{6e^{x\log(x)}}{x\log(x)^5} + O\left(\frac{e^{x\log(x)}}{x^2\log(x)^5}\right) + \frac{e^{x\log(x)}}{x^3\log(x)^5} + O\left(\frac{e^{x\log(x)}}{x^4\log(x)^5}\right) + \frac{2e^{x\log(x)}}{x^3\log(x)^5} + O\left(\frac{e^{x\log(x)}}{x^4\log(x)^5}\right)$$

$\mathbf{Mmx} \int \exp(x^2) \, \mathrm{d}x$

$$\frac{e^{x^2}}{2x} + \frac{e^{x^2}}{4x^3} + \frac{3e^{x^2}}{8x^5} + \frac{15e^{x^2}}{16x^7} + O\left(\frac{e^{x^2}}{x^9}\right)$$

Mmx] $\int \exp(x^x) dx$

$$\frac{e^{x\log(x)}}{\log(x)} - \frac{e^{x\log(x)}}{\log(x)^2} + \frac{e^{x\log(x)}}{\log(x)^3} - \frac{e^{x\log(x)}}{\log(x)^4} + O\left(\frac{e^{x\log(x)}}{\log(x)^5}\right) + \frac{e^{x\log(x)}}{x\log(x)^5} - \frac{3e^{x\log(x)}}{x\log(x)^4} + \frac{6e^{x\log(x)}}{x\log(x)^5} + O\left(\frac{e^{x\log(x)}}{x^2\log(x)^5}\right) + \frac{e^{x\log(x)}}{x^3\log(x)^5} + O\left(\frac{e^{x\log(x)}}{x^4\log(x)^5}\right) + \frac{2e^{x\log(x)}}{x^3\log(x)^5} + O\left(\frac{e^{x\log(x)}}{x^4\log(x)^5}\right)$$

$$\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^4} + \frac{1}{x^8} + O\left(\frac{1}{x^{16}}\right) + \frac{1}{e^x} + \frac{1}{e^{2x}} + \frac{1}{e^{4x}} + O\left(\frac{1}{e^{8x}}\right) + \frac{1}{e^{x^2}} + \frac{1}{e^{2x^2}} + O\left(\frac{1}{e^{4x^2}}\right) + \frac{1}{e^{x^4}} + O\left(\frac{1}{e^{2x^4}}\right) + \frac{1}{e^{e^x}} + O\left(\frac{1}{e^{2e^x}}\right) + \frac{1}{e^{e^{2x}}} + O\left(\frac{1}{e^{2e^{2x}}}\right) + \frac{1}{e^{e^{x^2}}} + O\left(\frac{1}{e^{2e^{x^2}}}\right) + \frac{1}{e^{e^{e^x}}} + O\left(\frac{1}{e^{2e^{x^2}}}\right) + \frac{1}{e^{e^{x^2}}} + O\left(\frac{1}{e^{2e^{x^2}}}\right) + \frac{1}{e^{e^{x^2}}} + O\left(\frac{1}{e^{2e^{x^2}}}\right) + \frac{1}{e^{x^2}} + O\left(\frac{1}{e^{x^2}}\right) + O\left(\frac{1}{e^{x^2}}\right)$$

Mmx] $\prod_{t=1}^{x} t$

Mmx] $\prod_{t=1}^{x} \log t$

Mmx]
$$\prod_{t=1}^{x} t$$

$$\frac{\mathrm{e}^{x\log(x)-x}}{\mathrm{sqrt}(x)} + \frac{\mathrm{e}^{x\log(x)-x}}{12\,x^{\frac{3}{2}}} + \frac{\mathrm{e}^{x\log(x)-x}}{288\,x^{\frac{5}{2}}} - \frac{139\,\mathrm{e}^{x\log(x)-x}}{51840\,x^{\frac{7}{2}}} + O\!\left(\frac{\mathrm{e}^{x\log(x)-x}}{x^{\frac{9}{2}}}\right)$$

Mmx]
$$\prod_{t=1}^{x} \log t$$

Mmx]
$$\prod_{t=1}^{x} t$$

$$\frac{e^{x\log(x)-x}}{\operatorname{sqrt}(x)} + \frac{e^{x\log(x)-x}}{12x^{\frac{3}{2}}} + \frac{e^{x\log(x)-x}}{288x^{\frac{5}{2}}} - \frac{139e^{x\log(x)-x}}{51840x^{\frac{7}{2}}} + O\left(\frac{e^{x\log(x)-x}}{x^{\frac{9}{2}}}\right)$$

Mmx]
$$\prod_{t=1}^{x} \log t$$

$$e^{x\log(\log(x)) - \frac{x}{\log(x)} - \frac{x}{\log(x)^2} - \frac{2x}{\log(x)^3} + O\left(\frac{x}{\log(x)^4}\right) - \frac{\log(\log(x))}{2}} + \\ e^{x\log(\log(x)) - \frac{x}{\log(x)} - \frac{x}{\log(x)^2} - \frac{2x}{\log(x)^3} + O\left(\frac{x}{\log(x)^4}\right) - \frac{\log(\log(x))}{2}} + \\ e^{x\log(\log(x)) - \frac{x}{\log(x)} - \frac{x}{\log(x)^2} - \frac{2x}{\log(x)^3} + O\left(\frac{x}{\log(x)^4}\right) - \frac{\log(\log(x))}{2}} - \\ e^{x\log(\log(x)) - \frac{x}{\log(x)} - \frac{x}{\log(x)^2} - \frac{2x}{\log(x)^3} + O\left(\frac{x}{\log(x)^4}\right) - \frac{\log(\log(x))}{2}} - \\ e^{x\log(\log(x)) - \frac{x}{\log(x)} - \frac{x}{\log(x)^2} - \frac{2x}{\log(x)^3} + O\left(\frac{x}{\log(x)^4}\right) - \frac{\log(\log(x))}{2}} - \\ e^{x\log(\log(x)) - \frac{x}{\log(x)} - \frac{x}{\log(x)^2} - \frac{2x}{\log(x)^3} + O\left(\frac{x}{\log(x)^4}\right) - \frac{\log(\log(x))}{2}} + \\ O\left(\frac{e^{x\log(\log(x)) - \frac{x}{\log(x)} - \frac{x}{\log(x)} - \frac{x}{\log(x)^2} - \frac{2x}{\log(x)^3} + O\left(\frac{x}{\log(x)^4}\right) - \frac{\log(\log(x))}{2}}{x^3 \log(x)^3}\right)$$

- C: constant field
- $(\mathfrak{M}, \preccurlyeq)$: totally ordered group of monomials

I.e. $\log \mathfrak{M}$ is a value group with $\mathfrak{m} \leq \mathfrak{n} \Longleftrightarrow v(\log \mathfrak{m}) \geqslant v(\log \mathfrak{n})$

- C: constant field
- $(\mathfrak{M}, \preccurlyeq)$: totally ordered group of monomials

I.e. $\log \mathfrak{M}$ is a value group with $\mathfrak{m} \leq \mathfrak{n} \iff v(\log \mathfrak{m}) \geqslant v(\log \mathfrak{n})$

• $C[[\mathfrak{M}]]$: Hahn field of $f = \sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$ with well-based support.

 $\mathfrak{m}_1 \prec \mathfrak{m}_2 \prec \cdots$ with $\mathfrak{m}_1, \mathfrak{m}_2, \ldots \in \text{supp } f$ is impossible

- C: constant field
- $(\mathfrak{M}, \preccurlyeq)$: totally ordered group of monomials

I.e. $\log \mathfrak{M}$ is a value group with $\mathfrak{m} \leq \mathfrak{n} \Longleftrightarrow v(\log \mathfrak{m}) \geqslant v(\log \mathfrak{n})$

• $C[[\mathfrak{M}]]$: Hahn field of $f = \sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$ with well-based support.

