Sparse polynomial interpolation II

Joris van der Hoeven

CNRS, visiting professor at PIMS and SFU Joint work with Grégoire Lecerf

Part I

Statement of the problem

Black box functions and their interpolation

Input

Output

Variants

Coefficients K

- A field from analysis such as $K=\mathbb{C}$.
- A discrete field such as $K=\mathbb{Q}$ or a finite field $K=\mathbb{F}_{q}$.
- Roots of unity ω of large smooth order in K ?

Complexity model

- Algebraic versus bit complexity.
- Deterministic (needs bounds) versus probabilistic.
- Theoretic (asymptotic) versus practical complexity.
- Divisions in K allowed for evaluation of f ?
- Allow evaluations at points in A^{n} for extension $A \supseteq K$?

How sparse?

- Weakly sparse: total degrees d of the order $O(\log t)$.
- Normally sparse: total degrees d of the order $t^{O(1)}$.
- Super sparse: total degrees of order d with $\log t=o(\log d)$.

Part II

Generalities

Generalities

Reductions

- Sparse interpolation \rightarrow Sparse interpolation with bounds $T \geqslant t, D \geqslant d$
- Sparse interpolation \rightarrow Approximate sparse interpolation

Roots of unity in finite fields

$$
\begin{gathered}
n \text { is smooth } \Rightarrow q^{n}-1 \text { is supersmooth } \\
2^{60}-1=3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 31 \cdot 41 \cdot 61 \cdot 151 \cdot 331 \cdot 1321
\end{gathered}
$$

Part III

The cyclic extension approach
(Univariate case)

$$
f=c_{1} x^{e_{1}}+\cdots+c_{t} x^{e_{t}}
$$

Main idea

For pairwise coprime $r=r_{1}, r_{2}, \ldots$, evaluate f at $\bar{x} \in K[x] /\left(x^{r}-1\right)$, which yields

$$
f \text { rem }\left(x^{r}-1\right)=c_{1} x^{e_{1} \text { remr }}+\cdots+c_{t} x^{e_{\text {trem }} r}
$$

Match corresponding terms and reconstruct fusing Chinese remaindering Diversification

Several ways to "match corresponding terms"
Easiest approach: assume that c_{1}, \ldots, c_{t} are (almost all) pairwise distinct α is random and $|K|$ large $\Rightarrow f(\alpha x)$ is diversified with high probability

Complexity analysis

- L: number of operations needed to evaluate f
- $M(n)=O^{b}(n \log n)$: cost to multiply two polynomials of degree $\leqslant n$
- Cost of one evaluation $f(x)$ rem $\left(x^{r}-1\right)$ is $O(L M(r))$
- Expected number of correct terms: $\mathrm{e}^{-t / r} t$
- Cost per correct term proportional to $r \mathrm{e}^{t / r}$
- Optimum obtained by taking $r_{1} \approx \cdots \approx r_{l} \approx t$

Proposition (modulo heuristic hypothesis)

Given $0<\eta<1$ and a diversified polynomial $f \in \mathbb{F}_{q}[x]$ of degree $d \leqslant D$ and with $t \leqslant T$ terms, there exists a Monte Carlo probabilistic algorithm which computes at least $(1-\eta) t$ terms of f in time
$O^{b}(L T \log D \log (q T))$.

Part IV

The geometric progression approach
(Univariate case)

$$
f=c_{1} x^{e_{1}}+\cdots+c_{t} x^{e_{t}} \in \mathbb{F}_{q}[x]
$$

$$
f=c_{1} x^{e_{1}}+\cdots+c_{t} x^{e_{t}} \in \mathbb{E}_{q}[x]
$$

For some number $\omega \in K$ of high multiplicative order, compute

$$
\begin{aligned}
f\left(\omega^{0}\right) & =c_{1} \omega^{0 e_{1}}+\cdots+c_{t} \omega^{0 e_{t}} \\
f\left(\omega^{1}\right) & =c_{1} \omega^{1 e_{1}}+\cdots+c_{t} \omega^{1 e_{t}} \\
f\left(\omega^{2}\right) & =c_{1} \omega^{2 e_{1}}+\cdots+c_{t} \omega^{2 e_{t}} \\
& \vdots
\end{aligned}
$$

$$
f=c_{1} x^{e_{1}}+\cdots+c_{t} x^{e_{t}} \in \mathbb{F}_{q}[x]
$$

For some number $\omega \in K$ of high multiplicative order, compute

$$
\begin{aligned}
f\left(\omega^{0}\right) & =c_{1} \omega^{0 e_{1}}+\cdots+c_{t} \omega^{0 e_{t}} \\
f\left(\omega^{1}\right) z & =c_{1} \omega^{1 e_{1}} z+\cdots+c_{t} \omega^{1 e_{t}} z \\
f\left(\omega^{2}\right) z^{2} & =c_{1} \omega^{2 e_{1}} z^{2}+\cdots+c_{t} \omega^{2 e_{t}} z^{2} \\
& \vdots
\end{aligned}
$$

