# Further Thoughts on Transseries and Valued Differential Fields

Lou van den Dries

University of Illinois at Urbana-Champaign

August 6, 2016

- I. Dimension of definable subsets of  $\mathbb{T}^n$
- II. Dimension zero = fiberable by the constant field
- III. Automorphisms of  ${\mathbb T}$

- 1. Dimension of definable subsets of  $\mathbb{T}^n$
- II. Dimension zero = fiberable by the constant field
- III. Automorphisms of  $\mathbb{T}$
- IV. Gehret's work on  $\mathbb{T}_{log}$
- V. Camacho's result on truncation
- VI. Hakobyan: generalizing Scanlon's AKE-theorem

# Part I

# Dimension of definable subsets of $\mathbb{T}^n$

This is a coarse notion of dimension with dim  $\mathbb{T}^n = n$ , and dim  $\mathbb{R} = 0$ . Within dimension 0 we seem to have a finer notion of dimension "with respect to  $\mathbb{R}$ " to be discussed in part II.

From now on  $K \equiv \mathbb{T}$ . The **dimension** of a definable set  $S \subseteq K^n$  is based on the pregeometry of d-algebraic dependence, that is, dim  $S := \text{largest } m \leqslant n$  for which there exist m differential polynomial functions on S that are d-algebraically independent over K.

From now on  $K \equiv \mathbb{T}$ . The **dimension** of a definable set  $S \subseteq K^n$  is based on the pregeometry of d-algebraic dependence, that is, dim  $S := \text{largest } m \leqslant n$  for which there exist m differential polynomial functions on S that are d-algebraically independent over K.

The good topological properties of "dimension" are due to a consequence of our QE:

#### Corollary

A definable set  $S \subseteq K^n$  has empty interior in  $K^n$  iff  $S \subseteq \{y \in K^n : P(y) = 0\}$  for some nonzero d-polynomial  $P \in K\{Y\}, Y = (Y_1, \dots, Y_n)$ .

From now on  $K \equiv \mathbb{T}$ . The **dimension** of a definable set  $S \subseteq K^n$  is based on the pregeometry of d-algebraic dependence, that is, dim  $S := \text{largest } m \leqslant n$  for which there exist m differential polynomial functions on S that are d-algebraically independent over K.

The good topological properties of "dimension" are due to a consequence of our QE:

#### Corollary

A definable set  $S \subseteq K^n$  has empty interior in  $K^n$  iff  $S \subseteq \{y \in K^n : P(y) = 0\}$  for some nonzero d-polynomial  $P \in K\{Y\}, Y = (Y_1, \dots, Y_n)$ .

From now on  $K \equiv \mathbb{T}$ . The **dimension** of a definable set  $S \subseteq K^n$  is based on the pregeometry of d-algebraic dependence, that is, dim  $S := \text{largest } m \leqslant n$  for which there exist m differential polynomial functions on S that are d-algebraically independent over K.

The good topological properties of "dimension" are due to a consequence of our QE:

#### Corollary

A definable set  $S \subseteq K^n$  has empty interior in  $K^n$  iff  $S \subseteq \{y \in K^n : P(y) = 0\}$  for some nonzero d-polynomial  $P \in K\{Y\}, Y = (Y_1, \dots, Y_n)$ .

 $\therefore$  dim  $S \geqslant m \iff \pi(S)$  has nonempty interior in  $K^m$  for some coordinate projection  $\pi: K^n \to K^m$ 

## Further properties of dimension

- $\dim(S_1 \cup S_2) = \max(\dim S_1, \dim S_2);$
- if  $f: S \to K^m$  is definable, then dim  $S \geqslant \dim f(S)$ ;
- if  $S \subseteq K^{m+n}$  is definable, and  $d \le n$ , then the set  $D := \{a \in K^m : \dim S(a) = d\}$  is definable, and dim  $S|_D = \dim D + d$ ; here  $S|_D = \{(a,b) \in S : a \in D\}$ ;
- if  $S \subseteq K^n$  is definable and nonempty, then dim  $(cl(S) \setminus S) < \dim S$ .