 $\mathfrak{m}_1 \prec \mathfrak{m}_2 \prec \cdots$ with $\mathfrak{m}_1, \mathfrak{m}_2, \ldots \in \text{supp } f$ is impossible

• $C \, \llbracket \mathfrak{M} \rrbracket$: field of $f = \sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \, \mathfrak{m}$ with **grid-based support**.

$$\operatorname{supp} f \subseteq \mathfrak{m}_1^{\mathbb{N}} \cdots \mathfrak{m}_m^{\mathbb{N}} \mathfrak{n}, \qquad \mathfrak{m}_1, \dots, \mathfrak{m}_m \prec 1$$

- C: constant field
- $(\mathfrak{M}, \preccurlyeq)$: totally ordered group of monomials

 I.e. $\log \mathfrak{M}$ is a value group with $\mathfrak{m} \preccurlyeq \mathfrak{n} \Longleftrightarrow v(\log \mathfrak{m}) \geqslant v(\log \mathfrak{n})$
- $C[[\mathfrak{M}]]$: Hahn field of $f = \sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$ with well-based support.

$$\mathfrak{m}_1 \prec \mathfrak{m}_2 \prec \cdots$$
 with $\mathfrak{m}_1, \mathfrak{m}_2, \ldots \in \text{supp } f$ is impossible

• $C \, \llbracket \mathfrak{M} \rrbracket$: field of $f = \sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \, \mathfrak{m}$ with **grid-based support**.

$$\operatorname{supp} f \subseteq \mathfrak{m}_1^{\mathbb{N}} \cdots \mathfrak{m}_m^{\mathbb{N}} \mathfrak{n}, \qquad \mathfrak{m}_1, \dots, \mathfrak{m}_m \prec 1$$

- $C[[\mathfrak{M}]]_{\mathscr{S}}$: field of $f = \sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$ with \mathscr{S} -based support.
 - $\mathscr{S}:\mathfrak{M}\to\mathscr{S}_{\mathfrak{M}}\in\mathscr{P}(\mathfrak{M})$ functor of well behaved supporters with
 - $\{\mathfrak{m}\} \in \mathscr{S}_{\mathfrak{M}} \text{ for all } \mathfrak{m} \in \mathfrak{M}$
 - $\mathscr{S}_{\mathfrak{M}}$ closed under taking subsets, unions and multiplication
 - $\mathscr{S}_{\mathfrak{M}}$ closed under power products of infinitesimal sets

Strong summability

We say that $(f_i)_{i\in I}\in C[[\mathfrak{M}]]^I_\mathscr{S}$ is (strongly) summable if

- 1. $\bigcup_{i \in I} \operatorname{supp} f_i \in \mathscr{S}$
- 2. $\{i \in I : \mathfrak{m} \in \text{supp } f_i\}$ is finite for each $\mathfrak{m} \in \mathfrak{M}$

Then $g = \sum f \in C[[\mathfrak{M}]]_{\mathscr{S}}$ with $g_{\mathfrak{m}} = \sum_{i \in I} f_{i,\mathfrak{m}}$ is well-defined.

Strong summability

We say that $(f_i)_{i\in I}\in C[[\mathfrak{M}]]^I_\mathscr{S}$ is (strongly) summable if

- 1. $\bigcup_{i \in I} \operatorname{supp} f_i \in \mathscr{S}$
- 2. $\{i \in I : \mathfrak{m} \in \text{supp } f_i\}$ is finite for each $\mathfrak{m} \in \mathfrak{M}$

Then $g = \sum_{i \in I} f \in C[[\mathfrak{M}]]_{\mathscr{S}}$ with $g_{\mathfrak{m}} = \sum_{i \in I} f_{i,\mathfrak{m}}$ is well-defined.

Example

If supp $f \prec 1$, then $(f^n)_{n \in \mathbb{N}}$ is summable, allowing to define $\frac{1}{1-f} := \sum_{n \in \mathbb{N}} f^n$

Strong summability

We say that $(f_i)_{i\in I}\in C[[\mathfrak{M}]]^I_\mathscr{S}$ is (strongly) summable if

- 1. $\bigcup_{i \in I} \operatorname{supp} f_i \in \mathscr{S}$
- 2. $\{i \in I : \mathfrak{m} \in \text{supp } f_i\}$ is finite for each $\mathfrak{m} \in \mathfrak{M}$

Then $g = \sum_{i \in I} f \in C[[\mathfrak{M}]]_{\mathscr{S}}$ with $g_{\mathfrak{m}} = \sum_{i \in I} f_{i,\mathfrak{m}}$ is well-defined.

Example

If supp $f \prec 1$, then $(f^n)_{n \in \mathbb{N}}$ is summable, allowing to define $\frac{1}{1-f} := \sum_{n \in \mathbb{N}} f^n$

Properties

- $\sum (f_{\sigma(i)})_{i \in I} = \sum (f_i)_{i \in I}$
- $\sum F \coprod G = \sum F + \sum G$
- For $F = \coprod_{j \in J} G_j$, we have $\sum_{j \in J} \sum_j G_j = \sum_j F_j$

Strong summability

We say that $(f_i)_{i\in I}\in C[[\mathfrak{M}]]^I_\mathscr{S}$ is (strongly) summable if

- 1. $\bigcup_{i \in I} \operatorname{supp} f_i \in \mathscr{S}$
- 2. $\{i \in I : \mathfrak{m} \in \text{supp } f_i\}$ is finite for each $\mathfrak{m} \in \mathfrak{M}$

Then $g = \sum_{i \in I} f \in C[[\mathfrak{M}]]_{\mathscr{S}}$ with $g_{\mathfrak{m}} = \sum_{i \in I} f_{i,\mathfrak{m}}$ is well-defined.

Example

If supp f < 1, then $(f^n)_{n \in \mathbb{N}}$ is summable, allowing to define $\frac{1}{1-f} := \sum_{n \in \mathbb{N}} f^n$

Properties

- $\bullet \quad \sum (f_{\sigma(i)})_{i \in I} = \sum (f_i)_{i \in I}$
- $\sum F \coprod G = \sum F + \sum G$
- For $F = \coprod_{j \in J} G_j$, we have $\sum_{j \in J} \sum_j G_j = \sum_j F_j$

Strongly linear map

Linear map $\Phi: C \, \llbracket \mathfrak{M} \rrbracket \to C \, \llbracket \mathfrak{N} \rrbracket$ that preserves strong summation

Example

$$\mathbb{R}[[x^{\mathbb{R}} e^{\mathbb{R}x}]] \cong \mathbb{R}[[x^{\mathbb{R}}]][[e^{\mathbb{R}x}]]$$

$$\sum_{\alpha,\beta\in\mathbb{R}} f_{\alpha,\beta} x^{\alpha} e^{\beta x} = \sum_{\beta\in\mathbb{R}} \left[\sum_{\alpha\in\mathbb{R}} f_{\alpha,\beta} x^{\alpha}\right] e^{\beta x}$$

Example

$$\mathbb{R}[[x^{\mathbb{R}} e^{\mathbb{R}x}]] \cong \mathbb{R}[[x^{\mathbb{R}}]][[e^{\mathbb{R}x}]]$$

$$\sum_{\alpha,\beta\in\mathbb{R}} f_{\alpha,\beta} x^{\alpha} e^{\beta x} = \sum_{\beta\in\mathbb{R}} \left[\sum_{\alpha\in\mathbb{R}} f_{\alpha,\beta} x^{\alpha}\right] e^{\beta x}$$

