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ABSTRACT
We present new algorithms to detect and correct errors in the

product of twomatrices, or the inverse of a matrix, over an arbitrary

field. Our algorithms do not require any additional information or

encoding other than the original inputs and the erroneous output.

Their running time is softly linear in the number of nonzero entries

in these matrices when the number of errors is sufficiently small,

and they also incorporate fast matrix multiplication so that the cost

scales well when the number of errors is large. These algorithms

build on the recent result of Gasieniec et al. [18] on correcting

matrix products, as well as existing work on verification algorithms,

sparse low-rank linear algebra, and sparse polynomial interpolation.
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1 INTRODUCTION
Efficiently and gracefully handling computational errors is criti-

cal in modern computing. Such errors can result from short-lived

hardware failures, communication noise, buggy software, or even

malicious third-party servers.

The first goal for fault-tolerant computing is verification. The
groundbreaking work of Freivalds [17] presented a linear-time algo-

rithm to verify the correctness of a single matrix product. Recently,

efficient verification algorithms for a wide range of computational

linear algebra problems have been developed [13, 15, 16, 27].

A higher level of fault tolerance is achieved through error correc-
tion, which is the goal of the present study. This is a strictly stronger
model than verification, where we seek not only to identify when

a result is incorrect, but also to compute the correct result if it is

“close” to the given, incorrect one. Some recent error-correction

problems considered in the computer algebra literature include Chi-

nese remaindering [5, 19, 29], system solving [8, 28], and function

recovery [12, 26].

A generic approach to correcting errors in transmission would

be to use an error-correcting code, writing the result with some

redundancy to support transmission over a noisy channel. But this

This paper is authored by an employee(s) of the United States Government and is in

the public domain. Non-exclusive copying or redistribution is allowed, provided that

the article citation is given and the authors and agency are clearly identified as its

source.

ISSAC ’18, July 16–19, 2018, New York, NY, USA
2018. ACM ISBN 978-1-4503-5550-6/18/07.

https://doi.org/10.1145/3208976.3209001

approach requires extra bandwidth, is limited to a fixed number of

errors, and does not account for malicious alterations or mistakes

in the computation itself.

Instead, we will use the information in the problem itself to

correct errors. This is always possible by re-computing the result,

and so the goal is always to correct a small number of errors in

(much) less time than it would take to do the entire computation

again. Our notion of error correction makes it possible to correct an

unbounded number of mistakes that occur either in computation

or transmission, either at random or by a malicious party.

Some other applications of error correction have nothing to do

with alterations or mistakes. One example is sparse matrix multi-

plication, which can be solved with an error-correction algorithm

by simply assuming the “erroneous” matrix is zero. Another ex-

ample is computing a result over Z using Chinese remaindering

modulo small primes, where the entries have varying bit lengths.

The small entries are determined modulo the first few primes, and

the remaining large entries are found more quickly by applying an

error correction algorithm using (known) small entries.

1.1 Our results
Matrix multiplication with errors. The first problem we consider

is the same as in Gasieniec et al. [18], correcting a matrix product.

GivenA,B,C ∈ Fn×n , the task is to compute the unique error matrix

E ∈ Fn×n such that AB = C − E.
Algorithm 5 solves this problem using

Õ
(
t + k ·min

(⌈ t
r
⌉
,n/min(r , kr )

3−ω
))

field operations, where

• t = #A + #B + #C is the number of nonzero entries in the

input matrices, at most O(n2);
• k = #E is the number of errors in the given product C; and
• r ≤ n is the number of distinct rows (or columns) in which

errors occur, whichever is larger.

An even more detailed complexity statement, incorporating rect-

angular matrices and a failure probability, can be found in Theo-

rem 7.1. To understand the implications of this complexity, consider

six cases, as summarized in Table 1.

The cost of our algorithm depends on the locations of the errors.

If there are a constant number of errors per row or column, we

can use sparse multiplication to achieve softly-linear complexity

Õ(t + n + k). This is similar to [18] except that we do not require

the input matrices to be dense.

If k > n errors are spread out among all rows and columns, the

worst-case cost using dense multiplication is Õ
(
k0.38n1.63

)
. As the

number of errors grows to n2, this cost approaches that of normal

matrix multiplication without error correction.
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Spread-out errors Compact errors

r = min(n,k) r =
√
k

k ≤ n k > n

Sparse t + k + n k
⌈ t
n
⌉
+ n

√
kt + k + n

Dense t + kn
kω−2n4−ω t + k(ω−1)/2n
k0.38n1.63 t + k0.69n

Table 1: Soft-oh cost of Algorithm 5 in several cases, for cor-
recting up to k errors (which appear in r rows) in the product
of two n×nmatrices with at most t nonzero entries. The two
rows indicate whether sparse or dense rectangular multipli-
cation is used as a subroutine.

In the other extreme, if the errors are isolated to a square (but

not necessarily contiguous) submatrix, then the worst-case cost

using dense multiplication is Õ
(
t = k0.69n

)
. Again this scales to nω

as k → n2, but the cost is better for k < n2. This situation may

also make sense in the context of distributed computing, where

each node in a computing cluster might be assigned to compute

one submatrix of the product.

