Ordering infinities

Joris van der Hoeven, CNRS, École polytechnique

Based on joint work with M. Aschenbrenner, L. van den Dries, V. Bagayoko, E. Kaplan

August 27, 2020

In honour of the 75th birthday of Maurice Pouzet

2/30

Geory Cantor

Cardinal numberf

Cardinal numbers

Ordinal numbers

0, 1, 2, ...

Cardinal numbers

Ordinal numbers

0,1,2,...,*ω*

Cardinal numbers

Ordinal numbers

 $0, 1, 2, \dots, \omega, \omega + 1, \dots$

Cardinal numbers

Ordinal numbers

 $0, 1, 2, \dots, \omega, \omega + 1, \dots, \omega \cdot 2, \omega \cdot 2 + 1, \dots$

Cardinal numbers

Ordinal numbers

 $0, 1, 2, ..., \omega, \omega + 1, ..., \omega \cdot 2, \omega \cdot 2 + 1, ..., \omega^2$

- Cardinal numbers
- Ordinal numberf

$$0, 1, 2, \dots, \omega, \omega + 1, \dots, \omega \cdot 2, \omega \cdot 2 + 1, \dots, \omega^2, \dots, \omega^3$$

- Cardinal numbers
- Ordinal numbers

 $0, 1, 2, \dots, \omega, \omega + 1, \dots, \omega \cdot 2, \omega \cdot 2 + 1, \dots, \omega^2, \dots, \omega^3, \dots, \omega^{\omega}$

- Cardinal numbers
- Ordinal numberf

 $0, 1, 2, ..., \omega, \omega + 1, ..., \omega \cdot 2, \omega \cdot 2 + 1, ..., \omega^2, ..., \omega^3, ..., \omega^{\omega}, ..., \aleph_1,$

- Cardinal numbers
- Ordinal numbers

$$0, 1, 2, ..., \omega, \omega + 1, ..., \omega \cdot 2, \omega \cdot 2 + 1, ..., \omega^2, ..., \omega^3, ..., \omega^{\omega}, ..., \aleph_1,$$

Cantor normal form

$$\omega^{\omega^{\omega+2}\cdot 3+\omega^8\cdot 7+\omega\cdot 3+2}\cdot 9+\omega^{\omega^{\omega+1}}\cdot 3+\omega^{\omega\cdot 7}\cdot 5+\omega^8+\omega^2\cdot 111+2020$$

Paul du Bois=Reymond

Paul du Bois=Reymond

Precursor of asymptotic calculus

$$\log x < \frac{x}{2} < \frac{x^2}{10}$$

$$(\chi \longrightarrow \infty)$$

Paul du Bois=Reymond

Precursor of asymptotic calculus

$$\log x \prec \frac{x}{2} \prec \frac{x^2}{10}$$

$$(\chi \longrightarrow \infty)$$

Diagonal argument

$$\exists f, \quad x < e^x < e^{e^x} < e^{e^{e^x}} < \dots < f$$

Introduction

Three intimately related topics... (surreal) Numbers **Transseries** Germs (in HARDY fields)

4/30

Introduction

I VIIIIV VIU

Transseries

Germs (in HARDY fields)

Let \mathscr{C}^1 be the ring of germs at $+\infty$ of continuously differentiable functions $(a, \infty) \to \mathbb{R} \ (a \in \mathbb{R}).$

We denote the germ at $+\infty$ of a function *f* also by *f*, relying on context.

Definition

A **HARDY field** is a subring of \mathscr{C}^1 which is a field that contains with each germ of a function f also the germ of its derivative f' (where f' might be defined on a smaller interval than f).

Examples. \mathbb{Q} , \mathbb{R} , $\mathbb{R}(x)$, $\mathbb{R}(x,e^x)$, $\mathbb{R}(x,e^x,\log x)$, $\mathbb{R}(x,e^{x^2},\operatorname{erf} x)$

HARDY fields capture the somewhat vague notion of functions with "**regular growth**" at infinity (BOREL, DU BOIS-REYMOND, ...):

Let *H* be a HARDY field and $f \in H$. Then

$$f \neq 0 \implies \frac{1}{f} \in H \implies \begin{cases} f(x) > 0, \text{ eventually, or} \\ f(x) < 0, \text{ eventually.} \end{cases}$$