$$
f=c_{1} x^{e_{1}}+\cdots+c_{t} x^{e_{t}} \in \mathbb{E}_{q}[x]
$$

For some number $\omega \in K$ of high multiplicative order, compute

$$
\begin{aligned}
f\left(\omega^{0}\right) & =c_{1} \omega^{0 e_{1}}+\cdots+c_{t} \omega^{0 e_{t}} \\
f\left(\omega^{1}\right) z & =c_{1} \omega^{1 e_{1}} z+\cdots+c_{t} \omega^{1 e_{t}} z \\
f\left(\omega^{2}\right) z^{2} & =c_{1} \omega^{2 e_{1}} z^{2}+\cdots+c_{t} \omega^{2 e_{t}} z^{2} \\
& \vdots \\
\sum_{k=0}^{\infty} f\left(\omega^{k}\right) z^{k} & =\frac{c_{1}}{1-\omega^{e_{1}} z}+\cdots+\frac{c_{t}}{1-\omega^{e_{t}} z}=\frac{N(z)}{\Lambda(z)}
\end{aligned}
$$

$$
f=c_{1} x^{e_{1}}+\cdots+c_{t} x^{e_{t}} \in \mathbb{E}_{q}[x]
$$

For some number $\omega \in K$ of high multiplicative order, compute

$$
\begin{aligned}
f\left(\omega^{0}\right) & =c_{1} \omega^{0 e_{1}}+\cdots+c_{t} \omega^{0 e_{t}} \\
f\left(\omega^{1}\right) z & =c_{1} \omega^{1 e_{1}} z+\cdots+c_{t} \omega^{1 e_{t}} z \\
f\left(\omega^{2}\right) z^{2} & =c_{1} \omega^{2 e_{1}} z^{2}+\cdots+c_{t} \omega^{2 e_{t}} z^{2} \\
& \vdots \\
\sum_{k=0}^{\infty} f\left(\omega^{k}\right) z^{k} & =\frac{c_{1}}{1-\omega^{e_{1}} z}+\cdots+\frac{c_{t}}{1-\omega^{e e_{t}} z}=\frac{N(z)}{\Lambda(z)}
\end{aligned}
$$

- Recover N and \wedge from the first $2 t-1$ evaluations

$$
f=c_{1} x^{e_{1}}+\cdots+c_{t} x^{e_{t}} \in \mathbb{E}_{q}[x]
$$

For some number $\omega \in K$ of high multiplicative order, compute

$$
\begin{aligned}
f\left(\omega^{0}\right) & =c_{1} \omega^{0 e_{1}}+\cdots+c_{t} \omega^{0 e_{t}} \\
f\left(\omega^{1}\right) z & =c_{1} \omega^{1 e_{1}} z+\cdots+c_{t} \omega^{1 e_{t}} z \\
f\left(\omega^{2}\right) z^{2} & =c_{1} \omega^{2 e_{1}} z^{2}+\cdots+c_{t} \omega^{2 e_{t}} z^{2} \\
& \vdots \\
\sum_{k=0}^{\infty} f\left(\omega^{k}\right) z^{k} & =\frac{c_{1}}{1-\omega^{e_{1}} z}+\cdots+\frac{c_{t}}{1-\omega^{e e_{t}} z}=\frac{N(z)}{\Lambda(z)}
\end{aligned}
$$

- Recover N and \wedge from the first $2 t-1$ evaluations
- Determine the roots $\omega^{-e_{i}}$ of \wedge

$$
f=c_{1} x^{e_{1}}+\cdots+c_{t} x^{e_{t}} \in \mathbb{E}_{q}[x]
$$

For some number $\omega \in K$ of high multiplicative order, compute

$$
\begin{aligned}
f\left(\omega^{0}\right) & =c_{1} \omega^{0 e_{1}}+\cdots+c_{t} \omega^{0 e_{t}} \\
f\left(\omega^{1}\right) z & =c_{1} \omega^{1 e_{1}} z+\cdots+c_{t} \omega^{1 e_{t}} z \\
f\left(\omega^{2}\right) z^{2} & =c_{1} \omega^{2 e_{1}} z^{2}+\cdots+c_{t} \omega^{2 e_{t}} z^{2} \\
& \vdots \\
\sum_{k=0}^{\infty} f\left(\omega^{k}\right) z^{k} & =\frac{c_{1}}{1-\omega^{e_{1}} z}+\cdots+\frac{c_{t}}{1-\omega^{e_{t}} z}=\frac{N(z)}{\Lambda(z)}
\end{aligned}
$$

- Recover N and \wedge from the first $2 t-1$ evaluations
- Determine the roots $\omega^{-e_{i}}$ of \wedge
- Compute the discrete logarithms e_{i} of $\omega^{e_{i}}$ w.r.t. ω

$$
f=c_{1} x^{e_{1}}+\cdots+c_{t} x^{e_{t}} \in \mathbb{F}_{q}[x]
$$

For some number $\omega \in K$ of high multiplicative order, compute

$$
\begin{aligned}
f\left(\omega^{0}\right) & =c_{1} \omega^{0 e_{1}}+\cdots+c_{t} \omega^{0 e_{t}} \\
f\left(\omega^{1}\right) z & =c_{1} \omega^{1 e_{1}} z+\cdots+c_{t} \omega^{1 e_{t}} z \\
f\left(\omega^{2}\right) z^{2} & =c_{1} \omega^{2 e_{1}} z^{2}+\cdots+c_{t} \omega^{2 e_{t}} z^{2} \\
& \vdots \\
\sum_{k=0}^{\infty} f\left(\omega^{k}\right) z^{k} & =\frac{c_{1}}{1-\omega^{e_{1}} z}+\cdots+\frac{c_{t}}{1-\omega^{e_{t}} z}=\frac{N(z)}{\Lambda(z)}
\end{aligned}
$$

