Sparse polynomial interpolation II

Joris van der Hoeven

CNRS, visiting professor at PIMS and SFU Joint work with Grégoire Lecerf

SFU, Vancouver

January 14, 2020

Part I

Statement of the problem

Black box functions and their interpolation 3/22

Input

Output

$$f(x_1, ..., x_n) = c_1 x_1^{e_{1,1}} \cdots x_n^{e_{1,n}} + \cdots + c_t x_1^{e_{t,1}} \cdots x_n^{e_{t,n}}$$

Variants

Coefficients K

- A field from analysis such as $K = \mathbb{C}$.
- A discrete field such as $K = \mathbb{Q}$ or a finite field $K = \mathbb{F}_q$.
- Roots of unity ω of large smooth order in K?

Complexity model

- Algebraic *versus* bit complexity.
- Deterministic (needs bounds) versus probabilistic.
- Theoretic (asymptotic) versus practical complexity.
- Divisions in *K* allowed for evaluation of *f*?
- Allow evaluations at points in A^n for extension $A \supseteq K$?

How sparse?

- Weakly sparse: total degrees *d* of the order *O*(log *t*).
- Normally sparse: total degrees d of the order $t^{O(1)}$.
- Super sparse: total degrees of order *d* with log*t* = *o*(log*d*).

Generalities

Reductions

- Sparse interpolation \rightarrow Sparse interpolation with bounds $T \ge t$, $D \ge d$
- Sparse interpolation \rightarrow Approximate sparse interpolation

Roots of unity in finite fields

n is smooth $\Rightarrow q^n - 1$ is supersmooth 2⁶⁰ - 1 = 3² · 5² · 7 · 11 · 13 · 31 · 41 · 61 · 151 · 331 · 1321

Part III

The cyclic extension approach

(Univariate case)

Idea

$$f = c_1 x^{e_1} + \dots + c_t x^{e_t}$$

Main idea

For pairwise coprime $r = r_1, r_2, ..., evaluate f$ at $\bar{x} \in K[x] / (x^r - 1)$, which yields

$$f \operatorname{rem}(x^{r} - 1) = c_{1}x^{e_{1}\operatorname{rem}r} + \dots + c_{t}x^{e_{t}\operatorname{rem}r}$$

Match corresponding terms and reconstruct *f* using Chinese remaindering **Diversification**

Several ways to "match corresponding terms"

Easiest approach: assume that $c_1, ..., c_t$ are (almost all) pairwise distinct α is random and |K| large $\Rightarrow f(\alpha x)$ is diversified with high probability

- L: number of operations needed to evaluate f
- $M(n) = O^{\flat}(n \log n)$: cost to multiply two polynomials of degree $\leq n$
- Cost of one evaluation $f(x) \operatorname{rem} (x^r 1)$ is O(LM(r))
- Expected number of correct terms: $e^{-t/r}t$
- Cost per correct term proportional to $re^{t/r}$
- Optimum obtained by taking $r_1 \approx \cdots \approx r_l \approx t$

Proposition (modulo heuristic hypothesis)

Given $0 < \eta < 1$ and a diversified polynomial $f \in \mathbb{F}_q[x]$ of degree $d \le D$ and with $t \le T$ terms, there exists a Monte Carlo probabilistic algorithm which computes at least $(1 - \eta)t$ terms of f in time

 $O^{\flat}(LT\log D\log(qT)).$

Part IV

The geometric progression approach (Univariate case)

$$f = c_1 x^{e_1} + \dots + c_t x^{e_t} \in \mathbb{F}_q[x]$$

$$f = c_1 x^{e_1} + \dots + c_t x^{e_t} \in \mathbb{F}_q[x]$$

$$f(\omega^{0}) = c_{1}\omega^{0e_{1}} + \dots + c_{t}\omega^{0e_{t}}$$

$$f(\omega^{1}) = c_{1}\omega^{1e_{1}} + \dots + c_{t}\omega^{1e_{t}}$$

$$f(\omega^{2}) = c_{1}\omega^{2e_{1}} + \dots + c_{t}\omega^{2e_{t}}$$

$$\vdots$$

$$f = c_1 x^{e_1} + \dots + c_t x^{e_t} \in \mathbb{F}_q[x]$$

$$f(\omega^{0}) = c_{1}\omega^{0e_{1}} + \dots + c_{t}\omega^{0e_{t}}$$

$$f(\omega^{1})z = c_{1}\omega^{1e_{1}}z + \dots + c_{t}\omega^{1e_{t}}z$$

$$f(\omega^{2})z^{2} = c_{1}\omega^{2e_{1}}z^{2} + \dots + c_{t}\omega^{2e_{t}}z^{2}$$

