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Part I

Statement of the problem
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Input

α1,…,αn

f(α1,…,αn)
f

Output

f(x1,…,xn) = c1x1
e1,1…xn

e1,n+…+ctx1
et,1…xn

et,n
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Coefficients K
• A field from analysis such as K=C.
• A discrete field such as K=Q or a finite field K=Fq.
• Roots of unity ω of large smooth order in K?
Complexity model
• Algebraic versus bit complexity.
• Deterministic (needs bounds) versus probabilistic.
• Theoretic (asymptotic) versus practical complexity.
• Divisions in K allowed for evaluation of f ?
• Allow evaluations at points in An for extension A −−B−K ?
How sparse?
• Weakly sparse: total degrees d of the order O(log t).
• Normally sparse: total degrees d of the order tO(1).
• Super sparse: total degrees of order d with log t=o(logd).



Part II

Generalities
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Reductions

• Sparse interpolation →←→ Sparse interpolation with bounds T� t, D�d

• Sparse interpolation →←→ Approximate sparse interpolation

Roots of unity in finite fields

n is smooth ==› qn−1 is supersmooth

260−1=32 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 31 ⋅41 ⋅61 ⋅ 151 ⋅ 331 ⋅ 1321



Part III

The cyclic extension approach

(Univariate case)
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f = c1xe1+…+ctxet

Main idea

For pairwise coprime r= r1, r2,…, evaluate f at x̄ B−−−K[x]/(xr−1), which yields

f rem (xr−1) = c1xe1remr+…+ctxetremr

Match corresponding terms and reconstruct f using Chinese remaindering

Diversification

Several ways to “match corresponding terms”
Easiest approach: assume that c1,…,ct are (almost all) pairwise distinct
α is random and |K| large ==› f(αx) is diversified with high probability
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• L: number of operations needed to evaluate f

• M(n)=O♭(n logn): cost to multiply two polynomials of degree �n

• Cost of one evaluation f(x) rem (xr−1) is O(LM(r))

• Expected number of correct terms: e−t/r t

• Cost per correct term proportional to ret/r

• Optimum obtained by taking r1≈…≈ rl≈ t

Given 0 <η < 1 and a diversified polynomial f B−−−Fq[x] of degree d �D and
with t�T terms, there exists a Monte Carlo probabilistic algorithm which
computes at least (1−η) t terms of f in time

O♭(LT logD log (qT)).

Proposition (modulo heuristic hypothesis)



Part IV

The geometric progression approach

(Univariate case)
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f = c1xe1+…+ctxet B−−− Fq[x]
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For some number ω B−−−K of high multiplicative order, compute

f(ω0) = c1ω0e1+…+ctω0et
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f(ω2) = c1ω2e1+…+ctω2et

...
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f = c1xe1+…+ctxet B−−− Fq[x]

For some number ω B−−−K of high multiplicative order, compute
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�
k=0

∞

f(ωk) zk = c1
1−ωe1 z +

…+
ct

1−ωet z =
N(z)
Λ(z)
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f = c1xe1+…+ctxet B−−− Fq[x]

For some number ω B−−−K of high multiplicative order, compute

f(ω0) = c1ω0e1+…+ctω0et

f(ω1) z = c1ω1e1 z+…+ctω1et z
f(ω2) z2 = c1ω2e1 z2+…+ctω2et z2

...

�
k=0

∞

f(ωk) zk = c1
1−ωe1 z +

…+ ct
1−ωet z =

N(z)
Λ(z)

• Recover N and Λ from the first 2 t−1 evaluations
• Determine the roots ω−ei of Λ
• Compute the discrete logarithms ei of ωei w.r.t. ω
• Compute the coefficients ci using linear algebra
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• Evaluate f(ω0), f(ω1),…, f(ω2T−1) O♭(LT logq)
• Recover N and Λ

J Half-gcd O♭(T (logT)2 logq)
• Determine the roots ω−ei of Λ

J Cantor–Zassenhaus O♭(T (logT)2 (logq)2)
J Graeffe + q−1 large smooth factor O♭(T (logT)3 logq)
J Tangent-Graeffe + q−1 large smooth factor O♭(T (logT)2 logq)

• Compute the discrete logarithms ei of ωei w.r.t. ω
J Pohlig-Helmann + q−1 large smooth factor O♭(T logT logq)

• Compute the coefficients ci using linear algebra
J Transposed fast multi-point interpolation O♭(T (logT)2 logq)

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Total O((L+ (logT)3)T logq)
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Cantor–Zassenhaus (probabilistic)

Λ = (x−α1)… (x−αt) B−−− Fq[x]
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Cantor–Zassenhaus (probabilistic)

Λ = (x−α1)… (x−αt) B−−− Fq[x]

x remΛ ===============
~ (α1,…,αt) B−−− Fq[x]/(x−α1)×…×Fq[x]/(x−αt)

