Tutorial: Model Theory of Transseries Lecture 4

Matthias Aschenbrenner

UCLA

Overview

- I. Newtonization
- II. Strategy for the Proof of the Main Results
- III. Applications

I. Newtonization

Reminders from the last lecture

Let K be a d-valued field of H-type with asymptotic integration. Recall that $C \cong \operatorname{res}(K)$. Suppose for simplicity that Γ is divisible and K is equipped with a "monomial group" \mathfrak{M} .

From JORIS' last lecture recall the definition of the NEWTON polynomial $N_P \in C\{Y\}^{\neq}$ of $P \in K\{Y\}^{\neq}$: eventually

$$P^\phi = \mathfrak{d} \cdot N_P + R_P \qquad ext{where } \mathfrak{d} = \mathfrak{d}_\phi \in \mathfrak{M} ext{ and } R_P \prec_\phi^\flat \mathfrak{d}.$$

If K is ω -free, then $N_P \in C[Y](Y')^{\mathbb{N}}$, and N_P doesn't change if we pass from K to an extension (of d-valued fields of H-type).

We put ndeg $P := \deg N_P$ (the NEWTON degree of P).

We say that K is *newtonian* if every $P \in K\{Y\}$ with ndeg P = 1 has a zero in \mathcal{O} . (Mostly useful in combination with ω -freeness.)

Constructing immediate extensions

Some reminders from general valuation theory

Let (a_{ρ}) be an ordinal-indexed sequence in K. Then

- **1** (a_{ρ}) **pseudoconverges to** $a \in K$ if $v(a a_{\rho})$ is eventually strictly increasing; notation: $a_{\rho} \rightsquigarrow a$;
- **2** (a_{ρ}) is **divergent** if it has no pseudolimit in K;
- **3** (a_{ρ}) is a **pseudocauchy sequence** in K if eventually

$$\tau > \sigma > \rho \implies \mathbf{a}_{\tau} - \mathbf{a}_{\sigma} \prec \mathbf{a}_{\sigma} - \mathbf{a}_{\rho};$$

equivalently: (a_{ρ}) has a pseudolimit in an extension of K.

Declare $(a_{\rho}) \sim (b_{\sigma})$ if (a_{ρ}) , (b_{σ}) have the same pseudolimits in all extensions of K, and set

$$\boldsymbol{a} := c_K(a_\rho) = \text{equivalence class of } (a_\rho).$$

Constructing immediate extensions

Let *L* be an extension of *K*. Then $C \subseteq C_L$, and naturally $\Gamma \hookrightarrow \Gamma_L$.

If $C_L = C$ and $\Gamma_L = \Gamma$, then L is an **immediate** extension of K. In this case, every $a \in L \setminus K$ is a pseudolimit of a divergent pc-sequence in K.

Conversely, we can always adjoin pseudolimits in immediate extensions, as we now explain.

We introduce a classification of pc-sequences (a_{ρ}) in K:

- **1** d-algebraic type over $K: P(b_{\lambda}) \rightsquigarrow 0$ for some $P \in K\{Y\}$ and pc-sequence $(b_{\lambda}) \sim (a_{\rho})$ in K;
- 2 d-transcendental type over K: not of d-algebraic type.

Any P as in 1, chosen so that $Q(b_{\lambda}) \not \rightsquigarrow 0$ whenever $Q \in K\{Y\}$ has lower complexity than P and $(b_{\lambda}) \sim (a_{\rho})$, is a **minimal** d-**polynomial** of (a_{ρ}) over K.

Constructing immediate extensions

Theorem (d-analogues of KAPLANSKY's theorems)

Let (a_{ρ}) be a divergent pc-sequence in K.