Our algorithm is never (asymptotically) slower than that of [18]

or the O(nω ) cost of naïve recomputation, but it is faster in many

cases: for example when the inputs are sparse, when there are many

errors, and when the errors are compactly located.

Matrix inverse with errors. The second problem we consider is

that of correcting computational errors in amatrix inverse. Formally,

given A,B ∈ Fn×n , the task is to compute the unique error matrix

E ∈ Fn×n such that A−1 = B + E.
Algorithm 6 shows how to solve this problem using

Õ
(
t + nk/min(r , kr )

3−ω + rω
)

field operations, where the parameters t ,k,n are the same as before,

and r is the number of rows or columns which contain errors,

whichever is smaller. This is the same complexity as our algorithm

for matrix multiplication with errors, plus an additional rω term.

The additional rω term makes the situation here less fractured

than with the multiplication algorithm. In the case of spread-out er-

rors, the cost is Õ(t + nk + kω ), which becomes simply Õ
(
n2 + kω

)
when the input matrices are dense. The case of compact errors is

better, and the complexity is just Õ
(
t + nk(ω−1)/2

)
, the same as that

of our multiplication algorithm

As before, the cost of this algorithm approaches the O(nω ) cost
of the naïve inverse computation as the number of errors k grows

to n2.

Domains. The algorithms we present work over any field and

require only that a field element of order larger than n can be found.

Because our algorithms explicitly take O(n) time to compute the

powers of this element anyway, the usual difficulties with efficiently

generating high-order elements in finite fields do not arise.

Over the integers Z or rationals Q, the most efficient approach

would be to work modulo a series of primes and use Chinese re-

maindering to recover the result. A similar approach could be used

over polynomial rings.

Over the reals R or complex numbers C, our algorithms work

only under the unrealistic assumption of infinite precision. We have

not considered the interesting question of how to recover from the

two types of errors (noise and outliers) that may occur in finite

precision.

1.2 Related work
Letω be a constant between 2 and 3 such that twon×nmatrices can

be multiplied using O(nω ) field operations. In practice, ω = 3 for

dimensions n up to a few hundred, after which Strassen-Winograd

multiplication is used giving ω =< 2.81. The best asymptotic algo-

rithm currently gives ω < 2.3728639 [31].

Even though the practical value of ω is larger than the asymp-

totic one, matrix multiplication routines have been the subject of

intense implementation development for decades, and highly-tuned

software is readily available for a variety of architectures [14, 35].

Running times based on nω have practical as well as theoretical

significance; the ω indicates where an algorithm is able to take

advantage of fast low-level matrix multiplication routines.

Special routines for multiplying sparse matrices have also been

developed. Writing t for the number of nonzero entries in the input,

the standard row- or column-wise sparse matrix multiplication

costsO(tn) field operations. Yuster and Zwick [36] improved this to

Õ
(
n2 + t0.697n1.197

)
. Later work also incorporates the number k of

nonzeros in the productmatrix. Lingas [32] gave an output-sensitive

algorithm with running time O(k0.186n2). Amossen and Pagh [1]

have another with complexity Õ
(
t0.667k0.667 + t0.862k0.408

)
, an im-

provement when the outputs are not too dense. Pagh [33] developed

a different approach with complexity Õ(t + kn); that paper also in-

cludes a nice summary of the state of the art. Our multiplication

with errors algorithm can also be used for sparse multiplication,

and it provides a small improvement when the input and output

are both not too sparse.
The main predecessor to our work is the recent algorithm of

Gasieniec et al. [18], which can correct up to k errors in the product

of two n × n matrices using Õ
(
n2 + kn

)
field operations. Their

approach is based in part on the earlier work of Pagh [33] and

makes clever use of hashing and fast Fourier transforms in order to

achieve the stated complexity.

We not only improve on the complexity of that problem, but also

consider related problem of correcting errors in a matrix inverse.

Computing the inverse of a matrix (without errors) has the same

asymptotic complexity O(nω ) as fast matrix multiplication [9].

2 OVERVIEW
Multiplication with errors. A high-level summary of our multi-

plication algorithm is as follows:

(1) Determine which rows in the product contain errors.

(2) Write the unknown sparse matrix of errors as E = C −AB.
Remove the rows with no errors from E,C, and A, so we

have E ′ = C ′ −A′B.
(3) Treating the rows of E ′ as sparse polynomials, use structured

linear algebra and fast matrix multiplication to evaluate each

row polynomial at a small number of points.

(4) Use sparse polynomial interpolation to recover at least half

of the rows from their evaluations.
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(5) Update C and iterate O(logk) times to recover all k errors.

To determine the rows of E which are nonzero in Step 1, we

apply a simple variant of Frievalds’ verification algorithm: for a

random vector v, the nonzero rows of Ev are probably the same as

the nonzero rows of E itself.

The evaluation/interpolation approach that follows is reminis-

cent of that in Gasieniec et al. [18], with two important differences.