↓
x2 remΛ ===============

~ (α12,…,αt2) B−−− Fq[x]/(x−α1)×…×Fq[x]/(x−αt)
↓
...
↓

R := x
q−1
2 remΛ ===============

~ �α1
q−1
2 ,…,αt

q−1
2 � B−−− Fq[x]/(x−α1)×…×Fq[x]/(x−αt)
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Cantor–Zassenhaus (probabilistic)

Λ = (x−α1)… (x−αt) B−−− Fq[x]

x remΛ ===============
~ (α1,…,αt) B−−− Fq[x]/(x−α1)×…×Fq[x]/(x−αt)

↓
x2 remΛ ===============

~ (α12,…,αt2) B−−− Fq[x]/(x−α1)×…×Fq[x]/(x−αt)
↓
...
↓

R := x
q−1
2 remΛ ===============

~ �α1
q−1
2 ,…,αt

q−1
2 � B−−− Fq[x]/(x−α1)×…×Fq[x]/(x−αt)

gcd (R−1,Λ) = �
αi
q−1
2 =1

(x−αi) gcd (R+1,Λ) = �
αi
q−1
2 −1

(x−αi)
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Graeffe (deterministic)

Assume q−1=s2k, s≈ t (or even s≈ t log t)

Λ = (x−α1)… (x−αt)
↓

G2(Λ) = (x−α12)… (x−αt2)
↓
...
↓

G2k(Λ) = �x−α12
k�…�x−αt2

k�



Digression on root finding 14/22
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Assume q−1=s2k, s≈ t (or even s≈ t log t)

Λ = (x−α1)… (x−αt)
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k
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Graeffe (deterministic)

Assume q−1=s2k, s≈ t (or even s≈ t log t)

Λ = (x−α1)… (x−αt) α1,…,αt
↓ ↑
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... ...
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Complexity

FCZ(t) ˘

˘

FGr(t) = O♭(t (log t)2 (logq)2)
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Graeffe (deterministic)

Assume q−1=s2k, s≈ t (or even s≈ t log t)

Λ = (x−α1)… (x−αt) α1,…,αt
↓ ↑

G2(Λ) = (x−α12)… (x−αt2) α12,…,αt2
↓ ↑
... ...
↓ ↑

G2k(Λ) = �x−α12
k�…�x−αt2

k� →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
FFTs

α12
k
,…,αt2

k

Complexity

FCZ(t) ˘

˘

FGr(t) = O♭(t (log t)3 logq), ωr = 1, r � tO(1)
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Λ(x) = (x−α1)… (x−αt) B−−− Fq[x]
Λ̃(x) := Λ(x−ϵ) = (x− (α1+ϵ))… (x− (αt+ϵ)) B−−− (Fq[ϵ]/(ϵ2))[x]
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Fq[ϵ]/(ϵ2) = {a+bϵ :a,b B−−−Fq,ϵ2=0}

Tangent Graeffe (probabilistic)

Λ(x) = (x−α1)… (x−αt) B−−− Fq[x]
Λ̃(x) := Λ(x−ϵ) = (x− (α1+ϵ))… (x− (αt+ϵ)) B−−− (Fq[ϵ]/(ϵ2))[x]

G2k(Λ̃) = �x− (α1+ϵ)2
k�…�x− (αt+ϵ)2

k�
= �x−�α12

k
+2kα12

k−1ϵ��…�x−�αt2
k
+2kαt2

k−1ϵ��



Digression on root finding 15/22

Tangent numbers

Fq[ϵ]/(ϵ2) = {a+bϵ :a,b B−−−Fq,ϵ2=0}

Tangent Graeffe (probabilistic)

Λ(x) = (x−α1)… (x−αt) B−−− Fq[x]
Λ̃(x) := Λ(x−ϵ) = (x− (α1+ϵ))… (x− (αt+ϵ)) B−−− (Fq[ϵ]/(ϵ2))[x]

G2k(Λ̃) = �x− (α1+ϵ)2
k�…�x− (αt+ϵ)2

k�
= �x−�α12

k
+2kα12

k−1ϵ��…�x−�αt2
k
+2kαt2

k−1ϵ��

αi2
k
+2kαi2

k−1ϵ ↝ αi = 2k αi2
k

2kαi2
k−1 (single root αi2

k)
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We can compute the sparse interpolate of f in time

O♭�(L+ (logT)3)T� logD
logT�

3 log (qT)�.

Proposition (modulo suitable smoothness assumptions)

• If q<2T, then we need to replace K by Fqs for s�� logTlogq�
• Significantly smaller hidden constant in O♭

• If L� (logT)2 and D�TO(1), then use geometric progression approach
• If L< (logT)2 or D>TO(1), then use cyclic extension approach
• For n×n symbolic determinant: L=n3 and t=n!