- Recover N and Λ from the first $2 t-1$ evaluations
- Determine the roots $\omega^{-e_{i}}$ of \wedge
- Compute the discrete logarithms e_{i} of $\omega^{e_{i}}$ w.r.t. ω
- Compute the coefficients c_{i} using linear algebra

Complexity analysis

- Evaluate $f\left(\omega^{0}\right), f\left(\omega^{1}\right), \ldots, f\left(\omega^{2 T-1}\right)$

Complexity analysis

- Evaluate $f\left(\omega^{0}\right), f\left(\omega^{1}\right), \ldots, f\left(\omega^{2 T-1}\right)$

$$
O^{b}(L T \log q)
$$

- Recover N and \wedge
- Half-gcd

Complexity analysis

- Evaluate $f\left(\omega^{0}\right), f\left(\omega^{1}\right), \ldots, f\left(\omega^{2 T-1}\right)$ $O^{b}(L T \log q)$
- Recover N and \wedge
- Half-gcd

Complexity analysis

- Evaluate $f\left(\omega^{0}\right), f\left(\omega^{1}\right), \ldots, f\left(\omega^{2 T-1}\right)$
- Recover N and \wedge
- Half-gcd
$O^{b}\left(T(\log T)^{2} \log q\right)$
- Determine the roots $\omega^{-e_{i}}$ of Λ
- Cantor-Zassenhaus
- Graeffe + q-1 large smooth factor
- Tangent-Graeffe + q-1 large smooth factor

Complexity analysis

- Evaluate $f\left(\omega^{0}\right), f\left(\omega^{1}\right), \ldots, f\left(\omega^{2 T-1}\right)$
- Recover N and \wedge
- Half-gcd
- Determine the roots $\omega^{-e_{i}}$ of Λ
- Cantor-Zassenhaus
- Graeffe + q-1 large smooth factor
- Tangent-Graeffe + q-1 large smooth factor

$$
\begin{array}{r}
O^{b}\left(T(\log T)^{2}(\log q)^{2}\right) \\
O^{b}\left(T(\log T)^{3} \log q\right) \\
O^{b}\left(T(\log T)^{2} \log q\right)
\end{array}
$$

- Compute the discrete logarithms e_{i} of $\omega^{e_{i}}$ w.r.t. ω
- Pohlig-Helmann + q-1 large smooth factor

Complexity analysis

- Evaluate $f\left(\omega^{0}\right), f\left(\omega^{1}\right), \ldots, f\left(\omega^{2 T-1}\right)$
- Recover N and \wedge
- Half-gcd
- Determine the roots $\omega^{-e_{i}}$ of \wedge
- Cantor-Zassenhaus
- Graeffe + q-1 large smooth factor
- Tangent-Graeffe + q-1 large smooth factor

```
O
    Ob
    Ob}(T(\operatorname{log}T\mp@subsup{)}{}{2}\operatorname{log}q
```

- Compute the discrete logarithms e_{i} of $\omega^{e_{i}}$ w.r.t. ω
- Pohlig-Helmann + q-1 large smooth factor
$O^{b}(T \log T \log q)$
- Compute the coefficients c_{i} using linear algebra
- Transposed fast multi-point interpolation
$O^{b}\left(T(\log T)^{2} \log q\right)$

Complexity analysis

- Evaluate $f\left(\omega^{0}\right), f\left(\omega^{1}\right), \ldots, f\left(\omega^{2 T-1}\right)$
- Recover N and \wedge
- Half-gcd
- Determine the roots $\omega^{-e_{i}}$ of Λ
- Cantor-Zassenhaus
- Graeffe + q-1 large smooth factor
$O^{b}\left(T(\log T)^{2}(\log q)^{2}\right)$ $O^{b}\left(T(\log T)^{3} \log q\right)$
- Tangent-Graeffe + q-1 large smooth factor $O^{b}\left(T(\log T)^{2} \log q\right)$
- Compute the discrete logarithms e_{i} of $\omega^{e_{i}}$ w.r.t. ω
- Pohlig-Helmann $+q-1$ large smooth factor
- Compute the coefficients c_{i} using linear algebra
- Transposed fast multi-point interpolation $O^{b}\left(T(\log T)^{2} \log q\right)$

Digression on root finding

Cantor-Zassenhaus
(probabilistic)

$$
\Lambda=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{t}\right) \in \mathbb{E}_{q}[x]
$$

