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|. Newtonization



Reminders from the last lecture

Let K be a d-valued field of H-type with asymptotic integration.
Recall that C = res(K). Suppose for simplicity that I' is divisible
and K is equipped with a “monomial group” 9t.

From JORIS’ last lecture recall the definition of the NEWTON
polynomial Np € C{Y}# of P € K{Y}7: eventually

P®=%-Np+Rp  whered =2, Mand Rp <} 0.

If K is w-free, then Np € C[Y](Y")Y, and Np doesn’t change if
we pass from K to an extension (of d-valued fields of H-type).

We put ndeg P := deg Np (the NEWTON degree of P).

We say that K is newtonian if every P € K{Y} with ndeg P = 1
has a zero in O. (Mostly useful in combination with w-freeness.)



Constructing immediate extensions

Some reminders from general valuation theory
Let (a,) be an ordinal-indexed sequence in K. Then

© (a,) pseudoconverges to a € K if v(a — a,) is eventually
strictly increasing; notation: a, ~ a;

® (a,) is divergent if it has no pseudolimit in K;
© (a,) is a pseudocauchy sequence in K if eventually
T>0>p = & —a < a,— a,;
equivalently: (a,) has a pseudolimit in an extension of K.

Declare (a,) ~ (bs) if (a,), (bs) have the same pseudolimits in
all extensions of K, and set

a := ck(a,) = equivalence class of (a,).



Constructing immediate extensions

Let L be an extension of K. Then C C C;, and naturally I' — ;.

If C, = Cand | =T, then L is an immediate extension of K.
In this case, every a € L\ K is a pseudolimit of a divergent
pc-sequence in K.

Conversely, we can always adjoin pseudolimits in immediate
extensions, as we now explain.

We introduce a classification of pc-sequences (a,) in K:
@ d-algebraic type over K: P(by) ~ 0 for some P € K{Y}
and pc-sequence (by) ~ (&,) in K;
@® d-transcendental type over K: not of d-algebraic type.
Any P as in @), chosen so that Q(b,) ¥~ 0 whenever Q € K{Y}

has lower complexity than P and (by) ~ (a,), is a minimal
d-polynomial of (a,) over K.



Constructing immediate extensions

Theorem (d-analogues of KAPLANSKY'’s theorems)

Let (a,) be a divergent pc-sequence in K.

© Suppose (a,) is of d-algebraic type over K with minimal
d-polynomial P over K.

There is some a in an immediate extension of K with
a, ~ aand P(a) = 0, and for each b in an extension of K
with a, ~» b and P(b) = 0 there is a K-isomorphism
K(a) — K(b) with a — b.
® Suppose (a,) is of d-transcendental type over K.

There is some ain an immediate extension of K with
a, ~» a, and for each b in an extension of K with a, ~ b
there is a K-isomorphism K(a) — K(b) with a+— b.

A consequence: if K is o-free and has no proper immediate
d-algebraic extension, then K is newtonian.



Reducing to NEWTON degree 1

The proof of the following important fact uses the full machinery
of NEWTON diagrams, including its most complicated part
(“unraveling”: differential TSCHIRNHAUS transformations) for
dealing with “almost multiple zeros” (only hinted at by JORIS in
his last lecture):

Theorem

Suppose K is o-free. Let (a,) be a divergent pc-sequence in K
with minimal d-polynomial P over K. Thenndeg, P =1, i.e,,

ndeg P, x( ayi1—ay) = 1 for sufficiently large p.

We now discuss how these facts can be used to embed K into
a newtonian d-valued field in a “minimal” way.



Newtonization

Definition (an analogue of henselization of valued fields)

A newtonization of K is a newtonian extension of K which
K-embeds into each newtonian extension of K.

Theorem

Suppose K is o-free. Then K has a newtonization. Moreover,
if L is a newtonization of K, then

e L is an immediate extension of K ;

e no proper differential subfield of L containing K is
newtonian.

We note the following consequence, which is a key ingredient
for the proof of our main results.



