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Overview

I. Asymptotic Differential Algebra

In the previous lecture, JORIS introduced a variety of
interesting differential fields (of transseries, germs of
functions, . . . ) equipped with asymptotic structure, such
as ordering and dominance. We will now introduce an
algebraic framework to unify these examples and to
study their general properties.

II. The Main Results

We’ll give statements of our main theorems, though
leaving some definitions as black boxes for JORIS’ next
lecture.

III. The Next Lectures



I. Asymptotic Differential Algebra



Differential fields

Let K be a differential field (always of characteristic 0), with
derivation ∂. As usual

f ′ = ∂(f ), f ′′ = ∂
2(f ), . . . , f (n) = ∂

n(f ), . . .

The constant field of K is C = CK = {f ∈ K : f ′ = 0}.
For f 6= 0 let f † := f ′/f be the logarithmic derivative of f . Note

(f · g)† = f † + g† for f ,g 6= 0.

The ring of differential polynomials (= d-polynomials) in
Y1, . . . ,Yn with coefficients in K is denoted by K{Y1, . . . ,Yn}.
For φ 6= 0, we denote by K φ the compositional conjugate
of K by φ: the field K equipped with the derivation φ−1

∂.

For every P ∈ K{Y} there is a Pφ ∈ K φ{Y} with P(y) = Pφ(y)
for all y . (This will play an important role later.)



Valued differential fields

A valued differential field is a differential field K equipped with
a valuation v : K× → Γ = ΓK , extended by v(0) :=∞ > Γ. Put

O := {f : vf > 0}, O := {f : vf > 0}, res(K ) := O/O.

In our context it is often more natural to encode v in terms of its
associated dominance relation:

f 4 g :⇐⇒ vf > vg “g dominates f ”.

We also use:

f ≺ g :⇐⇒ f 4 g & g 64 f “g strictly dominates f ”
f � g :⇐⇒ f 4 g & g 4 f
f ∼ g :⇐⇒ f − g ≺ g “asymptotic equivalence”

The derivation of K is small if ∂O ⊆ O. (This implies the
continuity of ∂.) Then ∂O ⊆ O, so we get a derivation on res(K ).



Valued differential fields

Examples

1 For K = T:

(Γ,+,6) ∼=
(
{transmonomials}, · ,<

)
.

2 For K = R(`0, `1, . . . ) ⊆ T:

Γ =
⊕

n

Zen, en = v`n, `n = log log · · · log︸ ︷︷ ︸
n times

x ,

en < m en+1 < 0 for all m > 0 and all n.

In both cases O = R + O, so res(K ) ∼= R.



Valued differential fields

An ordered differential field is a differential field K equipped
with an ordering making it an ordered field. We can then turn K
into a valued field with dominance relation

f 4 g :⇐⇒ |f | 6 c|g| for some c ∈ C.

Example

Let K be a HARDY field. Then K becomes an ordered field via

f > 0 :⇐⇒ f (t) > 0, eventually.

For g 6= 0, we have:

f 4 g ⇐⇒ lim
t→+∞

f (t)
g(t)

∈ R, f ≺ g ⇐⇒ lim
t→+∞

f (t)
g(t)

= 0,

f � g ⇐⇒ lim
t→+∞

f (t)
g(t)

∈ R×, f ∼ g ⇐⇒ lim
t→+∞

f (t)
g(t)

= 1.
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Asymptotic fields

A valued differential field K is an asymptotic field if

for all nonzero f ,g 6� 1, f 4 g ⇐⇒ f ′ 4 g′.

We say that K is of H-type (or H-asymptotic) if in addition

for all nonzero f ,g ≺ 1, f 4 g =⇒ f † < g†.

Examples

• Let K be a HARDY field. Then for nonzero f ,g 6� 1:

f 4 g ⇐⇒ lim
t→+∞

f (t)
g(t)

∈ R ⇐⇒
L’HÔPITAL

lim
t→+∞

f ′(t)
g′(t)

∈ R ⇐⇒ f ′ 4 g′.

So K is asymptotic. One can check that K is of H-type.
• Every valued differential subfield of T is H-asymptotic.



Asymptotic fields

Let K be an asymptotic field. We can define functions

Γ6= := Γ \ {0} → Γ

by

γ = vg 7→ γ′ := vg′, γ = vg 7→ ψ(γ) := γ† := γ′ − γ = vg†.

The pair (Γ, ψ), with ψ(0) :=∞, is an asymptotic couple, i.e.,
(AC1) ψ(α + β) > min

(
ψ(α), ψ(β)

)
;

(AC2) ψ(kα) = ψ(α) for all k ∈ Z6=;
(AC3) 0 < α < β =⇒ α′ < β′.

We say that (Γ, ψ) is of H-type, or H-asymptotic, if in addition
(HC) 0 < α 6 β =⇒ ψ(α) > ψ(β).



Asymptotic fields

Example

Suppose K = R(`0, `1, `2, . . . ), so

Γ =
⊕

n

Zen where en = v`n < 0.

