Ordering infinities

Joris van der Hoeven, CNRS, École polytechnique

Based on joint work with M. Aschenbrenner, L. van den Dries, V. Bagayoko, E. Kaplan

August 27, 2020
In honour of the $75^{\text {th }}$ birthday of Maurice Pouzet

Ororg Cantor

Geory Cantor

Cardinal numberi

Geory Cantor

Cardinal numberi
Ordinal numberf

$$
0,1,2, \ldots
$$

Geory Cantor

Cardinal numberi
Ordinal numberf

$$
0,1,2, \ldots, \omega
$$

Georg Cantor

Cardinal numberi
Ordinal numberf

$$
0,1,2, \ldots, \omega, \omega+1, \ldots
$$

Geory Cantor

Cardinal numberi
Ordinal numberf

$$
0,1,2, \ldots, \omega, \omega+1, \ldots, \omega \cdot 2, \omega \cdot 2+1, \ldots
$$

Ororg Cantor

Cardinal number \uparrow
OrSinal number \mathfrak{j}

$$
0,1,2, \ldots, \omega, \omega+1, \ldots, \omega \cdot 2, \omega \cdot 2+1, \ldots, \omega^{2}
$$

Geory Cantor

Cardinal number \mathfrak{j}
OrSinal numberf

$$
0,1,2, \ldots, \omega, \omega+1, \ldots, \omega \cdot 2, \omega \cdot 2+1, \ldots, \omega^{2}, \ldots, \omega^{3}
$$

Ororg Cantor

Cardinal number \uparrow
OrSinal numberf

$$
0,1,2, \ldots, \omega, \omega+1, \ldots, \omega \cdot 2, \omega \cdot 2+1, \ldots, \omega^{2}, \ldots, \omega^{3}, \ldots, \omega^{\omega}
$$

Geory Cantor

Cardinal number \uparrow
OrSinal numberf

$$
0,1,2, \ldots, \omega, \omega+1, \ldots, \omega \cdot 2, \omega \cdot 2+1, \ldots, \omega^{2}, \ldots, \omega^{3}, \ldots, \omega^{\omega}, \ldots, \aleph_{1}, \ldots \ldots
$$

Ororg Cantor

Cardinal numbery
OrSinal numberf

$$
0,1,2, \ldots, \omega, \omega+1, \ldots, \omega \cdot 2, \omega \cdot 2+1, \ldots, \omega^{2}, \ldots, \omega^{3}, \ldots, \omega^{\omega}, \ldots, \aleph_{1}, \ldots \ldots
$$

Cantor normal form

$$
\omega^{\omega^{\omega+2} \cdot 3+\omega^{8} \cdot 7+\omega \cdot 3+2} \cdot 9+\omega^{\omega^{\omega+1}} \cdot 3+\omega^{\omega \cdot 7} \cdot 5+\omega^{8}+\omega^{2} \cdot 111+2020
$$

Paul du Boif $=$ Reymond

Waul du Boif $=$ Reymond

Precurfor of ainmptotic colcutuf

$$
\log x<\frac{x}{2}<\frac{x^{2}}{10} \quad(x \rightarrow \infty)
$$

Waul du Boif $=$ Reymond

Drecurior of ainmptotic colculuif

$$
\log x<\frac{x}{2}<\frac{x^{2}}{10} \quad(x \rightarrow \infty)
$$

Diagonal argument

$$
\exists f, \quad x<\mathrm{e}^{x}<\mathrm{e}^{\mathrm{e}^{x}}<\mathrm{e}^{\mathrm{e}^{x}}<\cdots<f
$$

Three intimately related topics...
(surreal)
Numbers

Transseries

Germs (in Hardy fields)

Transseries

Germs

(in Hardy
fields)

Let \mathscr{C}^{1} be the ring of germs at $+\infty$ of continuously differentiable functions $(a, \infty) \rightarrow \mathbb{R}(a \in \mathbb{R})$.

We denote the germ at $+\infty$ of a function f also by f, relying on context.