First, using sparse polynomial techniques rather than hashing and

FFTs means the complexity scales linearly with the number of

nonzeros t in the input rather than the dense matrix size n2. Sec-
ond, by treating the rows separately rather than recovering all

errors at once, we are able to incorporate fast matrix multiplication

so that our worst-case cost when all entries are erroneous is never

more than O(nω ), the same as that of naïve recomputation.

Section 4 provides details on the Monte Carlo algorithm to de-

termine the rows and columns where errors occur (Step 1 above),

Section 5 presents a variant of sparse polynomial interpolation that

suits our needs for Step 4, and Section 6 explains how to perform

the row polynomial evaluations in Step 3. A certain rectangular

matrix multiplication in this step turns out to dominate the over-

all complexity. We connect all these pieces of the multiplication

algorithm in Section 7.

Inverse with errors. Our algorithm for correcting errors in a ma-

trix inverse is based on the multiplication algorithm, but with two

complications. Writing A for the input matrix, B for the erroneous

inverse, and E for the (sparse) matrix of errors in B, we have:

AE = I −AB, EA = I − BA.

We want to compute Ev for a random vector v in order to de-

termine which rows of E are nonzero. This is no longer possible

directly, but using the second formulation as above, we can compute

EAv. Because A must be nonsingular, Av has the same distribution

as a random vector, so this approach still works.

The second complication is that removing zero rows of E does

not change the dimension of the right-hand side, but only removes

corresponding columns from A on the left-hand side. We make use

of the recent result of Cheung et al. [11], which shows how to

quickly find a maximal set of linearly independent rows in a sparse

matrix. This allows us to find a small submatrix X of A such that

XE ′ = I ′−A′B, with E ′, I ′,A′ being compressed matrices as before.

Because the size of X depends on the number of errors, it can be

inverted much more quickly than re-computing the entire inverse

of A.
The dominating cost in most cases is the same rectangular matrix

product as needed as in matrix multiplication with error correction.

However, here we also have the extra cost of finding X and com-

puting its inverse, which dominates the complexity when there are

a moderate number of errors and their locations are spread out.

This algorithm—which depends on the subroutines of Sections 4

to 6 — is presented in detail in Section 8. .

3 NOTATION AND PRELIMINARIES
The soft-oh notation Õ(· · · ) is the same as the usual big-oh notation

but ignoring sub-logarithmic factors: f ∈ Õ(д) if and only if f ∈

O
(
д logO (1) д

)
, for some runtime functions f and д.

We write N for the set of nonnegative integers and Fq for the

finite field with q elements.

For a finite set S, the number of elements in S is denoted #S,

and P(S) is the powerset of S, i.e., the set of subsets of S.
The number of nonzero entries in a matrixM ∈ Fm×n is written

as #M . Note that #M ≤ mn, and ifM has rank k then #M ≥ k .
For a univariate polynomial f ∈ F[x], supp(f ) ⊆ N denotes the

exponents of nonzero terms of f . Note that #supp(f ) ≤ deg f + 1.
We assume that the number of field operations to multiply two

(dense) polynomials in F[x] with degrees less than n is Õ(n). This
is justified by the generic algorithm from Cantor and Kaltofen [10]

which gives O(n logn loglogn), or more result results of Harvey

et al. [20] which improve this to O
(
n logn 8log

∗ n
)
for finite fields.

As discussed earlier, we take ω with 2 ≤ ω ≤ 3 to be any

feasible exponent of matrix multiplication. By applying fast matrix

multiplication in blocks, it is also possible to improve the speed

of rectangular matrix multiplication in a straightforward way. In

particular:

Fact 3.1. The product of anym × ℓ matrix times a ℓ × n matrix
can be found using O

(
mℓn/min(m, ℓ,n)3−ω

)
ring operations.

Note that it might be possible to improve this for certain values

ofm, ℓ,n using [30], but that complexity is much harder to state

and we have not investigated such an approach.

We restate two elementary facts on sparse matrix multiplication.

Fact 3.2. For any M ∈ Fm×n and v ∈ Fn , the matrix-vector
productMv can be computed using O(#M) field operations.

Corollary 3.3. For any A ∈ Fm×ℓ and B ∈ Fℓ×n , their product
AB can be computed using O(#A · n) field operations.

4 IDENTIFYING NONZERO ROWS AND
COLUMNS

Our algorithms for error correction in matrix product and inverse

computation both begin by determining which rows and columns

contain errors. This is accomplished in turn by applying a random

row or column vector to the unknown error matrix E.
For now, we treat the error matrix E as a black box, i.e., an oracle

matrix which we can multiply by a vector on the right or left-hand

side. The details of the black box construction differ for the matrix

multiple and inverse problem, so we delay those until later.

The idea is to apply a row or column vector of random values

to the unknown matrix E, and then examine which entires in the

resulting vector are zero. This is exactly the same idea as the classic

Monte Carlo verification algorithm of Freivalds [17], which we

extend to which rows or columns in a matrix are nonzero. This

black-box procedure is detailed in Algorithm 1 FindNonzeroRows.
The correctness of FindNonzeroRows depends on the parameter

ϵ . The running time depends on this ϵ , the size of F, and the cost of

performing matrix-vector products with the black-box matrixM .