Cantor-Zassenhaus

(probabilistic)

$$
\begin{aligned}
& \Lambda=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{t}\right) \in \mathbb{E}_{q}[x] \\
& \operatorname{xrem} \wedge=\left(\alpha_{1}, \ldots, \alpha_{t}\right) \in \mathbb{F}_{q}[x] /\left(x-\alpha_{1}\right) \times \cdots \times \mathbb{F}_{q}[x] /\left(x-\alpha_{t}\right) \\
& \downarrow \\
& x^{2} r e m \wedge \xlongequal{=}\left(\alpha_{1}^{2}, \ldots, \alpha_{t}^{2}\right) \in \mathbb{F}_{q}[x] /\left(x-\alpha_{1}\right) \times \cdots \times \mathbb{F}_{q}[x] /\left(x-\alpha_{t}\right) \\
& \downarrow \\
& \downarrow \\
& R:=x^{\frac{q-1}{2}} \operatorname{rem} \wedge \stackrel{\sim}{=}\left(\alpha_{1}^{\frac{q-1}{2}}, \ldots, \alpha_{t}^{\frac{q-1}{2}}\right) \in \mathbb{F}_{q}[x] /\left(x-\alpha_{1}\right) \times \cdots \times \mathbb{F}_{q}[x] /\left(x-\alpha_{t}\right)
\end{aligned}
$$

Cantor-Zassenhaus

(probabilistic)

$$
\begin{aligned}
& \Lambda=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{t}\right) \in \mathbb{F}_{q}[x] \\
& \operatorname{xrem} \wedge \stackrel{\sim}{=}\left(\alpha_{1}, \ldots, \alpha_{t}\right) \in \mathbb{F}_{q}[x] /\left(x-\alpha_{1}\right) \times \cdots \times \mathbb{F}_{q}[x] /\left(x-\alpha_{t}\right) \\
& \downarrow \\
& x^{2} r e m \wedge \xlongequal{=}\left(\alpha_{1}^{2}, \ldots, \alpha_{t}^{2}\right) \in \mathbb{F}_{q}[x] /\left(x-\alpha_{1}\right) \times \cdots \times \mathbb{F}_{q}[x] /\left(x-\alpha_{t}\right) \\
& \downarrow \\
& \downarrow \\
& R:=x^{\frac{q-1}{2}} \operatorname{rem} \wedge \tilde{\sim}\left(\alpha_{1}^{\frac{q-1}{2}}, \ldots, \alpha_{t}^{\frac{q-1}{2}}\right) \in \mathbb{F}_{q}[x] /\left(x-\alpha_{1}\right) \times \cdots \times \mathbb{F}_{q}[x] /\left(x-\alpha_{t}\right) \\
& \operatorname{gcd}(R-1, \Lambda)=\prod_{\substack{\frac{q-1}{2-2} \\
\alpha_{i}^{2}=1}}\left(x-\alpha_{i}\right) \quad \operatorname{gcd}(R+1, \Lambda)=\prod_{\substack{\frac{q-1}{\alpha_{i}^{2}-1}}}\left(x-\alpha_{i}\right)
\end{aligned}
$$

Digression on root finding

Graeffe

Assume $q-1=s 2^{k}, s \approx t($ or even $s \approx t \log t)$

$$
\begin{gathered}
\Lambda=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{t}\right) \\
\downarrow \\
G_{2}(\Lambda)=\left(x-\alpha_{1}^{2}\right) \cdots\left(x-\alpha_{t}^{2}\right) \\
\downarrow \\
\vdots \\
\downarrow \\
G_{2^{k}}(\Lambda)=\left(x-\alpha_{1}^{2^{k}}\right) \cdots\left(x-\alpha_{t}^{2^{k}}\right)
\end{gathered}
$$

Digression on root finding

Graeffe

Assume $q-1=s 2^{k}, s \approx t($ or even $s \approx t \log t)$

$$
\begin{aligned}
& \Lambda=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{t}\right) \\
& \downarrow \\
& G_{2}(\Lambda)=\left(x-\alpha_{1}^{2}\right) \cdots\left(x-\alpha_{t}^{2}\right) \\
& \downarrow \\
& \vdots \\
& \downarrow \\
& G_{2^{k}}(\Lambda)=\left(x-\alpha_{1}^{2^{k}}\right) \cdots\left(x-\alpha_{t}^{2^{k}}\right) \xrightarrow{\mathrm{FFT}_{s}} \alpha_{1}^{2^{k}}, \ldots, \alpha_{t}^{2^{k}}
\end{aligned}
$$

Digression on root finding

Graeffe

Assume $q-1=s 2^{k}, s \approx t($ or even $s \approx t \log t)$

$$
\begin{gathered}
\wedge=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{t}\right) \\
\downarrow \\
G_{2}(\Lambda)=\left(x-\alpha_{1}^{2}\right) \cdots\left(x-\alpha_{t}^{2}\right) \\
\downarrow \\
\vdots \\
\downarrow
\end{gathered}
$$

$$
G_{2^{k}}(\Lambda)=\left(x-\alpha_{1}^{2^{k}}\right) \cdots\left(x-\alpha_{t}^{2^{k}}\right) \quad \xrightarrow{\mathrm{FFT}_{s}} \quad \alpha_{1}^{2^{k}}, \ldots, \alpha_{t}^{2^{k}}
$$