More generally

Let \mathfrak{M}^{\flat} a convex subgroup of a monomial group \mathfrak{M}^{\sharp} and assume that we may decompose

$$\mathfrak{M} = \mathfrak{M}^{\flat} \mathfrak{M}^{\sharp}$$

Then

$$C[[\mathfrak{M}]] \cong C[[\mathfrak{M}^{\flat}]][[\mathfrak{M}^{\sharp}]]$$

At the beginning, there was

$$\mathbb{R}[[x^{\mathbb{R}}]]_{\mathscr{S}}$$

At the beginning, there was

$$\mathbb{R}[[x^{\mathbb{R}}]]_{\mathscr{S}}$$

Adding logarithms

$$\mathbb{L}_n = \mathbb{R}[[\mathfrak{L}_n]]_{\mathscr{S}} = \mathbb{R}[[\ell_0^{\mathbb{R}} \cdots \ell_n^{\mathbb{R}}]]_{\mathscr{S}}$$
$$\ell_k = (\log \circ \stackrel{k \times}{\dots} \circ \log)(x)$$

For
$$\mathfrak{m}=\ell_0^{\alpha_0}\cdots\ell_n^{\alpha_n}$$
, $\log\mathfrak{m}=\alpha_0\,\ell_1+\cdots+\alpha_n\,\ell_{n+1}\in\mathbb{L}_{n+1}$. For $f=c\,\mathfrak{m}\,(1+\delta)\in\mathbb{L}_n^{\prec}$,

$$\log(f) = \log(c_f \mathfrak{d}_f (1 + \delta_f)) = \log \mathfrak{d}_f + \log c_f + \log (1 + \delta_f).$$

At the beginning, there was

$$\mathbb{R}[[x^{\mathbb{R}}]]_{\mathscr{S}}$$

Adding logarithms

$$\mathbb{L}_n = \mathbb{R}[[\mathfrak{L}_n]]_{\mathscr{S}} = \mathbb{R}[[\ell_0^{\mathbb{R}} \cdots \ell_n^{\mathbb{R}}]]_{\mathscr{S}}$$
$$\ell_k = (\log \circ \stackrel{k \times}{\dots} \circ \log)(x)$$

For
$$\mathfrak{m}=\ell_0^{\alpha_0}\cdots\ell_n^{\alpha_n}$$
, $\log\mathfrak{m}=\alpha_0\,\ell_1+\cdots+\alpha_n\,\ell_{n+1}\in\mathbb{L}_{n+1}$. For $f=c\,\mathfrak{m}\,(1+\delta)\in\mathbb{L}_n^{\prec}$,

$$\log(f) = \log(c_f \mathfrak{d}_f (1 + \delta_f)) = \log \mathfrak{d}_f + \log c_f + \log (1 + \delta_f).$$

Closing off

$$\mathbb{L} = \mathbb{L}_0 \cup \mathbb{L}_1 \cup \mathbb{L}_2 \cup \cdots$$

At the beginning, there was

$$\mathbb{R}[[x^{\mathbb{R}}]]_{\mathscr{S}}$$

Adding logarithms

$$\mathbb{L}_n = \mathbb{R}[[\mathfrak{L}_n]]_{\mathscr{S}} = \mathbb{R}[[\ell_0^{\mathbb{R}} \cdots \ell_n^{\mathbb{R}}]]_{\mathscr{S}}$$
$$\ell_k = (\log \circ \overset{k \times}{\dots} \circ \log)(x)$$

For
$$\mathfrak{m}=\ell_0^{\alpha_0}\cdots\ell_n^{\alpha_n}$$
, $\log\mathfrak{m}=\alpha_0\,\ell_1+\cdots+\alpha_n\,\ell_{n+1}\in\mathbb{L}_{n+1}$. For $f=c\,\mathfrak{m}\,(1+\delta)\in\mathbb{L}_n^{\prec}$,

$$\log(f) = \log(c_f \mathfrak{d}_f (1 + \delta_f)) = \log \mathfrak{d}_f + \log c_f + \log (1 + \delta_f).$$

Closing off

$$\mathbb{L} = \mathbb{L}_0 \cup \mathbb{L}_1 \cup \mathbb{L}_2 \cup \cdots
\hat{\mathbb{L}} = \mathbb{R}[[\mathfrak{L}]]_{\mathscr{S}}, \quad \mathfrak{L} = \mathfrak{L}_0 \cup \mathfrak{L}_1 \cup \mathfrak{L}_2 \cup \cdots$$

Grid-based case: $\hat{\mathbb{L}} = \mathbb{L}$

Well-based case: $\ell_0 + \ell_1 + \ell_2 + \cdots \in \hat{\mathbb{L}} \setminus \mathbb{L}$

Field of transseries

$$\begin{split} \mathbb{T} &\subseteq \mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}} \\ \log: \mathfrak{T} &\to \mathbb{T}_{\succ} = \{ f \in \mathbb{T} \colon \forall \mathfrak{m} \in \mathfrak{T}, \mathfrak{m} \succ 1 \} \end{split}$$

Field of transseries

$$\mathbb{T} \subseteq \mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$$
$$\log: \mathfrak{T} \to \mathbb{T}_{\succ} = \{ f \in \mathbb{T} : \forall \mathfrak{m} \in \mathfrak{T}, \mathfrak{m} \succ 1 \}$$

Exponential extension

$$\mathfrak{T}_{\mathrm{exp}} = \exp(\mathbb{T}_{\succ}) \supseteq \mathfrak{T}$$
 $\mathbb{T}_{\mathrm{exp}} = \mathbb{R}[[\mathfrak{T}_{\mathrm{exp}}]]_{\mathscr{I}}$

Field of transseries

$$\begin{split} \mathbb{T} &\subseteq \mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}} \\ \log: \mathfrak{T} &\to \mathbb{T}_{\succ} = \{ f \in \mathbb{T} \colon \forall \mathfrak{m} \in \mathfrak{T}, \mathfrak{m} \succ 1 \} \end{split}$$

Exponential extension

$$\mathfrak{T}_{\mathrm{exp}} = \exp(\mathbb{T}_{\succ}) \supseteq \mathfrak{T}$$
 $\mathbb{T}_{\mathrm{exp}} = \mathbb{R}[[\mathfrak{T}_{\mathrm{exp}}]]_{\mathscr{S}}$

Example

$$e^{x^2 + \frac{x^2}{\log x} + \frac{x^2}{\log^2 x} + \dots + x + \log\log x} \in \mathfrak{L}_{\exp}$$

Field of transseries

$$\mathbb{T} \subseteq \mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$$
$$\log: \mathfrak{T} \to \mathbb{T}_{\succ} = \{ f \in \mathbb{T} : \forall \mathfrak{m} \in \mathfrak{T}, \mathfrak{m} \succ 1 \}$$

Exponential extension

$$\mathfrak{T}_{\mathrm{exp}} = \exp(\mathbb{T}_{\succ}) \supseteq \mathfrak{T}$$
 $\mathbb{T}_{\mathrm{exp}} = \mathbb{R}[[\mathfrak{T}_{\mathrm{exp}}]]_{\mathscr{S}}$

Example

$$e^{x^2 + \frac{x^2}{\log x} + \frac{x^2}{\log^2 x} + \dots + x + \log\log x} \in \mathfrak{L}_{\exp}$$

Closing off

$$\mathbb{T}_{\exp^{\infty}} = \mathbb{T} \cup \mathbb{T}_{\exp} \cup \mathbb{T}_{\exp,\exp} \cup \cdots$$

Field of transseries

$$\begin{array}{rcl} \mathbb{T} & \subseteq & \mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}} \\ \log: \mathfrak{T} & \to & \mathbb{T}_{\succ} = \{f \in \mathbb{T} \colon \forall \mathfrak{m} \in \mathfrak{T}, \mathfrak{m} \succ 1\} \end{array}$$

Exponential extension

$$\mathfrak{T}_{\mathrm{exp}} = \exp(\mathbb{T}_{\succ}) \supseteq \mathfrak{T}$$
 $\mathbb{T}_{\mathrm{exp}} = \mathbb{R}[[\mathfrak{T}_{\mathrm{exp}}]]_{\mathscr{S}}$