- **1** Suppose (a_{ρ}) is of d-algebraic type over K with minimal d-polynomial P over K.
 - There is some a in an immediate extension of K with $a_{\rho} \rightsquigarrow a$ and P(a) = 0, and for each b in an extension of K with $a_{\rho} \rightsquigarrow b$ and P(b) = 0 there is a K-isomorphism $K\langle a \rangle \rightarrow K\langle b \rangle$ with $a \mapsto b$.
- 2 Suppose (a_{ρ}) is of d-transcendental type over K. There is some a in an immediate extension of K with $a_{\rho} \rightsquigarrow a$, and for each b in an extension of K with $a_{\rho} \rightsquigarrow b$ there is a K-isomorphism $K\langle a \rangle \rightarrow K\langle b \rangle$ with $a \mapsto b$.

A consequence: if K is ω -free and has no proper immediate d-algebraic extension, then K is newtonian.

Reducing to NEWTON degree 1

The proof of the following important fact uses the full machinery of NEWTON diagrams, including its most complicated part ("unraveling": differential TSCHIRNHAUS transformations) for dealing with "almost multiple zeros" (only hinted at by JORIS in his last lecture):

Theorem

Suppose K is ω -free. Let (a_{ρ}) be a divergent pc-sequence in K with minimal d-polynomial P over K. Then $\text{ndeg}_{\boldsymbol{a}} P = 1$, i.e.,

ndeg
$$P_{+a_{\rho},\times(a_{\rho+1}-a_{\rho})}=1$$
 for sufficiently large ρ .

We now discuss how these facts can be used to embed K into a newtonian d-valued field in a "minimal" way.

Newtonization

Definition (an analogue of henselization of valued fields)

A **newtonization** of K is a newtonian extension of K which K-embeds into each newtonian extension of K.

Theorem

Suppose K is ω -free. Then K has a newtonization. Moreover, if L is a newtonization of K, then

- L is an immediate extension of K;
- no proper differential subfield of L containing K is newtonian.

We note the following consequence, which is a key ingredient for the proof of our main results.

NEWTON-LIOUVILLE closure

Corollary

Suppose K is an ω -free H-field. There is a newtonian Liouville closed H-field extension K^{nl} of K which embeds over K into each newtonian Liouville closed H-field extension of K. Any such K^{nl} is d-algebraic over K. Its constant field is a real closure of C.

We call K^{nl} the NEWTON-LIOUVILLE closure of K.

If K is ω -free, then each d-algebraic H-field extension of K is ω -free, and hence K has a unique LIOUVILLE closure up to isomorphism over K.

Thus one can obtain K^{nl} by alternating newtonization with taking LIOUVILLE closures.

Main ingredients for obtaining a newtonization

These are the results on constructing immediate extensions, the theorem on "reduction to ndeg 1", and the following:

Lemma

Suppose K is newtonian. Let (a_p) be a pc-sequence in K and $P \in K\{Y\}$ with $ndeg_a P = 1$:

$$\operatorname{ndeg} P_{+a_{\rho},\times(a_{\rho+1}-a_{\rho})}=1 \qquad \textit{for sufficiently large ρ}.$$

Then there is some $a \in K$ with P(a) = 0 and $a_{\rho} \rightsquigarrow a$.

By our assumptions, for sufficiently large ρ we get $z_{\rho} \in K$ with

$$P(z_{\rho})=0$$
 and $z_{\rho}-a_{\rho} \preccurlyeq a_{\rho+1}-a_{\rho}.$

We claim that for large enough ρ we can upgrade this to " \approx " (and so take $a := z_{\rho}$ for large enough ρ). For this one shows that the zeros of P can't "accumulate."

Main ingredients for obtaining a newtonization

These are the results on constructing immediate extensions, the theorem on "reduction to ndeg 1", and the following:

Lemma

Suppose K is newtonian. Let (a_p) be a pc-sequence in K and $P \in K\{Y\}$ with $ndeg_a P = 1$:

ndeg
$$P_{+a_{\rho},\times(a_{\rho+1}-a_{\rho})}=1$$
 for sufficiently large ρ .

Then there is some $a \in K$ with P(a) = 0 and $a_{\rho} \rightsquigarrow a$.

With not too much extra work, this lemma also yields:

Corollary (assuming K ω-free)

$$K$$
 is newtonian \iff K has no proper immediate d-algebraic extension.

