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Part |

Dimension of definable subsets of T"

This is a coarse notion of dimension with dimT” = n, and dimR = 0. Within dimension 0
we seem to have a finer notion of dimension “with respect to R" to be discussed in part Il.
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A consequence of QE

From now on K = T. The dimension of a definable set S C K" is based on the pregeometry
of d-algebraic dependence, that is, dim S := largest m < n for which there exist m
differential polynomial functions on S that are d-algebraically independent over K.
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of d-algebraic dependence, that is, dim S := largest m < n for which there exist m
differential polynomial functions on S that are d-algebraically independent over K.

The good topological properties of “dimension” are due to a consequence of our QE:

A definable set S C K" has empty interior in K" iff S C {y € K" : P(y) = 0} for some
nonzero d-polynomial P € K{Y}, Y =(Y1,..., Yn).
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A consequence of QE

From now on K = T. The dimension of a definable set S C K" is based on the pregeometry
of d-algebraic dependence, that is, dim S := largest m < n for which there exist m
differential polynomial functions on S that are d-algebraically independent over K.

The good topological properties of “dimension” are due to a consequence of our QE:

A definable set S C K" has empty interior in K" iff S C {y € K" : P(y) = 0} for some
nonzero d-polynomial P € K{Y}, Y =(Y1,..., Yn).

dimS > m <= 7(S) has nonempty interior in K for some
coordinate projection 7 : K" — K™
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Further properties of dimension

dim(5; U S;) = max(dim S;,dim S,);

if f:S — K™ is definable, then dim S > dim £(S);

e if S C K™ is definable, and d < n, then the set D := {a € K™ : dim S(a) = d}
is definable, and dim S|p = dim D + d; here S|p = {(a,b) € S: a€ D};

o if S C K" is definable and nonempty, then dim (cI(S)\ S) < dim S.
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Dimension 0 equals Discrete

Local o-minimality of K yields for definable S C K:

dimS =0 <= S has empty interior <= S is discrete

Lou van den Dries Further Thoughts August 6, 2016 6 /23



Dimension 0 equals Discrete

Local o-minimality of K yields for definable S C K:

dimS =0 <= S has empty interior <= S is discrete

Example: dim C =0.

Lou van den Dries Further Thoughts August 6, 2016 6 /23
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Local o-minimality of K yields for definable S C K:

dimS =0 <= S has empty interior <= S is discrete
Example: dim C =0.
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Dimension 0 equals Discrete

Local o-minimality of K yields for definable S C K:

dimS =0 <= S has empty interior <= S is discrete
Example: dim C =0.
For definable S C K™:  dimS =0 <= S is discrete.

Proof for direction <=: can arrange K is uncountable, with countable basis for the topology.

Suppose S C K" is discrete. Then S is countable, so 7;(S) C K is countable, hence discrete,
so dimm;(S) =0, for i =1,...,n, and thus dimS = 0.
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Part I

Dimension zero = fiberable by C




Reduction to the zero set of P

A nonempty definable set S C K" has dimension 0 iff
S C Zero(Py) x -+ x Zero(Pp)

for some nonzero P; € K{Y'}. Thus we can focus on sets of the form Zero(P).
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Reduction to the zero set of P

A nonempty definable set S C K" has dimension 0 iff
S C Zero(Py) x -+ x Zero(Pp)

for some nonzero P; € K{Y'}. Thus we can focus on sets of the form Zero(P).

K has no proper d-algebraic H-field extension with the same constants. I

Thus for nonzero P € K{Y}:

if K <L, Ck =C;, then P has the same zeros in K and L.

This suggests that Zero(P) is controlled by the constant field C = Cx. But how?
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Internal to C?

Initially we thought Zero(P) might be internal to C, that is,
Zero(P) (if nonempty) is the image of a definable map C" — K for some n.
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Internal to C?

Initially we thought Zero(P) might be internal to C, that is,
Zero(P) (if nonempty) is the image of a definable map C" — K for some n.