Lemma 4.1. FindNonzeroRows always returns a list of nonzero
row indices inM With probability at least 1 − ϵ , it returns the index
of every nonzero row inM .

Proof. Consider a single row uT of M . If u is zero, then the

corresponding row ofMV will always be zero; hence every index

returned must be a nonzero row.
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Algorithm 1: FindNonzeroRows(V 7→ MV , ϵ)

Input: Black box for right-multiplication by an unknown

matrixM ∈ Fm×n and error bound ϵ ∈ R, 0 < ϵ < 1

Output: Set J ⊆ {0, . . . ,m − 1} that with probability at

least 1 − ϵ consists of the indices of nonzero rows

inM

1 ℓ ←
⌈
log

#F
m
ϵ
⌉

2 V ← matrix in Fn×ℓ with uniform random entries from F
3 B ← MV using the black box

4 return Indices of rows of B which are not all zeros

Next assume uT has at least one nonzero entry, say at index i ,
and consider one row v ∈ Fn of the randommatrixV . Whatever the

other entries in u and v are, there is exactly one value for the i’th
entry of v such that uT v = 0. So the probability that uT v = 0 is

1

#F ,

and by independence the probability that uTV = 01×ℓ is 1/(#F)ℓ .
BecauseM has at mostm nonzero rows, the union bound tells

us that the probability any one of the corresponding rows of MV

is zero is at mostm/(#F )ℓ . From the definition of ℓ, this ensures a

failure probability of at most ϵ . □

Because we mostly have in mind the case that F is a finite field,

we assume in FindNonzeroRows and in the preceding proof that it

is possible to sample uniformly from the entire field F. However,
the same results would hold if sampling from any fixed subset of F
(perhaps increasing the size of ℓ if the subset is small).

5 BATCHED LOW-DEGREE SPARSE
INTERPOLATION

Our algorithms use techniques from sparse polynomial interpola-

tion to find the locations and values of erroneous entries in a matrix

product or inverse.

Consider an unknown univariate polynomial f ∈ F[x] with de-

gree less than n and at most s nonzero terms. The nonzero terms of

f can be uniquely recovered from evaluations f (θ0), . . . , f (θ2s−1)
at 2s consecutive powers [3, 24].

Doing this efficiently in our context requires a few variations to

the typical algorithmic approach. While the state of the art seen in

recent papers such as [2, 22, 23, 25] achieves softly-linear complex-

ity in terms of the sparsity t , there is either a higher dependency
on the degree, a restriction to certain fields, or both.

Here, we show how to take advantage of two unique aspects

of the problem in our context. First, we will interpolate a batch of

sparse polynomials at once, on the same evaluation points, which

allows for some useful precomputation. Secondly, the maximum

degree of any polynomial we interpolate isn, the column dimension

of the unknown matrix, and we are allowed linear-time in n.
The closest situation in the literature is that of van der Hoeven

and Lecerf [21], who show how to recover a sparse polynomial if the

exponents are known. In our case, we can tolerate a much larger set

containing the possible exponents by effectively amortizing the size

of this exponent set over the group of batched sparse interpolations.

Recall the general outline of Prony’s method for sparse interpo-

lation of f ∈ F[x] from evaluations (f (θ i ))0≤i<2s :

(1) Find the minimum polynomial Γ ∈ F[z] of the sequence of
evaluations.

(2) Find the roots v1, . . . ,vs of Γ.
(3) Compute the discrete logarithm base θ of each vi to deter-

mine the exponents of f .
(4) Solve a transposed Vandermonde system built from vi and

the evaluations to recover the coefficients of f .

Steps 1 and 4 can be performed over any field using fast mul-

tipoint evaluation and interpolation in Õ(s) field operations [24].

However, the other steps depend on the field and in particular Step 3

can be problematic over large finite fields.

To avoid this issue, we first pre-compute all possible roots θei

for any minpoly Γi in any of the batch of r sparse interpolations
that will be performed. Although the set of possible roots is larger

than the degree of any single minpoly Γi , in our case the set is

always bounded by the dimension of the matrix, so performing this

precomputation once is worthwhile.

5.1 Batched root finding
While fast root-finding procedures over many fields have already

been developed, we present a simple but efficient root-finding pro-

cedure for our specific case that has the advantage of running in

softly-linear time over any coefficient field. The general idea is to

first compute a coprime basis (also called a gcd-free basis) for the

minpolys Γi , then perform multi-point evaluation with the precom-

puted list of possible roots.

The details of procedure FindRoots are in Algorithm 2 below.

In the algorithm, we use a product tree constructed from a list of

t polynomials. This is a binary tree of height O(log t), with the

original polynomials at the leaves, and where every internal node

is the product of its two children. In particular, the root of the tree

is the product of all t polynomials. The total size of a product tree,

and the cost of computing it, is softly-linear in the total size of the

input polynomials; see Borodin and Munro [6] for more details.