II. Strategy for the Proof of the Main Results

Recapitulation of Theorem A

Let $\mathcal{L} = \{0, 1, +, \cdot, \partial, \leq, \preccurlyeq\}$ and let

 T^{nl} = the theory of newtonian LIOUVILLE closed H-fields,

that is, the \mathcal{L} -theory axiomatized by

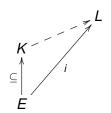
- the axioms for LIOUVILLE closed H-fields;
- the ω-freeness axiom; and
- the axiom scheme of newtonianity.

Every *H*-field extends to a model of T^{nl} , and in JORIS' lectures we heard that $\mathbb{T} \models T^{nl}$.

Theorem A

 $T^{\rm nl}$ is model complete. (Hence $T^{\rm nl}$ is the model companion of the theory of H-fields.)

By the familiar model completeness test of A. ROBINSON, it suffices to solve the following embedding problem:



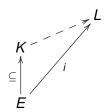
Let E be an ω -free H-subfield of some $K \models T^{nl}$, and let i be an embedding of E into a very saturated $L \models T^{nl}$. Then i extends to an embedding $K \hookrightarrow L$.

We first make some preliminary reductions. First,

 C_L is real closed, very saturated $\Rightarrow i | C_E$ extends to $j : C \hookrightarrow C_L$ $\Rightarrow j$ to $E(C) \hookrightarrow L$.

Since E(C) is d-algebraic over E, it remains ω -free.

By the familiar model completeness test of A. ROBINSON, it suffices to solve the following embedding problem:



Let E be an ω -free H-subfield of some $K \models T^{\mathsf{nl}}$ such that $C_E = C$, and let i be an embedding of E into a very saturated $L \models T^{\mathsf{nl}}$. Then i extends to an embedding $K \hookrightarrow L$.

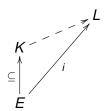
Next, suppose $\Gamma_E^{<}$ is not cofinal in $\Gamma^{<}$. Take $y \in K^{>}$, $y^* \in L^{>}$ with

$$\Gamma_E^< < \nu y < 0, \qquad \Gamma_{iE}^< < \nu y^* < 0.$$

Now $E\langle y\rangle$ is grounded, but it extends to an ω -free H-field " $E\langle y\rangle_{\omega}=E\langle y,\log y,\log\log y,\ldots\rangle$ " in a canonical way.

So *i* extends to an embedding $E\langle y\rangle_{\omega} \hookrightarrow L$ with $y\mapsto y^*$.

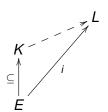
By the familiar model completeness test of A. ROBINSON, it suffices to solve the following embedding problem:



Let E be an ω -free H-subfield of some $K \models T^{\mathsf{nl}}$ such that $C_E = C$ and Γ_E^{\leq} is cofinal in $\Gamma^{<}$, and let i be an embedding of E into a very saturated $L \models T^{\mathsf{nl}}$. Then i extends to an embedding $K \hookrightarrow L$.

This has the nice consequence that now we don't need to worry about preserving ω -freeness anymore: *every* differential subfield of K containing E is an ω -free H-subfield of K.

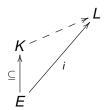
By the familiar model completeness test of A. ROBINSON, it suffices to solve the following embedding problem:



Let E be an ω -free H-subfield of some $K \models T^{\mathsf{nl}}$ such that $C_E = C$ and Γ_E^{\leq} is cofinal in $\Gamma^{<}$, and let i be an embedding of E into a very saturated $L \models T^{\mathsf{nl}}$. Then i extends to an embedding $K \hookrightarrow L$.

Now we have the following three cases:

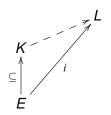
- 1 E is not newtonian and LIOUVILLE closed;
- **2** E is newtonian and LIOUVILLE closed, and there is some $y \in K \setminus E$ such that $E\langle y \rangle | E$ is immediate;
- **3** *E* is newtonian and LIOUVILLE closed, but there is no $y \in K \setminus E$ such that E(y)|E is immediate.



Case 1

E is not newtonian and LIOUVILLE closed.