**Local o-minimality** of K yields for definable  $S \subseteq K$ :

 $\dim S = 0 \iff S$  has empty interior  $\iff S$  is discrete

**Local o-minimality** of K yields for definable  $S \subseteq K$ :

 $\dim S = 0 \iff S$  has empty interior  $\iff S$  is discrete

**Example:** dim C = 0.

**Local o-minimality** of K yields for definable  $S \subseteq K$ :

$$\dim S = 0 \iff S$$
 has empty interior  $\iff S$  is discrete

**Example:** dim C = 0.

For definable  $S \subseteq K^n$ : dim  $S = 0 \iff S$  is discrete.

**Local o-minimality** of K yields for definable  $S \subseteq K$ :

$$\dim S = 0 \iff S$$
 has empty interior  $\iff S$  is discrete

**Example:** dim C = 0.

For definable  $S \subseteq K^n$ : dim  $S = 0 \iff S$  is discrete.

*Proof for direction*  $\Leftarrow$ : can arrange K is **uncountable**, with **countable** basis for the topology.

Suppose  $S \subseteq K^n$  is discrete. Then S is countable, so  $\pi_i(S) \subseteq K$  is countable, hence discrete, so dim  $\pi_i(S) = 0$ , for i = 1, ..., n, and thus dim S = 0.

# Part II

# Dimension zero = fiberable by C

#### Reduction to the zero set of *P*

A nonempty definable set  $S \subseteq K^n$  has dimension 0 iff

$$S \subseteq \operatorname{Zero}(P_1) \times \cdots \times \operatorname{Zero}(P_n)$$

for some nonzero  $P_i \in K\{Y\}$ . Thus we can focus on sets of the form Zero(P).

#### Reduction to the zero set of *P*

A nonempty definable set  $S \subseteq K^n$  has dimension 0 iff

$$S \subseteq \operatorname{Zero}(P_1) \times \cdots \times \operatorname{Zero}(P_n)$$

for some nonzero  $P_i \in K\{Y\}$ . Thus we can focus on sets of the form Zero(P).

#### Theorem

K has no proper d-algebraic H-field extension with the same constants.

Thus for nonzero  $P \in K\{Y\}$ :

if  $K \leq L$ ,  $C_K = C_L$ , then P has the same zeros in K and L.

This suggests that Zero(P) is **controlled** by the constant field  $C = C_K$ . But how?

#### Internal to C?

Initially we thought  $\operatorname{Zero}(P)$  might be **internal** to C, that is,  $\operatorname{Zero}(P)$  (if nonempty) is the image of a definable map  $C^n \to K$  for some n.

Lou van den Dries Further Thoughts August 6, 2016 9 / 23

#### Internal to C?

Initially we thought Zero(P) might be **internal** to C, that is,  $\mathsf{Zero}(P)$  (if nonempty) is the image of a definable map  $C^n \to K$  for some n.

However, this fails for  $K = \mathbb{T}$  and  $P = YY'' - (Y')^2$ . Its zero set is

$$\{ae^{bx}: a, b \in \mathbb{R}\}$$

and for any finite set A of parameters there is an automorphism of  $\mathbb{T}$  over A that is not the identity on this zeroset; more on this in Part III.

# Fiberability by C

Jim Freitag: take a look at the model-theoretic notion of "co-analyzability" (in a paper by Herwig, Hrushovski, Macpherson). This turns out to fit exactly our situation:

#### Corollary

For nonempty definable  $S \subseteq K^n$ ,

 $\dim S = 0 \iff S$  is co-analyzable by  $C \iff S$  is fiberable by C.

## Fiberability by *C*

Jim Freitag: take a look at the model-theoretic notion of "co-analyzability" (in a paper by Herwig, Hrushovski, Macpherson). This turns out to fit exactly our situation:

#### Corollary

For nonempty definable  $S \subseteq K^n$ ,

 $\dim S = 0 \iff S$  is co-analyzable by  $C \iff S$  is fiberable by C.

Fiberable by C is a convenient minor variant of co-analyzable by C.

For  $\omega$ -saturated K and definable  $S \subseteq K^n$  it is defined recursively as follows:

S is fiberable by C in 0 steps iff S is finite;

S is fiberable by C in r+1 steps iff there is a definable  $f:S\to C$  such that every fiber  $f^{-1}(c)$  is fiberable by C in r steps.