Example

$$e^{x^2 + \frac{x^2}{\log x} + \frac{x^2}{\log^2 x} + \dots + x + \log\log x} \in \mathfrak{L}_{\exp}$$

Closing off

$$\begin{array}{rcl} \mathbb{T}_{\exp^{\infty}} &=& \mathbb{T} \cup \mathbb{T}_{\exp} \cup \mathbb{T}_{\exp,\exp} \cup \cdots \\ \\ \hat{\mathbb{T}}_{\exp^{\infty}} &=& \mathbb{R}[[\hat{\mathfrak{T}}_{\exp^{\infty}}]]_{\mathscr{S}}, & \hat{\mathfrak{T}}_{\exp^{\infty}} = \mathfrak{T} \cup \mathfrak{T}_{\exp} \cup \mathfrak{T}_{\exp,\exp} \cup \cdots \end{array}$$

Grid-based case:
$$\hat{\mathbb{L}}_{\exp^{\infty}} = \mathbb{L}_{\exp^{\infty}}$$

Well-based case:
$$\frac{1}{x} + \frac{1}{e^x} + \frac{1}{e^{e^x}} + \dots \in \hat{\mathbb{L}}_{\exp^{\infty}} \setminus \mathbb{L}_{\exp^{\infty}}$$

First close off under exponentiation

$$\mathbb{E}_{0} = \mathbb{R}[[\mathfrak{E}_{0}]]_{\mathscr{S}} \qquad \mathfrak{E}_{0} = x^{\mathbb{R}}$$

$$\mathbb{E}_{n+1} = \mathbb{R}[[\mathfrak{E}_{n}]]_{\mathscr{S}} \qquad \mathfrak{E}_{n+1} = x^{\mathbb{R}} \exp((\mathbb{E}_{n})_{\succ})$$

$$\mathbb{E} = \mathbb{E}_{0} \cup \mathbb{E}_{1} \cup \mathbb{E}_{2} \cup \cdots$$

First close off under exponentiation

$$\mathbb{E}_{0} = \mathbb{R}[[\mathfrak{E}_{0}]]_{\mathscr{S}} \qquad \mathfrak{E}_{0} = x^{\mathbb{R}}$$

$$\mathbb{E}_{n+1} = \mathbb{R}[[\mathfrak{E}_{n}]]_{\mathscr{S}} \qquad \mathfrak{E}_{n+1} = x^{\mathbb{R}} \exp((\mathbb{E}_{n})_{\succ})$$

$$\mathbb{E} = \mathbb{E}_{0} \cup \mathbb{E}_{1} \cup \mathbb{E}_{2} \cup \cdots$$

Upward shifting

$$\cdot \circ \exp \colon \mathbb{E}_n \longrightarrow \mathbb{E}_{n+1}$$

 \rightsquigarrow formal identification of $f \in \mathbb{E}_n$ with $(f \circ \exp) \circ \log \in \mathbb{E}_{n+1} \circ \log \in \mathbb{E} \circ \log$

First close off under exponentiation

$$\mathbb{E}_{0} = \mathbb{R}[[\mathfrak{E}_{0}]]_{\mathscr{S}} \qquad \mathfrak{E}_{0} = x^{\mathbb{R}}$$

$$\mathbb{E}_{n+1} = \mathbb{R}[[\mathfrak{E}_{n}]]_{\mathscr{S}} \qquad \mathfrak{E}_{n+1} = x^{\mathbb{R}} \exp((\mathbb{E}_{n})_{\succ})$$

$$\mathbb{E} = \mathbb{E}_{0} \cup \mathbb{E}_{1} \cup \mathbb{E}_{2} \cup \cdots$$

Upward shifting

$$\cdot \circ \exp \colon \mathbb{E}_n \longrightarrow \mathbb{E}_{n+1}$$

 \rightsquigarrow formal identification of $f \in \mathbb{E}_n$ with $(f \circ \exp) \circ \log \in \mathbb{E}_{n+1} \circ \log \in \mathbb{E} \circ \log$

Closure under logarithm

$$\mathbb{T} \ = \ \mathbb{E} \cup \mathbb{E} \circ \log \cup \mathbb{E} \circ \log \circ \log \cup \cdots$$

First close off under exponentiation

$$\mathbb{E}_{0} = \mathbb{R}[[\mathfrak{E}_{0}]]_{\mathscr{S}} \qquad \mathfrak{E}_{0} = x^{\mathbb{R}}$$

$$\mathbb{E}_{n+1} = \mathbb{R}[[\mathfrak{E}_{n}]]_{\mathscr{S}} \qquad \mathfrak{E}_{n+1} = x^{\mathbb{R}} \exp((\mathbb{E}_{n})_{\succ})$$

$$\mathbb{E} = \mathbb{E}_{0} \cup \mathbb{E}_{1} \cup \mathbb{E}_{2} \cup \cdots$$

Upward shifting

$$\cdot \circ \exp \colon \mathbb{E}_n \longrightarrow \mathbb{E}_{n+1}$$

 \rightsquigarrow formal identification of $f \in \mathbb{E}_n$ with $(f \circ \exp) \circ \log \in \mathbb{E}_{n+1} \circ \log \in \mathbb{E} \circ \log$

Closure under logarithm

$$\mathbb{T} \ = \ \mathbb{E} \cup \mathbb{E} \circ \log \cup \mathbb{E} \circ \log \circ \log \cup \cdots$$

Grid-based case: same construction

Well-based case: different construction: $x + \log x + \log \log x + \cdots \notin \mathbb{T}$

First close off under exponentiation

$$\mathbb{E}_{0} = \mathbb{R}[[\mathfrak{E}_{0}]]_{\mathscr{S}} \qquad \mathfrak{E}_{0} = x^{\mathbb{R}}$$

$$\mathbb{E}_{n+1} = \mathbb{R}[[\mathfrak{E}_{n}]]_{\mathscr{S}} \qquad \mathfrak{E}_{n+1} = x^{\mathbb{R}} \exp((\mathbb{E}_{n})_{\succ})$$

$$\mathbb{E} = \mathbb{E}_{0} \cup \mathbb{E}_{1} \cup \mathbb{E}_{2} \cup \cdots$$

Upward shifting

$$\cdot \circ \exp \colon \mathbb{E}_n \longrightarrow \mathbb{E}_{n+1}$$

 \rightsquigarrow formal identification of $f \in \mathbb{E}_n$ with $(f \circ \exp) \circ \log \in \mathbb{E}_{n+1} \circ \log \in \mathbb{E} \circ \log$

Closure under logarithm

$$\mathbb{T} \ = \ \mathbb{E} \cup \mathbb{E} \circ \log \cup \mathbb{E} \circ \log \circ \log \cup \cdots$$

Grid-based case: same construction

Well-based case: different construction: $x + \log x + \log \log x + \cdots \notin \mathbb{T}$

Our book

$$\mathbb{T} = \bigcup_{k \in \mathbb{N}} \mathbb{E} \circ \ell_k$$
 "standard field of transseries"

Totally ordered field $\mathbb{T} = \mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$ with a logarithm such that

- **T1.** dom $\log = \mathbb{T}^{>}$.
- **T2.** $\log \mathfrak{m} \in \mathbb{T}_{\succ}$, for all $\mathfrak{m} \in \mathfrak{T}$, i.e. $\forall \mathfrak{n} \in \operatorname{supp} (\log \mathfrak{m}), \mathfrak{n} \succ 1$.
- **T3.** $\log(1+\varepsilon) = \varepsilon \frac{1}{2}\varepsilon^2 + \frac{1}{3}\varepsilon^3 + \cdots$, for all $\varepsilon \in \mathbb{T}_{\prec}$.
- **T4.** see Schmeling's PhD.