Problems

• Can we reduce the (logT)3 factor ?
• If q is small, then can we avoid paying the extension factor s�� logTlogq� ?
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FFT-based approach

(Univariate case)
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• Computation of f rem (xr−1) In cyclic extension method:

Evaluate f over K[x]/(xr−1) →←→ Use FFT (or Frobenius FFT)

Most favorable case

• r|(q−1) and r≈T, so that xr−1= (x−1) (x−ω)… (x−ωr−1) for some ω B−−−Fq
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(f(1), f(ω),…, f(ωr−1))
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• Computation of f rem (xr−1) In cyclic extension method:
Evaluate f over K[x]/(xr−1) →←→ Use FFT (or Frobenius FFT)

Most favorable case

• r|(q−1) and r≈T, so that xr−1= (x−1) (x−ω)… (x−ωr−1) for some ω B−−−Fq
Next favorable case

• r|(qs−1) and r≈T for a small s
• xr−1 factors into polynomials of small degrees over Fq

Frobenius FFT
• If we need to evaluate f B−−−Fq[x] over Fqs with s>1, then

J f(αq)= f(α)q for all α B−−−Fqs
J Compute only one of the values f(ωi), f(ωqi),…, f(ωqs−1i) for each i
J Use inverse Frobenius FFT to recover f rem (xr−1)
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Most favorable case only.. .

• We can pick sufficiently many coprime r1,…, rl≈T

We can compute the sparse interpolation of f B−−−Fq[x] in time

O♭�(L+ logT)T� logD
logT�

2 log (qT)�

Proposition (modulo many provisos)

About constant factors

• The geometric progression method uses 2T−1 evaluations
• The FFT-based method uses T evaluations with success rate e−1
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Example for q=230, T =106, and D=1018

s1 = 1 r1 = 1549411 = 31 ⋅ 151 ⋅ 331 Λ1 ≈ 1.5 ⋅ 106

s2 = 2 r2 = 1047553 = 13 ⋅61 ⋅ 1321 Λ2 ≈ 1.6 ⋅ 1012

s3 = 3 r3 = 1701703 = 73 ⋅ 23311 Λ3 ≈ 2.8 ⋅ 1018

s4 = 3 r4 = 1186911 = 32 ⋅ 11 ⋅ 19 ⋅631 Λ4 ≈ 3.2 ⋅ 1024

s5 = 4 r5 = 1048577 = 17 ⋅61681 Λ5 ≈ 3.4 ⋅ 1030

s6 = 4 r6 = 1729175 = 52 ⋅ 7 ⋅ 41 ⋅ 241 Λ6 ≈ 5.9 ⋅ 1036

s7 = 5 r7 = 1016801 = 251 ⋅4051 Λ7 ≈ 6.0 ⋅ 1042

s8 = 5 r8 = 1082401 = 601 ⋅ 1801 Λ8 ≈ 6.5 ⋅ 1048

s9 = 5 r9 = 1108811 = 11 ⋅ 100801 Λ9 ≈ 6.6 ⋅ 1053

s10 = 6 r10 = 1134021 = 3 ⋅ 7 ⋅ 54001 Λ10 ≈ 3.6 ⋅ 1058

Λi := lcm (r1,…, ri), De ≈ 8.5 ⋅ 1048



Do good orders r exist? 21/22

Example for (prime) q=1299743, T =106, and D=1018

s1 = 1 r1 = 1299742 = 2 ⋅649871 Λ1 ≈ 1.3 ⋅ 106

s2 = 2 r2 = 1299744 = 25 ⋅ 32 ⋅ 4513 Λ2 ≈ 8.4 ⋅ 1011

s3 = 4 r3 = 1006325 = 52 ⋅ 40253 Λ3 ≈ 8.5 ⋅ 1017

s4 = 4 r4 = 1678714 = 2 ⋅ 193 ⋅4349 Λ4 ≈ 7.1 ⋅ 1023

s5 = 5 r5 = 1690111 = 701 ⋅ 2411 Λ5 ≈ 1.2 ⋅ 1030

s6 = 6 r6 = 1119937 = 7 ⋅ 13 ⋅ 31 ⋅ 397 Λ6 ≈ 1.4 ⋅ 1036

s7 = 8 r7 = 1196324 = 22 ⋅ 17 ⋅ 73 ⋅ 241 Λ7 ≈ 4.0 ⋅ 1041

s8 = 9 r8 = 1185702 = 2 ⋅3 ⋅ 72 ⋅ 37 ⋅ 109 Λ8 ≈ 1.1 ⋅ 1046

s9 = 10 r9 = 1376122 = 2 ⋅ 11 ⋅ 71 ⋅881 Λ9 ≈ 7.8 ⋅ 1051

s10 = 11 r10 = 3423619 = 23 ⋅ 148853 Λ10 ≈ 2.7 ⋅ 1058



Thank you !
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