However, this fails for K = T and P = YY" — (Y’)2. Its zero set is
{aeP: a beR}

and for any finite set A of parameters there is an automorphism of T over A that is not the
identity on this zeroset; more on this in Part Ill.
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Fiberability by C

Jim Freitag: take a look at the model-theoretic notion of “co-analyzability” (in a paper by
Herwig, Hrushovski, Macpherson). This turns out to fit exactly our situation:

For nonempty definable S C K",

dimS =0 <= S is co-analyzable by C <= S is fiberable by C.
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Fiberability by C

Jim Freitag: take a look at the model-theoretic notion of “co-analyzability” (in a paper by
Herwig, Hrushovski, Macpherson). This turns out to fit exactly our situation:

For nonempty definable S C K",

dimS =0 <= S is co-analyzable by C <= S is fiberable by C.

Fiberable by C is a convenient minor variant of co-analyzable by C.
For w-saturated K and definable S C K" it is defined recursively as follows:

S is fiberable by C in 0 steps iff S is finite;

S is fiberable by C in r + 1 steps iff there is a definable f : S — C such that every fiber
f~1(c) is fiberable by C in r steps.
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Applications

o If S C K" is definable and infinite of dimension 0, then |S| = |C

e If S C K™ is definable, then for some e € N we have
|S(a)| < e for all a € K™ for which S(a) is finite.
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Part |11

Automorphisms of T

Note: an automorphism of the differential field T preserves the ordering and the valuation ring.
It is also the identity on R.
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Strong automorphisms

We restrict attention to strong automorphisms of T, which respect infinite summation. For
any real ¢ we have a strong automorphism f(x) — f(x +c¢): T — T, and if ¢ # 0, then

f(x+c)="f(x) < fekR
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Strong automorphisms

We restrict attention to strong automorphisms of T, which respect infinite summation. For
any real ¢ we have a strong automorphism f(x) — f(x +c¢): T — T, and if ¢ # 0, then

f(x+c)="f(x) < fekR

R is definably closed in T. Hence C is definably closed in K. \

Many natural differential subfields of T can be shown to be definably closed in T by exhibiting
them as the fixpoint set of a set of strong automorphisms of T.
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The group of strong automorphisms

Any additive o : T — R with a(O) = {0} determines a strong automorphism o of T by
o(x) = x, o(ef) = 2O+ forall £ € T.

Any strong automorphism of T fixing x has this form for a unique a.
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The group of strong automorphisms

Any additive o : T — R with a(O) = {0} determines a strong automorphism o of T by
o(x) = x, o(ef) = 2O+ forall £ € T.

Any strong automorphism of T fixing x has this form for a unique a.

The strong automorphisms fixing x form a normal subgroup G of the group G of all strong
automorphisms; G is a semidirect product of G, with the group of automorphisms

f(x)— f(x+¢)  (ceR)
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Part IV

Gehret's work on Ty
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Allen Gehret's work on T)eg

Set {y := x, 41 :=logx, ..., 01 = logl,. Define

TIog = U R[[€]§ e 6[5”
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Tiog is a particularly transparent H-subfield of T. It is w-free and newtonian.
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Allen Gehret's work on T)eg

Set {y := x, 41 :=logx, ..., 01 = logl,. Define

Tiog = (JRIIG - £3]]-

Tiog is a particularly transparent H-subfield of T. It is w-free and newtonian.

But Tjog is not Liouville closed. Much of the ADH-work concerns arbitrary ®-free newtonian

H-fields and does not use Liouville closedness, and this gives hope that T)og also has a
reasonable model theory.
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Allen Gehret's work on T)eg

Gehret did the following:

@ he identified the complete theory of the asymptotic couple of Tjg, and showed it
has a good model theory;

@ found an interesting new axiom satisfied by To.
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Allen Gehret's work on T)eg

Gehret did the following:

@ he identified the complete theory of the asymptotic couple of Tjg, and showed it
has a good model theory;

@ found an interesting new axiom satisfied by To.