$$\vdots$$

$$f = c_1 x^{e_1} + \dots + c_t x^{e_t} \in \mathbb{F}_q[x]$$

$$f(\omega^{0}) = c_{1}\omega^{0e_{1}} + \dots + c_{t}\omega^{0e_{t}}$$

$$f(\omega^{1})z = c_{1}\omega^{1e_{1}}z + \dots + c_{t}\omega^{1e_{t}}z$$

$$f(\omega^{2})z^{2} = c_{1}\omega^{2e_{1}}z^{2} + \dots + c_{t}\omega^{2e_{t}}z^{2}$$

$$\vdots$$

$$\sum_{k=0}^{\infty} f(\omega^{k})z^{k} = \frac{c_{1}}{1-\omega^{e_{1}}z} + \dots + \frac{c_{t}}{1-\omega^{e_{t}}z} = \frac{N(z)}{\Lambda(z)}$$

$$f = c_1 x^{e_1} + \dots + c_t x^{e_t} \in \mathbb{F}_q[x]$$

For some number $\omega \in K$ of high multiplicative order, compute

$$f(\omega^{0}) = c_{1}\omega^{0e_{1}} + \dots + c_{t}\omega^{0e_{t}}$$

$$f(\omega^{1})z = c_{1}\omega^{1e_{1}}z + \dots + c_{t}\omega^{1e_{t}}z$$

$$f(\omega^{2})z^{2} = c_{1}\omega^{2e_{1}}z^{2} + \dots + c_{t}\omega^{2e_{t}}z^{2}$$

$$\vdots$$

$$\sum_{k=0}^{\infty} f(\omega^{k})z^{k} = \frac{c_{1}}{1-\omega^{e_{1}}z} + \dots + \frac{c_{t}}{1-\omega^{e_{t}}z} = \frac{N(z)}{\Lambda(z)}$$

• Recover N and A from the first 2t-1 evaluations

$$f = c_1 x^{e_1} + \dots + c_t x^{e_t} \in \mathbb{F}_q[x]$$

$$f(\omega^{0}) = c_{1}\omega^{0e_{1}} + \dots + c_{t}\omega^{0e_{t}}$$

$$f(\omega^{1})z = c_{1}\omega^{1e_{1}}z + \dots + c_{t}\omega^{1e_{t}}z$$

$$f(\omega^{2})z^{2} = c_{1}\omega^{2e_{1}}z^{2} + \dots + c_{t}\omega^{2e_{t}}z^{2}$$

$$\vdots$$

$$\sum_{k=0}^{\infty} f(\omega^{k})z^{k} = \frac{c_{1}}{1-\omega^{e_{1}}z} + \dots + \frac{c_{t}}{1-\omega^{e_{t}}z} = \frac{N(z)}{\Lambda(z)}$$

- Recover N and A from the first 2t-1 evaluations
- Determine the roots ω^{-e_i} of Λ

$$f = c_1 x^{e_1} + \dots + c_t x^{e_t} \in \mathbb{F}_q[x]$$

$$f(\omega^{0}) = c_{1}\omega^{0e_{1}} + \dots + c_{t}\omega^{0e_{t}}$$

$$f(\omega^{1})z = c_{1}\omega^{1e_{1}}z + \dots + c_{t}\omega^{1e_{t}}z$$

$$f(\omega^{2})z^{2} = c_{1}\omega^{2e_{1}}z^{2} + \dots + c_{t}\omega^{2e_{t}}z^{2}$$

$$\vdots$$

$$\sum_{k=0}^{\infty} f(\omega^{k})z^{k} = \frac{c_{1}}{1-\omega^{e_{1}}z} + \dots + \frac{c_{t}}{1-\omega^{e_{t}}z} = \frac{N(z)}{\Lambda(z)}$$