NEWTON-LIOUVILLE closure

Corollary

Suppose K is an w-free H-field. There is a newtonian Liouville
closed H-field extension K™ of K which embeds over K into
each newtonian Liouville closed H-field extension of K. Any
such K" is d-algebraic over K. Its constant field is a real
closure of C.

We call K" the NEWTON-LIOUVILLE closure of K.

If K is w-free, then each d-algebraic H-field extension of K is
o-free, and hence K has a unique LIOUVILLE closure up to
isomorphism over K.

Thus one can obtain K™ by alternating newtonization with
taking LIOUVILLE closures.



Main ingredients for obtaining a newtonization

These are the results on constructing immediate extensions,
the theorem on “reduction to ndeg 17, and the following:

Lemma

Suppose K is newtonian. Let (a,) be a pc-sequence in K and
P e K{Y} withndeg, P =1:

ndeg P, 4, x( a,,1-a,) = 1 for sufficiently large p.
Then there is some a € K with P(a) =0 and a, ~ a.
By our assumptions, for sufficiently large p we get z, € K with
P(z,) =0 and 2z,—a,< ay+1 — @

We claim that for large enough p we can upgrade this to “<”
(and so take a := z, for large enough p). For this one shows
that the zeros of P can’t “accumulate.”



Main ingredients for obtaining a newtonization

These are the results on constructing immediate extensions,
the theorem on “reduction to ndeg 1”, and the following:

Lemma

Suppose K is newtonian. Let (a,) be a pc-sequence in K and
P e K{Y} withndeg, P =1:

ndeg P, 4, x( a,1-a,) = 1 for sufficiently large p.
Then there is some a € K with P(a) =0 and a, ~ a.

With not too much extra work, this lemma also yields:

Corollary (assuming K w-free)

K has no proper immediate d-al-

K is newtonian <+— \ \
gebraic extension.



Il. Strategy for the Proof of the Main Results



Recapitulation of Theorem A

Let £ ={0,1, +, -, 0, <, <} and let
T = the theory of newtonian LIOUVILLE closed H-fields,

that is, the L£-theory axiomatized by
e the axioms for LIOUVILLE closed H-fields;
¢ the o-freeness axiom; and
e the axiom scheme of newtonianity.
Every H-field extends to a model of T, and in JORIS’ lectures

we heard that T |= 7"
Theorem A

T" is model complete. (Hence T™ is the model companion of
the theory of H-fields.)



Strategy for the proof of Theorem A

By the familiar model completeness test of A. ROBINSON, it
suffices to solve the following embedding problem:

Let E be an o-free H-subfield of some
K |= T, and let i be an embedding of E
into a very saturated L |= T". Then i
extends to an embedding K — L.

We first make some preliminary reductions. First,

C, is real closed, very saturated = i|Cg extendstoj: C — C;.
= jto E(C) — L.

Since E(C) is d-algebraic over E, it remains o-free.



Strategy for the proof of Theorem A

By the familiar model completeness test of A. ROBINSON, it
suffices to solve the following embedding problem:

Let E be an o-free H-subfield of some

K k= T" such that Ce = C, and let i be an
embedding of E into a very saturated

L = T". Then i extends to an embedding
K — L.

Next, suppose 'z is not cofinal in <. Take y € K=, y* € L~
with

s <vy<Do, Mz < vy <O0.
Now E(y) is grounded, but it extends to an o-free H-field
“E(y)o = E(y,logy,loglogy,...)” in a canonical way.

So i extends to an embedding E(y), <— L with y — y*.



Strategy for the proof of Theorem A

By the familiar model completeness test of A. ROBINSON, it
suffices to solve the following embedding problem:

Let E be an o-free H-subfield of some

K = T" such that Ce = C and T'¢ is cofinal

inT<, and let i be an embedding of E into a

very saturated L |= T". Then i extends to an
embedding K — L.

This has the nice consequence that now we don’t need to worry
about preserving o-freeness anymore: every differential
subfield of K containing E is an w-free H-subfield of K.