Gehret’s Program is to show that the following axiomatizes a complete and model complete
theory in a natural 2-sorted language:

e H-field with real closed constant field;

e asymptotic couple |= theory in (1) above;
axiom from (2) above;

o-free;

newtonian.
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Allen Gehret's work on T)eg

The new axiom in (2) above was suggested by trying to existentially define the complement
of the existentially definable set {fT: f ¢ Tiog}, an R-linear subspace of T)eq.
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Allen Gehret's work on T)eg

The new axiom in (2) above was suggested by trying to existentially define the complement
of the existentially definable set {fT: f ¢ Tiog}, an R-linear subspace of T)eq.

Gehret noticed that this is possible in the two-sorted structure consisting of Tjog with its
asymptotic couple as second sort:

y @ {f1: f €T} <= there exists g # 0 such that v(y — g') € W+ \ ¥, where

¥ = {y': 0#~ € value group}.
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Allen Gehret's work on T)eg

The new axiom in (2) above was suggested by trying to existentially define the complement
of the existentially definable set {fT: f ¢ Tiog}, an R-linear subspace of T)eq.

Gehret noticed that this is possible in the two-sorted structure consisting of Tjog with its
asymptotic couple as second sort:

y @ {f1: f €T} <= there exists g # 0 such that v(y — g') € W+ \ ¥, where
¥ = {y': 0#~ € value group}.
The correct language for model-completeness will presumably include a predicate for

{ft: fe Tiog}. Allen has proved several embedding results that reduce the conjecture to one
on adjoining solutions to linear differential equations.
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Part V

Camacho’s result on truncation
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Part VI

Hakobyan: generalizing Scanlon’s
Ax-Kochen-Ersov theorem

This concerns monotone valued differential fields. Monotone: a’ < a for all a.

August 6, 2016



Scanlon’s Theorem

Let k be a differential field and I' an ordered abelian group. Then k((t")) is naturally a valued
field. We extend the derivation 9 of k to k((t")) by

B(Zavﬂ) = Za(av)ﬂ, so (t7) =0 for all 7.
g g

If k is linearly surjective, then k((t")) is differential-henselian.
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Scanlon’s Theorem

Let k be a differential field and I' an ordered abelian group. Then k((t")) is naturally a valued
field. We extend the derivation 9 of k to k((t")) by

B(Zavﬂ) = Za(av)t'y, so (t7) =0 for all 7.
g g

If k is linearly surjective, then k((t")) is differential-henselian.

Theorem

Assume k is linearly surjective. Then the theory of k((t")) is axiomatized by:
e axioms for valued differential fields with small derivation;
e many constants: v(C*) =T,
o differential henselianity;
e Th(k) and Th(I).

The first two conditions together imply monotonicity.
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Hakobyan's Generalization

Let any additive map c : [ — k be given. Then the derivation 0 of k can be extended to a
derivation 9. on k((t")) by

9(D ayt") = > (3(ay) +a,c(7))t?,  so (7)1 = c(y) for all 4.

Y

Let k((t"))c be the valued differential field k((t")) with derivation o..
It is monotone, and if k is linearly surjective, then k((t")). is differential henselian.
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Hakobyan's Generalization

Let any additive map c : [ — k be given. Then the derivation 0 of k can be extended to a
derivation 9. on k((t")) by

9(D ayt") = > (3(ay) +a,c(7))t?,  so (7)1 = c(y) for all 4.

v

Let k((t"))c be the valued differential field k((t")) with derivation o..
It is monotone, and if k is linearly surjective, then k((t")). is differential henselian.

Assume k is linearly surjective. Then the theory of the valued differential field k((t"))c is
completely determined by Th(k,T; c), where (k,T; c) is the 2-sorted structure with k as
differential field and T as ordered abelain group.
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Continuation and an algebraic consequence

Which complete theories of valued differential fields are covered by the previous theorem?

Every monotone differential-henselian field is elementarily equivalent to some k((t")). as in
the previous theorem.
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Continuation and an algebraic consequence

Which complete theories of valued differential fields are covered by the previous theorem?

Every monotone differential-henselian field is elementarily equivalent to some k((t")). as in
the previous theorem.

Here is an algebraic consequence:

If K is a monotone differential-henselian field, then every algebraic valued differential field
extension of K is also (monotone and ) differential-henselian.
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