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I. Newtonization



Reminders from the last lecture

Let K be a d-valued field of H-type with asymptotic integration.
Recall that C ∼= res(K ). Suppose for simplicity that Γ is divisible
and K is equipped with a “monomial group” M.

From JORIS’ last lecture recall the definition of the NEWTON

polynomial NP ∈ C{Y} 6= of P ∈ K{Y} 6=: eventually

Pφ = d · NP + RP where d = dφ ∈M and RP ≺[φ d.

If K is ω-free, then NP ∈ C[Y ](Y ′)N, and NP doesn’t change if
we pass from K to an extension (of d-valued fields of H-type).

We put ndeg P := deg NP (the NEWTON degree of P).

We say that K is newtonian if every P ∈ K{Y} with ndeg P = 1
has a zero in O. (Mostly useful in combination with ω-freeness.)



Constructing immediate extensions

Some reminders from general valuation theory

Let (aρ) be an ordinal-indexed sequence in K . Then

1 (aρ) pseudoconverges to a ∈ K if v(a− aρ) is eventually
strictly increasing; notation: aρ  a;

2 (aρ) is divergent if it has no pseudolimit in K ;
3 (aρ) is a pseudocauchy sequence in K if eventually

τ > σ > ρ =⇒ aτ − aσ ≺ aσ − aρ;

equivalently: (aρ) has a pseudolimit in an extension of K .

Declare (aρ) ∼ (bσ) if (aρ), (bσ) have the same pseudolimits in
all extensions of K , and set

a := cK (aρ) = equivalence class of (aρ).



Constructing immediate extensions

Let L be an extension of K . Then C ⊆ CL, and naturally Γ ↪→ ΓL.

If CL = C and ΓL = Γ, then L is an immediate extension of K .
In this case, every a ∈ L \ K is a pseudolimit of a divergent
pc-sequence in K .

Conversely, we can always adjoin pseudolimits in immediate
extensions, as we now explain.

We introduce a classification of pc-sequences (aρ) in K :
1 d-algebraic type over K : P(bλ) 0 for some P ∈ K{Y}

and pc-sequence (bλ) ∼ (aρ) in K ;
2 d-transcendental type over K: not of d-algebraic type.

Any P as in 1 , chosen so that Q(bλ) 6 0 whenever Q ∈ K{Y}
has lower complexity than P and (bλ) ∼ (aρ), is a minimal
d-polynomial of (aρ) over K .



Constructing immediate extensions

Theorem (d-analogues of KAPLANSKY’s theorems)

Let (aρ) be a divergent pc-sequence in K .
1 Suppose (aρ) is of d-algebraic type over K with minimal

d-polynomial P over K .
There is some a in an immediate extension of K with
aρ  a and P(a) = 0, and for each b in an extension of K
with aρ  b and P(b) = 0 there is a K -isomorphism
K 〈a〉 → K 〈b〉 with a 7→ b.

2 Suppose (aρ) is of d-transcendental type over K .
There is some a in an immediate extension of K with
aρ  a, and for each b in an extension of K with aρ  b
there is a K -isomorphism K 〈a〉 → K 〈b〉 with a 7→ b.

A consequence: if K is ω-free and has no proper immediate
d-algebraic extension, then K is newtonian.



Reducing to NEWTON degree 1

The proof of the following important fact uses the full machinery
of NEWTON diagrams, including its most complicated part
(“unraveling”: differential TSCHIRNHAUS transformations) for
dealing with “almost multiple zeros” (only hinted at by JORIS in
his last lecture):

Theorem
Suppose K is ω-free. Let (aρ) be a divergent pc-sequence in K
with minimal d-polynomial P over K . Then ndega P = 1, i.e.,

ndeg P+aρ,×(aρ+1−aρ) = 1 for sufficiently large ρ.

We now discuss how these facts can be used to embed K into
a newtonian d-valued field in a “minimal” way.



Newtonization

Definition (an analogue of henselization of valued fields)

A newtonization of K is a newtonian extension of K which
K -embeds into each newtonian extension of K .

Theorem
Suppose K is ω-free. Then K has a newtonization. Moreover,
if L is a newtonization of K , then
• L is an immediate extension of K ;
• no proper differential subfield of L containing K is

newtonian.

We note the following consequence, which is a key ingredient
for the proof of our main results.



NEWTON-LIOUVILLE closure

Corollary

Suppose K is an ω-free H-field. There is a newtonian Liouville
closed H-field extension K nl of K which embeds over K into
each newtonian Liouville closed H-field extension of K . Any
such K nl is d-algebraic over K . Its constant field is a real
closure of C.

We call K nl the NEWTON-LIOUVILLE closure of K .