- Recover N and A from the first 2t-1 evaluations
- Determine the roots ω^{-e_i} of Λ
- Compute the discrete logarithms e_i of ω^{e_i} w.r.t. ω

$$f = c_1 x^{e_1} + \dots + c_t x^{e_t} \in \mathbb{F}_q[x]$$

$$f(\omega^{0}) = c_{1}\omega^{0e_{1}} + \dots + c_{t}\omega^{0e_{t}}$$

$$f(\omega^{1})z = c_{1}\omega^{1e_{1}}z + \dots + c_{t}\omega^{1e_{t}}z$$

$$f(\omega^{2})z^{2} = c_{1}\omega^{2e_{1}}z^{2} + \dots + c_{t}\omega^{2e_{t}}z^{2}$$

$$\vdots$$

$$\sum_{k=0}^{\infty} f(\omega^{k})z^{k} = \frac{c_{1}}{1-\omega^{e_{1}}z} + \dots + \frac{c_{t}}{1-\omega^{e_{t}}z} = \frac{N(z)}{\Lambda(z)}$$

- Recover N and A from the first 2t-1 evaluations
- Determine the roots ω^{-e_i} of Λ
- Compute the discrete logarithms e_i of ω^{e_i} w.r.t. ω
- Compute the coefficients *c*_i using linear algebra

• Evaluate $f(\omega^0), f(\omega^1), ..., f(\omega^{2T-1})$

 $O^{\flat}(LT\log q)$

- Evaluate $f(\omega^0), f(\omega^1), ..., f(\omega^{2T-1})$
- Recover N and Λ
 - Half-gcd

 $O^{\flat}(LT\log q)$

 $O^{\flat}(M_q(T)\log T)$

- Evaluate $f(\omega^0), f(\omega^1), ..., f(\omega^{2T-1})$
- Recover N and Λ
 - Half-gcd

 $O^{\flat}(LT\log q)$

$O^{\flat}(T(\log T)^2\log q)$

- Evaluate $f(\omega^0), f(\omega^1), ..., f(\omega^{2T-1})$
- Recover N and Λ
 - Half-gcd
- Determine the roots ω^{-e_i} of Λ
 - Cantor–Zassenhaus
 - Graeffe + q 1 large smooth factor
 - Tangent-Graeffe + *q* 1 large smooth factor

 $O^{\flat}(LT\log q)$

 $O^{\flat}(T(\log T)^2\log q)$

 $O^{\flat}(T(\log T)^{2}(\log q)^{2})$ $O^{\flat}(T(\log T)^{3}\log q)$ $O^{\flat}(T(\log T)^{2}\log q)$

12/22

- Evaluate $f(\omega^0), f(\omega^1), ..., f(\omega^{2T-1})$
- Recover N and Λ
 - Half-gcd
- Determine the roots ω^{-e_i} of Λ
 - Cantor–Zassenhaus
 - Graeffe + q 1 large smooth factor
 - Tangent-Graeffe + *q* 1 large smooth factor
- Compute the discrete logarithms e_i of ω^{e_i} w.r.t. ω
 - Pohlig-Helmann + q 1 large smooth factor

 $O^{\flat}(LT\log q)$

 $O^{\flat}(T(\log T)^2\log q)$

 $O^{\flat}(T(\log T)^{2}(\log q)^{2})$ $O^{\flat}(T(\log T)^{3}\log q)$ $O^{\flat}(T(\log T)^{2}\log q)$

 $O^{\flat}(T\log T\log q)$

- Evaluate $f(\omega^0), f(\omega^1), ..., f(\overline{\omega^{2T-1}})$
- Recover N and Λ
 - Half-gcd
- Determine the roots ω^{-e_i} of Λ
 - Cantor–Zassenhaus
 - Graeffe + q 1 large smooth factor
 - Tangent-Graeffe + *q* 1 large smooth factor
- Compute the discrete logarithms e_i of ω^{e_i} w.r.t. ω
 - Pohlig-Helmann + *q* 1 large smooth factor
- Compute the coefficients c_i using linear algebra
 - Transposed fast multi-point interpolation

 $O^{\flat}(LT\log q)$

 $O^{\flat}(T(\log T)^2 \log q)$

 $O^{\flat}(T(\log T)^{2}(\log q)^{2})$ $O^{\flat}(T(\log T)^{3}\log q)$ $O^{\flat}(T(\log T)^{2}\log q)$

 $O^{\flat}(T\log T\log q)$

 $O^{\flat}(T(\log T)^2\log q)$

- Evaluate $f(\omega^0), f(\omega^1), ..., f(\omega^{2T-1})$
- Recover N and Λ
 - Half-gcd