Definition

A HARDY field is a subring of \mathscr{C}^{1} which is a field that contains with each germ of a function f also the germ of its derivative f^{\prime} (where f^{\prime} might be defined on a smaller interval than f).

Examples. $\mathbb{Q}, \mathbb{R}, \mathbb{R}(x), \mathbb{R}\left(x, \mathrm{e}^{x}\right), \mathbb{R}\left(x, \mathrm{e}^{x}, \log x\right), \mathbb{R}\left(x, \mathrm{e}^{x^{2}}, \operatorname{erf} x\right)$

HARDY fields capture the somewhat vague notion of functions with "regular growth" at infinity (BOREL, DU BOIS-REYMOND, ...):
Let H be a HARDY field and $f \in H$. Then

$$
f \neq 0 \Longrightarrow \frac{1}{f} \in H \Longrightarrow\left\{\begin{array}{l}
f(x)>0, \text { eventually, or } \\
f(x)<0, \text { eventually. }
\end{array}\right.
$$

Consequently,

- H carries an ordering making H an ordered field:

$$
f>0 \Longleftrightarrow f(x)>0 \text { eventually; }
$$

- f is eventually monotonic, and

$$
\lim _{x \rightarrow+\infty} f(x) \in \mathbb{R} \cup\{ \pm \infty\} .
$$

(surreal)
 Numbers

Transseries

Germs
(in HARDY
fields)
(surreal)
Numbers

Transseries

Germs
(in Hardy
fields)
$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, log and infinite summation

$$
\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\mathrm{e}^{x / 3}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+6 x^{-3}+\cdots+\mathrm{e}^{-x}
$$

$\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, log and infinite summation
$\sum_{\mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m}=\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+6 x^{-3}+\cdots+\mathrm{e}^{-x}$
x : positive infinite indeterminate $\quad f_{\mathrm{m}}$: coefficent \mathfrak{m} : transmonomial
supp f : well-based subset of \mathfrak{M}
disallow $x+\log x+\log \log x+\cdots$ and $\mathrm{e}^{-x}+\mathrm{e}^{-\mathrm{e}^{x}}+\mathrm{e}^{-\mathrm{e}^{e^{x}}}+\cdots$

- With the natural ordering of transseries (via the leading coefficient), \mathbb{T} is a real closed ordered field extension of \mathbb{R}.
- Each $f \in \mathbb{T}$ can be differentiated term by term (with $x^{\prime}=1$):

$$
\left(\sum_{n=0}^{\infty} n!\frac{\mathrm{e}^{x}}{x^{n}}\right)^{\prime}=\sum_{n=0}^{\infty} n!\left(\frac{\mathrm{e}^{x}}{x^{n}}\right)^{\prime}=\sum_{n=0}^{\infty} n!\left(\frac{\mathrm{e}^{x}}{x^{n}}-n \frac{\mathrm{e}^{x}}{x^{n+1}}\right)=\frac{\mathrm{e}^{x}}{x}
$$

- This yields a derivation $f \mapsto f^{\prime}$ on the field \mathbb{T} :

$$
(f+g)^{\prime}=f^{\prime}+g^{\prime}, \quad(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}
$$

Its constant field is $\left\{f \in \mathbb{T}: f^{\prime}=0\right\}=\mathbb{R}$.

- Given $f, g \in \mathbb{T}$, the equation $y^{\prime}+f y=g$ admits a solution $y \neq 0$ in \mathbb{T}.

(surreal)
 Numbers

Transseries

Germs
(in HARDY
fields)

(surreal)
 Numbers

Transseries

Germs

Class On of ordinal numbers

For any set L of ordinal numbers, there is a smallest ordinal number $\alpha>L$

Class On of ordinal numbers

For any set L of ordinal numbers, there is a smallest ordinal number $\alpha>L$

Class No of surreal numbers (CONWAY)

For any sets $L<R$ of surreal numbers, there is a simplest surreal number $\{L \mid R\}$ such that $L<\{L \mid R\}<R$.