If K is ω-free, then each d-algebraic H-field extension of K is
ω-free, and hence K has a unique LIOUVILLE closure up to
isomorphism over K .

Thus one can obtain K nl by alternating newtonization with
taking LIOUVILLE closures.



Main ingredients for obtaining a newtonization

These are the results on constructing immediate extensions,
the theorem on “reduction to ndeg 1”, and the following:

Lemma
Suppose K is newtonian. Let (aρ) be a pc-sequence in K and
P ∈ K{Y} with ndega P = 1:

ndeg P+aρ,×(aρ+1−aρ) = 1 for sufficiently large ρ.

Then there is some a ∈ K with P(a) = 0 and aρ  a.

By our assumptions, for sufficiently large ρ we get zρ ∈ K with

P(zρ) = 0 and zρ − aρ 4 aρ+1 − aρ.

We claim that for large enough ρ we can upgrade this to “�”
(and so take a := zρ for large enough ρ). For this one shows
that the zeros of P can’t “accumulate.”



Main ingredients for obtaining a newtonization

These are the results on constructing immediate extensions,
the theorem on “reduction to ndeg 1”, and the following:

Lemma
Suppose K is newtonian. Let (aρ) be a pc-sequence in K and
P ∈ K{Y} with ndega P = 1:

ndeg P+aρ,×(aρ+1−aρ) = 1 for sufficiently large ρ.

Then there is some a ∈ K with P(a) = 0 and aρ  a.

With not too much extra work, this lemma also yields:

Corollary (assuming K ω-free)

K is newtonian ⇐⇒ K has no proper immediate d-al-
gebraic extension.



II. Strategy for the Proof of the Main Results



Recapitulation of Theorem A

Let L = {0, 1, +, · , ∂, 6, 4} and let

T nl = the theory of newtonian LIOUVILLE closed H-fields,

that is, the L-theory axiomatized by
• the axioms for LIOUVILLE closed H-fields;
• the ω-freeness axiom; and
• the axiom scheme of newtonianity.

Every H-field extends to a model of T nl, and in JORIS’ lectures
we heard that T |= T nl.

Theorem A
T nl is model complete. (Hence T nl is the model companion of
the theory of H-fields.)



Strategy for the proof of Theorem A

By the familiar model completeness test of A. ROBINSON, it
suffices to solve the following embedding problem:

L

K

66

E

⊆

OO
i

AA Let E be an ω-free H-subfield of some
K |= T nl, and let i be an embedding of E
into a very saturated L |= T nl. Then i
extends to an embedding K ↪→ L.

We first make some preliminary reductions. First,

CL is real closed, very saturated ⇒ i |CE extends to j : C ↪→ CL

⇒ j to E(C) ↪→ L.

Since E(C) is d-algebraic over E , it remains ω-free.



Strategy for the proof of Theorem A

By the familiar model completeness test of A. ROBINSON, it
suffices to solve the following embedding problem:

L

K

66

E

⊆

OO
i

AA Let E be an ω-free H-subfield of some
K |= T nl such that CE = C, and let i be an
embedding of E into a very saturated
L |= T nl. Then i extends to an embedding
K ↪→ L.

Next, suppose Γ<E is not cofinal in Γ<. Take y ∈ K>, y∗ ∈ L>

with
Γ<E < vy < 0, Γ<iE < vy∗ < 0.

Now E〈y〉 is grounded, but it extends to an ω-free H-field
“E〈y〉ω = E〈y , log y , log log y , . . .〉” in a canonical way.

So i extends to an embedding E〈y〉ω ↪→ L with y 7→ y∗.



Strategy for the proof of Theorem A

By the familiar model completeness test of A. ROBINSON, it
suffices to solve the following embedding problem:

L

K

66

E

⊆

OO
i

AA Let E be an ω-free H-subfield of some
K |= T nl such that CE = C and Γ<E is cofinal
in Γ<, and let i be an embedding of E into a
very saturated L |= T nl. Then i extends to an
embedding K ↪→ L.

This has the nice consequence that now we don’t need to worry
about preserving ω-freeness anymore: every differential
subfield of K containing E is an ω-free H-subfield of K .



Strategy for the proof of Theorem A

By the familiar model completeness test of A. ROBINSON, it
suffices to solve the following embedding problem:

L

K

66

E

⊆

OO
i

AA Let E be an ω-free H-subfield of some
K |= T nl such that CE = C and Γ<E is cofinal
in Γ<, and let i be an embedding of E into a
very saturated L |= T nl. Then i extends to an
embedding K ↪→ L.

Now we have the following three cases:
1 E is not newtonian and LIOUVILLE closed;
2 E is newtonian and LIOUVILLE closed, and there is some

y ∈ K \ E such that E〈y〉|E is immediate;
3 E is newtonian and LIOUVILLE closed, but there is no

y ∈ K \ E such that E〈y〉|E is immediate.