Then we can extend i to an embedding $E^{nl} \hookrightarrow L$ of the NEWTON-LIOUVILLE closure E^{nl} of E inside K.



Case 2

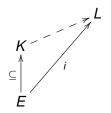
E is newtonian and LIOUVILLE closed, and we have $y \in K \setminus E$ with $E\langle y \rangle | E$ immediate.

Take a divergent pc-sequence (a_{ρ}) in E such that $a_{\rho} \rightsquigarrow y$.

By saturation, take $z \in L$ with $i(a_{\rho}) \rightsquigarrow z$.

Since E is has no proper immediate d-algebraic extension, (a_{ρ}) is of d-transcendental type over E.

Thus *i* extends to $E\langle y\rangle \hookrightarrow L$ with $y\mapsto z$.



E is newtonian and LIOUVILLE closed, and for no $y \in K \setminus E$ is $E\langle y \rangle | E$ immediate.

In this case it turns out that for each $f \in K \setminus E$, the *cut of f in the ordered set E* uniquely determines the isomorphism type of $E\langle f \rangle$ over E (and so we can again appeal to saturation).

Let's look at this case in some more detail.

Here we are approximating f by iterated exponential integrals.

Setting

Let $E \subseteq K$ be an extension of ω -free newtonian LIOUVILLE closed H-fields with $C_E = C$, and suppose E is maximal in K: for no $y \in K \setminus E$ is $E\langle y \rangle | E$ immediate.

Then no divergent pc-sequence in *E* has a pseudolimit in *K*.

Definition

Let $f \in K \setminus E$. Then $v(f - E) \subseteq \Gamma$ has a largest element, and we call $b \in E$ a **best approximation** to f if

$$v(f-b)=\max v(f-E).$$

Note that then $v(f - b) \notin \Gamma_E$ since $C = C_E$.

Setting

Let $E \subseteq K$ be an extension of ω -free newtonian LIOUVILLE closed H-fields with $C_E = C$, and suppose E is maximal in K: for no $y \in K \setminus E$ is $E\langle y \rangle | E$ immediate.

Let $f \in K \setminus E$. Pick a best approximation $b_0 \in E$ to $f_0 := f$. Then $f_1 := (f_0 - b_0)^\dagger \notin E$ since E is LIOUVILLE closed and $C_E = C$. So we can take a best approximation b_1 to f_1 , etc.

We get sequences (f_n) in $K \setminus E$ and (a_n) , (b_n) in E such that

- $a_n^{\dagger} = b_n$ is a best approximation to f_n , and
- $f_{n+1} = (f_n b_n)^{\dagger}$.

"
$$f = b_0 + e^{\int f_1} = b_0 + e^{\int b_1 + e^{\int f_2}} = \cdots$$
".

Setting

Let $E \subseteq K$ be an extension of ω -free newtonian LIOUVILLE closed H-fields with $C_E = C$, and suppose E is maximal in K: for no $y \in K \setminus E$ is $E\langle y \rangle | E$ immediate.

Then for each $P \in E\{Y\}$ one can expand $P(f) \in K$ as a polynomial in the "monomials"

$$\mathfrak{m}_n := (f_n - b_n)/a_{n+1} \in E\langle f \rangle.$$

Using this one gets detailed information about the asymptotic couple of $E\langle f \rangle$: with $\mu_n := v\mathfrak{m}_n \in \Gamma_{E\langle f \rangle}$,

- $\Gamma_{E\langle f\rangle} = \Gamma_E \oplus \bigoplus_n \mathbb{Z}\mu_n$, and $\Gamma_E^<$ is cofinal in $\Gamma_{E\langle f\rangle}^<$;
- $\psi(\Gamma_{E\langle f\rangle}^{>}) = \psi(\Gamma_{E}^{>}) \cup \{\mu_0^{\dagger} < \mu_1^{\dagger} < \cdots\} \text{ with } \mu_n^{\dagger} \notin \Gamma_{E}.$

All this turns out to only depend on the cut of f in E!