Class On of ordinal numbers

For any set L of ordinal numbers, there is a smallest ordinal number $\alpha>L$ Class No of surreal numbers (CONWAY)
For any sets $L<R$ of surreal numbers, there is a simplest surreal number $\{L \mid R\}$ such that $L<\{L \mid R\}<R$.

We have On \subseteq No by taking $R=\varnothing$:

$$
\begin{aligned}
0 & =\{\mid\} \\
1 & =\{0 \mid\} \\
2 & =\{0,1 \mid\} \\
\omega & =\{0,1,2, \ldots \mid\}
\end{aligned}
$$

Surreal numbers

$$
0=\{\mid\}
$$

Surreal numbers

Arithmetic operations

Definition

If $x=\left\{x^{L} \mid x^{R}\right\}$ and $y=\left\{y^{L} \mid y^{R}\right\}$, then

$$
x+y:=\left\{x^{L}+y, x+y^{L} \mid x^{R}+y, x+y^{R}\right\}
$$

(Idea: we want $x^{L}+y<x+y<x^{R}+y, \ldots$)

Definition

If $x=\left\{x^{L} \mid x^{R}\right\}$ and $y=\left\{y^{L} \mid y^{R}\right\}$, then

$$
x+y:=\left\{x^{L}+y, x+y^{L} \mid x^{R}+y, x+y^{R}\right\}
$$

(Idea: we want $x^{L}+y<x+y<x^{R}+y, \ldots$)

Definition

If $x=\left\{x^{L} \mid x^{R}\right\}$ and $y=\left\{y^{L} \mid y^{R}\right\}$, then

$$
x \underline{y}:=\{\underline{x} y+x \underline{y}-\underline{x} \underline{y}, \bar{x} y+x \bar{y}-\bar{x} \bar{y} \mid \underline{x} y+x \bar{y}-\underline{x} \bar{y}, \bar{x} y+x \underline{y}-\bar{x} \underline{y}\},
$$

where $x^{\prime} \in x_{L}, x^{\prime \prime} \in x_{R}, y^{\prime} \in y_{L}, y^{\prime \prime} \in y_{R}$

Definition

If $x=\left\{x^{L} \mid x^{R}\right\}$ and $y=\left\{y^{L} \mid y^{R}\right\}$, then

$$
x+y:=\left\{x^{L}+y, x+y^{L} \mid x^{R}+y, x+y^{R}\right\}
$$

(Idea: we want $x^{L}+y<x+y<x^{R}+y, \ldots$)

Definition

If $x=\left\{x^{L} \mid x^{R}\right\}$ and $y=\left\{y^{L} \mid y^{R}\right\}$, then

$$
x \underline{y}:=\{\underline{x} y+x \underline{y}-\underline{x} \underline{y}, \bar{x} y+x \bar{y}-\bar{x} \bar{y} \mid \underline{x} y+x \bar{y}-\underline{x} \bar{y}, \bar{x} y+x \underline{y}-\bar{x} \underline{y}\},
$$

where $x^{\prime} \in x_{L}, x^{\prime \prime} \in x_{R}, y^{\prime} \in y_{L}, y^{\prime \prime} \in y_{R}$

Theorem (CONWAY)

No is a real closed field.

- In the 1980s, GONSHOR (based on ideas of KRUSKAL) defined an exponential function exp: No $\rightarrow \mathbf{N o}^{>0}$ that extends $x \mapsto \mathrm{e}^{x}$ on \mathbb{R}.
- In 2006, BERARDUCCI and MANTOVA (using ideas of VDH and SCHMELING) defined a derivation $\partial_{\text {BM }}$ on No with

$$
\operatorname{ker} \partial_{\mathrm{BM}}=\mathbb{R}, \quad \partial_{\mathrm{BM}}(\omega)=1, \quad \partial_{\mathrm{BM}}(\exp (f))=\partial_{\mathrm{BM}}(f) \cdot \exp (f) \text { for } f \in \text { No. }
$$

In a certain technical sense, it is the simplest such derivation that satisfies some natural further conditions.