Graeffe

Assume $q-1=s 2^{k}, s \approx t($ or even $s \approx t \log t)$

$$
\begin{array}{cc}
\Lambda=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{t}\right) & \alpha_{1}, \ldots, \alpha_{t} \\
\downarrow & \uparrow \\
G_{2}(\Lambda)=\left(x-\alpha_{1}^{2}\right) \cdots\left(x-\alpha_{t}^{2}\right) & \alpha_{1}^{2}, \ldots, \alpha_{t}^{2} \\
\downarrow & \uparrow \\
\vdots & \vdots \\
\downarrow & \uparrow \\
G_{2^{k}}(\Lambda)=\left(x-\alpha_{1}^{2^{k}}\right) \cdots\left(x-\alpha_{t}^{2^{k}}\right) & \xrightarrow{\mathrm{FFT}_{s}} \\
\alpha_{1}^{2^{k}}, \ldots, \alpha_{t}^{2^{k}}
\end{array}
$$

Complexity

$$
\mathrm{F}_{\mathrm{cZ}}(t)=\mathrm{F}_{\mathrm{Gr}}(t)=0^{b}\left(t(\log t)^{2}(\log q)^{2}\right)
$$

Graeffe

(deterministic)
Assume $q-1=s 2^{k}, s \approx t($ or even $s \approx t \log t)$

$$
\begin{gathered}
\wedge=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{t}\right) \\
\downarrow \\
G_{2}(\Lambda)=\left(x-\alpha_{1}^{2}\right) \cdots\left(x-\alpha_{t}^{2}\right) \\
\downarrow \\
\vdots \\
\downarrow
\end{gathered}
$$

$$
\begin{gathered}
\alpha_{1}, \ldots, \alpha_{t} \\
\uparrow \\
\alpha_{1}^{2}, \ldots, \alpha_{t}^{2} \\
\uparrow \\
\vdots \\
\uparrow
\end{gathered}
$$

$$
G_{2^{k}}(\Lambda)=\left(x-\alpha_{1}^{2^{k}}\right) \cdots\left(x-\alpha_{t}^{2^{k}}\right) \quad \xrightarrow{\mathrm{FFT}_{s}} \quad \alpha_{1}^{2^{k}}, \ldots, \alpha_{t}^{2^{k}}
$$

Complexity

$$
\mathrm{F}_{\mathrm{CZ}}(t)=\mathrm{F}_{\mathrm{Gr}}(t)=0^{b}\left(t(\log t)^{3} \log q\right), \quad \omega^{r}=1, \quad r \leqslant t^{0(1)}
$$

Digression on root finding

Tangent numbers

$$
\mathbb{F}_{q}[\epsilon] /\left(\epsilon^{2}\right)=\left\{a+b \in: a, b \in \mathbb{F}_{q}, \epsilon^{2}=0\right\}
$$

Digression on root finding

Tangent numbers

$$
\mathbb{F}_{q}[\epsilon] /\left(\epsilon^{2}\right)=\left\{a+b \epsilon: a, b \in \mathbb{F}_{q}, \epsilon^{2}=0\right\}
$$

Tangent Graeffe
(probabilistic)

$$
\begin{aligned}
\Lambda(x) & =\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{t}\right) \in \mathbb{E}_{q}[x] \\
\tilde{\Lambda}(x):=\Lambda(x-\epsilon) & =\left(x-\left(\alpha_{1}+\epsilon\right)\right) \cdots\left(x-\left(\alpha_{t}+\epsilon\right)\right) \in\left(\mathbb{F}_{q}[\epsilon] /\left(\epsilon^{2}\right)\right)[x]
\end{aligned}
$$

Digression on root finding

Tangent numbers

$$
\mathbb{F}_{q}[\epsilon] /\left(\epsilon^{2}\right)=\left\{a+b \epsilon: a, b \in \mathbb{F}_{q}, \epsilon^{2}=0\right\}
$$

Tangent Graeffe
(probabilistic)

$$
\begin{aligned}
\Lambda(x) & =\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{t}\right) \in \mathbb{F}_{q}[x] \\
\tilde{\Lambda}(x):=\Lambda(x-\epsilon) & =\left(x-\left(\alpha_{1}+\epsilon\right)\right) \cdots\left(x-\left(\alpha_{t}+\epsilon\right)\right) \in\left(\mathbb{F}_{q}[\epsilon] /\left(\epsilon^{2}\right)\right)[x] \\
G_{2^{k}}(\tilde{\Lambda}) & =\left(x-\left(\alpha_{1}+\epsilon\right)^{2^{k}}\right) \cdots\left(x-\left(\alpha_{t}+\epsilon\right)^{2^{k}}\right)
\end{aligned}
$$

Digression on root finding

Tangent numbers

$$
\mathbb{F}_{q}[\epsilon] /\left(\epsilon^{2}\right)=\left\{a+b \epsilon: a, b \in \mathbb{F}_{q}, \epsilon^{2}=0\right\}
$$