The completions of T^{nl}

Before we move on to Theorem B, we record:

Corollary

The completions of T^{nl} are $T^{nl}_{small} = Th(\mathbb{T})$ and T^{nl}_{large} .

To see this, we note that the ω -free H-field $E:=\mathbb{Q}(\ell_0,\ell_1,\dots)$ embeds into each LIOUVILLE closed H-field with small derivation, in particular into \mathbb{T} .

So the NEWTON-LIOUVILLE closure

$$\mathbb{T}^{\mathsf{da}} := \big\{ f \in \mathbb{T} : f \text{ is d-algebraic} \big\}$$

of E inside \mathbb{T} is a prime model of $T_{\text{small}}^{\text{nl}}$.

Similarly, the NEWTON-LIOUVILLE closure of E^{ϕ} ($\phi=x^{-2}$), is a prime model of $T_{\text{large}}^{\text{nl}}$.

Recapitulation of Theorem B

Let
$$\mathcal{L}^{\iota}_{\Lambda,\Omega} = \mathcal{L} \cup \{\iota, \Lambda, \Omega\}$$
 and let

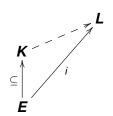
$$T_{\Lambda,\Omega}^{\mathsf{nl},\iota} = T^{\mathsf{nl}} + \mathsf{the} \; \mathsf{universal} \; \mathsf{closures} \; \mathsf{of} \ egin{aligned} igl(a
eq 0 \longrightarrow a \cdot \iota(a) = 1 igr] \; \& \; igl(a = 0 \longrightarrow \iota(a) = 0 igr], \ \Lambda(a) &\longleftrightarrow \; \exists y igl[y
eq 1 \; \& \; a = -y^{\dagger\dagger} igr], \ \Omega(a) &\longleftrightarrow \; \exists y igl[y
eq 0 \; \& \; 4y'' + ay = 0 igr]. \end{aligned}$$

We denote $\mathcal{L}^{\iota}_{\Lambda,\Omega}$ -structures by boldface letters: $\mathbf{K} = (K, \Lambda, \Omega)$.

Theorem B

 $T_{\Lambda,\Omega}^{\mathsf{nl},\iota}$ admits quantifier elimination.

Again, we need to solve an embedding problem:



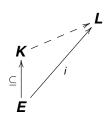
Let \mathbf{E} be a substructure of some $\mathbf{K} \models T_{\Lambda,\Omega}^{\mathsf{nl},\iota}$ and let i be an embedding of \mathbf{E} into a very saturated $\mathbf{L} \models T_{\Lambda,\Omega}^{\mathsf{nl},\iota}$. Then i extends to an embedding $\mathbf{K} \hookrightarrow \mathbf{L}$.

In order to tackle this, we need to first investigate the substructures of models of $T_{\Lambda,\Omega}^{\mathsf{nl},\iota}$.

Since we included ι in $\mathcal{L}^{\iota}_{\Lambda,\Omega}$, such substructures are valued ordered differential *fields*.

However, they are not automatically H-fields \rightsquigarrow **pre-**H-**fields.**

Again, we need to solve an embedding problem:

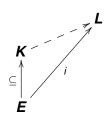


Let \mathbf{E} be a substructure of some $\mathbf{K} \models T_{\Lambda,\Omega}^{\mathsf{nl},\iota}$ and let i be an embedding of \mathbf{E} into a very saturated $\mathbf{L} \models T_{\Lambda,\Omega}^{\mathsf{nl},\iota}$. Then i extends to an embedding $\mathbf{K} \hookrightarrow \mathbf{L}$.

The pairs (Λ, Ω) of subsets of a pre-H-field E such that $E = (E, \Lambda, \Omega)$ embeds into a model of $T_{\Lambda,\Omega}^{\mathsf{nl},\iota}$ are characterized by the axioms for $\Lambda\Omega$ -cuts in E. We show:

- every ω-free pre-H-field has just one ΛΩ-cut;
- \boldsymbol{E} has an extension $\boldsymbol{E}^* = (E^*, \dots)$, where E^* is an ω -free H-field, which embeds over E into any model of $T^{\mathrm{nl},\iota}_{\Lambda,\Omega}$ extending \boldsymbol{E} .