Consequently,

• *H* carries an ordering making *H* an ordered field:

 $f > 0 \iff f(x) > 0$ eventually;

• *f* is **eventually monotonic**, and

 $\lim_{x \to +\infty} f(x) \in \mathbb{R} \cup \{\pm \infty\}.$

Transseries

(surreal) Numbers

Germs (in HARDY fields)

Transseries

Transseries

(surreal) Numbers

Germs (in HARDY fields)

Transseries

The field \mathbb{T} of transseries

$\mathbb{T} := \text{closure of } \mathbb{R} \cup \{x\} \text{ under exp, log and infinite summation}$ $e^{e^{x} + e^{x/2} + e^{x/3} + \dots} - 3e^{x^{2}} + 5(\log x)^{\pi} + 42 + x^{-1} + 2x^{-2} + 6x^{-3} + \dots + e^{-x}$

The field \mathbb{T} of transseries

 $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]] \coloneqq \text{ closure of } \mathbb{R} \cup \{x\} \text{ under exp, log and infinite summation}$ $\sum_{\mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m} = e^{e^{x} + e^{x/2} + \cdots} - 3e^{x^{2}} + 5(\log x)^{\pi} + 42 + x^{-1} + 2x^{-2} + 6x^{-3} + \cdots + e^{-x}$

x: positive infinite indeterminate f_m : coefficent m: transmonomial

supp *f*: well-based subset of \mathfrak{M}

disallow $x + \log x + \log \log x + \cdots$ and $e^{-x} + e^{-e^{x}} + e^{-e^{e^{x}}} + \cdots$

${\mathbb T}$ as an ordered differential field

- With the natural ordering of transseries (via the leading coefficient), \mathbb{T} is a *real closed ordered field* extension of \mathbb{R} .
- Each $f \in \mathbb{T}$ can be *differentiated* term by term (with x' = 1):

$$\left(\sum_{n=0}^{\infty} n! \frac{\mathrm{e}^{x}}{x^{n}}\right)' = \sum_{n=0}^{\infty} n! \left(\frac{\mathrm{e}^{x}}{x^{n}}\right)' = \sum_{n=0}^{\infty} n! \left(\frac{\mathrm{e}^{x}}{x^{n}} - n \frac{\mathrm{e}^{x}}{x^{n+1}}\right) = \frac{\mathrm{e}^{x}}{x}$$

• This yields a *derivation* $f \mapsto f'$ on the field \mathbb{T} :

$$(f+g)' = f'+g', \qquad (f \cdot g)' = f' \cdot g + f \cdot g'$$

Its constant field is $\{f \in \mathbb{T}: f' = 0\} = \mathbb{R}$.

• Given $f,g \in \mathbb{T}$, the equation y' + fy = g admits a solution $y \neq 0$ in \mathbb{T} .

(surreal) Numbers

Germs (in HARDY fields)

Transseries

(surreal) Numbers

Transseries

Germs

12/30

Class On of ordinal numbers

For any set *L* of ordinal numbers, there is a smallest ordinal number $\alpha > L$

Class On of ordinal numbers

For any set *L* of ordinal numbers, there is a smallest ordinal number $\alpha > L$

Class No of surreal numbers (CONWAY)

For any sets L < R of surreal numbers, there is a **simplest** surreal number $\{L | R\}$ such that $L < \{L | R\} < R$.

Class On of ordinal numbers

For any set *L* of ordinal numbers, there is a smallest ordinal number $\alpha > L$

Class No of surreal numbers (CONWAY)

For any sets L < R of surreal numbers, there is a **simplest** surreal number $\{L | R\}$ such that $L < \{L | R\} < R$.

We have **On** \subseteq **No** by taking *R* = \emptyset :

$$0 = \{|\}$$

$$1 = \{0|\}$$

$$2 = \{0, 1|\}$$

$$\omega = \{0, 1, 2, ...|\}$$

13/30

 $0 = \{|\}$

 $0 = \{|\}$ -1 = $\{|0\}$ 1 = $\{0|\}$ 13/30

Surreal numbers

Arithmetic operations

Definition

If
$$x = \{x^{L} | x^{R}\}$$
 and $y = \{y^{L} | y^{R}\}$, then
 $x + y := \{x^{L} + y, x + y^{L} | x^{R} + y, x + y^{R}\}$
(Idea: we want $x^{L} + y < x + y < x^{R} + y$, ...)