Total

- Determine the roots ω^{-e_i} of Λ
 - Cantor–Zassenhaus
 - Graeffe + *q* 1 large smooth factor
 - Tangent-Graeffe + q 1 large smooth factor
- Compute the discrete logarithms e_i of ω^{e_i} w.r.t. ω
 - Pohlig-Helmann + q 1 large smooth factor
- Compute the coefficients c_i using linear algebra
 - Transposed fast multi-point interpolation

 $O^{\flat}(T(\log T)^2\log q)$

 $O^{\flat}(T(\log T)^{2}(\log q)^{2})$ $O^{\flat}(T(\log T)^{3}\log q)$ $O^{\flat}(T(\log T)^{2}\log q)$

 $O^{\flat}(T\log T\log q)$

 $O^{\flat}(T(\log T)^2\log q)$

$O((L + (\log T)^3) T \log q)$

Digression on root finding

Cantor-Zassenhaus

$$\wedge = (x - \alpha_1) \cdots (x - \alpha_t) \in \mathbb{F}_q[x]$$

Cantor–Zassenhaus

R

Cantor-Zassenhaus

R

Graeffe

(deterministic)

Assume $q - 1 = s 2^k$, $s \approx t$ (or even $s \approx t \log t$)

$$\Lambda = (x - \alpha_1) \cdots (x - \alpha_t)$$

$$\downarrow$$

$$G_2(\Lambda) = (x - \alpha_1^2) \cdots (x - \alpha_t^2)$$

$$\downarrow$$

$$\vdots$$

$$\downarrow$$

$$G_{2^k}(\Lambda) = (x - \alpha_1^{2^k}) \cdots (x - \alpha_t^{2^k})$$

Graeffe

(deterministic)

Assume $q - 1 = s2^k$, $s \approx t$ (or even $s \approx t \log t$)

$$\Lambda = (x - \alpha_{1}) \cdots (x - \alpha_{t})$$

$$\downarrow$$

$$G_{2}(\Lambda) = (x - \alpha_{1}^{2}) \cdots (x - \alpha_{t}^{2})$$

$$\downarrow$$

$$\vdots$$

$$\downarrow$$

$$G_{2^{k}}(\Lambda) = (x - \alpha_{1}^{2^{k}}) \cdots (x - \alpha_{t}^{2^{k}}) \xrightarrow{\text{FFT}_{s}} \alpha_{1}^{2^{k}}, ..., \alpha_{t}^{2^{k}}$$

Digression on root finding

(deterministic)

Assume $q - 1 = s2^k$, $s \approx t$ (or even $s \approx t \log t$)

Graeffe

$$\begin{split} & \wedge = (x - \alpha_{1}) \cdots (x - \alpha_{t}) & & \alpha_{1}, ..., \alpha_{t} \\ & \downarrow & & \uparrow \\ & G_{2}(\Lambda) = (x - \alpha_{1}^{2}) \cdots (x - \alpha_{t}^{2}) & & \alpha_{1}^{2}, ..., \alpha_{t}^{2} \\ & \downarrow & & \uparrow \\ & \vdots & & \vdots \\ & \downarrow & & \uparrow \\ & G_{2^{k}}(\Lambda) = (x - \alpha_{1}^{2^{k}}) \cdots (x - \alpha_{t}^{2^{k}}) & \xrightarrow{\mathsf{FFT}_{s}} & \alpha_{1}^{2^{k}}, ..., \alpha_{t}^{2^{k}} \end{split}$$

Graeffe (deterministic)

Assume $q - 1 = s2^k$, $s \approx t$ (or even $s \approx t \log t$)

$$\begin{split} \wedge &= (x - \alpha_{1}) \cdots (x - \alpha_{t}) & \alpha_{1}, ..., \alpha_{t} \\ \downarrow & \uparrow \\ G_{2}(\Lambda) &= (x - \alpha_{1}^{2}) \cdots (x - \alpha_{t}^{2}) & \alpha_{1}^{2}, ..., \alpha_{t}^{2} \\ \downarrow & \uparrow \\ \vdots & \vdots & \vdots \\ \downarrow & \uparrow \\ G_{2^{k}}(\Lambda) &= (x - \alpha_{1}^{2^{k}}) \cdots (x - \alpha_{t}^{2^{k}}) & \xrightarrow{\mathsf{FFT}_{s}} & \alpha_{1}^{2^{k}}, ..., \alpha_{t}^{2^{k}} \end{split}$$