Strictly increasing transfinite sequence of fields of transseries

$$\mathbb{T}_{1} = \mathbb{L}$$

$$\mathbb{T}_{\alpha+1} = (\mathbb{T}_{\alpha})_{\exp}$$

$$\mathbb{T}_{\lambda} = \mathbb{R}[[\bigcup_{\alpha < \lambda} \mathfrak{T}_{\alpha}]]$$

Strictly increasing transfinite sequence of fields of transseries

$$\mathbb{T}_{1} = \mathbb{L}$$

$$\mathbb{T}_{\alpha+1} = (\mathbb{T}_{\alpha})_{\exp}$$

$$\mathbb{T}_{\lambda} = \mathbb{R}[[\bigcup_{\alpha \leq \lambda} \mathfrak{T}_{\alpha}]]$$

Transfinite sequence of $f_{\alpha} \in \mathbb{T}_{\alpha}$ with $\operatorname{supp} f_{\alpha} \cong \alpha$ and $f_{\alpha} \notin \bigcup_{\beta < \alpha} \mathbb{T}_{\beta}$

$$f_1 = x^2$$

$$f_{\alpha+1} = f_{\alpha} - e^{f_{\alpha} \circ \log x}$$

$$f_{\lambda} = \operatorname{stat} \lim_{\alpha < \lambda} f_{\alpha}$$

Strictly increasing transfinite sequence of fields of transseries

$$\mathbb{T}_{1} = \mathbb{L}$$

$$\mathbb{T}_{\alpha+1} = (\mathbb{T}_{\alpha})_{\exp}$$

$$\mathbb{T}_{\lambda} = \mathbb{R}[[\bigcup_{\alpha < \lambda} \mathfrak{T}_{\alpha}]]$$

Transfinite sequence of $f_{\alpha} \in \mathbb{T}_{\alpha}$ with $\operatorname{supp} f_{\alpha} \cong \alpha$ and $f_{\alpha} \notin \bigcup_{\beta < \alpha} \mathbb{T}_{\beta}$

$$f_1 = x^2$$

$$f_{\alpha+1} = f_{\alpha} - e^{f_{\alpha} \circ \log x}$$

$$f_{\lambda} = \operatorname{stat} \lim_{\alpha < \lambda} f_{\alpha}$$

$$\begin{array}{rcl} f_1 &=& x^2 \\ f_2 &=& x^2 - \mathrm{e}^{\log^2 x} \\ & \vdots \\ f_\omega &=& x^2 - \mathrm{e}^{\log^2 x} - \mathrm{e}^{\log^2 x - \mathrm{e}^{\log\log^2 x}} - \cdots \\ f_{\omega+1} &=& x^2 - \mathrm{e}^{\log^2 x} - \mathrm{e}^{\log^2 x - \mathrm{e}^{\log\log\log^2 x}} - \cdots - \mathrm{e}^{\log^2 x - \mathrm{e}^{\log\log\log^2 x} - \cdots} \\ \vdots \end{array}$$

Let \mathbb{T} be standard or $\mathbb{T} = \mathbb{T}_{\alpha}$ with (\mathbb{T}_{α}) as above

Let \mathbb{T} be standard or $\mathbb{T} = \mathbb{T}_{\alpha}$ with (\mathbb{T}_{α}) as above

Definition. Exp-log derivation: derivation with $(e^f)' = f'e^f$ whenever e^f is defined.

Let \mathbb{T} be standard or $\mathbb{T} = \mathbb{T}_{\alpha}$ with (\mathbb{T}_{α}) as above

Definition. Exp-log derivation: derivation with $(e^f)' = f'e^f$ whenever e^f is defined.

Theorem. There exists a unique strong exp-log differentiation on \mathbb{T} with x'=1.

Let \mathbb{T} be standard or $\mathbb{T} = \mathbb{T}_{\alpha}$ with (\mathbb{T}_{α}) as above

Definition. Exp-log derivation: derivation with $(e^f)' = f'e^f$ whenever e^f is defined.

Theorem. There exists a unique strong exp-log differentiation on \mathbb{T} with x'=1.

This derivation satisfies:

AD1. $f \prec g \Rightarrow f' \prec g'$, for all $f, g \in \mathbb{T}$ with $g \not\approx 1$.

AD2. $f \succ 1 \Rightarrow (f > 0 \Rightarrow f' > 0)$, for all $f \in \mathbb{T}$.

Let $\mathbb T$ be standard or $\mathbb T = \bigcup_{\alpha < \lambda} \mathbb T_\alpha$, λ stable under multiplication

Let \mathbb{T} be standard or $\mathbb{T} = \bigcup_{\alpha < \lambda} \mathbb{T}_{\alpha}$, λ stable under multiplication

Definition. Difference operator δ is exp-log: $\delta(e^f) = e^{\delta(f)}$ whenever e^f is defined.

Let \mathbb{T} be standard or $\mathbb{T} = \bigcup_{\alpha < \lambda} \mathbb{T}_{\alpha}$, λ stable under multiplication

Definition. Difference operator δ is exp-log: $\delta(e^f) = e^{\delta(f)}$ whenever e^f is defined.

Theorem. Let $g \in \mathbb{T}^{>,\succ}$. \exists unique strong exp-log difference operator $\delta: \mathbb{T} \to \mathbb{T}$ with $\delta x = g$.

Let \mathbb{T} be standard or $\mathbb{T} = \bigcup_{\alpha < \lambda} \mathbb{T}_{\alpha}$, λ stable under multiplication

Definition. Difference operator δ is exp-log: $\delta(e^f) = e^{\delta(f)}$ whenever e^f is defined.

Theorem. Let $g \in \mathbb{T}^{>,\succ}$. \exists unique strong exp-log difference operator $\delta: \mathbb{T} \to \mathbb{T}$ with $\delta x = g$.

We call δ the *post-composition* operator with g and also write $\delta(f) = f \circ g$. It satisfies:

**A
$$\Delta$$
1.** $f \prec 1 \Rightarrow \delta(f) \prec 1$, for all $f \in \mathbb{T}$.

**A
$$\Delta$$
2.** $f \geqslant 0 \Rightarrow \delta(f) \geqslant 0$, for all $f \in \mathbb{T}$.

Let \mathbb{T} be standard or $\mathbb{T} = \bigcup_{\alpha < \lambda} \mathbb{T}_{\alpha}$, λ stable under multiplication

Definition. Difference operator δ is exp-log: $\delta(e^f) = e^{\delta(f)}$ whenever e^f is defined.

Theorem. Let $g \in \mathbb{T}^{>,\succ}$. \exists unique strong exp-log difference operator $\delta: \mathbb{T} \to \mathbb{T}$ with $\delta x = g$.

We call δ the *post-composition* operator with g and also write $\delta(f) = f \circ g$. It satisfies:

**A
$$\Delta$$
1.** $f \prec 1 \Rightarrow \delta(f) \prec 1$, for all $f \in \mathbb{T}$.

**A
$$\Delta$$
2.** $f \geqslant 0 \Rightarrow \delta(f) \geqslant 0$, for all $f \in \mathbb{T}$.

Theorem. Given $g \in \mathbb{T}^{>,\succ}$, there exists a unique $g^{\mathrm{inv}} \in \mathbb{T}^{>,\succ}$ with $f = g^{\mathrm{inv}} \circ g = g \circ g^{\mathrm{inv}} = x$.

Let \mathbb{T} be standard or $\mathbb{T} = \bigcup_{\alpha < \lambda} \mathbb{T}_{\alpha}$, λ stable under multiplication

Definition. Difference operator δ is exp-log: $\delta(e^f) = e^{\delta(f)}$ whenever e^f is defined.

Theorem. Let $g \in \mathbb{T}^{>,\succ}$. \exists unique strong exp-log difference operator $\delta: \mathbb{T} \to \mathbb{T}$ with $\delta x = g$.