Arithmetic operations

Definition

If
$$x = \{x^{L} | x^{R}\}$$
 and $y = \{y^{L} | y^{R}\}$, then
 $x + y := \{x^{L} + y, x + y^{L} | x^{R} + y, x + y^{R}\}$
(Idea: we want $x^{L} + y < x + y < x^{R} + y, ...)$

Definition

If $x = \{x^{L} | x^{R}\}$ *and* $y = \{y^{L} | y^{R}\}$ *, then* $xy := \{\underline{x}y + x\underline{y} - \underline{x}\underline{y}, \overline{x}y + x\overline{y} - \overline{x}\overline{y} | \underline{x}y + x\overline{y} - \underline{x}\overline{y}, \overline{x}y + x\underline{y} - \overline{x}\underline{y}\}$ *, where* $x' \in x_{L}, x'' \in x_{R}, y' \in y_{L}, y'' \in y_{R}$

Arithmetic operations

Definition

If
$$x = \{x^{L} | x^{R}\}$$
 and $y = \{y^{L} | y^{R}\}$, then
 $x + y := \{x^{L} + y, x + y^{L} | x^{R} + y, x + y^{R}\}$
(Idea: we want $x^{L} + y < x + y < x^{R} + y, ...)$

Definition

If $x = \{x^{L} | x^{R}\}$ *and* $y = \{y^{L} | y^{R}\}$ *, then* $xy := \{xy + xy - xy, \bar{x}y + x\bar{y} - \bar{x}\bar{y} | xy + x\bar{y} - x\bar{y}, \bar{x}y + xy - \bar{x}y\}$, *where* $x' \in x_{L}, x'' \in x_{R}, y' \in y_{L}, y'' \in y_{R}$

Theorem (CONWAY)

No is a real closed field.

Exponentiation and differentiation

- In the 1980s, GONSHOR (based on ideas of KRUSKAL) defined an exponential function exp: $No \rightarrow No^{>0}$ that extends $x \mapsto e^x$ on \mathbb{R} .
- In 2006, BERARDUCCI and MANTOVA (using ideas of VDH and SCHMELING) defined a derivation ∂_{BM} on **No** with

ker $\partial_{BM} = \mathbb{R}$, $\partial_{BM}(\omega) = 1$, $\partial_{BM}(\exp(f)) = \partial_{BM}(f) \cdot \exp(f)$ for $f \in \mathbf{No}$.

In a certain technical sense, it is the simplest such derivation that satisfies some natural further conditions.

• The BM-derivation on **No** behaves in many ways like the derivation on \mathbb{T} , with $\omega > \mathbb{R}$ in the role of $x > \mathbb{R}$. For instance, $\partial_{BM}(\log \omega) = \frac{1}{\omega}$.

(surreal) Numbers

Germs (in HARDY fields)

Transseries

(surreal) Numbers

H-fields

Transseries

Germs (in HARDY fields)

y

Asymptotic relations

Let *K* be an ordered differential field with constant field

 $C = \{f \in K : f' = 0\}.$

We define

$$f \leq g :\iff |f| \leq c|g|$$
 for some $c \in C^{>0}$ (f is dominated by g) $f < g :\iff |f| \leq c|g|$ for all $c \in C^{>0}$ (f is negligible w.r.t. g) $f = g :\iff f \leq g \leq f$ (f is asymptotic to g) $f \sim g :\iff f - g < g$ (f is equivalent to g)

Example. In $\mathbb{T}: 0 < e^{-x} < x^{-10} < 1 \approx 100 < \log x < x^{1/10} < e^x \sim e^x + x < e^{e^x}$

H-fields

Definition

We call K an **H-field** if **H1.** $f > C \implies f' > 0;$ **H2.** $f \approx 1 \implies f \sim c$ for some $c \in C$.

Examples. HARDY fields containing \mathbb{R} ; ordered differential subfields of \mathbb{T} or **No** that contain \mathbb{R} .

 ${\mathbb T}$ admits further elementary properties in addition to being an H-field. It

- has **small derivation**, that is, $f < 1 \Longrightarrow f' < 1$; and
- is **LIOUVILLE closed**, that is, it is real closed and for all f, g, there is some $y \neq 0$ with y' + fy = g.