Strategy for the proof of Theorem A

By the familiar model completeness test of A. ROBINSON, it
suffices to solve the following embedding problem:

Let E be an w-free H-subfield of some

K = T" such that Ce = C and T'¢ is cofinal

inT<, and let i be an embedding of E into a

very saturated L |= T". Then i extends to an
embedding K — L.

Now we have the following three cases:
@ E is not newtonian and LIOUVILLE closed;

® E is newtonian and LIOUVILLE closed, and there is some
y € K\ E such that E(y)|E is immediate;

® E is newtonian and LIOUVILLE closed, but there is no
y € K\ E such that E(y)|E is immediate.



E is not newtonian and LIOUVILLE closed.

Then we can extend i to an embedding E™ — L of the
NEWTON-LIOUVILLE closure E™ of E inside K.



Strategy for the proof of Theorem A

Case @

E is newtonian and LIOUVILLE closed, and
we have y € K\ E with E(y)|E immediate.

Take a divergent pc-sequence (a,) in E such that a, ~ y.

By saturation, take z € L with i(a,) ~ z.

Since E is has no proper immediate d-algebraic extension, (a,)
is of d-transcendental type over E.

Thus i extends to E(y) < L with y — z.



Strategy for the proof of Theorem A

Case @

E is newtonian and LIOUVILLE closed, and
forno y € K\ E is E(y)|E immediate.

In this case it turns out that for each f € K'\ E, the cut of f in
the ordered set E uniquely determines the isomorphism type
of E(f) over E (and so we can again appeal to saturation).

Let’s look at this case in some more detail.

Here we are approximating f by iterated exponential integrals.



Strategy for the proof of Theorem A

Setting

Let E C K be an extension of w-free newtonian LIOUVILLE
closed H-fields with Cg = C, and suppose E is maximal in K:
forno y € K'\ E is E(y)|E immediate.

Then no divergent pc-sequence in E has a pseudolimit in K.
Definition

Let f € K\ E. Then v(f — E) C T has a largest element, and we
call b € E a best approximation to f if

v(f — b) = max v(f — E).

Note that then v(f — b) ¢ ' since C = Cg.



Strategy for the proof of Theorem A

Setting

Let E C K be an extension of w-free newtonian LIOUVILLE
closed H-fields with Cg = C, and suppose E is maximal in K:
forno y € K'\ E is E(y)|E immediate.

Let f € K\ E. Pick a best approximation by € E to fy := f. Then
fi := (fo — bo)T ¢ E since E is LIOUVILLE closed and Cg = C.
So we can take a best approximation by to fi, etc.

We get sequences (f,) in K\ E and (ap), (bp) in E such that

. aﬁ, = bp is a best approximation to f,, and
o foy1 = (fh— bn)T-

“f = bo+€ff1 = bo+€fb1+€ff2 =



Strategy for the proof of Theorem A

Setting

Let E C K be an extension of w-free newtonian LIOUVILLE
closed H-fields with Cg = C, and suppose E is maximal in K:
forno y € K'\ E is E(y)|E immediate.

Then for each P € E{Y} one can expand P(f) € K as a
polynomial in the “monomials”

mp = (fp — bp)/any1 € E(f).

Using this one gets detailed information about the asymptotic
couple of E{f): with pup := vmp € Tgp,

o ey =Te® EBZun, and I'z is cofinal in 'z

°¢( E(f) 1/’r> U{M0<N1 }Wlth:ungrE

All this turns out to only depend on the cut of f in E!



The completions of T™

Before we move on to Theorem B, we record:

Corollary
The completions of T" are TI! . = Th(T) and T}

large*

To see this, we note that the o-free H-field E := Q(¢g, ¢1,...)
embeds into each LIOUVILLE closed H-field with small
derivation, in particular into T.

So the NEWTON-LIOUVILLE closure
T := {f € T: f is d-algebraic}

of E inside T is a prime model of TO .