We call δ the *post-composition* operator with g and also write $\delta(f) = f \circ g$. It satisfies:

**A
$$\Delta$$
1.** $f \prec 1 \Rightarrow \delta(f) \prec 1$, for all $f \in \mathbb{T}$.

**A
$$\Delta$$
2.** $f \geqslant 0 \Rightarrow \delta(f) \geqslant 0$, for all $f \in \mathbb{T}$.

Theorem. Given $g \in \mathbb{T}^{>,\succ}$, there exists a unique $g^{\mathrm{inv}} \in \mathbb{T}^{>,\succ}$ with $f = g^{\mathrm{inv}} \circ g = g \circ g^{\mathrm{inv}} = x$.

Theorem. $f, \varepsilon \in \mathbb{T}$ with $\delta \prec x$ and $\mathfrak{m}' \delta \prec \mathfrak{m}$ for all $\mathfrak{m} \in \operatorname{supp} f$. Then

$$f \circ (x + \delta) = f + f' \delta + \frac{1}{2} f'' \delta^2 + \cdots$$

Fact. The field \mathbb{L}_{\exp} is **not** stable under integration. Indeed, $\int \gamma \notin \mathbb{L}_{\exp}$, where

$$\gamma = \frac{1}{x \log x \log \log x \cdots} = \exp(-x - \log x - \log \log x - \cdots)$$

Fact. The field \mathbb{L}_{\exp} is **not** stable under integration. Indeed, $\int \gamma \notin \mathbb{L}_{\exp}$, where

$$\gamma = \frac{1}{x \log x \log \log x \cdots} = \exp(-x - \log x - \log \log x - \cdots)$$

Remark. Any $f \in \mathbb{L}_{\exp}$ with $f_{\gamma} = 0$ admits an integral in \mathbb{L}_{\exp} .

Fact. The field \mathbb{L}_{\exp} is **not** stable under integration. Indeed, $\int \gamma \notin \mathbb{L}_{\exp}$, where

$$\gamma = \frac{1}{x \log x \log \log x \cdots} = \exp(-x - \log x - \log \log x - \cdots)$$

Remark. Any $f \in \mathbb{L}_{\exp}$ with $f_{\gamma} = 0$ admits an integral in \mathbb{L}_{\exp} .

Question. Analytic meaning of $\ell_{\omega} = \int \gamma$?

Fact. The field \mathbb{L}_{\exp} is **not** stable under integration. Indeed, $\int \gamma \notin \mathbb{L}_{\exp}$, where

$$\gamma = \frac{1}{x \log x \log \log x \cdots} = \exp(-x - \log x - \log \log x - \cdots)$$

Remark. Any $f \in \mathbb{L}_{exp}$ with $f_{\gamma} = 0$ admits an integral in \mathbb{L}_{exp} .

Question. Analytic meaning of $\ell_{\omega} = \int \gamma$?

• Kneser $\Rightarrow \exists$ real analytic solution to

$$\ell_{\omega} \circ \ell_1 = \ell_{\omega} - 1$$

• Differentiate $\Rightarrow \gamma = \ell_\omega'$ indeed a solution to

$$\frac{\gamma \circ \ell_1}{x} = \gamma$$

ullet ℓ_ω grows slowlier than any iterated logarithm

Transfinite iterators of the logarithm

$$\ell_{\alpha} = \int \frac{1}{\prod_{\beta < \alpha} \ell_{\beta}}$$

Transfinite iterators of the logarithm

$$\ell_{\alpha} = \int \frac{1}{\prod_{\beta < \alpha} \ell_{\beta}}$$

Generalized transseries

Schmeling–vdH: generalizated transseries that encompass ℓ_{α}

Transfinite iterators of the logarithm

$$\ell_{\alpha} = \int \frac{1}{\prod_{\beta < \alpha} \ell_{\beta}}$$

Generalized transseries

Schmeling–vdH: generalizated transseries that encompass ℓ_{lpha}

Fork in the road

Let \mathbb{T} be a field of transseries with $\gamma \in \mathbb{T}$ but $\int \gamma \notin \mathbb{T}$

- Possible to construct extension $\mathbb{T}\langle \int \gamma \rangle$ in which $\int \gamma \succ 1$
- Also possible to construct extension $\mathbb{T}\langle \int \gamma \rangle$ in which $\int \gamma \prec 1$

Theorem. (Écalle / vdD–Macintyre–Marker / vdH) \mathbb{T} is Liouville closed (real closed and stable under resolution of first order linear differential equations).

Theorem. (Écalle / vdD–Macintyre–Marker / vdH) \mathbb{T} is Liouville closed (real closed and stable under resolution of first order linear differential equations).

Theorem. (vdH) Any monic linear differential operator $L \in \mathbb{T}[\partial]$ can be factored into factors $\partial + a$ of order one and factors $\partial^2 + a \partial + b$ of order 2 with $a, b \in \mathbb{T}$.

Theorem. (Écalle / vdD–Macintyre–Marker / vdH) \mathbb{T} is Liouville closed (real closed and stable under resolution of first order linear differential equations).

Theorem. (vdH) Any monic linear differential operator $L \in \mathbb{T}[\partial]$ can be factored into factors $\partial + a$ of order one and factors $\partial^2 + a \partial + b$ of order 2 with $a, b \in \mathbb{T}$.

Theorem. (vdH) \mathbb{T} is newtonian (differential analogue of henselian).

Theorem. (Écalle / vdD–Macintyre–Marker / vdH) \mathbb{T} is Liouville closed (real closed and stable under resolution of first order linear differential equations).

Theorem. (vdH) Any monic linear differential operator $L \in \mathbb{T}[\partial]$ can be factored into factors $\partial + a$ of order one and factors $\partial^2 + a \partial + b$ of order 2 with $a, b \in \mathbb{T}$.

Theorem. (vdH) \mathbb{T} is newtonian (differential analogue of henselian).

Theorem. (vdH) $\mathbb T$ satisfies the differential intermediate value property: let $P \in \mathbb T\{Y\}$ be a differential polynomial and assume that f < g in $\mathbb T$ are such that P(f) P(g) < 0. Then there exists a $h \in \mathbb T$ with f < h < g and P(h) = 0.

Theorem. (Écalle / vdD–Macintyre–Marker / vdH) \mathbb{T} is Liouville closed (real closed and stable under resolution of first order linear differential equations).

Theorem. (vdH) Any monic linear differential operator $L \in \mathbb{T}[\partial]$ can be factored into factors $\partial + a$ of order one and factors $\partial^2 + a \partial + b$ of order 2 with $a, b \in \mathbb{T}$.

Theorem. (vdH) \mathbb{T} is newtonian (differential analogue of henselian).

Theorem. (vdH) $\mathbb T$ satisfies the differential intermediate value property: let $P \in \mathbb T\{Y\}$ be a differential polynomial and assume that f < g in $\mathbb T$ are such that P(f) P(g) < 0. Then there exists a $h \in \mathbb T$ with f < h < g and P(h) = 0.

Corollary. Any differential polynomial $P \in \mathbb{T}\{Y\}$ of odd degree admits a root in \mathbb{T} .

Theorem. (Écalle / vdD–Macintyre–Marker / vdH) \mathbb{T} is Liouville closed (real closed and stable under resolution of first order linear differential equations).

Theorem. (vdH) Any monic linear differential operator $L \in \mathbb{T}[\partial]$ can be factored into factors $\partial + a$ of order one and factors $\partial^2 + a \partial + b$ of order 2 with $a, b \in \mathbb{T}$.

Theorem. (vdH) \mathbb{T} is newtonian (differential analogue of henselian).

Theorem. (vdH) $\mathbb T$ satisfies the differential intermediate value property: let $P \in \mathbb T\{Y\}$ be a differential polynomial and assume that f < g in $\mathbb T$ are such that P(f) P(g) < 0. Then there exists a $h \in \mathbb T$ with f < h < g and P(h) = 0.