Complexity

 $F_{CZ}(t) \approx F_{Gr}(t) = O^{\flat}(t(\log t)^2(\log q)^2)$

Graeffe (deterministic)

Assume $q - 1 = s2^k$, $s \approx t$ (or even $s \approx t \log t$)

$$\begin{split} & \wedge = (x - \alpha_{1}) \cdots (x - \alpha_{t}) & & \alpha_{1}, ..., \alpha_{t} \\ & \downarrow & & \uparrow \\ & G_{2}(\Lambda) = (x - \alpha_{1}^{2}) \cdots (x - \alpha_{t}^{2}) & & \alpha_{1}^{2}, ..., \alpha_{t}^{2} \\ & \downarrow & & \uparrow \\ & \vdots & & \vdots \\ & \downarrow & & \uparrow \\ & G_{2^{k}}(\Lambda) = (x - \alpha_{1}^{2^{k}}) \cdots (x - \alpha_{t}^{2^{k}}) & \xrightarrow{\mathsf{FFT}_{s}} & \alpha_{1}^{2^{k}}, ..., \alpha_{t}^{2^{k}} \end{split}$$

Complexity

 $F_{CZ}(t) \approx F_{Gr}(t) = O^{\flat}(t(\log t)^{3}\log q), \qquad \omega^{r} = 1, \quad r \leq t^{O(1)}$

Digression on root finding

Tangent numbers

$$\mathbb{F}_{q}[\epsilon]/(\epsilon^{2}) = \{a + b \epsilon : a, b \in \mathbb{F}_{q}, \epsilon^{2} = 0\}$$

Tangent numbers

$$\mathbb{F}_{q}[\epsilon]/(\epsilon^{2}) = \{a + b \epsilon : a, b \in \mathbb{F}_{q}, \epsilon^{2} = 0\}$$

Tangent Graeffe

$$\Lambda(x) = (x - \alpha_1) \cdots (x - \alpha_t) \in \mathbb{F}_q[x]$$
$$\tilde{\Lambda}(x) := \Lambda(x - \epsilon) = (x - (\alpha_1 + \epsilon)) \cdots (x - (\alpha_t + \epsilon)) \in (\mathbb{F}_q[\epsilon] / (\epsilon^2))[x]$$

Tangent numbers

$$\mathbb{F}_{q}[\epsilon]/(\epsilon^{2}) = \{a + b \epsilon : a, b \in \mathbb{F}_{q}, \epsilon^{2} = 0\}$$

Tangent Graeffe

$$\Lambda(x) = (x - \alpha_1) \cdots (x - \alpha_t) \in \mathbb{F}_q[x]$$

$$\tilde{\Lambda}(x) := \Lambda(x - \epsilon) = (x - (\alpha_1 + \epsilon)) \cdots (x - (\alpha_t + \epsilon)) \in (\mathbb{F}_q[\epsilon] / (\epsilon^2))[x]$$

$$G_{2^{k}}(\tilde{\Lambda}) = (x - (\alpha_{1} + \epsilon)^{2^{k}}) \cdots (x - (\alpha_{t} + \epsilon)^{2^{k}})$$

Tangent numbers

$$\mathbb{F}_{q}[\epsilon]/(\epsilon^{2}) = \{a + b \epsilon : a, b \in \mathbb{F}_{q}, \epsilon^{2} = 0\}$$

Tangent Graeffe

(probabilistic)

$$\Lambda(x) = (x - \alpha_1) \cdots (x - \alpha_t) \in \mathbb{F}_q[x]$$

$$\tilde{\Lambda}(x) := \Lambda(x - \epsilon) = (x - (\alpha_1 + \epsilon)) \cdots (x - (\alpha_t + \epsilon)) \in (\mathbb{F}_q[\epsilon] / (\epsilon^2))[x]$$

$$G_{2^{k}}(\tilde{\Lambda}) = (x - (\alpha_{1} + \epsilon)^{2^{k}}) \cdots (x - (\alpha_{t} + \epsilon)^{2^{k}})$$