## **Applications**

- If  $S \subseteq K^n$  is definable and infinite of dimension 0, then |S| = |C|;
- If  $S \subseteq K^{m+n}$  is definable, then for some  $e \in \mathbb{N}$  we have  $|S(a)| \leq e$  for all  $a \in K^m$  for which S(a) is finite.

# Part III

# Automorphisms of ${\mathbb T}$

Note: an automorphism of the differential field  $\mathbb{T}$  preserves the ordering and the valuation ring. It is also the identity on  $\mathbb{R}$ .

# Strong automorphisms

We restrict attention to **strong** automorphisms of  $\mathbb{T}$ , which respect infinite summation. For any real c we have a strong automorphism  $f(x) \mapsto f(x+c) : \mathbb{T} \to \mathbb{T}$ , and if  $c \neq 0$ , then

$$f(x+c)=f(x)\iff f\in\mathbb{R}.$$

#### Strong automorphisms

We restrict attention to **strong** automorphisms of  $\mathbb{T}$ , which respect infinite summation. For any real c we have a strong automorphism  $f(x) \mapsto f(x+c) : \mathbb{T} \to \mathbb{T}$ , and if  $c \neq 0$ , then

$$f(x+c)=f(x)\iff f\in\mathbb{R}.$$

#### Corollary

 $\mathbb{R}$  is definably closed in  $\mathbb{T}$ . Hence C is definably closed in K.

Many natural differential subfields of  $\mathbb{T}$  can be shown to be definably closed in  $\mathbb{T}$  by exhibiting them as the fixpoint set of a set of strong automorphisms of  $\mathbb{T}$ .

# The group of strong automorphisms

#### Theorem

Any additive  $\alpha: \mathbb{T} \to \mathbb{R}$  with  $\alpha(\mathcal{O}) = \{0\}$  determines a strong automorphism  $\sigma$  of  $\mathbb{T}$  by

$$\sigma(x) = x, \qquad \sigma(e^f) = e^{\alpha(f) + \sigma(f)} \text{ for all } f \in \mathbb{T}.$$

Any strong automorphism of  $\mathbb{T}$  fixing x has this form for a unique  $\alpha$ .

# The group of strong automorphisms

#### Theorem

Any additive  $\alpha: \mathbb{T} \to \mathbb{R}$  with  $\alpha(\mathcal{O}) = \{0\}$  determines a strong automorphism  $\sigma$  of  $\mathbb{T}$  by

$$\sigma(x) = x, \qquad \sigma(e^f) = e^{\alpha(f) + \sigma(f)} \text{ for all } f \in \mathbb{T}.$$

Any strong automorphism of  $\mathbb{T}$  fixing x has this form for a unique  $\alpha$ .

The strong automorphisms fixing x form a normal subgroup  $\mathcal{G}_x$  of the group  $\mathcal{G}$  of all strong automorphisms;  $\mathcal{G}$  is a semidirect product of  $\mathcal{G}_x$  with the group of automorphisms

$$f(x) \mapsto f(x+c) \qquad (c \in \mathbb{R})$$

# Part IV

Gehret's work on  $\mathbb{T}_{\text{log}}$ 

# Allen Gehret's work on $\mathbb{T}_{\mathsf{log}}$

Set 
$$\ell_0:=x,\ell_1:=\log x,\dots,\ell_{n+1}=\log \ell_n$$
. Define 
$$\mathbb{T}_{\log}:=\bigcup_n\mathbb{R}[[\ell_0^\mathbb{R}\cdots\ell_n^\mathbb{R}]].$$

# Allen Gehret's work on $\mathbb{T}_{\mathsf{log}}$

Set 
$$\ell_0 := x, \ell_1 := \log x, \dots, \ell_{n+1} = \log \ell_n$$
. Define

$$\mathbb{T}_{\log} := \bigcup_{n} \mathbb{R}[[\ell_0^{\mathbb{R}} \cdots \ell_n^{\mathbb{R}}]].$$

 $\mathbb{T}_{log}$  is a particularly transparent H-subfield of  $\mathbb{T}$ . It is  $\omega$ -free and newtonian.