One of our main results

We view \mathbb{T} model-theoretically as a structure with the primitives

0, 1, +, ×, ∂ (derivation), \leq (ordering).

Theorem (Ann. of Math. Stud. vol. 195 + afterthought)

The elementary theory of \mathbb{T} *is completely axiomatized by:*

1 T *is a* LIOUVILLE *closed H*-*field with small derivation;*

2 \mathbb{T} satisfies the intermediate value property for differential polynomials: Given $P \in \mathbb{T}[Y, Y', ..., Y^{(r)}]$ and u < v in \mathbb{T} with P(u) P(v) < 0, there exists $a y \in \mathbb{T}$ with u < y < v and P(y) = 0

In particular: the theory of \mathbb{T} *is decidable.*

We also prove a quantifier elimination result for $\mathbb T$ in a natural expansion of the above language.

H-field elements as germs

(surreal) Numbers

H-fields

Transseries

Germs (in HARDY fields)

H-field elements as germs

(surreal) Numbers

H-fields

Transseries

Germs (in HARDY fields)

Closure properties of HARDY fields

Theorem (HARDY 1910, BOURBAKI 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Closure properties of HARDY fields

Theorem (HARDY 1910, BOURBAKI 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Conjecture

Let H be a maximal HARDY *field. Then*

- *▲ H* satisfies the differential intermediate value property.
- **B** For countable subsets L < R of H, there exists an $h \in H$ with L < h < R.

Closure properties of HARDY fields

Theorem (HARDY 1910, BOURBAKI 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Conjecture

Let *H* be a maximal HARDY field. Then

- *▲ H* satisfies the differential intermediate value property.
- **B** For countable subsets L < R of H, there exists an $h \in H$ with L < h < R.

Corollary

- *H* is elementarily equivalent to \mathbb{T} as an ordered differential field.
- **B** Under CH, all maximal HARDY fields are isomorphic.

H-field elements as surreal numbers

(surreal) Numbers

H-fields

Transseries

Germs (in HARDY fields)

H-field elements as surreal numbers

Embedding H-fields into the surreals

Theorem (JEMS 2019)

Every H-field with small derivation and constant field \mathbb{R} can be embedded as an ordered differential field into **No**.

Embedding H-fields into the surreals

23/30

Theorem (JEMS 2019)

Every H-field with small derivation and constant field \mathbb{R} can be embedded as an ordered differential field into **No**.

Theorem (JEMS 2019)

Let κ *be an uncountable cardinal. The field* **No**(κ) *of surreal numbers of length* $<\kappa$ *is an elementary submodel of* **No***.*

Embedding H-fields into the surreals

Theorem (JEMS 2019)

Every H-field with small derivation and constant field \mathbb{R} can be embedded as an ordered differential field into **No**.

Theorem (JEMS 2019)

Let κ *be an uncountable cardinal. The field* **No**(κ) *of surreal numbers of length* $<\kappa$ *is an elementary submodel of* **No**.

Corollary in progress

Under CH all maximal HARDY fields are isomorphic to $No(\omega_1)$.

H-field elements as transseries

(surreal) Numbers

H-fields

Transseries

Germs (in HARDY fields)

H-field elements as transseries

H-field elements as transseries

(surreal) Numbers

H-fields

Germs (in HARDY fields) Transseries

Definition (VAN DER HOEVEN 2000, SCHMELING 2001)

A field $\mathbf{T} = \mathbb{R}[[\mathfrak{M}]]$ with $\log: \mathbf{T}^{>} \longrightarrow \mathbf{T}$ is a field of transseries if ...

A *transserial derivation* on **T** is a derivation ∂ : **T** \rightarrow **T** such that ...

Surreal numbers as transseries

A field $\mathbf{T} = \mathbb{R}[[\mathfrak{M}]]$ with $\log: \mathbf{T}^{>} \longrightarrow \mathbf{T}$ is a field of transseries if ...

A transserial derivation on **T** *is a derivation* ∂ : **T** \rightarrow **T** *such that* ...