Similarly, the NEWTON-LIOUVILLE closure of E? (¢ = x2), is a

i nl
prime model of Tj3 ..



Recapitulation of Theorem B

Let E‘Aﬁg =LU{, A, Q} and let

T\4 = T™ + the universal closures of
[a#0-—a-a)=1] & [a=0— (a)=0],
A@) «— Jy[y=1&a= -y,
Qa) «+— Jyly#0&4y" +ay=0].
We denote L}, o-structures by boldface letters: K = (K, A, Q).

Theorem B
T\ admits quantifier elimination.



Strategy for the proof of Theorem B

Again, we need to solve an embedding problem:

Let E be a substructure of some K = T{",
and let i be an embedding of E into a very
saturated L = T/QIng Then i extends to an
embedding K — L.

In order to tackle this, we need to first investigate the
substructures of models of Ty's.

Since we included ¢ in £} , such substructures are valued
ordered differential fields.

However, they are not automatically H-fields ~ pre-H-fields.



Strategy for the proof of Theorem B

Again, we need to solve an embedding problem:

Let E be a substructure of some K = T{",
and let i be an embedding of E into a very
saturated L = T/QIng Then i extends to an
embedding K — L.

The pairs (A, Q) of subsets of a pre-H-field E such that
E = (E, A, Q) embeds into a model of TX!’;) are characterized by
the axioms for AQ-cuts in E. We show:

¢ every o-free pre-H-field has just one AQ-cut;

e E has an extension E* = (E*,...), where E* is an o-free

H-field, which embeds over E into any model of 7,
extending E.



Strategy for the proof of Theorem B

Again, we need to solve an embedding problem:

Let E be a substructure of some K = T{",
and let i be an embedding of E into a very
saturated L = T/QIng Then i extends to an
embedding K — L.

These two facts allow us to focus henceforth, for embedding
purposes, on w-free H-fields, and we can forget about AQ-cuts.

Theorem B now follows from the embedding theorem that we
used in proving Theorem A. (The embedding theorem is
somewhat stronger than model completeness of T", since E
there is only assumed to be o-free.)



lll. Applications



Statements

Corollary

@ T /s o-minimal at +-o00: if X C T is definable, then there is
some f € T with (f,+00) C X or (f,+o00) N X = 0.

@® All definable subsets of R" C T" are semialgebraic.
® T has NIP.

An instance of @: if P is a one-variable d-polynomial over T,
then there is some f € T and o € {+1} with sign P(y) = o for
all y > f. (Related to old theorems of BOREL, HARDY, ...)

An illustration of @: the set of (¢, ..., cy) € R™ such that
coy+oy +-+cyM=0  0£y=<1

has a solution in T is a semialgebraic subset of R,
One can strengthen @ to “T is distal” (of infinite dp-rank).



Proof technique

Eliminate the primitives <, A, Q, ¢ using “ideal” elements, thus
reducing quantifier-free formulas to a very simple form:

Let K = T". In an immediate H-field extension L of K we find
some element A with

AK) < A < K\ A(K),
so Q(K) < o:=w(r) < K\ Q(K).

Next take some c¢* in an H-field extension L* of L with
C<c <K,

Then for each 0-definable X C K" there is a quantifier-free
formula ¢ in the language Log of ordered rings such that

X ={acK": L"Eyp(ad,. .. a7 1))



Proof technique

We illustrate this by establishing @ through reduction to NIP for
real closed fields: Suppose R C K™ x K" is 0-definable and
independent. We just do the case m = n = 1. Thus for every
N >1thereare ay,...,ayve Kand b€ K (I C {1,...,N}) with

R(ai,b) <<= el
Take a quantifier-free Lor-formula ¢ such that for all a, b € K:
R(a,b) <= L'kE=¢(ad,....,a" b b, ... b"Loc).
Thus the relation R* C (L*)™ ' x (L*)"+* given by
R*(ao,...,ar,bo,...,br3) < L =y(ag,...,ar,by,...,bri3)

is independent and (q.f.-) definable in the Logr-structure L*. f