Strategy for the proof of Theorem A

L

K

66

E

⊆

OO
i

AA

Case 1

E is not newtonian and LIOUVILLE closed.

Then we can extend i to an embedding Enl ↪→ L of the
NEWTON-LIOUVILLE closure Enl of E inside K .



Strategy for the proof of Theorem A

L

K

66

E

⊆

OO
i

AA
Case 2

E is newtonian and LIOUVILLE closed, and
we have y ∈ K \ E with E〈y〉|E immediate.

Take a divergent pc-sequence (aρ) in E such that aρ  y .

By saturation, take z ∈ L with i(aρ) z.

Since E is has no proper immediate d-algebraic extension, (aρ)
is of d-transcendental type over E .

Thus i extends to E〈y〉 ↪→ L with y 7→ z.



Strategy for the proof of Theorem A

L

K

66

E

⊆

OO
i

AA
Case 3

E is newtonian and LIOUVILLE closed, and
for no y ∈ K \ E is E〈y〉|E immediate.

In this case it turns out that for each f ∈ K \ E , the cut of f in
the ordered set E uniquely determines the isomorphism type
of E〈f 〉 over E (and so we can again appeal to saturation).

Let’s look at this case in some more detail.

Here we are approximating f by iterated exponential integrals.



Strategy for the proof of Theorem A

Setting

Let E ⊆ K be an extension of ω-free newtonian LIOUVILLE

closed H-fields with CE = C, and suppose E is maximal in K :
for no y ∈ K \ E is E〈y〉|E immediate.

Then no divergent pc-sequence in E has a pseudolimit in K .

Definition
Let f ∈ K \E . Then v(f −E) ⊆ Γ has a largest element, and we
call b ∈ E a best approximation to f if

v(f − b) = max v(f − E).

Note that then v(f − b) /∈ ΓE since C = CE .



Strategy for the proof of Theorem A

Setting

Let E ⊆ K be an extension of ω-free newtonian LIOUVILLE

closed H-fields with CE = C, and suppose E is maximal in K :
for no y ∈ K \ E is E〈y〉|E immediate.

Let f ∈ K \E . Pick a best approximation b0 ∈ E to f0 := f . Then
f1 := (f0 − b0)† /∈ E since E is LIOUVILLE closed and CE = C.
So we can take a best approximation b1 to f1, etc.

We get sequences (fn) in K \ E and (an), (bn) in E such that

• a†n = bn is a best approximation to fn, and
• fn+1 = (fn − bn)†.

“ f = b0 + e
∫

f1 = b0 + e
∫

b1 + e
∫

f2
= · · · ”.



Strategy for the proof of Theorem A

Setting

Let E ⊆ K be an extension of ω-free newtonian LIOUVILLE

closed H-fields with CE = C, and suppose E is maximal in K :
for no y ∈ K \ E is E〈y〉|E immediate.

Then for each P ∈ E{Y} one can expand P(f ) ∈ K as a
polynomial in the “monomials”

mn := (fn − bn)/an+1 ∈ E〈f 〉.

Using this one gets detailed information about the asymptotic
couple of E〈f 〉: with µn := vmn ∈ ΓE〈f 〉,
• ΓE〈f 〉 = ΓE ⊕

⊕
n
Zµn, and Γ<E is cofinal in Γ<E〈f 〉;

• ψ
(
Γ>E〈f 〉

)
= ψ(Γ>E ) ∪

{
µ†0 < µ†1 < · · ·

}
with µ†n /∈ ΓE .

All this turns out to only depend on the cut of f in E !



The completions of T nl

Before we move on to Theorem B, we record:

Corollary

The completions of T nl are T nl
small = Th(T) and T nl

large.

To see this, we note that the ω-free H-field E := Q(`0, `1, . . . )
embeds into each LIOUVILLE closed H-field with small
derivation, in particular into T.

So the NEWTON-LIOUVILLE closure

Tda :=
{

f ∈ T : f is d-algebraic
}

of E inside T is a prime model of T nl
small.

Similarly, the NEWTON-LIOUVILLE closure of Eφ (φ = x−2), is a
prime model of T nl

large.



Recapitulation of Theorem B

Let Lι
Λ,Ω = L ∪ {ι, Λ, Ω} and let

T nl,ι
Λ,Ω = T nl + the universal closures of[

a 6= 0 −→ a · ι(a) = 1
]

&
[
a = 0 −→ ι(a) = 0

]
,

Λ(a) ←→ ∃y
[
y � 1 & a = −y††

]
,

Ω(a) ←→ ∃y
[
y 6= 0 & 4y ′′ + ay = 0

]
.