- The BM-derivation on No behaves in many ways like the derivation on \mathbb{T}, with $\omega>\mathbb{R}$ in the role of $x>\mathbb{R}$. For instance, $\partial_{\mathrm{BM}}(\log \omega)=\frac{1}{\omega}$.

(surreal)
Numbers

Transseries

Germs (in HARDY fields)

Towards a unified theory

(surreal)
Numbers

H-fields
 Transseries

Germs
(in HARDY
fields)

Towards a unified theory

Asymptotic relations

Let K be an ordered differential field with constant field

$$
C=\left\{f \in K: f^{\prime}=0\right\} .
$$

We define

$$
\begin{aligned}
& f \leqslant g: \Longleftrightarrow|f| \leqslant c|g| \text { for some } c \in C^{>0} \\
& f<g: \Longleftrightarrow|f| \leqslant c|g| \text { for all } c \in C^{>0} \\
& f=g: \Longleftrightarrow f \preccurlyeq g \preccurlyeq f \\
& f \sim g: \Longleftrightarrow f-g \prec g
\end{aligned}
$$

(f is dominated by g)
(f is negligible w.r.t. g)
(f is asymptotic to g)
(f is equivalent to g)

Example. In $\mathbb{T}: 0<\mathrm{e}^{-x}<x^{-10}<1 \asymp 100<\log x<x^{1 / 10}<\mathrm{e}^{x} \sim \mathrm{e}^{x}+x<$ $\mathrm{e}^{\mathrm{e}^{x}}$

Definition

We call K an \mathbf{H}-field if H1. $f>C \Longrightarrow f^{\prime}>0$; H2. $f=1 \Longrightarrow f \sim c$ for some $c \in C$.

Examples. HARDY fields containing \mathbb{R}; ordered differential subfields of \mathbb{T} or No that contain \mathbb{R}.
\mathbb{T} admits further elementary properties in addition to being an H -field. It

- has small derivation, that is, $f<1 \Longrightarrow f^{\prime}<1$; and
- is Liouville closed, that is, it is real closed and for all f, g, there is some $y \neq 0$ with $y^{\prime}+f y=g$.

We view \mathbb{T} model-theoretically as a structure with the primitives

$$
0,1, \quad+, \quad \times, \partial \text { (derivation), } \leqslant \text { (ordering) }
$$

Theorem (Ann. of Math. Stud. vol. 195 + afterthought)

The elementary theory of \mathbb{T} is completely axiomatized by:
(1) \mathbb{T} is a LIOUVILLE closed H-field with small derivation;
(2) \mathbb{T} satisfies the intermediate value property for differential polynomials: Given $P \in \mathbb{T}\left[Y, Y^{\prime}, \ldots, Y^{(r)}\right]$ and $u<v$ in \mathbb{T} with $P(u) P(v)<0$, there exists $a y \in \mathbb{T}$ with $u<y<v$ and $P(y)=0$
In particular: the theory of \mathbb{T} is decidable.
We also prove a quantifier elimination result for \mathbb{T} in a natural expansion of the above language.

H-field elements as germs

(surreal)
Numbers

H-fields
 Transseries

Germs
(in HARDY
fields)

(surreal)
Numbers

H-fields

Transseries

Germs (in Hardy fields)

Theorem (Hardy 1910, BoURbaKi 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Theorem (Hardy 1910, BOURBAKI 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Conjecture

Let H be a maximal HARDY field. Then
A H satisfies the differential intermediate value property.
(B) For countable subsets $L<R$ of H, there exists an $h \in H$ with $L<h<R$.

Theorem (Hardy 1910, BOURBAKI 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Conjecture

Let H be a maximal HARDY field. Then
A H satisfies the differential intermediate value property.
(B) For countable subsets $L<R$ of H, there exists an $h \in H$ with $L<h<R$.

Corollary

(4) H is elementarily equivalent to \mathbb{T} as an ordered differential field.

B Under CH, all maximal HARDY fields are isomorphic.

