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0,1, 2,…,𝜔,𝜔 +1,…,𝜔 ⋅2,𝜔 ⋅2+1,…,𝜔2,…,𝜔3,…,𝜔𝜔,…,ℵ1,……

Cantor normal form

𝜔𝜔𝜔+2⋅3+𝜔8⋅7+𝜔⋅3+2 ⋅ 9+𝜔𝜔𝜔+1 ⋅ 3+𝜔𝜔⋅7 ⋅ 5+𝜔8 +𝜔2 ⋅ 111+2020
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Paul du Bois-Reymond

Precursor of asymptotic calculus

log x≺ x
2 ≺ x2

10 (x⟶∞)

Diagonal argument

∃ f , x≺ex ≺eex ≺eeex

≺⋯≺ f
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Let C 1 be the ring of germs at +∞ of continuously differentiable functions
(a,∞)→ℝ (a∈ℝ).

We denote the germ at +∞ of a function f also by f , relying on context.

A HARDY field is a subring of C 1 which is a field that contains with each germ
of a function f also the germ of its derivative f ′ (where f ′ might be defined on
a smaller interval than f).

Definition

Examples. ℚ, ℝ, ℝ(x), ℝ(x, ex), ℝ(x, ex, log x), ℝ�x, ex2, erf x�
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HARDY fields capture the somewhat vague notion of functions with
“regular growth” at infinity (BOREL, DU BOIS-REYMOND, ...):
Let H be a HARDY field and f ∈H. Then

f ≠0 ⟹ 1
f ∈H ⟹ {{{{{{{{{{{{{{{{{{{{{{{{ f (x)>0, eventually, or

f (x)<0, eventually.
Consequently,
• H carries an ordering making H an ordered field:

f >0 ⟺ f (x)>0 eventually;

• f is eventually monotonic, and

lim
x→+∞

f (x)∈ℝ∪{±∞}.
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𝕋=ℝ[[𝔐]]≔ closure of ℝ∪{x} under exp, log and infinite summation

�
𝔪

f𝔪 𝔪 = eex+ex/2+⋯ −3ex2 +5(log x)π +42+x−1 +2x−2 +6x−3 +⋯+e−x

x: positive infinite indeterminate f𝔪: coefficent 𝔪: transmonomial

supp f : well-based subset of 𝔐

disallow x+log x+log log x+⋯ and e−x +e−ex +e−eex

+⋯
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• With the natural ordering of transseries (via the leading coefficient),
𝕋 is a real closed ordered field extension of ℝ.

• Each f ∈𝕋 can be differentiated term by term (with x′=1):

(((((((((((((((((�
n=0

∞
n! ex

xn)))))))))))))))))
′

= �
n=0

∞
n!((((((((((ex

xn))))))))))′ = �
n=0

∞
n!((((((((((ex

xn −n ex

xn+1)))))))))) = ex

x

• This yields a derivation f ↦ f ′ on the field 𝕋:

( f + g)′= f ′+ g′, ( f ⋅ g)′= f ′ ⋅ g+ f ⋅ g′

Its constant field is { f ∈𝕋: f ′=0}=ℝ.
• Given f , g∈𝕋, the equation y′+ f y= g admits a solution y≠0 in 𝕋.
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Class On of ordinal numbers

For any set L of ordinal numbers, there is a smallest ordinal number 𝛼>L

Class No of surreal numbers (CONWAY)

For any sets L<R of surreal numbers, there is a simplest surreal number
{L |R} such that L<{L |R}<R.

We have On⊆No by taking R=∅:

0 = {|}
1 = {0|}
2 = {0,1|}
𝜔 = {0,1, 2,…|}
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0={|}

−1={|0}

−2={|−1,0} −1
2 ={−1|0}

1={0|}

1
2 ={0|1} 2={0,1|}
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0={|}

−1={|0}

−2={|−1,0}

−3 −1 1
2

−1
2 ={−1|0}

− 3
4 − 1

4

1={0|}

1
2 ={0|1}

1
4

3
4

2={0,1|}

1 1
2 3
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0={|}

−1={|0}

−2={|−1,0}

−3

−𝜔 ={|…,−1,0}
⋮

⋮

−1 1
2

⋮

− 1
2 ={−1|0}

−3
4

⋮

− 1
4

⋮

1={0|}

1
2 ={0|1}

1
4

1
𝜔 =�0|…, 1

2 , 1�
⋮

⋮

3
4

⋮

2={0,1|}

1 1
2

⋮

3

e
⋮

𝜔 ={0,1,…|}
⋮
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If x={xL |xR} and y={yL |yR}, then
x+y ≔ {xL +y,x+yL |xR +y,x+yR}

(Idea: we want xL +y < x+y < xR +y, …)

Definition

If x={xL |xR} and y={yL |yR}, then
xy ≔ {x

¯
y+xy

¯
−x

¯
y
¯
, x̄ y+x ȳ− x̄ ȳ | x

¯
y+x ȳ−x

¯
ȳ, x̄ y+xy

¯
− x̄ y

¯
},

where x′∈xL, x′′∈xR, y′∈yL, y′′∈yR

Definition

No is a real closed field.
Theorem (CONWAY)
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• In the 1980s, GONSHOR (based on ideas of KRUSKAL) defined an expo-
nential function exp:No→No>0 that extends x↦ex on ℝ.

• In 2006, BERARDUCCI and MANTOVA (using ideas of VDH and
SCHMELING) defined a derivation ∂BM on No with

ker ∂BM =ℝ, ∂BM(𝜔)=1, ∂BM (exp( f ))=∂BM( f ) ⋅exp( f ) for f ∈No.