Lemma 5.1. Given a set Q ⊆ F with of size #Q = c and a list of r
polynomials Γ1, . . . , Γr ∈ F[z] each with degree at most s , Algorithm 2
FindRoots correctly determines all roots of all Γi ’s which are in Q
using Õ(rs + c) field operations

Proof. Algorithms 18.1 and 21.2 of Bernstein [4] are determin-

istic and compute (respectively) a coprime basis and then a factor-

ization of the Γi ’s according to the basis elements.

The polynomials Mi, j form a standard product tree from the

polynomials in the coprime basis. For any element of the product

tree, its roots must be a subset of the roots of its parent node. So the

multi-point evaluations on Line 9 determine, for every polynomial

in the tree, which elements of Q are roots of that polynomial.

The cost of computing the coprime basis using Algorithm 18.1 in

[4] is Õ(rs) with at least a log
5(rs) factor. This gives the first term

in the complexity (and explains our use of soft-oh notation through-

out). This cost dominates the cost of constructing the product tree

and factoring the Γi ’s on Line 11.

Using the standard product tree algorithm [6], the cost of multi-

point evaluation of a degree-n polynomial at each ofn points is Õ(n)
field operations. In our algorithm, this happens at each level down

the product tree. At each of

⌈
log

2
t
⌉
∈ O(log(rs)) levels there are
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Algorithm 2: FindRoots(Q, [Γ1, . . . , Γr ])
Input: Set of possible roots Q ⊆ F and r polynomials

Γ1, . . . , Γr ∈ F[z]
Output: A list of sets [R1, . . . ,Rr ] ∈ P(Q)

r
such that

дi (α j ) = 0 for every 1 ≤ i ≤ r and α j ∈ Ri

1 {д0, . . . ,дt−1} ← coprime basis of {Γi }1≤i≤r using

Algorithm 18.1 of Bernstein [4]

/* Compute product tree from bottom-up */

2 for j ← 0, 1, . . . , t − 1 doM0, j ← дj
3 for i ← 1, 2, . . . ,

⌈
log

2
t
⌉
do

4 for j ← 0, 1, . . . ,
⌈
t/2i

⌉
− 1 do

5 Mi, j ← Mi−1,2j ·Mi−1,2j+1
/* Find roots of basis elements */

6 S⌈log
2
t⌉+1,0 ← Q

7 for i ←
⌈
log

2
t
⌉
,
⌈
log

2
t
⌉
− 1, . . . , 0 do

8 for j ← 0, 1, . . . ,
⌈
t/2i

⌉
− 1 do

9 EvaluateMi, j at each point in Si+1, ⌊j/2⌋ using fast

multipoint evaluation

10 Si, j ← roots ofMi, j found on previous step

/* Determine roots of original polynomials */

11 Compute exponents (ei, j )1≤i≤r,0≤j<t such that

Γi = д
ei,0
0
· · ·д

ei,t−1
t−1 for all i , using algorithm 21.2 of

Bernstein [4]

12 for i ← 1, 2, . . . , r do Ri ←
⋃

0≤j<t,ei, j ≥1 S0, j

at most c points (since the polynomials at each level are relatively

prime). The total degree at each level is at most deg

∏
i Γi ≤ rs . If

rs > c , then this cost is already bounded by that of determining

the coprime basis. Otherwise, the multi-point evaluations occur in

O(c/(rs)) batches of rs points each, giving the second term in the

complexity statement. □

5.2 Batched sparse interpolation algorithm
We are now ready to present the full algorithm for performing

simultaneous sparse interpolation on r polynomials based on 2s
evaluations each.

Note that, in the case of very small fields with no order-n ele-

ments, this approach can still by used by working over an extension

of order at mostO(logn). In our application n is actually the dimen-

sion of the erroneous matrix, so this does not change the overall

complexity by more than a logarithmic factor.

Theorem 5.2. Let F be a field with an element θ ∈ F whose
multiplicative order is at least n, and suppose f1, . . . , fr ∈ F[x] are
unknown univariate polynomials. Given bounds n, s ∈ N, a setS ⊆ N
of possible exponents, and evaluations fi (θ j ) for all 1 ≤ i ≤ r and 0 ≤
j < 2s , Algorithm 3 MultiSparseInterp requires Õ(rs + #S logn)
field operations in the worst case.

The algorithm correctly recovers every polynomial fi such that
#suppfi ≤ s , suppfi ⊆ S, and deg fi < n.