= $(x - (\alpha_{1}^{2^{k}} + 2^{k} \alpha_{1}^{2^{k} - 1} \epsilon)) \cdots (x - (\alpha_{t}^{2^{k}} + 2^{k} \alpha_{t}^{2^{k} - 1} \epsilon))$

Tangent numbers

$$\mathbb{F}_{q}[\epsilon]/(\epsilon^{2}) = \{a + b \epsilon : a, b \in \mathbb{F}_{q}, \epsilon^{2} = 0\}$$

Tangent Graeffe

(probabilistic)

$$\Lambda(x) = (x - \alpha_1) \cdots (x - \alpha_t) \in \mathbb{F}_q[x]$$

$$\tilde{\Lambda}(x) := \Lambda(x - \epsilon) = (x - (\alpha_1 + \epsilon)) \cdots (x - (\alpha_t + \epsilon)) \in (\mathbb{F}_q[\epsilon] / (\epsilon^2))[x]$$

$$G_{2^{k}}(\tilde{\Lambda}) = (x - (\alpha_{1} + \epsilon)^{2^{k}}) \cdots (x - (\alpha_{t} + \epsilon)^{2^{k}})$$

= $(x - (\alpha_{1}^{2^{k}} + 2^{k} \alpha_{1}^{2^{k} - 1} \epsilon)) \cdots (x - (\alpha_{t}^{2^{k}} + 2^{k} \alpha_{t}^{2^{k} - 1} \epsilon))$

$$\alpha_i^{2^k} + 2^k \alpha_i^{2^{k-1}} \epsilon \quad \Rightarrow \quad \alpha_i = 2^k \frac{\alpha_i^{2^k}}{2^k \alpha_i^{2^{k-1}}} \qquad (\text{single root } \alpha_i^{2^k})$$

Conclusion so far

Proposition (modulo suitable smoothness assumptions)

$$O^{\flat}\Big((L + (\log T)^3)T\Big(\frac{\log D}{\log T}\Big)^3\log(qT)\Big).$$

Conclusion so far

Proposition (modulo suitable smoothness assumptions)

$$O^{\flat}\Big((L+(\log T)^3)T\Big(\frac{\log D}{\log T}\Big)^3\log(qT)\Big).$$

- If q < 2T, then we need to replace K by \mathbb{F}_{q^s} for $s \ge \left[\frac{\log T}{\log q}\right]$
- Significantly smaller hidden constant in O^{\flat}

Conclusion so far

Proposition (modulo suitable smoothness assumptions)

$$O^{\flat}\Big((L + (\log T)^3)T\Big(\frac{\log D}{\log T}\Big)^3\log(qT)\Big).$$

- If q < 2T, then we need to replace K by \mathbb{F}_{q^s} for $s \ge \left[\frac{\log T}{\log q}\right]$
- Significantly smaller hidden constant in O^{\flat}
- If $L \ge (\log T)^2$ and $D \le T^{O(1)}$, then use geometric progression approach

Proposition (modulo suitable smoothness assumptions)

$$O^{\flat}\Big((L + (\log T)^3)T\Big(\frac{\log D}{\log T}\Big)^3\log(qT)\Big).$$

- If q < 2T, then we need to replace K by \mathbb{F}_{q^s} for $s \ge \left\lceil \frac{\log T}{\log q} \right\rceil$
- Significantly smaller hidden constant in O^{\flat}
- If $L \ge (\log T)^2$ and $D \le T^{O(1)}$, then use geometric progression approach
- If $L < (\log T)^2$ or $D > T^{O(1)}$, then use cyclic extension approach

Proposition (modulo suitable smoothness assumptions)

$$O^{\flat}\Big((L+(\log T)^3)T\Big(\frac{\log D}{\log T}\Big)^3\log(qT)\Big).$$

- If q < 2T, then we need to replace K by \mathbb{F}_{q^s} for $s \ge \left\lceil \frac{\log T}{\log q} \right\rceil$
- Significantly smaller hidden constant in O^{\flat}
- If $L \ge (\log T)^2$ and $D \le T^{O(1)}$, then use geometric progression approach
- If $L < (\log T)^2$ or $D > T^{O(1)}$, then use cyclic extension approach
- For $n \times n$ symbolic determinant: $L = n^3$ and t = n!