Again, we need to solve an embedding problem:



Let E be a substructure of some $K \models T_{\Lambda,\Omega}^{\mathsf{nl},\iota}$ and let i be an embedding of E into a very saturated $\mathbf{L} \models T_{\Lambda,\Omega}^{\mathsf{nl},\iota}$. Then i extends to an embedding $K \hookrightarrow \mathbf{L}$.

These two facts allow us to focus henceforth, for embedding purposes, on ω -free H-fields, and we can forget about $\Lambda\Omega$ -cuts.

Theorem B now follows from the embedding theorem that we used in proving Theorem A. (The embedding theorem is somewhat stronger than model completeness of $T^{\rm nl}$, since E there is only assumed to be ω -free.)

III. Applications

Corollary

- 1 \mathbb{T} is o-minimal at $+\infty$: if $X \subseteq \mathbb{T}$ is definable, then there is some $f \in \mathbb{T}$ with $(f, +\infty) \subseteq X$ or $(f, +\infty) \cap X = \emptyset$.
- **2** All definable subsets of $\mathbb{R}^n \subseteq \mathbb{T}^n$ are semialgebraic.
- 3 T has NIP.

An instance of \P : if P is a one-variable d-polynomial over \mathbb{T} , then there is some $f \in \mathbb{T}$ and $\sigma \in \{\pm 1\}$ with sign $P(y) = \sigma$ for all y > f. (Related to old theorems of BOREL, HARDY, ...)

An illustration of ②: the set of $(c_0, \ldots, c_n) \in \mathbb{R}^{n+1}$ such that

$$c_0y + c_1y' + \cdots + c_ny^{(n)} = 0, \qquad 0 \neq y < 1$$

has a solution in \mathbb{T} is a semialgebraic subset of \mathbb{R}^{n+1} .

One can strengthen \odot to "T is distal" (of infinite dp-rank).

Proof technique

Eliminate the primitives \preccurlyeq , Λ , Ω , ι using "ideal" elements, thus reducing quantifier-free formulas to a very simple form:

Let $K \models T^{nl}$. In an immediate H-field extension L of K we find some element λ with

$$\begin{array}{lll} & \Lambda(\mathcal{K}) \; < \; \lambda & < \; \mathcal{K} \setminus \Lambda(\mathcal{K}), \\ \text{so} & \Omega(\mathcal{K}) \; < \; \omega := \omega(\lambda) < \; \mathcal{K} \setminus \Omega(\mathcal{K}). \end{array}$$

Next take some c^* in an H-field extension L^* of L with

$$C < c^* < K^{>C}$$

Then for each 0-definable $X \subseteq K^n$ there is a quantifier-free formula φ in the language \mathcal{L}_{OR} of ordered rings such that

$$X = \{a \in K^n : L^* \models \varphi(a, a', \dots, a^{(r)}, \lambda, \omega, c^*)\}.$$

Proof technique

We illustrate this by establishing 3 through reduction to NIP for real closed fields: Suppose $R \subseteq K^m \times K^n$ is 0-definable and independent. We just do the case m = n = 1. Thus for every $N \ge 1$ there are $a_1, \ldots, a_N \in K$ and $b_l \in K$ $(I \subseteq \{1, \ldots, N\})$ with

$$R(a_i,b_l) \iff i \in I.$$

Take a quantifier-free \mathcal{L}_{OR} -formula φ such that for all $a, b \in K$:

$$R(a,b) \iff L^* \models \varphi(a,a',\ldots,a^{(r)},b,b',\ldots,b^{(r)},\lambda,\omega,c^*).$$

Thus the relation $R^* \subseteq (L^*)^{r+1} \times (L^*)^{r+4}$ given by

$$R^*(a_0,\ldots,a_r,b_0,\ldots,b_{r+3}) \iff L^* \models \varphi(a_0,\ldots,a_r,b_0,\ldots,b_{r+3})$$

is independent and (q.f.-) definable in the \mathcal{L}_{OR} -structure L^* .