Proof. From Lemma 5.1, the cost of FindRoots is Õ(rs + #S).
This dominates the cost of the minpoly and transposed Vander-

monde computations, which are both Õ(rs) [24]. Using binary

Algorithm 3: MultiSparseInterp(r ,n, s,S,θ ,Y )
Input: Bounds r ,n, s ∈ N, set S ⊆ {0, . . . ,n − 1} of possible

exponents, high-order element θ ∈ F, and
evaluations Yi, j ∈ F such that fi (θ

j ) = Yi, j for all
1 ≤ i ≤ r and 0 ≤ j < 2s

Output: Nonzero coefficients and corresponding exponents

of fi ∈ F[x] or 0 indicating failure, for each
1 ≤ i ≤ r

1 for i = 1, 2, . . . , r do
2 Γi ←MinPoly(Yi,0, . . . ,Yi,2s−1) using fast

Berlekamp-Massey algorithm

3 R1, . . . ,Rr ← FindRoots({ θd | d ∈ S }, Γ1, . . . , Γr )

4 for i = 1, 2, . . . , r do
5 if #Ri , deg Γi then fi ← 0

6 else
7 ti ← #Ri

8 {ei,1, . . . , ei,ti } ← {d ∈ S | θ
d ∈ Ri }

9 [ai,1, . . . ,ai,ti ] ← solution of transposed

Vandermonde system from roots [θei,1 , . . . ,θei,tt ]
and right-hand vector [Yi,0, . . . ,Yi,ti−1]

10 fi ← ai,1x
ei,1 + · · · + ai,ti x

ei,ti

powering, computing the set { θd | d ∈ S } on Line 3 requires

O(#S logn) field operations.

If fi has at most ti ≤ s nonzero terms, then the minpoly Γi com-

puted on Line 2 is a degree-ti polynomial with exactly ti distinct
roots. If supp(fi ) ⊆ S, then by Lemma 5.1, FindRoots correctly

finds all these roots. Because these are the only terms in fi , solv-
ing the transposed Vandermonde system correctly determines all

corresponding coefficients; see [24] or [21] for details. □

6 PERFORMING EVALUATIONS
Consider the matrix multiplication with errors problem, recovering

a sparse error matrix E ∈ Fr×n according to the equation E = C−AB.
In this section, we show how to treat each row of E as a sparse

polynomial and evaluate each of these at consecutive powers of

a high-order element θ , as needed for the sparse interpolation

algorithm from Section 5. The same techniques will also be used in

the matrix inverse with errors algorithm.

Consider a column vector of powers of an indeterminate, x =
[1,x ,x2, . . . ,xn−1]T . The matrix-vector product Ex then consists

ofm polynomials, each degree less than n, and with a 1-1 corre-

spondence between nonzero terms of the polynomials and nonzero

entries in the corresponding row of E.
Evaluating every polynomial in Ex at a point θ ∈ F is the same as

multiplying E by a vector v = [1,θ ,θ2, . . . ,θn−1]T . Evaluating each
polynomial in Ex at the first 2s powers 1,θ ,θ2, . . . ,θ2s−1 allows for
the unique recovery of all t-sparse rows, according to Theorem 5.2.

This means multiplying E times an evaluation matrix V ∈ Fn×2s

such that Vi, j = θ
i j
.

Consider a single row vector u ∈ F1×n with c nonzero entries.

Multiplying uV means evaluating a c-sparse polynomial at the first

2s powers of θ ; we can view it as removing the n − c zero entries

from u to give u′ ∈ F1×c , and removing the same n − c rows from
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Algorithm 4: DiffEval(A,B,C,θ , s)

Input: Matrices A ∈ Fr×ℓ , B ∈ Fℓ×n , C ∈ Fr×n , high-order
element θ ∈ F, and integer s ∈ N

Output: Matrix Y = (C −AB)V ∈ Fr×2s , where V is the

r × 2s evaluation matrix given by

(θ i j )0≤i<n,0≤j<2s .

1 Pre-compute θ j for all indices j of nonzero columns in B or

C

2 YC ← CV using the pre-computed θ j ’s and fast transposed

Vandermonde applications row by row

3 YB ← BV similarly

4 YAB ← AYB using dense or sparse multiplication,

whichever is faster

5 return YC − YAB

V to get V ′ ∈ Fc×2s , and then computing the product u′V ′. This
evaluation matrix with removed rows V ′ is actually a transposed
Vandermonde matrix built from the entries θ i for each index i of a
nonzero entry in u.

An explicit algorithm for this transposed Vandermonde matrix

application is given in Section 6.2 of Bostan et al. [7], and they show

that the complexity of multiplying u′V ′ is Õ(c + s) field operations,
and essentially amounts to a power series inversion and product

tree traversal. (See also Section 5.1 of van der Hoeven and Lecerf

[21] for a nice description of how this approach is used for fast

evaluation of a sparse polynomial at consecutive powers.)We repeat

this for each row in a given matrixM to compute AV .

Now we are ready to show how to compute EV = (C − AB)V
efficiently, using the approach just discussed to compute CV and

BV before multiplying A times BV and performing a subtraction.

As we will show, the rectangular multiplication of A times BV is

the only step which is not softly-linear time, and this dominates

the complexity.

Lemma 6.1. Algorithm 4 DiffEval always returns the correct
matrix of evaluations (C −AB)V and uses

Õ

(
#B + #C + n + s ·min

(
#A + r ,

rℓ

min(r , s, ℓ)3−ω

))
field operations.

Proof. Correctness comes from the discussion above and the

correctness of the algorithm in section 6.2 of Bostan et al. [7] which

is used on Lines 2 and 3.