(surreal)
Numbers

H-fields
 Transseries

Germs
(in HARDY
fields)

(surreal)
Numbers

H-fields

Transseries

Germs
(in Hardy
fields)

Theorem (JEMS 2019)

Every H-field with small derivation and constant field \mathbb{R} can be embedded as an ordered differential field into No.

Theorem (JEMS 2019)

Every H-field with small derivation and constant field \mathbb{R} can be embedded as an ordered differential field into No.

Theorem (JEMS 2019)

Let κ be an uncountable cardinal. The field $\mathbf{N o}(\kappa)$ of surreal numbers of length $<\kappa$ is an elementary submodel of No.

Theorem (JEMS 2019)

Every H-field with small derivation and constant field \mathbb{R} can be embedded as an ordered differential field into No.

Theorem (JEMS 2019)

Let κ be an uncountable cardinal. The field $\mathbf{N o}(\kappa)$ of surreal numbers of length $<\kappa$ is an elementary submodel of No.

Corollary in progress

Under CH all maximal HARDY fields are isomorphic to No $\left(\omega_{1}\right)$.

(surreal)
Numbers

H-fields
 Transseries

Germs
(in HARDY
fields)

(surreal)
Numbers

H-fields

Transseries
Germs
(in Hardy
fields)

H-fields

Transseries
Germs
(in HARDY
fields)

Definition (VAN DER HOEVEN 2000, SCHMELING 2001)
A field $\mathrm{T}=\mathbb{R}[[\mathfrak{M}]]$ with log: $\mathrm{T}^{>} \longrightarrow \mathrm{T}$ is a field of transseries if \ldots
A transserial derivation on T is a derivation $\partial: \mathrm{T} \rightarrow \mathrm{T}$ such that \ldots

Definition (VAN DER HOEVEN 2000, SCHMELING 2001)

 A field $\mathrm{T}=\mathbb{R}[[\mathfrak{M}]]$ with log: $\mathrm{T}^{>} \longrightarrow \mathrm{T}$ is a field of transseries if \ldots A transserial derivation on T is a derivation $\partial: \mathrm{T} \rightarrow \mathrm{T}$ such that \ldots
Theorem (BERARDUCCI-MANTOVA, 2015)

No is a field of transseries and ∂_{BM} is a transserial derivation.

Definition (VAN DER HOEVEN 2000, SCHMELING 2001)

A field $\mathrm{T}=\mathbb{R}[[\mathfrak{M}]]$ with log: $\mathrm{T}^{>} \longrightarrow \mathrm{T}$ is a field of transseries if \ldots
A transserial derivation on T is a derivation $\partial: \mathrm{T} \rightarrow \mathrm{T}$ such that \ldots

Theorem (BERARDUCCI-MANTOVA, 2015)

No is a field of transseries and ∂_{BM} is a transserial derivation.

Corollary

Any H-field with constant field \mathbb{R} can be embedded in a field of transseries with a transserial derivation.

H-fields
 Transseries

Germs
(in HARDY
fields)

(surreal)
 Numbers

beyond H-fields

Transseries

Germs
(in HARDY
fields)
(surreal)
Numbers
beyond H -fields

Transseries

Germs
(in Hardy
fields)

Transseries not completely closed...

Iterated exponentials and logarithms

$$
\begin{aligned}
\exp _{\omega}(x+1) & =\exp \exp _{\omega} x \\
\exp _{\omega^{2}}(x+1) & =\exp _{\omega} \exp _{\omega^{2}} x
\end{aligned}
$$

\rightarrow stronger growth that $\mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots, \exp _{\omega} x, \mathrm{e}^{\exp \omega x}, \ldots, \exp _{\omega} \exp _{\omega} x, \ldots$

Transseries not completely closed...