Tangent Graeffe
(probabilistic)

$$
\begin{gathered}
\Lambda(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{t}\right) \in \mathbb{F}_{q}[x] \\
\tilde{\Lambda}(x):=\Lambda(x-\epsilon)=\left(x-\left(\alpha_{1}+\epsilon\right)\right) \cdots\left(x-\left(\alpha_{t}+\epsilon\right)\right) \in\left(\mathbb{F}_{q}[\epsilon] /\left(\epsilon^{2}\right)\right)[x] \\
G_{2^{k}}(\tilde{\Lambda})=\left(x-\left(\alpha_{1}+\epsilon\right)^{2^{k}}\right) \cdots\left(x-\left(\alpha_{t}+\epsilon\right)^{2^{k}}\right) \\
=\left(x-\left(\alpha_{1}^{2^{k}}+2^{k} \alpha_{1}^{2^{k}-1} \epsilon\right)\right) \cdots\left(x-\left(\alpha_{t}^{2^{k}}+2^{k} \alpha_{t}^{2^{k}-1} \epsilon\right)\right)
\end{gathered}
$$

Digression on root finding

Tangent numbers

$$
\mathbb{F}_{q}[\epsilon] /\left(\epsilon^{2}\right)=\left\{a+b \epsilon: a, b \in \mathbb{F}_{q}, \epsilon^{2}=0\right\}
$$

Tangent Graeffe
(probabilistic)

$$
\begin{aligned}
& \Lambda(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{t}\right) \in \mathbb{F}_{q}[x] \\
& \tilde{\Lambda}(x):=\Lambda(x-\epsilon)=\left(x-\left(\alpha_{1}+\epsilon\right)\right) \cdots\left(x-\left(\alpha_{t}+\epsilon\right)\right) \in\left(\mathbb{F}_{q}[\epsilon] /\left(\epsilon^{2}\right)\right)[x] \\
& G_{2^{k}}(\tilde{\Lambda})=\left(x-\left(\alpha_{1}+\epsilon\right)^{2^{k}}\right) \cdots\left(x-\left(\alpha_{t}+\epsilon\right)^{2^{k}}\right) \\
&=\left(x-\left(\alpha_{1}^{2^{k}}+2^{k} \alpha_{1}^{2^{k}-1} \epsilon\right)\right) \cdots\left(x-\left(\alpha_{t}^{2^{k}}+2^{k} \alpha_{t}^{2^{k}-1} \epsilon\right)\right) \\
& \alpha_{i}^{2^{k}}+2^{k} \alpha_{i}^{k^{k}-1} \epsilon \quad \rightarrow \quad \alpha_{i}=2^{k} \frac{\alpha_{i}^{2^{k}}}{\left.2^{k} \alpha_{i}^{2^{k}-1} \quad \quad \text { (single root } \alpha_{i}^{2^{k}}\right)}
\end{aligned}
$$

Conclusion so far

Proposition (modulo suitable smoothness assumptions)

We can compute the sparse interpolate of fin time

$$
O^{b}\left(\left(L+(\log T)^{3}\right) T\left(\frac{\log D}{\log T}\right)^{3} \log (q T)\right) .
$$

Conclusion so far

Proposition (modulo suitable smoothness assumptions)

We can compute the sparse interpolate of f in time

$$
O^{b}\left(\left(L+(\log T)^{3}\right) T\left(\frac{\log D}{\log T}\right)^{3} \log (q T)\right) .
$$

- If $q<2 T$, then we need to replace K by $\mathbb{F}_{q^{s}}$ for $s \geqslant\left\lceil\frac{\log T}{\log q}\right\rceil$
- Significantly smaller hidden constant in 0^{b}

Conclusion so far

Proposition (modulo suitable smoothness assumptions)

We can compute the sparse interpolate of f in time

$$
O^{b}\left(\left(L+(\log T)^{3}\right) T\left(\frac{\log D}{\log T}\right)^{3} \log (q T)\right) .
$$

- If $q<2 T$, then we need to replace K by $\mathbb{F}_{q^{s}}$ for $s \geqslant\left\lceil\frac{\log T}{\log q}\right\rceil$
- Significantly smaller hidden constant in O^{b}
- If $L \geqslant(\log T)^{2}$ and $D \leqslant T^{O(1)}$, then use geometric progression approach

Conclusion so far

Proposition (modulo suitable smoothness assumptions)

We can compute the sparse interpolate of f in time

$$
O^{b}\left(\left(L+(\log T)^{3}\right) T\left(\frac{\log D}{\log T}\right)^{3} \log (q T)\right) .
$$

- If $q<2 T$, then we need to replace K by $\mathbb{F}_{q^{s}}$ for $s \geqslant\left\lceil\frac{\log T}{\log q}\right\rceil$
- Significantly smaller hidden constant in 0^{b}
- If $L \geqslant(\log T)^{2}$ and $D \leqslant T^{O(1)}$, then use geometric progression approach
- If $L<(\log T)^{2}$ or $D>T^{O(1)}$, then use cyclic extension approach

Conclusion so far

Proposition (modulo suitable smoothness assumptions)

We can compute the sparse interpolate of f in time

$$
O^{b}\left(\left(L+(\log T)^{3}\right) T\left(\frac{\log D}{\log T}\right)^{3} \log (q T)\right) .
$$

- If $q<2 T$, then we need to replace K by $\mathbb{F}_{q^{s}}$ for $s \geqslant\left\lceil\frac{\log T}{\log q}\right\rceil$
- Significantly smaller hidden constant in O^{b}
- If $L \geqslant(\log T)^{2}$ and $D \leqslant T^{O(1)}$, then use geometric progression approach
- If $L<(\log T)^{2}$ or $D>T^{O(1)}$, then use cyclic extension approach
- For $n \times n$ symbolic determinant: $L=n^{3}$ and $t=n$!