Corollary. Any differential polynomial $P \in \mathbb{T}\{Y\}$ of odd degree admits a root in \mathbb{T} .

$$y^{17} y'' y''' + \Gamma(\Gamma(x)) y^{3} (y')^{6} - \frac{y^{(2016)}}{\log \log x} = e^{e^{\frac{x}{\log \log \log x}}}$$

Theorem. Let $P \in \mathbb{T}_{\mathscr{S}}\{Y\}$ and $y \in \mathbb{T}$ be such that P(y) = 0. Then $y \in \mathbb{T}_{\mathscr{S}}$.

Theorem. Let $P \in \mathbb{T}_{\mathscr{S}}\{Y\}$ and $y \in \mathbb{T}$ be such that P(y) = 0. Then $y \in \mathbb{T}_{\mathscr{S}}$.

Corollary. $\mathbb{T}_{\mathscr{S}}$ is newtonian and it satisfies the differential intermediate value property.

Corollary. $\mathbb{T}_{\mathscr{S}}$ is newtonian and it satisfies the differential intermediate value property.

Corollary. $\zeta(x)$ is differentially transcendental over \mathbb{T} (and therefore over \mathbb{R}).

Corollary. $\mathbb{T}_{\mathscr{S}}$ is newtonian and it satisfies the differential intermediate value property.

Corollary. $\zeta(x)$ is differentially transcendental over \mathbb{T} (and therefore over \mathbb{R}).

Corollary. The function $\frac{1}{x} + \frac{1}{x^{\pi}} + \frac{1}{x^{\pi^2}} + \cdots$ is differentially transcendental over $\mathbb{T}\langle \zeta(x) \rangle$.

Corollary. $\mathbb{T}_{\mathscr{S}}$ is newtonian and it satisfies the differential intermediate value property.

Corollary. $\zeta(x)$ is differentially transcendental over \mathbb{T} (and therefore over \mathbb{R}).

Corollary. The function $\frac{1}{x} + \frac{1}{x^{\pi}} + \frac{1}{x^{\pi}} + \cdots$ is differentially transcendental over $\mathbb{T}\langle \zeta(x) \rangle$.

Corollary. Let $\mathscr{S}_{\mathfrak{M}}$ be the set of well-ordered supports \mathfrak{G} such that there exist a finite number of monomials $\mathfrak{b}_1, ..., \mathfrak{b}_n$ with $\mathfrak{G} \subseteq \mathfrak{b}_1^{\mathbb{R}} \cdots \mathfrak{b}_n^{\mathbb{R}}$. Then $e^{e^x} + e^{e^{x/2}} + e^{e^{x/3}} + \cdots$ is differentially transcendental over $\mathbb{T}_{\mathscr{S}}$.

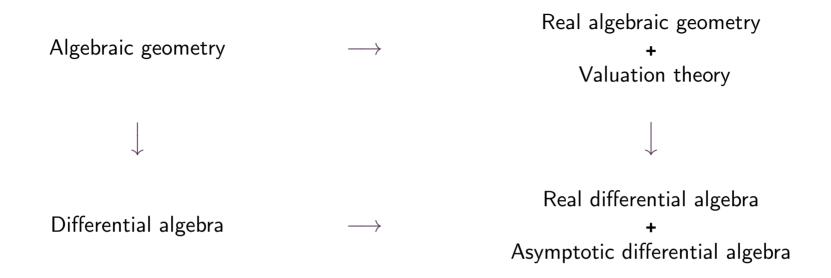
Corollary. $\mathbb{T}_{\mathscr{S}}$ is newtonian and it satisfies the differential intermediate value property.

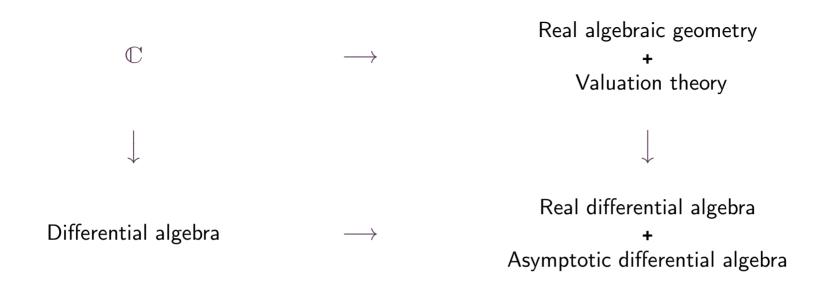
Corollary. $\zeta(x)$ is differentially transcendental over \mathbb{T} (and therefore over \mathbb{R}).

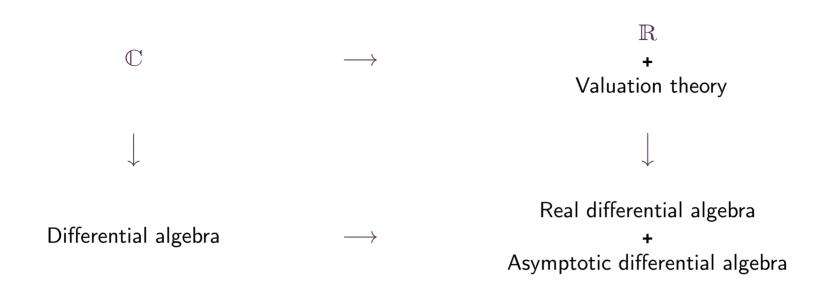
Corollary. The function $\frac{1}{x} + \frac{1}{x^{\pi}} + \frac{1}{x^{\pi}} + \cdots$ is differentially transcendental over $\mathbb{T}\langle \zeta(x) \rangle$.

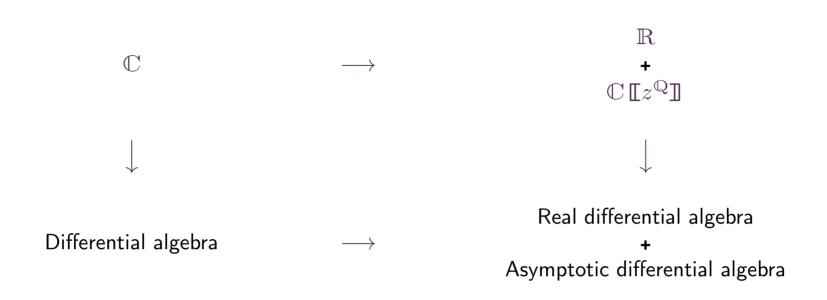
Corollary. Let $\mathscr{S}_{\mathfrak{M}}$ be the set of well-ordered supports \mathfrak{G} such that there exist a finite number of monomials $\mathfrak{b}_1, ..., \mathfrak{b}_n$ with $\mathfrak{G} \subseteq \mathfrak{b}_1^{\mathbb{R}} \cdots \mathfrak{b}_n^{\mathbb{R}}$. Then $e^{e^x} + e^{e^{x/2}} + e^{e^{x/3}} + \cdots$ is differentially transcendental over $\mathbb{T}_{\mathscr{S}}$.

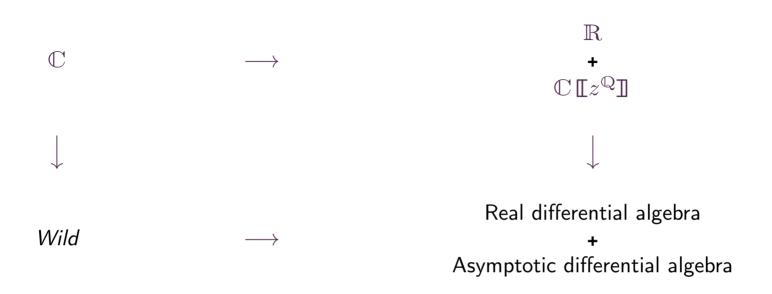
Question. Is $x + \log x + \log \log x + \cdots$ differentially transcendental over \mathbb{T} ?