The cost of pre-computing all powers θ j using binary powering

isO(n logn) field operations, since the number of nonzero columns

in B or C is at most n. Using these precomputed values, each trans-

posed Vandermonde apply costs Õ(k + s), where k is the number

of nonzero entries in the current row. Summing over all rows of C

and B gives Õ(#B + #C + rs + ℓs) for these steps.
The most significant step is the rectangular multiplication of

A ∈ Fr×ℓ times YB ∈ Fℓ×s . Using sparse multiplication, the cost is

O(#A · s), by Corollary 3.3. Using dense multiplication, the cost is

O
(
rℓs/min(r , ℓ, s)ω−3

)
according to Fact 3.1.

Because all the relevant parameters #A, s, r , ℓ are known before

the multiplication, we assume that the underlying software makes

the best choice among these two algorithms.

Note that rs and ℓs are definitely dominated by the cost of the

dense multiplication. In the sparse multiplication case, the situation

is more subtle when #A < ℓ. But in this case, we just suppose that

rows of BV which are not used in the sparse multiplication A(BV )
are never computed, so the complexity is as stated. □

7 MULTIPLICATIONWITH ERROR
CORRECTION ALGORITHM

We now have all the necessary components to present the complete

multiplication algorithm, Algorithm 5 MultiplyEC. The general

idea is to repeatedly use FindNonzeroRows to determine the loca-

tions on nonzeros in E, then DiffEval and MultiSparseInterp
to recover half of the nonzero rows at each step.

Setting the target sparsity of each recovered row to s = ⌈2k/r⌉,
where r is the number of nonzero rows, ensures that at least half

of the rows are recovered at each step. To get around the fact that

the number of errors k is initially unknown, we start with an initial

guess of k = 1, and double this guess whenever fewer than half of

the remaining rows are recovered.

The procedure is probabilistic of the Monte Carlo type only
because of the Monte Carlo subroutine FindNonzeroRows to deter-

mine which rows are erroneous. The other parts of the algorithm

— computing evaluations and recovering nonzero entries — are

deterministic based on the bounds they are given.

Theorem 7.1. Algorithm 5 MultiplyEC finds all errors in C with
probability at least 1 − ϵ and always uses

Õ
(
m +

⌈
log

#F
1

ϵ
⌉
(n + t) + k ·min

(⌈ t
r

⌉
, ℓ/min(ℓ, r , kr )

3−ω
))

field operations, where k is the actual number of errors in the given
product C . Otherwise, it uses Õ

(
mℓn/min(m, ℓ,n)3−ω

)
field opera-

tions and may return an incorrect result.

Proof. The only probabilistic parts of the algorithm are the calls

to FindNonzeroRows, which can only fail by incorrectly returning

too few rows. If this never happens, then each iteration through

the while loop either (a) discovers that the value of k was too small

and increases it, or (b) recovers half of the rows or columns of E.
So the total number of iterations of the while loop if the calls to

FindNonzeroRows are never incorrect is atmost

⌈
log

2
k
⌉
+
⌈
log

2
m
⌉
+⌈

log
2
n
⌉
. By the union bound, from the way that ϵ ′ is computed

and the fact that there are two calls to FindNonzeroRows on every

iteration, the probability that FindNonzeroRows is never incorrect

is at least 1 − ϵ .
In this case, the rest of the correctness and the running time

follow directly from Lemmas 4.1 and 6.1 and Theorem 5.2.

If a call to FindNonzeroRows returns an incorrect result, two bad
things can happen. First, if J is too small during some iteration, all

of the evaluations may be incorrect, leading to k being increased.

In extremely unlucky circumstances, this may happen O(log(rn))
times until the product is naïvely recomputed on Line 19, leading

to the worst-case running time.

The second thing that can occurwhen a call to FindNonzeroRows
fails is that it may incorrectly report all errors have been found,
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Algorithm 5: MultiplyEC(A,B,C,θ , ϵ)

Input: Matrices A ∈ Fm×ℓ , B ∈ Fℓ×n , C ∈ Fm×n , high-order
element θ ∈ F, and error bound 0 < ϵ < 1

Output: Matrix E ∈ Fm×n such that, with probability at

least 1 − ϵ , AB = C − E

1 k ← 1

2 E ← 0m×n

3 ϵ ′ ← ϵ/(4
⌈
log

2
(mn)

⌉
+ 1)

4 J ← FindNonzeroRows(V 7→ CV −A(BV ), ϵ ′)

5 while #J ≥ 1 do
6 if #FindNonzeroRows(V 7→

(VT (C − E) − (VTA)B)T , ϵ ′) > #J then
7 Transpose C and E, swap and transpose A and B,

replace J

8 r ← #J

9 A′ ← submatrix of A from rows in J

10 C ′ ← submatrix of (C − E) from rows in J

11 s ← ⌈2(k − #E)/r⌉

12 Y ← DiffEval(A′,B,C ′,θ , s)

13 f1, . . . , fr ← MultiSparseInterp(r ,n, s,θ ,Y )