Conclusion so far

Proposition (modulo suitable smoothness assumptions)

We can compute the sparse interpolate of f in time

$$
O^{b}\left(\left(L+(\log T)^{3}\right) T\left(\frac{\log D}{\log T}\right)^{3} \log (q T)\right) .
$$

- If $q<2 T$, then we need to replace K by $\mathbb{F}_{q^{s}}$ for $s \geqslant\left\lceil\frac{\log T}{\log q}\right\rceil$
- Significantly smaller hidden constant in 0^{b}
- If $L \geqslant(\log T)^{2}$ and $D \leqslant T^{O(1)}$, then use geometric progression approach
- If $L<(\log T)^{2}$ or $D>T^{O(1)}$, then use cyclic extension approach
- For $n \times n$ symbolic determinant: $L=n^{3}$ and $t=n$!

Problems

- Can we reduce the $(\log T)^{3}$ factor?
- If q is small, then can we avoid paying the extension factor $s \geqslant\left\lceil\frac{\log T}{\log q}\right\rceil$?

Part V

FFT-based approach

(Univariate case)

- Computation of f rem $\left(x^{r}-1\right)$ In cyclic extension method: Evaluate f over $K[x] /\left(x^{r}-1\right) \rightarrow$ Use FFT (or Frobenius FFT)
- Computation of f rem $\left(x^{r}-1\right)$ In cyclic extension method:

Evaluate f over $K[x] /\left(x^{r}-1\right) \rightarrow$ Use FFT (or Frobenius FFT)

Most favorable case

- $r \mid(q-1)$ and $r \approx T$, so that $x^{r}-1=(x-1)(x-\omega) \cdots\left(x-\omega^{r-1}\right)$ for some $\omega \in \mathbb{F}_{q}$
- Computation of f rem $\left(x^{r}-1\right)$ In cyclic extension method:

Evaluate f over $K[x] /\left(x^{r}-1\right) \rightarrow$ Use FFT (or Frobenius FFT)

Most favorable case

- $r \mid(q-1)$ and $r \approx T$, so that $x^{r}-1=(x-1)(x-\omega) \cdots\left(x-\omega^{r-1}\right)$ for some $\omega \in \mathbb{F}_{q}$

$$
f \text { rem }\left(x^{r}-1\right) \underset{\text { Inverse FFT }}{\stackrel{\text { FFT }}{\rightleftharpoons}}\left(f(1), f(\omega), \ldots, f\left(\omega^{r-1}\right)\right)
$$

- Computation of f rem $\left(x^{r}-1\right)$ In cyclic extension method:

Evaluate f over $K[x] /\left(x^{r}-1\right) \rightarrow$ Use FFT (or Frobenius FFT)

Most favorable case

- $r \mid(q-1)$ and $r \approx T$, so that $x^{r}-1=(x-1)(x-\omega) \cdots\left(x-\omega^{r-1}\right)$ for some $\omega \in \mathbb{F}_{q}$
- Computation of f rem $\left(x^{r}-1\right)$ In cyclic extension method:

Evaluate f over $K[x] /\left(x^{r}-1\right) \rightarrow$ Use FFT (or Frobenius FFT)

Most favorable case

- $r \mid(q-1)$ and $r \approx T$, so that $x^{r}-1=(x-1)(x-\omega) \cdots\left(x-\omega^{r-1}\right)$ for some $\omega \in \mathbb{F}_{q}$ Next favorable case
- $r \mid\left(q^{s}-1\right)$ and $r \approx T$ for a small s
- $x^{r}-1$ factors into polynomials of small degrees over \mathbb{F}_{q}
- Computation of f rem $\left(x^{r}-1\right)$ In cyclic extension method:

Evaluate f over $K[x] /\left(x^{r}-1\right) \rightarrow$ Use FFT (or Frobenius FFT)

Most favorable case

- $r \mid(q-1)$ and $r \approx T$, so that $x^{r}-1=(x-1)(x-\omega) \cdots\left(x-\omega^{r-1}\right)$ for some $\omega \in \mathbb{F}_{q}$

Next favorable case

- $r \mid\left(q^{s}-1\right)$ and $r \approx T$ for a small s
- $x^{r}-1$ factors into polynomials of small degrees over \mathbb{F}_{q}

Frobenius FFT

- If we need to evaluate $f \in \mathbb{F}_{q}[x]$ over $\mathbb{F}_{q^{s}}$ with $s>1$, then
- $f\left(\alpha^{q}\right)=f(\alpha)^{q}$ for all $\alpha \in \mathbb{F}_{q^{s}}$
- Compute only one of the values $f\left(\omega^{i}\right), f\left(\omega^{q i}\right), \ldots, f\left(\omega^{q^{s-1}}\right)$ for each i
- Use inverse Frobenius FFT to recover f rem $\left(x^{r}-1\right)$

Complexity analysis

Most favorable case only...

