
Further Thoughts on Transseries and Valued Differential Fields

Lou van den Dries

University of Illinois at Urbana-Champaign

August 6, 2016

Lou van den Dries Further Thoughts August 6, 2016 1 / 23



Overview

I. Dimension of definable subsets of Tn

II. Dimension zero = fiberable by the constant field

III. Automorphisms of T

IV. Gehret’s work on Tlog

V. Camacho’s result on truncation

VI. Hakobyan: generalizing Scanlon’s AKE-theorem

Lou van den Dries Further Thoughts August 6, 2016 2 / 23



Overview

I. Dimension of definable subsets of Tn

II. Dimension zero = fiberable by the constant field

III. Automorphisms of T

IV. Gehret’s work on Tlog

V. Camacho’s result on truncation

VI. Hakobyan: generalizing Scanlon’s AKE-theorem

Lou van den Dries Further Thoughts August 6, 2016 2 / 23



Part I

Dimension of definable subsets of Tn

This is a coarse notion of dimension with dimTn = n, and dimR = 0. Within dimension 0
we seem to have a finer notion of dimension “with respect to R” to be discussed in part II.
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A consequence of QE

From now on K ≡ T. The dimension of a definable set S ⊆ Kn is based on the pregeometry
of d-algebraic dependence, that is, dim S := largest m 6 n for which there exist m
differential polynomial functions on S that are d-algebraically independent over K .

The good topological properties of “dimension” are due to a consequence of our QE:

Corollary

A definable set S ⊆ Kn has empty interior in Kn iff S ⊆ {y ∈ Kn : P(y) = 0} for some
nonzero d-polynomial P ∈ K{Y }, Y = (Y1, . . . ,Yn).

∴ dim S > m ⇐⇒ π(S) has nonempty interior in Km for some

coordinate projection π : Kn → Km
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Further properties of dimension

dim(S1 ∪ S2) = max(dim S1, dim S2);

if f : S → Km is definable, then dim S > dim f (S);

if S ⊆ Km+n is definable, and d 6 n, then the set D := {a ∈ Km : dim S(a) = d}
is definable, and dim S |D = dim D + d ; here S |D = {(a, b) ∈ S : a ∈ D};

if S ⊆ K n is definable and nonempty, then dim
(
cl(S) \ S

)
< dim S .
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Dimension 0 equals Discrete

Local o-minimality of K yields for definable S ⊆ K :

dim S = 0 ⇐⇒ S has empty interior ⇐⇒ S is discrete

Example: dim C = 0.

For definable S ⊆ Kn: dim S = 0 ⇐⇒ S is discrete.

Proof for direction ⇐: can arrange K is uncountable, with countable basis for the topology.

Suppose S ⊆ Kn is discrete. Then S is countable, so πi (S) ⊆ K is countable, hence discrete,
so dimπi (S) = 0, for i = 1, . . . , n, and thus dim S = 0.
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Part II

Dimension zero = fiberable by C
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Reduction to the zero set of P

A nonempty definable set S ⊆ Kn has dimension 0 iff

S ⊆ Zero(P1)× · · · × Zero(Pn)

for some nonzero Pi ∈ K{Y }. Thus we can focus on sets of the form Zero(P).

Theorem

K has no proper d-algebraic H-field extension with the same constants.

Thus for nonzero P ∈ K{Y }:

if K 4 L, CK = CL, then P has the same zeros in K and L.

This suggests that Zero(P) is controlled by the constant field C = CK . But how?
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Internal to C ?

Initially we thought Zero(P) might be internal to C , that is,
Zero(P) (if nonempty) is the image of a definable map Cn → K for some n.

However, this fails for K = T and P = YY ′′ − (Y ′)2. Its zero set is

{a ebx : a, b ∈ R}

and for any finite set A of parameters there is an automorphism of T over A that is not the
identity on this zeroset; more on this in Part III.
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Fiberability by C

Jim Freitag: take a look at the model-theoretic notion of “co-analyzability” (in a paper by
Herwig, Hrushovski, Macpherson). This turns out to fit exactly our situation:

Corollary

For nonempty definable S ⊆ Kn,

dim S = 0 ⇐⇒ S is co-analyzable by C ⇐⇒ S is fiberable by C .

Fiberable by C is a convenient minor variant of co-analyzable by C .
For ω-saturated K and definable S ⊆ Kn it is defined recursively as follows:

S is fiberable by C in 0 steps iff S is finite;

S is fiberable by C in r + 1 steps iff there is a definable f : S → C such that every fiber
f −1(c) is fiberable by C in r steps.
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Applications

If S ⊆ K n is definable and infinite of dimension 0, then |S | = |C |;

If S ⊆ Km+n is definable, then for some e ∈ N we have
|S(a)| 6 e for all a ∈ Km for which S(a) is finite.
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Part III

Automorphisms of T
Note: an automorphism of the differential field T preserves the ordering and the valuation ring.
It is also the identity on R.
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Strong automorphisms

We restrict attention to strong automorphisms of T, which respect infinite summation. For
any real c we have a strong automorphism f (x) 7→ f (x + c) : T→ T, and if c 6= 0, then

f (x + c) = f (x) ⇐⇒ f ∈ R.