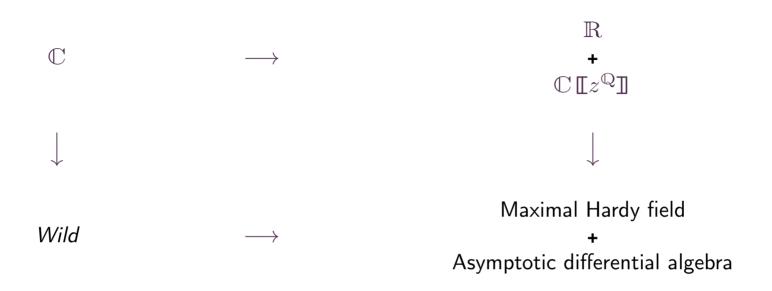




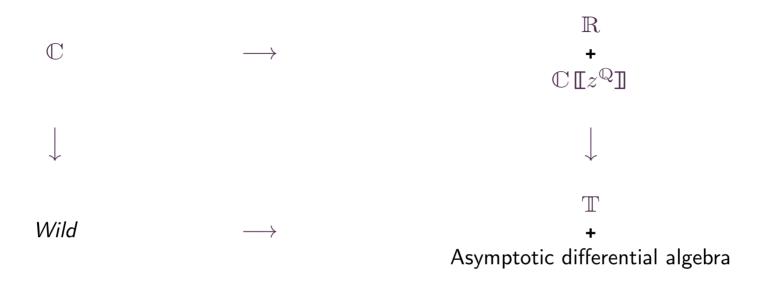




1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 <u>26</u> 27 28 29



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29



$$\tilde{f}(x) = \sum_{n=0}^{\infty} \frac{n!}{x^{n+1}}$$

$$\tilde{f}(x) = \sum_{n=0}^{\infty} \frac{n!}{x^{n+1}}$$

$$\hat{\mathcal{B}} \begin{vmatrix} x^{-n-1} \mapsto (-\zeta)^n / n! \\ \times \mapsto * \\ \partial \mapsto -\zeta \end{vmatrix}$$

$$\hat{f}(\zeta) = \sum_{n=0}^{\infty} (-\zeta)^n$$

$$\begin{split} \widetilde{f}(x) &= \sum_{n=0}^{\infty} \frac{n!}{x^{n+1}} \\ \widehat{\mathcal{B}} & \begin{array}{c} x^{-n-1} \mapsto (-\zeta)^n/n! \\ \times \mapsto * \\ \partial \mapsto -\zeta \end{array} \\ \widehat{f}(\zeta) &= \sum_{n=0}^{\infty} (-\zeta)^n \xrightarrow{\text{Analytic continuation}} \widehat{f}(\zeta) = \frac{1}{1+\zeta} \end{split}$$

$$\tilde{f}(x) = \left(\sum_{n=0}^{\infty} \frac{n!}{x^{n+1}}\right) \left(\sum_{n=0}^{\infty} \frac{n!}{x^{2n+1}}\right)$$

$$\tilde{f}(x) = \left(\sum_{n=0}^{\infty} \frac{n!}{x^{n+1}}\right) \left(\sum_{n=0}^{\infty} \frac{n!}{x^{2n+1}}\right)$$

$$\hat{\mathcal{B}}_1$$

$$\hat{f}_1(\zeta_1)$$

$$\tilde{f}(x) = \left(\sum_{n=0}^{\infty} \frac{n!}{x^{n+1}}\right) \left(\sum_{n=0}^{\infty} \frac{n!}{x^{2n+1}}\right)$$

$$\hat{\mathcal{B}}_{1} \qquad \qquad \hat{f}_{1}(\zeta_{1}) \xrightarrow{\mathcal{A}_{1,2}} \hat{f}_{2}(\zeta_{2})$$

$$\tilde{f}(x) = \left(\sum_{n=0}^{\infty} \frac{n!}{x^{n+1}}\right) \left(\sum_{n=0}^{\infty} \frac{n!}{x^{2n+1}}\right)$$

$$\hat{\beta}_{1} \downarrow$$

$$\hat{f}_{1}(\zeta_{1}) \xrightarrow{\mathcal{A}_{1,2}} \hat{f}_{2}(\zeta_{2}) \xrightarrow{\mathcal{A}_{k-1,k}} \hat{f}_{k}(\zeta_{k})$$

$$\hat{f}(x) = \left(\sum_{n=0}^{\infty} \frac{n!}{x^{n+1}}\right) \left(\sum_{n=0}^{\infty} \frac{n!}{x^{2n+1}}\right) - \cdots - Accelero-summation \\ \hat{\mathcal{B}}_1 \qquad \qquad \uparrow \\ \hat{f}_1(\zeta_1) \xrightarrow{\mathcal{A}_{1,2}} \hat{f}_2(\zeta_2) - \cdots - \hat{f}_{k-1}(\zeta_{k-1}) \xrightarrow{\mathcal{A}_{k-1,k}} \hat{f}_k(\zeta_k)$$

Analyzable functions

Let $\mathbb{T}^{\mathrm{accsum}}$ be the subset of \mathbb{T} of accelero-summable transseries

Theorem. $\mathbb{T}^{\text{accsum}}$ is a Hardy field.

Conjecture. $\mathbb{T}^{\text{accsum}}$ contains the field of all differentially algebraic transseries over \mathbb{R} .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Definition. \approx A transserial Hardy field is a differential and truncation closed subfield of \mathbb{T} together with an isomorphism with a Hardy field.

$$f' = e^{-x^2} + f^2$$
$$f = \int_{\infty} e^{-x^2} + \int_{\infty} f^2$$

$$f' = e^{-x^2} + f^2$$

 $f = \int_{\infty} e^{-x^2} + \int_{\infty} \left[\int_{\infty} e^{-x^2} + \int_{\infty} f^2 \right]^2$

$$f' = e^{-x^2} + f^2$$

$$f = \int_{\infty} e^{-x^2} + \int_{\infty} \left[\int_{\infty} e^{-x^2} \right]^2 + 2 \int_{\infty} \left[\int_{\infty} e^{-x^2} \right] \left[\int_{\infty} f^2 \right] + \int_{\infty} \left[\int_{\infty} f^2 \right]^2$$

$$f' = e^{-x^{2}} + f^{2}$$

$$f = \int_{\infty} e^{-x^{2}} + \int_{\infty} \left[\int_{\infty} e^{-x^{2}} \right]^{2} + 2 \int_{\infty} \left[\int_{\infty} e^{-x^{2}} \right] \left[\int_{\infty} \left[\int_{\infty} e^{-x^{2}} \right]^{2} + \cdots \right]$$

Alternative device for the construction of real analytic solutions

$$f' = e^{-x^{2}} + f^{2}$$

$$f = \int_{\infty} e^{-x^{2}} + \int_{\infty} \left[\int_{\infty} e^{-x^{2}} \right]^{2} + 2 \int_{\infty} \left[\int_{\infty} e^{-x^{2}} \right] \left[\int_{\infty} \left[\int_{\infty} e^{-x^{2}} \right]^{2} + \cdots \right]$$

Theorem. The subfield of \mathbb{T} of all differentially algebraic transseries over \mathbb{R} can be given the structure of a transserial Hardy field.

Alternative device for the construction of real analytic solutions

$$f' = e^{-x^{2}} + f^{2}$$

$$f = \int_{\infty} e^{-x^{2}} + \int_{\infty} \left[\int_{\infty} e^{-x^{2}} \right]^{2} + 2 \int_{\infty} \left[\int_{\infty} e^{-x^{2}} \right] \left[\int_{\infty} \left[\int_{\infty} e^{-x^{2}} \right]^{2} + \cdots \right]$$

Theorem. The subfield of \mathbb{T} of all differentially algebraic transseries over \mathbb{R} can be given the structure of a transserial Hardy field.

Corollary. There exists a Hardy field K such that

- K is Liouville closed.
- *K* is newtonian.
- Operators in $K[\partial]$ can be factored in operators of order one or two.
- K satisfies the differential intermediate value property.