- We can pick sufficiently many coprime $r_{1}, \ldots, r_{l} \approx T$

Complexity analysis

Most favorable case only...

- We can pick sufficiently many coprime $r_{1}, \ldots, r_{l} \approx T$

Proposition (modulo many provisos)

We can compute the sparse interpolation of $f \in \mathbb{F}_{q}[x]$ in time

$$
O^{b}\left((L+\log T) T\left(\frac{\log D}{\log T}\right)^{2} \log (q T)\right)
$$

Complexity analysis

Most favorable case only...

- We can pick sufficiently many coprime $r_{1}, \ldots, r_{l} \approx T$

Proposition (modulo many provisos)

We can compute the sparse interpolation of $f \in \mathbb{F}_{q}[x]$ in time

$$
O^{b}\left((L+\log T) T\left(\frac{\log D}{\log T}\right)^{2} \log (q T)\right)
$$

About constant factors

- The geometric progression method uses 2T-1 evaluations
- The FFT-based method uses T evaluations with success rate e^{-1}

Do good orders r exist?

Example for $q=2^{30}, T=10^{6}$, and $D=10^{18}$

$$
\begin{array}{lll}
s_{1}=1 & r_{1}=1549411=31 \cdot 151 \cdot 331 & \Lambda_{1} \approx 1.5 \cdot 10^{6} \\
s_{2}=2 & r_{2}=1047553=13 \cdot 61 \cdot 1321 & \Lambda_{2} \approx 1.6 \cdot 10^{12} \\
s_{3}=3 & r_{3}=1701703=73 \cdot 23311 & \Lambda_{3} \approx 2.8 \cdot 10^{18} \\
s_{4}=3 & r_{4}=1186911=3^{2} \cdot 11 \cdot 19 \cdot 631 & \Lambda_{4} \approx 3.2 \cdot 10^{24} \\
s_{5}=4 & r_{5}=1048577=17 \cdot 61681 & \Lambda_{5} \approx 3.4 \cdot 10^{30} \\
s_{6}=4 & r_{6}=1729175=5^{2} \cdot 7 \cdot 41 \cdot 241 & \Lambda_{6} \approx 5.9 \cdot 10^{36} \\
s_{7}=5 & r_{7}=1016801=251 \cdot 4051 & \Lambda_{7} \approx 6.0 \cdot 10^{42} \\
s_{8}=5 & r_{8}=1082401=601 \cdot 1801 & \Lambda_{8} \approx 6.5 \cdot 10^{48} \\
s_{9}=5 & r_{9}=1108811=11 \cdot 100801 & \Lambda_{9} \approx 6.6 \cdot 10^{53} \\
s_{10}=6 & r_{10}=1134021=3 \cdot 7 \cdot 54001 & \Lambda_{10} \approx 3.6 \cdot 10^{58} \\
& & \\
& & \\
& \Lambda_{i}:=\operatorname{lcm}\left(r_{1}, \ldots, r_{i}\right), \quad D^{e} \approx 8.5 \cdot 10^{48} &
\end{array}
$$

Example for (prime) $q=1299743, T=10^{6}$, and $D=10^{18}$

$s_{1}=1$	$r_{1}=1299742=2 \cdot 649871$	
$s_{2}=2$	$r_{2}=1299744=\Lambda_{1} \approx 1.3 \cdot 10^{5}$	
$s_{3}=4$	$r_{3}=1006325=3^{2} \cdot 4513$	$\Lambda_{2} \approx 8.4 \cdot 10^{11}$
$s_{4}=4$	$r_{4}=1678714=2 \cdot 193 \cdot 4349$	$\Lambda_{3} \approx 8.5 \cdot 10^{17}$
$s_{5}=5$	$r_{5}=1690111=701 \cdot 2411$	$\Lambda_{4} \approx 7.1 \cdot 10^{23}$
$s_{6}=6$	$r_{6}=1119937=7 \cdot 13 \cdot 31 \cdot 397$	$\Lambda_{5} \approx 1.2 \cdot 10^{30}$
$s_{7}=8$	$r_{7}=1196324=2^{2} \cdot 17 \cdot 73 \cdot 241$	$\Lambda_{6} \approx 1.4 \cdot 10^{36}$
$s_{8}=9$	$r_{8}=1185702=2 \cdot 3 \cdot 7^{2} \cdot 37 \cdot 109$	$\Lambda_{7} \approx 4.0 \cdot 10^{41}$
$s_{9}=10$	$r_{9}=1376122=2 \cdot 1 \cdot 10^{46}$	
$s_{10}=11$	$r_{10}=3423619=23 \cdot 148853$	$\Lambda_{9} \approx 7.8 \cdot 10^{51}$
		$\Lambda_{10} \approx 2.7 \cdot 10^{58}$

Thank you !

http://www. TEX XACS $^{\text {.org }}$