We have

`′n =
(
log `n−1

)′
=
`′n−1

`n−1
=⇒ `′n =

1
`0 · · · `n−1

=⇒ `†n =
1

`0 · · · `n

Thus

(Γ>)† =

{
v
(

1
`0

)
, v
(

1
`0`1

)
, . . . , v

(
1

`0 · · · `n

)
, . . .

}



Asymptotic fields

Here is a picture of a typical H-asymptotic couple.

Γ ↑

→ Γ
◦

γ′

γ† = γ′ − γ

We always have (Γ>)† < (Γ>)′ . (Even if (Γ, ψ) is not of H-type.)

What happens near the little circle is important.



Asymptotic fields

Let (Γ, ψ) be an H-asymptotic couple. Exactly one of the
following statements holds:

1 (Γ>)† < γ < (Γ>)′ for a (necessarily unique) γ.
We call such γ a gap in (Γ, ψ).

2 (Γ>)† has a largest element.
We say that (Γ, ψ) is grounded.

3 (Γ>)† has no supremum; equivalently: Γ = (Γ 6=)′.
We say that (Γ, ψ) has asymptotic integration.

We use similar terminology for H-asymptotic fields.

Examples

1 K = R (but there are also more interesting examples);

2 K = R(`0, . . . , `n): then max (Γ>)† = v
(

1
`0 · · · `n

)
;

3 K = R(`0, `1, `2, . . . ), or K = T.



Asymptotic fields

The class of asymptotic fields is very robust, e.g., closed under
• taking substructures, compositional conjugation;
• algebraic extensions;
• coarsening and specialization.

Definition
Let ∆ be a convex subgroup of Γ, with ordered quotient group
Γ̇ := Γ/∆. Then K with its valuation replaced by

K× v−−→ Γ
γ 7→ γ+∆−−−−−−−→ Γ̇

is an asymptotic field, called the coarsening of K by ∆.



Asymptotic fields

The class of asymptotic fields is very robust, e.g., closed under
• taking substructures, compositional conjugation;
• algebraic extensions;
• coarsening and specialization.

Important special case

Suppose K is H-asymptotic. Then

Γ[ :=
{
γ : γ† > 0

}
is a convex subgroup of Γ. More generally, so is

Γ[φ :=
{
γ : γ† > vφ

}
for φ ∈ K×.

If K = T, then Γ[ =
{

vf : f ∈ T×, f n ≺ ex for all n
}

.



Differential-valued fields

valued differential fields

asymptotic fields

d-valued fields

d-valued fields of H-type

H-fields



Differential-valued fields

valued differential fields

asymptotic fields

d-valued fields

d-valued fields of H-type

H-fields



Differential-valued fields

Let K be an asymptotic field. Then C ⊆ O and

c 7→ c + O : C → res(K ) = O/O is injective.

Definition
We say that K is d-valued if O = C + O; equivalently, for each
f � 1 there is some c ∈ C with f ∼ c.

These were defined and first studied by ROSENLICHT (1980s),
who in the process also introduced asymptotic couples.

The class of d-valued fields is not as robust as that of
asymptotic fields, for example, not closed under taking
substructures: consider

Q
(√

2 + x−1
)
⊆ T.
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H-fields

Definition
Let K be an ordered differential field. Then K is an H-field if

(H1) f � 1 ⇒ f † > 0; and
(H2) for each f � 1 there is some c ∈ C with f ∼ c.

Every H-field, as valued differential field, is H-asymptotic and
d-valued (by (H2)).

Each compositional conjugate K φ of an H-field K with φ ∈ K ,
φ > 0, is an H-field.

Examples

• every ordered differential subfield K ⊇ R of T;
• every HARDY field K ⊇ R.



H-fields

Recall that T is real closed, as well as closed under
exponentiation and integration. This motivates the following:

Definition
Let K be an H-field. We say that K is LIOUVILLE closed if

1 K is real closed;
2 for each f ∈ K there is some y ∈ K with y 6= 0, y† = f ; and
3 for each g ∈ K there is some z ∈ K with z ′ = g.

A LIOUVILLE closure of an H-field K is a minimal LIOUVILLE

closed H-field extension of K .

Theorem
Every H-field K has exactly one or exactly two LIOUVILLE

closures, up to isomorphism over K .



H-fields

What can go wrong when forming LIOUVILLE closures may be
seen from the asymptotic couple (Γ, ψ) of K . Recall that exactly
one of the following holds:

1 K has a gap γ: (Γ>)† < γ < (Γ>)′

2 K is grounded: (Γ>)† has a largest element.
3 K has asymptotic integration: (Γ>)† has no supremum.

In 1 we have two LIOUVILLE closures: if γ = vg, then we have
a choice when adjoining

∫
g: make it � 1 or ≺ 1.

In 2 we have one LIOUVILLE closure: if vg = max (Γ>)†, then∫
g � 1 in each LIOUVILLE closure of K .

In 3 we may have one or two LIOUVILLE closures.



Order 2 linear differential equations in transseries

Since T is LIOUVILLE CLOSED, each linear differential equation

y ′ + fy = g (f ,g ∈ T)

has a nonzero solution y ∈ T. What other kinds of algebraic
differential equations have solutions in T?