Corollary

R is definably closed in T. Hence C is definably closed in K .

Many natural differential subfields of T can be shown to be definably closed in T by exhibiting
them as the fixpoint set of a set of strong automorphisms of T.
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The group of strong automorphisms

Theorem

Any additive α : T→ R with α(O) = {0} determines a strong automorphism σ of T by

σ(x) = x , σ(ef ) = eα(f )+σ(f ) for all f ∈ T.

Any strong automorphism of T fixing x has this form for a unique α.

The strong automorphisms fixing x form a normal subgroup Gx of the group G of all strong
automorphisms; G is a semidirect product of Gx with the group of automorphisms

f (x) 7→ f (x + c) (c ∈ R)
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Part IV

Gehret’s work on Tlog
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Allen Gehret’s work on Tlog

Set `0 := x , `1 := log x , . . . , `n+1 = log `n. Define

Tlog :=
⋃
n

R[[`R0 · · · `Rn ]].

Tlog is a particularly transparent H-subfield of T. It is ω-free and newtonian.

But Tlog is not Liouville closed. Much of the ADH-work concerns arbitrary ω-free newtonian
H-fields and does not use Liouville closedness, and this gives hope that Tlog also has a
reasonable model theory.
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Allen Gehret’s work on Tlog

Gehret did the following:

1 he identified the complete theory of the asymptotic couple of Tlog, and showed it
has a good model theory;

2 found an interesting new axiom satisfied by Tlog.

Gehret’s Program is to show that the following axiomatizes a complete and model complete

theory in a natural 2-sorted language:

H-field with real closed constant field;

asymptotic couple |= theory in (1) above;

axiom from (2) above;

ω-free;

newtonian.
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Allen Gehret’s work on Tlog

The new axiom in (2) above was suggested by trying to existentially define the complement
of the existentially definable set {f † : f ∈ Tlog}, an R-linear subspace of Tlog.

Gehret noticed that this is possible in the two-sorted structure consisting of Tlog with its
asymptotic couple as second sort:

y /∈ {f † : f ∈ Tlog} ⇐⇒ there exists g 6= 0 such that v(y − g †) ∈ Ψ↓ \Ψ, where

Ψ := {γ† : 0 6= γ ∈ value group}.

The correct language for model-completeness will presumably include a predicate for
{f † : f ∈ Tlog}. Allen has proved several embedding results that reduce the conjecture to one
on adjoining solutions to linear differential equations.
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Part V

Camacho’s result on truncation
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Part VI

Hakobyan: generalizing Scanlon’s
Ax-Kochen-Ersov theorem

This concerns monotone valued differential fields. Monotone: a′ 4 a for all a.
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Scanlon’s Theorem

Let k be a differential field and Γ an ordered abelian group. Then k((tΓ)) is naturally a valued
field. We extend the derivation ∂ of k to k((tΓ)) by

∂
(∑

γ

aγtγ
)

=
∑
γ

∂(aγ)tγ , so (tγ)′ = 0 for all γ.

If k is linearly surjective, then k((tΓ)) is differential-henselian.

Theorem

Assume k is linearly surjective. Then the theory of k((tΓ)) is axiomatized by:

axioms for valued differential fields with small derivation;

many constants: v(C×) = Γ;

differential henselianity;

Th(k) and Th(Γ).

The first two conditions together imply monotonicity.
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Hakobyan’s Generalization

Let any additive map c : Γ→ k be given. Then the derivation ∂ of k can be extended to a
derivation ∂c on k((tΓ)) by

∂c

(∑
γ

aγtγ
)

=
∑
γ

(
∂(aγ) + aγc(γ)

)
tγ , so (tγ)† = c(γ) for all γ.

Let k((tΓ))c be the valued differential field k((tΓ)) with derivation ∂c .
It is monotone, and if k is linearly surjective, then k((tΓ))c is differential henselian.

Theorem

Assume k is linearly surjective. Then the theory of the valued differential field k((tΓ))c is
completely determined by Th(k, Γ; c), where (k, Γ; c) is the 2-sorted structure with k as
differential field and Γ as ordered abelain group.
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Continuation and an algebraic consequence

Which complete theories of valued differential fields are covered by the previous theorem?

Theorem

Every monotone differential-henselian field is elementarily equivalent to some k((tΓ))c as in
the previous theorem.

Here is an algebraic consequence:

Corollary

If K is a monotone differential-henselian field, then every algebraic valued differential field
extension of K is also (monotone and ) differential-henselian.
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