Set 
$$\ell_0 := x, \ell_1 := \log x, \dots, \ell_{n+1} = \log \ell_n$$
. Define

$$\mathbb{T}_{\log} := \bigcup_{n} \mathbb{R}[[\ell_0^{\mathbb{R}} \cdots \ell_n^{\mathbb{R}}]].$$

 $\mathbb{T}_{log}$  is a particularly transparent H-subfield of  $\mathbb{T}$ . It is  $\omega$ -free and newtonian.

But  $\mathbb{T}_{log}$  is **not** Liouville closed. Much of the ADH-work concerns arbitrary  $\omega$ -free newtonian H-fields and does not use Liouville closedness, and this gives hope that  $\mathbb{T}_{log}$  also has a reasonable model theory.

#### Gehret did the following:

- he identified the complete theory of the asymptotic couple of  $\mathbb{T}_{log}$ , and showed it has a good model theory;
- $oldsymbol{0}$  found an interesting new axiom satisfied by  $\mathbb{T}_{\log}$ .

#### Gehret did the following:

- he identified the complete theory of the asymptotic couple of  $\mathbb{T}_{log}$ , and showed it has a good model theory;
- $oldsymbol{0}$  found an interesting new axiom satisfied by  $\mathbb{T}_{\log}$ .

Gehret's Program is to show that the following axiomatizes a complete and model complete theory in a natural 2-sorted language:

- H-field with real closed constant field;
- asymptotic couple  $\models$  theory in (1) above;
- axiom from (2) above;
- ω-free;
- newtonian.

The new axiom in (2) above was suggested by trying to existentially define the **complement** of the existentially definable set  $\{f^{\dagger}: f \in \mathbb{T}_{log}\}$ , an  $\mathbb{R}$ -linear subspace of  $\mathbb{T}_{log}$ .

The new axiom in (2) above was suggested by trying to existentially define the **complement** of the existentially definable set  $\{f^{\dagger}: f \in \mathbb{T}_{log}\}$ , an  $\mathbb{R}$ -linear subspace of  $\mathbb{T}_{log}$ .

Gehret noticed that this is possible in the two-sorted structure consisting of  $\mathbb{T}_{log}$  with its asymptotic couple as second sort:

$$y 
otin \{f^\dagger: \ f \in \mathbb{T}_{\log}\} \iff ext{ there exists } g 
otin 0 ext{ such that } v(y-g^\dagger) \in \Psi^\downarrow \setminus \Psi, ext{ where }$$

$$\Psi := \{ \gamma^{\dagger} : 0 \neq \gamma \in \mathsf{value\ group} \}.$$

The new axiom in (2) above was suggested by trying to existentially define the **complement** of the existentially definable set  $\{f^{\dagger}: f \in \mathbb{T}_{log}\}$ , an  $\mathbb{R}$ -linear subspace of  $\mathbb{T}_{log}$ .

Gehret noticed that this is possible in the two-sorted structure consisting of  $\mathbb{T}_{log}$  with its asymptotic couple as second sort:

$$y \notin \{f^{\dagger}: f \in \mathbb{T}_{\log}\} \iff \text{there exists } g \neq 0 \text{ such that } v(y - g^{\dagger}) \in \Psi^{\downarrow} \setminus \Psi, \text{ where}$$

$$\Psi \ := \ \{\gamma^{\dagger}: \ 0 \neq \gamma \in \mathsf{value} \ \mathsf{group}\}.$$

The correct language for model-completeness will presumably include a predicate for  $\{f^{\dagger}: f \in \mathbb{T}_{\log}\}$ . Allen has proved several embedding results that reduce the conjecture to one on adjoining solutions to linear differential equations.

# Part V

# Camacho's result on truncation

# Part VI

# Hakobyan: generalizing Scanlon's Ax-Kochen-Ersov theorem

This concerns monotone valued differential fields. *Monotone*:  $a' \leq a$  for all a.

#### Scanlon's Theorem

Let  $\mathbf{k}$  be a differential field and  $\Gamma$  an ordered abelian group. Then  $\mathbf{k}((t^{\Gamma}))$  is naturally a valued field. We extend the derivation  $\partial$  of  $\mathbf{k}$  to  $\mathbf{k}((t^{\Gamma}))$  by

$$\partialig(\sum_{\gamma}a_{\gamma}t^{\gamma}ig) \ = \ \sum_{\gamma}\partial(a_{\gamma})t^{\gamma}, \qquad ext{so } (t^{\gamma})'=0 ext{ for all } \gamma.$$

If **k** is linearly surjective, then  $\mathbf{k}((t^{\Gamma}))$  is differential-henselian.