Examples (2nd order linear)

• y ′′ = −y has no solution y ∈ T×;
• y ′′ = xy has two R-linearly independent solutions in T:

Ai =
e−ξ

2π1/2x1/4

∑
n

(−1)n an

ξn

Bi =
eξ

π1/2x1/4

∑
n

(−1)n an

ξn (ξ = 2
3x3/2, an ∈ R).



Order 2 linear differential equations in transseries

Let K be a LIOUVILLE closed H-field. For f ∈ K and y ∈ K×,

4y ′′ + fy = 0 ⇐⇒ ω(2y†) = f

where ω(z) := −(2z ′ + z2).

Hence

ω(K ) =
{

f ∈ K : 4y ′′ + fy = 0 for some y ∈ K×
}
.

Example (K = T)

γn := `†n =
1

`0 · · · `n

λn := −γ
†
n =

1
`0

+
1
`0`1

+ · · ·+ 1
`0`1 · · · `n

ωn := ω(λn) =
1
`20

+
1

(`0`1)2 + · · ·+ 1
(`0`1 · · · `n)2



Order 2 linear differential equations in transseries
One can show that the sequence (ωn) is cofinal in ω(T), and
that ω(T) is downward closed in T (as a consequence of the
newtonianitynewtonianity of T).

1
`0`1···

1
`0

+ 1
`0`1

+ · · ·

1
`2

0
+ 1

(`0`1)2 + · · ·

T

T
0

ω

Definition
Call an H-field K with asymptotic integration ω-free if ω(K ) has
no supremum in K . (This is not quite the definition of ω-free
used in our book, but equivalent to it for LIOUVILLE closed K .)



Newtonianity

Newtonian is a version of “d-henselian” satisfied by T, which
says that certain kinds of d-polynomials in one variable over K
have a zero y 4 1 in K . The definition involves compositional
conjugation.

It guarantees, for example, that the PAINLEVÉ II equation

y ′′ = 2y3 + xy + α (α ∈ C, x ′ = 1)

has a solution in y 4 1 in K .

We chose the adjective “newtonian” since it is this property that
allows us to develop a NEWTON diagram method for differential
polynomials.

ω-freeness and newtonianity will be discussed in more detail in
JORIS’ next talk.



II. The Main Results



The main results

From now on, we view each H-field K as a (model-theoretic)
structure where we single out the primitives

0, 1, +, · , ∂ (derivation), 6 (ordering), 4 (dominance).

Theorem A
The following statements about K axiomatize a model complete
theory T nl: K is

1 a LIOUVILLE closed H-field;
2 ω-free;
3 newtonian.

Moreover, T is a model of these axioms.

� (The inclusion of 4 is necessary.)



The main results

The theory T nl is not complete. It has exactly two completions:
• T nl

small: small derivation;
• T nl

large: large derivation.

Thus T nl
small = Th(T).

Corollary

T is decidable; in particular: there is an algorithm which, given
d-polynomials P1, . . . ,Pm ∈ Q(x){Y1, . . . ,Yn}, decides whether
P1(y) = · · · = Pm(y) = 0 for some y ∈ Tn.

There is no such algorithm if T is replaced by its H-subfield of
exponential transseries.



The main results

Theorem A is the main step towards a quantifier elimination
for T, in a slightly extended language.

Let Lι
Λ,Ω be our language L = {0, 1, +, · , ∂, 6, 4} augmented

by a unary function symbol ι and unary predicates Λ, Ω.

Extend T nl to the Lι
Λ,Ω-theory T nl,ι

Λ,Ω by adding as defining
axioms for these new symbols the universal closures of[

a 6= 0 −→ a · ι(a) = 1
]

&
[
a = 0 −→ ι(a) = 0

]
,

Λ(a) ←→ ∃y
[
y � 1 & a = −y††

]
,

Ω(a) ←→ ∃y
[
y 6= 0 & 4y ′′ + ay = 0

]
.

For a model K of T nl this makes both Λ(K ) and Ω(K ) = ω(K )
downward closed.



The main results

Example (K = T)

f ∈ Λ(T) ⇔ f < λn =
1
`0

+
1
`0`1

+ · · ·+ 1
`0`1 · · · `n

for some n,

f ∈ Ω(T) ⇔ f < ωn =
1
`20

+
1
`20`

2
1

+ · · ·+ 1
`20`

2
1 · · · `2n

for some n.

Theorem B
T nl,ι

Λ,Ω admits quantifier elimination.

The predicates Λ and Ω act as switchmen when constructing
extensions of K : If an element γ in an H-field extension of K
solving γ† = −λ ∈ K is a gap, then Λ(λ) tells us to choose∫

γ � 1, while ¬Λ(λ) forces
∫

γ ≺ 1. Likewise, Ω controls what
happens when we adjoin λ with ω(λ) = ω ∈ K .



III. The Next Lectures



Lecture 3 JORIS will discuss the main “machine” behind the
proof of our theorems: the NEWTON diagram
method.

Lecture 4 I will sketch the main steps in the proofs of
Theorems A and B, and give some applications.

Lecture 5 LOU will speak about further developments.