We denote Lι
Λ,Ω-structures by boldface letters: K = (K ,Λ,Ω).

Theorem B
T nl,ι

Λ,Ω admits quantifier elimination.



Strategy for the proof of Theorem B

Again, we need to solve an embedding problem:

L

K

66

E

⊆

OO
i

AA Let E be a substructure of some K |= T nl,ι
Λ,Ω

and let i be an embedding of E into a very
saturated L |= T nl,ι

Λ,Ω. Then i extends to an
embedding K ↪→ L.

In order to tackle this, we need to first investigate the
substructures of models of T nl,ι

Λ,Ω.

Since we included ι in Lι
Λ,Ω, such substructures are valued

ordered differential fields.

However, they are not automatically H-fields pre-H-fields.



Strategy for the proof of Theorem B

Again, we need to solve an embedding problem:

L

K

66

E

⊆

OO
i

AA Let E be a substructure of some K |= T nl,ι
Λ,Ω

and let i be an embedding of E into a very
saturated L |= T nl,ι

Λ,Ω. Then i extends to an
embedding K ↪→ L.

The pairs (Λ,Ω) of subsets of a pre-H-field E such that
E = (E ,Λ,Ω) embeds into a model of T nl,ι

Λ,Ω are characterized by
the axioms for ΛΩ-cuts in E . We show:
• every ω-free pre-H-field has just one ΛΩ-cut;
• E has an extension E∗ = (E∗, . . . ), where E∗ is an ω-free

H-field, which embeds over E into any model of T nl,ι
Λ,Ω

extending E .



Strategy for the proof of Theorem B

Again, we need to solve an embedding problem:

L

K

66

E

⊆

OO
i

AA Let E be a substructure of some K |= T nl,ι
Λ,Ω

and let i be an embedding of E into a very
saturated L |= T nl,ι

Λ,Ω. Then i extends to an
embedding K ↪→ L.

These two facts allow us to focus henceforth, for embedding
purposes, on ω-free H-fields, and we can forget about ΛΩ-cuts.

Theorem B now follows from the embedding theorem that we
used in proving Theorem A. (The embedding theorem is
somewhat stronger than model completeness of T nl, since E
there is only assumed to be ω-free.)



III. Applications



Statements

Corollary

1 T is o-minimal at +∞: if X ⊆ T is definable, then there is
some f ∈ T with (f ,+∞) ⊆ X or (f ,+∞) ∩ X = ∅.

2 All definable subsets of Rn ⊆ Tn are semialgebraic.
3 T has NIP.

An instance of 1 : if P is a one-variable d-polynomial over T,
then there is some f ∈ T and σ ∈ {±1} with sign P(y) = σ for
all y > f . (Related to old theorems of BOREL, HARDY, . . . )

An illustration of 2 : the set of (c0, . . . , cn) ∈ Rn+1 such that

c0y + c1y ′ + · · ·+ cny (n) = 0, 0 6= y ≺ 1

has a solution in T is a semialgebraic subset of Rn+1.

One can strengthen 3 to “T is distal” (of infinite dp-rank).



Proof technique

Eliminate the primitives 4, Λ, Ω, ι using “ideal” elements, thus
reducing quantifier-free formulas to a very simple form:

Let K |= T nl. In an immediate H-field extension L of K we find
some element λ with

Λ(K ) < λ < K \ Λ(K ),

so Ω(K ) < ω := ω(λ) < K \Ω(K ).

Next take some c∗ in an H-field extension L∗ of L with

C < c∗ < K>C .

Then for each 0-definable X ⊆ K n there is a quantifier-free
formula ϕ in the language LOR of ordered rings such that

X =
{

a ∈ K n : L∗ |= ϕ
(
a,a′, . . . ,a(r), λ,ω, c∗

)}
.



Proof technique

We illustrate this by establishing 3 through reduction to NIP for
real closed fields: Suppose R ⊆ K m × K n is 0-definable and
independent. We just do the case m = n = 1. Thus for every
N > 1 there are a1, . . . ,aN ∈ K and bI ∈ K (I ⊆ {1, . . . ,N}) with

R(ai ,bI) ⇐⇒ i ∈ I.

Take a quantifier-free LOR-formula ϕ such that for all a,b ∈ K :

R(a,b) ⇐⇒ L∗ |= ϕ
(
a,a′, . . . ,a(r),b,b′, . . . ,b(r), λ,ω, c∗

)
.

Thus the relation R∗ ⊆ (L∗)r+1 × (L∗)r+4 given by

R∗(a0, . . . ,ar ,b0, . . . ,br+3) ⇐⇒ L∗ |= ϕ(a0, . . . ,ar ,b0, . . . ,br+3)

is independent and (q.f.-) definable in the LOR-structure L∗. E