Proposition (modulo suitable smoothness assumptions)

We can compute the sparse interpolate of f in time

$$O^{\flat}\Big((L + (\log T)^3) T\left(\frac{\log D}{\log T}\right)^3 \log(q T)\Big).$$

- If q < 2T, then we need to replace K by \mathbb{F}_{q^s} for $s \ge \left\lceil \frac{\log T}{\log q} \right\rceil$
- Significantly smaller hidden constant in O^{\flat}
- If $L \ge (\log T)^2$ and $D \le T^{O(1)}$, then use geometric progression approach
- If $L < (\log T)^2$ or $D > T^{O(1)}$, then use cyclic extension approach
- For $n \times n$ symbolic determinant: $L = n^3$ and t = n!

Problems

- Can we reduce the $(\log T)^3$ factor?
- If q is small, then can we avoid paying the extension factor $s \ge \left\lceil \frac{\log T}{\log q} \right\rceil$?

Part V

FFT-based approach (Univariate case)

• Computation of $f \operatorname{rem}(x^r - 1)$ In cyclic extension method: Evaluate f over $K[x]/(x^r - 1) \rightarrow$ Use FFT (or Frobenius FFT)

- Computation of f rem (x^r − 1) In cyclic extension method:
 Evaluate f over K[x] / (x^r − 1) → Use FFT (or Frobenius FFT)
 Most favorable case
 - $r \mid (q-1)$ and $r \approx T$, so that $x^r 1 = (x-1)(x-\omega)\cdots(x-\omega^{r-1})$ for some $\omega \in \mathbb{F}_q$

- Computation of f rem (x^r − 1) In cyclic extension method:
 Evaluate f over K[x] / (x^r − 1) → Use FFT (or Frobenius FFT)
 Most favorable case
 - $r \mid (q-1)$ and $r \approx T$, so that $x^r 1 = (x-1)(x-\omega)\cdots(x-\omega^{r-1})$ for some $\omega \in \mathbb{F}_q$

$$f \operatorname{rem}(x^{r}-1) \xleftarrow{}_{\operatorname{Inverse FFT}} (f(1), f(\omega), ..., f(\omega^{r-1}))$$

- Computation of f rem (x^r − 1) In cyclic extension method:
 Evaluate f over K[x] / (x^r − 1) → Use FFT (or Frobenius FFT)
 Most favorable case
 - $r \mid (q-1)$ and $r \approx T$, so that $x^r 1 = (x-1)(x-\omega)\cdots(x-\omega^{r-1})$ for some $\omega \in \mathbb{F}_q$

Computation of f rem (x^r − 1) In cyclic extension method:
 Evaluate f over K[x] / (x^r − 1) → Use FFT (or Frobenius FFT)

Most favorable case

• $r \mid (q-1)$ and $r \approx T$, so that $x^r - 1 = (x-1)(x-\omega)\cdots(x-\omega^{r-1})$ for some $\omega \in \mathbb{F}_q$

Next favorable case

- $r \mid (q^s 1)$ and $r \approx T$ for a small s
- x^r 1 factors into polynomials of small degrees over \mathbb{F}_q

Computation of *f* rem (x^r − 1) In cyclic extension method:
 Evaluate *f* over K[x] / (x^r − 1) → Use FFT (or Frobenius FFT)

Most favorable case

• $r \mid (q-1)$ and $r \approx T$, so that $x^r - 1 = (x-1)(x-\omega)\cdots(x-\omega^{r-1})$ for some $\omega \in \mathbb{F}_q$

Next favorable case

- $r \mid (q^s 1)$ and $r \approx T$ for a small s
- $x^r 1$ factors into polynomials of small degrees over \mathbb{F}_q

Frobenius FFT

- If we need to evaluate $f \in \mathbb{F}_q[x]$ over \mathbb{F}_{q^s} with s > 1, then
 - $f(\alpha^q) = f(\alpha)^q$ for all $\alpha \in \mathbb{F}_{q^s}$
 - Compute only one of the values $f(\omega^i), f(\omega^{q^i}), ..., f(\omega^{q^{s-1}i})$ for each i
 - Use inverse Frobenius FFT to recover $f \operatorname{rem}(x^r 1)$

Complexity analysis

Most favorable case only...

• We can pick sufficiently many coprime $r_1, ..., r_l \approx T$

Complexity analysis

Most favorable case only...