Iterated exponentials and logarithms

$$
\begin{aligned}
\exp _{\omega}(x+1) & =\exp \exp _{\omega} x \\
\exp _{\omega^{2}}(x+1) & =\exp _{\omega} \exp _{\omega^{2}} x
\end{aligned}
$$

\rightarrow stronger growth that $\mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots, \exp _{\omega} x, \mathrm{e}^{\exp \omega x}, \ldots, \exp _{\omega} \exp _{\omega} x, \ldots$
Functional equations

$$
f(x)=\sqrt{x}+\mathrm{e}^{f(\log x)}=\sqrt{x}+\mathrm{e}^{\sqrt{\log x}+\mathrm{e}^{\sqrt{\log \log x+}}}
$$

Hyperseries

Hyperlogarithms and hyperexponentials

$$
\begin{aligned}
\exp _{\omega}(x+1) & =\exp \exp _{\omega} x \\
\exp _{\omega^{2}}(x+1) & =\exp _{\omega} \exp _{\omega^{2}} x
\end{aligned}
$$

$$
\begin{aligned}
\log _{\omega} \log x & =\log _{\omega} x-1 \\
\log _{\omega^{2}} \log _{\omega} x & =\log _{\omega^{2}} x-1
\end{aligned}
$$

Hyperseries

Hyperlogarithms and hyperexponentials

$$
\begin{aligned}
\exp _{\omega}(x+1) & =\exp \exp _{\omega} x \\
\exp _{\omega^{2}}(x+1) & =\exp _{\omega} \exp _{\omega^{2}} x
\end{aligned}
$$

$$
\begin{aligned}
\log _{\omega} \log x & =\log _{\omega} x-1 \\
\log _{\omega^{2}} \log _{\omega} x & =\log _{\omega^{2}} x-1
\end{aligned}
$$

$$
\begin{aligned}
\log _{\omega} x & =\int \frac{1}{x \log x \log \log x \cdots} \\
\log _{\alpha} x & =\int \prod_{\beta<\alpha} \frac{1}{\log _{\beta} x}
\end{aligned}
$$

Hyperseries

Hyperlogarithms and hyperexponentials

$$
\begin{aligned}
\exp _{\omega}(x+1) & =\exp \exp _{\omega} x \\
\exp _{\omega^{2}}(x+1) & =\exp _{\omega} \exp _{\omega^{2}} x
\end{aligned}
$$

$$
\begin{aligned}
\log _{\omega} \log x & =\log _{\omega} x-1 \\
\log _{\omega^{2}} \log _{\omega} x & =\log _{\omega^{2}} x-1
\end{aligned}
$$

$$
\log _{\omega} x=\int \frac{1}{x \log x \log \log x \cdots}
$$

$$
\log _{\alpha} x=\int \prod_{\beta<\alpha} \frac{1}{\log _{\beta} x}
$$

Nested hyperseries

Solutions de $f(x)=\sqrt{x}+\mathrm{e}^{f(\log x)}$:

$$
f_{0}(x)
$$

Hyperseries

Hyperlogarithms and hyperexponentials

$$
\begin{aligned}
\exp _{\omega}(x+1) & =\exp \exp _{\omega} x \\
\exp _{\omega^{2}}(x+1) & =\exp _{\omega} \exp _{\omega^{2}} x
\end{aligned}
$$

$$
\begin{aligned}
\log _{\omega} \log x & =\log _{\omega} x-1 \\
\log _{\omega^{2}} \log _{\omega} x & =\log _{\omega^{2}} x-1 \\
& \vdots \\
\log _{\omega} x & =\int \frac{1}{x \log x \log \log x \cdots} \\
\log _{\alpha} x & =\int \prod_{\beta<\alpha} \frac{1}{\log _{\beta} x}
\end{aligned}
$$