In a certain technical sense, it is the simplest such derivation that satis-
fies some natural further conditions.

• The BM-derivation on No behaves in many ways like the derivation
on 𝕋, with 𝜔 >ℝ in the role of x>ℝ. For instance, ∂BM(log 𝜔)= 1

𝜔 .
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Let K be an ordered differential field with constant field

C={ f ∈K : f ′=0}.
We define

f ≼ g :⟺ | f |⩽ c |g| for some c∈C>0 ( f is dominated by g)
f ≺ g :⟺ | f |⩽ c |g| for all c∈C>0 ( f is negligible w.r.t. g)
f ≍ g :⟺ f ≼ g≼ f ( f is asymptotic to g)
f ∼ g :⟺ f − g≺ g ( f is equivalent to g)

Example. In 𝕋: 0 ≺ e−x ≺ x−10≺ 1 ≍ 100 ≺ log x ≺ x1/10 ≺ ex ∼ex+x ≺
eex
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We call K an H-field if
H1. f >C ⟹ f ′>0;
H2. f ≍1 ⟹ f ∼ c for some c∈C.

Definition

Examples. HARDY fields containing ℝ; ordered differential subfields of 𝕋
or No that contain ℝ.

𝕋 admits further elementary properties in addition to being an H-field. It
• has small derivation, that is, f ≺1⟹ f ′≺1; and
• is LIOUVILLE closed, that is, it is real closed and for all f ,g, there is some

y≠0 with y′+ f y= g.
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We view 𝕋 model-theoretically as a structure with the primitives

0, 1, +, ×, ∂ (derivation), ⩽ (ordering).

The elementary theory of 𝕋 is completely axiomatized by:

•1 𝕋 is a LIOUVILLE closed H-field with small derivation;
•2 𝕋 satisfies the intermediate value property for differential polynomials:

Given P∈𝕋[Y,Y′,…,Y(r)] and u<v in 𝕋 with P(u)P(v)<0, there exists
a y∈𝕋 with u<y<v and P(y)=0

In particular: the theory of 𝕋 is decidable.

Theorem (Ann. of Math. Stud. vol. 195 + afterthought)

We also prove a quantifier elimination result for 𝕋 in a natural expansion
of the above language.
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Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.
Theorem (HARDY 1910, BOURBAKI 1951)

Let H be a maximal HARDY field. Then

•A H satisfies the differential intermediate value property.
•B For countable subsets L<R of H, there exists an h∈H with L<h<R.

Conjecture

•A H is elementarily equivalent to 𝕋 as an ordered differential field.
•B Under CH, all maximal HARDY fields are isomorphic.

Corollary
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Every H-field with small derivation and constant field ℝ can be embedded as an
ordered differential field into No.

Theorem (JEMS 2019)

Let 𝜅 be an uncountable cardinal. The field No(𝜅) of surreal numbers of length <𝜅
is an elementary submodel of No.

Theorem (JEMS 2019)

Under CH all maximal HARDY fields are isomorphic to No(𝜔1).
Corollary in progress
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A field 𝐓=ℝ[[𝔐]] with log:𝐓> ⟶𝐓 is a field of transseries if . . .
A transserial derivation on 𝐓 is a derivation ∂:𝐓→𝐓 such that . . .

Definition (VAN DER HOEVEN 2000, SCHMELING 2001)

No is a field of transseries and ∂BM is a transserial derivation.
Theorem (BERARDUCCI–MANTOVA, 2015)

Any H-field with constant field ℝ can be embedded in a field of transseries with
a transserial derivation.

Corollary
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Iterated exponentials and logarithms

exp𝜔(x+1) = exp exp𝜔 x
exp𝜔2(x+1) = exp𝜔 exp𝜔2 x

⋯

→ stronger growth that ex, eex,…,exp𝜔 x, eexp𝜔x,…,exp𝜔 exp𝜔 x,…

Functional equations

f (x) = x√ +e f (logx) = x√ +e logx� +e loglogx� +⋰
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Hyperlogarithms and hyperexponentials

exp𝜔(x+1) = exp exp𝜔 x log𝜔 log x = log𝜔 x−1
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Hyperlogarithms and hyperexponentials

exp𝜔(x+1) = exp exp𝜔 x log𝜔 log x = log𝜔 x−1
exp𝜔2(x+1) = exp𝜔 exp𝜔2 x log𝜔2 log𝜔 x = log𝜔2 x−1

⋮ ⋮
log𝜔 x = � 1

x log x log log x⋯

log𝛼 x = � �
𝛽<𝛼

1
log𝛽 x

Nested hyperseries
Solutions de f (x)= x√ +e f (logx) : ⟶ fNo(x)

⋯< f−2(x)<⋯< f−1(x)<⋯< f0(x)<⋯< f /1 2(x)<⋯< f1(x)<⋯< f2(x)<⋯
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Hyperséries ~= Nombres surréels 29/30

For an appropriate definition of the class Hy of hyperseries, we have No≅Hy for
the map 𝜙:Hy⟶No; f ⟼ f (𝜔).

Conjecture (vdH 2006)

Proof. By constructing a Conway bracket {|} on Hy.

Examples :

{x, ex, eex,…|} = exp𝜔 x
� x√ , x√ +e logx� ,…�…, x√ +e2 logx� , 2 x√ � = f0(x)

�x2, elog2x, eelog2logx
,…�…,eee loglog x�

, ee logx�
, e x√ � = exp𝜔�log𝜔 x+ 1

2�
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