14 for i ← 1, 2, . . . , r do
15 Set (Ji , e)th entry of E to c for each term cxe of fi
16 J ← FindNonzeroRows(V 7→ (C − E)V −A(BV ), ϵ ′)

17 if #J > r/2 then
18 k ← 2k

19 if k ≥ 2n#J then return C −AB

20 foreach i ∈ J do
21 Clear entries from row i of E added on this iteration

22 return E

leading to the small 1 − ϵ chance that the algorithm returns an

incorrect result. □

8 INVERSE ERROR CORRECTION
ALGORITHM

As discussed in Section 2, our algorithm for correcting errors in a

matrix inverse followsmostly the same outline as that for correcting

a matrix product, with two important changes. These are the basis

for the next two lemmas.

Lemma 8.1. For any matrices E,A ∈ Fn×n where A is invertible, a
call to FindNonzeroRows(V 7→ EAV , ϵ) correctly returns the nonzero
rows of E with probability at least 1 − ϵ .

Proof. Recall from the proof of Lemma 4.1 that the correctness

of FindNonzeroRows depends on applying a matrix V ∈ Fn×ℓ of

random entries to the unknown matrix E.
In the current formulation, instead of applying the random ma-

trix V directly to E, instead the product AV is applied. But because

A is nonsingular, there is a 1-1 correspondence between the set

of all matrices V ∈ Fn×ℓ and matrices the set {AV | V ∈ Fn×ℓ }.
That is, applying a random matrix to EA is the same as applying a

random matrix to E itself, and therefore the same results hold. □

Algorithm 6: InverseEC(A,B,θ , ϵ)
Input: Matrices A,B ∈ Fn×n , high-order element θ ∈ F, and

error bound 0 < ϵ < 1

Output: Matrix E ∈ Fn×n such that, with probability at

least 1 − ϵ , A−1 = B + E

1 k ← 1

2 E ← 0n×n

3 ϵ ′ ← ϵ/(8
⌈
log

2
n
⌉
+ 1)

4 J ← FindNonzeroRows(V 7→ V − B(AV ), ϵ ′)

5 while #J ≥ 1 do
6 if #FindNonzeroRows(V 7→ V −A((B + E)V ), ϵ ′) > #J

then
7 Transpose A, B, and E, and replace J

8 r ← #J

9 A′ ← submatrix of A from columns in J

10 J ′ ← set of r linearly independent rows in A′

according to Lemma 8.2

11 I ′,A′′ ← submatrices of I ,A from the rows chosen in

J ′

12 X−1 ← inverse of submatrix of A′ according to

Lemma 8.2

13 s ← ⌈2(k − #E)/r⌉

14 Y ← DiffEval(A′′,B, I ′,θ , s)

15 Y ′ ← X−1Y

16 f1, . . . , fr ← MultiSparseInterp(r ,n, s,θ ,Y ′)

17 for i ← 1, 2, . . . , r do
18 Set (Ji , e)th entry of E to c for each term cxe of fi
19 J ← FindNonzeroRows(V 7→ V − (B + E)(AV ), ϵ ′)

20 if #J > r/2 then
21 k ← 2k

22 if k ≥ 2n#J then return A−1 − B

23 foreach i ∈ J do
24 Clear entries from row i of E added on this iteration

25 return E

Lemma 8.2. Given any rank-r matrix A ∈ Fn×r , it is possible to
compute a matrix X ∈ Fr×r formed from a subset of the rows of A,
and its inverse X−1, using Õ(#A + rω ) field operations.

Proof. This is a direct consequence of [11, Theorem 2.11], along

with the classic algorithm of [9] for fast matrix inversion. Alterna-

tively, one could use the approach of [34] to compute the lexico-

graphically minimal set of linearly independent rows in A, as well
as a representation of the inverse, in the same running time. □

The resulting algorithm for matrix inversion with errors is pre-

sented in Algorithm 6 InverseEC.

Theorem 8.3. Algorithm 6 InverseEC finds all errors in B with
probability at least 1 − ϵ , and always uses

Õ
(⌈
log

#F
1

ϵ
⌉
t + nk/min(r , kr )

3−ω + rω
)
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field operations, where k is the actual number of errors in the given
product C . Otherwise, it uses Õ(nω ) field operations and may return
an incorrect result.

Proof. In this algorithm, we make use of two different formulas

for E:

EA = I − BA (1)

AE = I −AB (2)

The first formula (1) is used to determine the nonzero rows of E
on Lines 4 and 19, and the second formula (2) is used to evaluate

the rows of XE on Line 14.

Themain difference in this algorithm compared to MultiplyEC is
the need to find r nonzero rows ofA′ to constitute the matrixX and

compute its inverse X−1. According to Lemma 8.2 these both cost

Õ(rω ), which gives the additional term in the complexity statement.

Note that this also eliminates the utility of sparse multiplication in

all cases, simplifying the complexity statement somewhat compared

to that of MultiplyEC.
The rest of the proof is identical to that of Theorem 7.1. □
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