Nested hyperseries
Solutions de $f(x)=\sqrt{x}+\mathrm{e}^{f(\log x)}$:

$$
f_{-1}(x)<f_{0}(x)<f_{1}(x)
$$

Hyperseries

Hyperlogarithms and hyperexponentials

$$
\begin{aligned}
\exp _{\omega}(x+1) & =\exp \exp _{\omega} x \\
\exp _{\omega^{2}}(x+1) & =\exp _{\omega} \exp _{\omega^{2}} x
\end{aligned}
$$

$$
\log _{\omega} \log x=\log _{\omega} x-1
$$

$$
\log _{\omega^{2}} \log _{\omega} x=\log _{\omega^{2}} x-1
$$

$$
\log _{\omega} x=\int \frac{1}{x \log x \log \log x \cdots}
$$

$$
\log _{\alpha} x=\int \prod_{\beta<\alpha} \frac{1}{\log _{\beta} x}
$$

Nested hyperseries
Solutions de $f(x)=\sqrt{x}+\mathrm{e}^{f(\log x)}$:

$$
f_{-2}(x)<f_{-1}(x)<f_{-1 / 2}(x)<f_{0}(x)<f_{1 / 2}(x)<f_{1}(x)<f_{2}(x)
$$

Hyperseries

Hyperlogarithms and hyperexponentials

$$
\begin{aligned}
\exp _{\omega}(x+1) & =\exp \exp _{\omega} x \\
\exp _{\omega^{2}}(x+1) & =\exp _{\omega} \exp _{\omega^{2}} x
\end{aligned}
$$

$$
\begin{aligned}
\log _{\omega} \log x & =\log _{\omega} x-1 \\
\log _{\omega^{2}} \log _{\omega} x & =\log _{\omega^{2}} x-1 \\
& \vdots \\
\log _{\omega} x & =\int \frac{1}{x \log x \log \log x \cdots} \\
\log _{\alpha} x & =\int \prod_{\beta<\alpha} \frac{1}{\log _{\beta} x}
\end{aligned}
$$

Nested hyperseries
Solutions de $f(x)=\sqrt{x}+\mathrm{e}^{f(\log x)}: \quad \longrightarrow \quad f_{\text {No }}(x)$

$$
\cdots<f_{-2}(x)<\cdots<f_{-1}(x)<\cdots<f_{0}(x)<\cdots<f_{1 / 2}(x)<\cdots<f_{1}(x)<\cdots<f_{2}(x)<\cdots
$$

Conjecture (vdH 2006)

For an appropriate definition of the class Hy of hyperseries, we have $\mathbf{N o} \cong \mathbf{H y}$ for the map $\phi: \mathbf{H y} \longrightarrow$ No; $f \longmapsto f(\omega)$.

Conjecture (vdH 2006)
For an appropriate definition of the class Hy of hyperseries, we have No $\cong \mathrm{Hy}$ for the map $\phi: \mathbf{H y} \longrightarrow$ No; $f \longmapsto f(\omega)$.

Proof. By constructing a Conway bracket $\{\mid\}$ on Hy.

Conjecture (vdH 2006)

For an appropriate definition of the class Hy of hyperseries, we have $\mathbf{N o} \cong \mathbf{H y}$ for the map $\phi: \mathbf{H y} \longrightarrow$ No; $f \longmapsto f(\omega)$.

Proof. By constructing a Conway bracket $\{\mid\}$ on Hy.

Examples:

$$
\begin{aligned}
\left\{x, \mathrm{e}^{x}, \mathrm{e}^{x}, \ldots \mid\right\} & =\exp _{\omega} x \\
\left\{\sqrt{x}, \sqrt{x}+\mathrm{e}^{\sqrt{\log x}}, \ldots \mid \ldots, \sqrt{x}+\mathrm{e}^{2 \sqrt{\log x}}, 2 \sqrt{x}\right\} & =f_{0}(x) \\
\left\{x^{2}, \mathrm{e}^{\log ^{2} x}, \mathrm{e}^{\mathrm{e}^{\log 2 \log x}}, \ldots \mid \ldots, \mathrm{e}^{\mathrm{e}^{\sqrt{\log \log x}}}, \mathrm{e}^{\mathrm{e}^{\sqrt{\log x}}}, \mathrm{e}^{\sqrt{x}}\right\} & =\exp _{\omega}\left(\log _{\omega} x+\frac{1}{2}\right)
\end{aligned}
$$

Thank you!

http://www. $\mathrm{T}_{\mathrm{E}} \mathrm{X}_{\text {MACS }}$.org