Theorem (BERARDUCCI–MANTOVA, 2015)

No *is a field of transseries and* ∂_{BM} *is a transserial derivation.*

A field $\mathbf{T} = \mathbb{R}[[\mathfrak{M}]]$ with $\log: \mathbf{T}^{>} \longrightarrow \mathbf{T}$ is a field of transseries if ...

A *transserial derivation* on **T** is a derivation ∂ : **T** \rightarrow **T** such that ...

Theorem (BERARDUCCI–MANTOVA, 2015)

No *is a field of transseries and* ∂_{BM} *is a transserial derivation.*

Corollary

Any H-field with constant field \mathbb{R} can be embedded in a field of transseries with a transserial derivation.

What next?

(surreal) Numbers

H-fields

Transseries

Germs (in HARDY fields)

What next?

(surreal) Numbers

beyond H-fields Transseries

Germs (in HARDY fields)

What next?

(surreal) Numbers

beyond H-fields

Transseries

Germs (in HARDY fields)

Transseries not completely closed...

Iterated exponentials and logarithms

 $\exp_{\omega}(x+1) = \exp \exp_{\omega} x$ $\exp_{\omega^2}(x+1) = \exp_{\omega} \exp_{\omega^2} x$

 \rightarrow stronger growth that $e^x, e^{e^x}, ..., exp_\omega x, e^{exp_\omega x}, ..., exp_\omega exp_\omega x, ...$

Transseries not completely closed...

Iterated exponentials and logarithms

 $\exp_{\omega}(x+1) = \exp \exp_{\omega} x$ $\exp_{\omega^2}(x+1) = \exp_{\omega} \exp_{\omega^2} x$

 \rightarrow stronger growth that $e^x, e^{e^x}, ..., exp_\omega x, e^{exp_\omega x}, ..., exp_\omega exp_\omega x, ...$

Functional equations

$$f(x) = \sqrt{x} + e^{f(\log x)} = \sqrt{x} + e^{\sqrt{\log x} + e^{\sqrt{\log \log x} + x^2}}$$

Hyperseries

Hyperlogarithms and hyperexponentials

 $\exp_{\omega}(x+1) = \exp \exp_{\omega} x$ $\exp_{\omega^2}(x+1) = \exp_{\omega} \exp_{\omega^2} x$ \vdots

 $\log_{\omega} \log x = \log_{\omega} x - 1$ $\log_{\omega^2} \log_{\omega} x = \log_{\omega^2} x - 1$ \vdots

Hyperseries

Hyperlogarithms and hyperexponentials

 $\exp_{\omega}(x+1) = \exp \exp_{\omega} x$ $\exp_{\omega^{2}}(x+1) = \exp_{\omega} \exp_{\omega^{2}} x$ \vdots

$$\log_{\omega} \log x = \log_{\omega} x - 1$$

$$og_{\omega^{2}} \log_{\omega} x = \log_{\omega^{2}} x - 1$$

$$\vdots$$

$$\log_{\omega} x = \int \frac{1}{x \log x \log \log x \cdots}$$

$$\log_{\alpha} x = \int \prod_{\beta < \alpha} \frac{1}{\log_{\beta} x}$$

Hyperseries

Hyperlogarithms and hyperexponentials

$$exp_{\omega}(x+1) = exp exp_{\omega} x$$
$$exp_{\omega^2}(x+1) = exp_{\omega} exp_{\omega^2} x$$
$$\vdots$$

$$\log_{\omega} \log x = \log_{\omega} x - 1$$

$$\log_{\omega^{2}} \log_{\omega} x = \log_{\omega^{2}} x - 1$$

$$\vdots$$

$$\log_{\omega} x = \int \frac{1}{x \log x \log \log x \cdots}$$

$$\log_{\alpha} x = \int \prod_{\beta < \alpha} \frac{1}{\log_{\beta} x}$$

Nested hyperseries

Solutions de $f(x) = \sqrt{x} + e^{f(\log x)}$:

 $f_0(x)$
Hyperseries

Hyperlogarithms and hyperexponentials

$$\exp_{\omega}(x+1) = \exp \exp_{\omega} x$$
$$\exp_{\omega^2}(x+1) = \exp_{\omega} \exp_{\omega^2} x$$
$$\vdots$$

$$\log_{\omega} \log x = \log_{\omega} x - 1$$

$$\log_{\omega^{2}} \log_{\omega} x = \log_{\omega^{2}} x - 1$$

$$\vdots$$

$$\log_{\omega} x = \int \frac{1}{x \log x \log \log x \cdots}$$

$$\log_{\alpha} x = \int \prod_{\beta < \alpha} \frac{1}{\log_{\beta} x}$$

Nested hyperseries

Solutions de $f(x) = \sqrt{x} + e^{f(\log x)}$:

 $f_{-1}(x) < f_0(x) < f_1(x)$

Hyperseries

Hyperlogarithms and hyperexponentials

 $\exp_{\omega}(x+1) = \exp \exp_{\omega} x$ $\exp_{\omega^{2}}(x+1) = \exp_{\omega} \exp_{\omega^{2}} x$ \vdots

$$\log_{\omega} \log x = \log_{\omega} x - 1$$

$$og_{\omega^{2}} \log_{\omega} x = \log_{\omega^{2}} x - 1$$

$$\vdots$$

$$\log_{\omega} x = \int \frac{1}{x \log x \log \log x \cdots}$$

$$\log_{\alpha} x = \int \prod_{\beta < \alpha} \frac{1}{\log_{\beta} x}$$

Nested hyperseries

Solutions de $f(x) = \sqrt{x} + e^{f(\log x)}$:

 $f_{-2}(x) < f_{-1}(x) < f_{-\frac{1}{2}}(x) < f_{0}(x) < f_{\frac{1}{2}}(x) < f_{1}(x) < f_{2}(x)$

Hyperseries

Hyperlogarithms and hyperexponentials

$$exp_{\omega}(x+1) = exp exp_{\omega} x$$
$$exp_{\omega^2}(x+1) = exp_{\omega} exp_{\omega^2} x$$
$$\vdots$$

$$\log_{\omega} \log x = \log_{\omega} x - 1$$

$$\log_{\omega^{2}} \log_{\omega} x = \log_{\omega^{2}} x - 1$$

$$\vdots$$

$$\log_{\omega} x = \int \frac{1}{x \log x \log \log x \cdots}$$

$$\log_{\alpha} x = \int \prod_{\beta < \alpha} \frac{1}{\log_{\beta} x}$$

Nested hyperseries

Solutions de $f(x) = \sqrt{x} + e^{f(\log x)}$: $\longrightarrow f_{No}(x)$

 $\cdots < f_{-2}(x) < \cdots < f_{-1}(x) < \cdots < f_0(x) < \cdots < f_{1/_2}(x) < \cdots < f_1(x) < \cdots < f_2(x) < \cdots$

Hyperséries ≅ Nombres surréels

29/30

Conjecture (vdH 2006)

For an appropriate definition of the class **Hy** of hyperseries, we have $No \cong Hy$ for the map $\phi: Hy \longrightarrow No; f \longmapsto f(\omega)$.

Hyperséries ≅ Nombres surréels

Conjecture (vdH 2006)

For an appropriate definition of the class **Hy** of hyperseries, we have $No \cong Hy$ for the map $\phi: Hy \longrightarrow No; f \longmapsto f(\omega)$.

Proof. By constructing a Conway bracket {|} on **Hy**.

Hyperséries ≅ Nombres surréels

Conjecture (vdH 2006)

For an appropriate definition of the class **Hy** of hyperseries, we have $No \cong Hy$ for the map $\phi: Hy \longrightarrow No; f \longmapsto f(\omega)$.

Proof. By constructing a Conway bracket {|} on **Hy**.

Examples:

$$\{x, e^{x}, e^{e^{x}}, \dots|\} = \exp_{\omega} x$$
$$\{\sqrt{x}, \sqrt{x} + e^{\sqrt{\log x}}, \dots|\dots, \sqrt{x} + e^{2\sqrt{\log x}}, 2\sqrt{x}\} = f_{0}(x)$$
$$\{x^{2}, e^{\log^{2} x}, e^{e^{\log^{2} \log x}}, \dots|\dots, e^{e^{e^{\sqrt{\log \log x}}}}, e^{e^{\sqrt{\log x}}}, e^{\sqrt{x}}\} = \exp_{\omega}\left(\log_{\omega} x + \frac{1}{2}\right)$$

Thank you!

 $\texttt{http://www.T_EX_MACS}.org$