• We can pick sufficiently many coprime $r_1, ..., r_l \approx T$

Proposition (modulo many provisos)

We can compute the sparse interpolation of $f \in \mathbb{F}_q[x]$ in time

$$O^{\flat}\left(\left(L + \log T\right)T\left(\frac{\log D}{\log T}\right)^2\log(qT)\right)$$

Complexity analysis

Most favorable case only...

• We can pick sufficiently many coprime $r_1, ..., r_l \approx T$

Proposition (modulo many provisos)

We can compute the sparse interpolation of $f \in \mathbb{F}_q[x]$ in time

$$O^{\flat}\left(\left(L + \log T\right)T\left(\frac{\log D}{\log T}\right)^2\log(qT)\right)$$

About constant factors

- The geometric progression method uses 2T-1 evaluations
- The FFT-based method uses T evaluations with success rate e^{-1}

Do good orders *r* exist?

Example for $q = 2^{30}$, $T = 10^6$, and $D = 10^{18}$

s ₁ = 1	r_1 = 1549411 = 31.151.331	$\Lambda_1 \approx 1.5 \cdot 10^6$
s ₂ = 2	$r_2 = 1047553 = 13 \cdot 61 \cdot 1321$	$\Lambda_2 \approx 1.6 \cdot 10^{12}$
s ₃ = 3	$r_3 = 1701703 = 73 \cdot 23311$	$\Lambda_3 \approx 2.8 \cdot 10^{18}$
s ₄ = 3	r_4 = 1186911 = 3 ² · 11 · 19 · 631	$\Lambda_4 \approx 3.2 \cdot 10^{24}$
s ₅ = 4	<i>r</i> ₅ = 1048577 = 17⋅61681	$\Lambda_5 \approx 3.4 \cdot 10^{30}$
$s_6 = 4$	r ₆ = 1729175 = 5 ² ∙7∙41∙241	$\Lambda_6 \approx 5.9 \cdot 10^{36}$
s ₇ = 5	$r_7 = 1016801 = 251.4051$	$\Lambda_7 \approx 6.0 \cdot 10^{42}$
s ₈ = 5	$r_8 = 1082401 = 601.1801$	$\Lambda_8 \approx 6.5 \cdot 10^{48}$
s ₉ = 5	r_9 = 1108811 = 11.100801	Λ ₉ ≈ 6.6·10 ⁵³
$s_{10} = 6$	r_{10} = 1134021 = 3.7.54001	Λ ₁₀ ≈ 3.6·10 ⁵⁸

 $\Lambda_i := \text{lcm}(r_1, ..., r_i), \quad D^e \approx 8.5 \cdot 10^{48}$

Do good orders *r* exist?

Example for (prime) q = 1299743, $T = 10^6$, and $D = 10^{18}$

s ₁ = 1	$r_1 = 1299742 = 2.649871$	$\Lambda_1 \approx 1.3 \cdot 10^6$
s ₂ = 2	$r_2 = 1299744 = 2^5 \cdot 3^2 \cdot 4513$	$\Lambda_2 \approx 8.4 \cdot 10^{11}$
s ₃ = 4	$r_3 = 1006325 = 5^2 \cdot 40253$	$\Lambda_3 \approx 8.5 \cdot 10^{17}$
S ₄ = 4	$r_4 = 1678714 = 2 \cdot 193 \cdot 4349$	$\Lambda_4 \approx 7.1 \cdot 10^{23}$
s ₅ = 5	r_5 = 1690111 = 701.2411	$\Lambda_5 \approx 1.2 \cdot 10^{30}$
$s_6 = 6$	r_6 = 1119937 = 7.13.31.397	$\Lambda_6 \approx 1.4 \cdot 10^{36}$
s ₇ = 8	r ₇ = 1196324 = 2 ² ⋅17⋅73⋅241	$\Lambda_7 \approx 4.0 \cdot 10^{41}$
s ₈ = 9	r ₈ = 1185702 = 2⋅3⋅7 ² ⋅37⋅109	$\Lambda_8 \approx 1.1 \cdot 10^{46}$
$s_9 = 10$	r_9 = 1376122 = 2.11.71.881	$\Lambda_9 \approx 7.8 \cdot 10^{51}$
s ₁₀ = 11	$r_{10} = 3423619 = 23.148853$	$\Lambda_{10} \approx 2.7 \cdot 10^{58}$

Thank you !

http://www.T_EX_{MACS}.org