#### Scanlon's Theorem

Let  $\mathbf{k}$  be a differential field and  $\Gamma$  an ordered abelian group. Then  $\mathbf{k}((t^{\Gamma}))$  is naturally a valued field. We extend the derivation  $\partial$  of  $\mathbf{k}$  to  $\mathbf{k}((t^{\Gamma}))$  by

$$\partialig(\sum_{\gamma}a_{\gamma}t^{\gamma}ig) \ = \ \sum_{\gamma}\partial(a_{\gamma})t^{\gamma}, \qquad ext{so } (t^{\gamma})' = 0 ext{ for all } \gamma.$$

If **k** is linearly surjective, then  $\mathbf{k}((t^{\Gamma}))$  is differential-henselian.

#### Theorem

Assume **k** is linearly surjective. Then the theory of  $\mathbf{k}((t^{\Gamma}))$  is axiomatized by:

- axioms for valued differential fields with small derivation;
- many constants:  $v(C^{\times}) = \Gamma$ ;
- differential henselianity;
- Th(k) and Th(Γ).

The first two conditions together imply monotonicity.

## Hakobyan's Generalization

Let any additive map  $c: \Gamma \to \mathbf{k}$  be given. Then the derivation  $\partial$  of  $\mathbf{k}$  can be extended to a derivation  $\partial_c$  on  $\mathbf{k}((t^{\Gamma}))$  by

$$\partial_cig(\sum_\gamma a_\gamma t^\gammaig) \ = \ \sum_\gamma ig(\partial(a_\gamma) + a_\gamma c(\gamma)ig) t^\gamma, \qquad ext{so } (t^\gamma)^\dagger = c(\gamma) ext{ for all } \gamma.$$

Let  $\mathbf{k}((t^{\Gamma}))_c$  be the valued differential field  $\mathbf{k}((t^{\Gamma}))$  with derivation  $\partial_c$ . It is monotone, and if  $\mathbf{k}$  is linearly surjective, then  $\mathbf{k}((t^{\Gamma}))_c$  is differential henselian.

# Hakobyan's Generalization

Let any additive map  $c: \Gamma \to \mathbf{k}$  be given. Then the derivation  $\partial$  of  $\mathbf{k}$  can be extended to a derivation  $\partial_c$  on  $\mathbf{k}((t^{\Gamma}))$  by

$$\partial_cig(\sum_\gamma a_\gamma t^\gammaig) \ = \ \sum_\gamma ig(\partial(a_\gamma) + a_\gamma c(\gamma)ig) t^\gamma, \qquad ext{so } (t^\gamma)^\dagger = c(\gamma) ext{ for all } \gamma.$$

Let  $\mathbf{k}((t^{\Gamma}))_c$  be the valued differential field  $\mathbf{k}((t^{\Gamma}))$  with derivation  $\partial_c$ . It is monotone, and if  $\mathbf{k}$  is linearly surjective, then  $\mathbf{k}((t^{\Gamma}))_c$  is differential henselian.

#### Theorem

Assume  $\mathbf{k}$  is linearly surjective. Then the theory of the valued differential field  $\mathbf{k}((t^{\Gamma}))_c$  is completely determined by  $\mathsf{Th}(\mathbf{k},\Gamma;c)$ , where  $(\mathbf{k},\Gamma;c)$  is the 2-sorted structure with  $\mathbf{k}$  as differential field and  $\Gamma$  as ordered abelain group.

#### Continuation and an algebraic consequence

Which complete theories of valued differential fields are covered by the previous theorem?

#### Theorem

Every monotone differential-henselian field is elementarily equivalent to some  $\mathbf{k}((t^{\Gamma}))_c$  as in the previous theorem.

#### Continuation and an algebraic consequence

Which complete theories of valued differential fields are covered by the previous theorem?

#### Theorem

Every monotone differential-henselian field is elementarily equivalent to some  $\mathbf{k}((t^{\Gamma}))_c$  as in the previous theorem.

Here is an algebraic consequence:

#### Corollary

If K is a monotone differential-henselian field, then every algebraic valued differential field extension of K is also (monotone and ) differential-henselian.