
A zero-test for σ-algebraic power series

Joris van der Hoeven and Gleb Pogudin,

MAX team, LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris

IHP, Groupe de travail “Transcendance et Combinatoire”

Plan

• Introduction: what do we want?

• Our results: what can we do?

• Nuts and bolts: how do we do this?

1

Introduction: what do we want?

2

Big picture

We often deal with objects defined implicitly by equations, e.g:

• Algebraic equations → numbers (
√

2 := positive root of x2− 2 = 0);

• Differential equations → functions (f = ex as f ′ = f with f (0) = 1)

Fundamental question

Equality testing: are two such objects equal? (e.g.
√

2− 1 = 1
1+
√
2

)

By A = B ⇐⇒ A− B = 0 is often reduced to zero-testing.

3

Big picture

We often deal with objects defined implicitly by equations, e.g:

• Algebraic equations → numbers (
√

2 := positive root of x2− 2 = 0);

• Differential equations → functions (f = ex as f ′ = f with f (0) = 1)

Fundamental question

Equality testing: are two such objects equal? (e.g.
√

2− 1 = 1
1+
√
2

)

By A = B ⇐⇒ A− B = 0 is often reduced to zero-testing.

3

Big picture

We often deal with objects defined implicitly by equations, e.g:

• Algebraic equations → numbers (
√

2 := positive root of x2− 2 = 0);

• Differential equations → functions (f = ex as f ′ = f with f (0) = 1)

Fundamental question

Equality testing: are two such objects equal? (e.g.
√

2− 1 = 1
1+
√
2

)

By A = B ⇐⇒ A− B = 0 is often reduced to zero-testing.

3

Context

In symbolic computation:

• Polynomial equations → algebraic numbers

Zero-test: Liouville’s theorem

• Linear differential equations → D-finite power series

Zero-test: folklore?

• Algebraic differential equations → D-algebraic power series

Zero-test: Denef & Lipshitz (1984), Shackell (1993),

van der Hoeven (2002, 2019) → Two weeks ago

• Algebraic difference equations

(e.g., fn+1 = fn + fn−1 or Γ(z + 1) = zΓ(z)):

1. σ-algebraic sequences

Zero-test: Kauers (2007) for a large class

2. σ-algebraic power series

Zero-test: This talk!

4

Context

In symbolic computation:

• Polynomial equations → algebraic numbers

Zero-test: Liouville’s theorem

• Linear differential equations → D-finite power series

Zero-test: folklore?

• Algebraic differential equations → D-algebraic power series

Zero-test: Denef & Lipshitz (1984), Shackell (1993),

van der Hoeven (2002, 2019) → Two weeks ago

• Algebraic difference equations

(e.g., fn+1 = fn + fn−1 or Γ(z + 1) = zΓ(z)):

1. σ-algebraic sequences

Zero-test: Kauers (2007) for a large class

2. σ-algebraic power series

Zero-test: This talk!

4

Context

In symbolic computation:

• Polynomial equations → algebraic numbers

Zero-test: Liouville’s theorem

• Linear differential equations → D-finite power series

Zero-test: folklore?

• Algebraic differential equations → D-algebraic power series

Zero-test: Denef & Lipshitz (1984), Shackell (1993),

van der Hoeven (2002, 2019) → Two weeks ago

• Algebraic difference equations

(e.g., fn+1 = fn + fn−1 or Γ(z + 1) = zΓ(z)):

1. σ-algebraic sequences

Zero-test: Kauers (2007) for a large class

2. σ-algebraic power series

Zero-test: This talk!

4

Context

In symbolic computation:

• Polynomial equations → algebraic numbers

Zero-test: Liouville’s theorem

• Linear differential equations → D-finite power series

Zero-test: folklore?

• Algebraic differential equations → D-algebraic power series

Zero-test: Denef & Lipshitz (1984), Shackell (1993),

van der Hoeven (2002, 2019) → Two weeks ago

• Algebraic difference equations

(e.g., fn+1 = fn + fn−1 or Γ(z + 1) = zΓ(z)):

1. σ-algebraic sequences

Zero-test: Kauers (2007) for a large class

2. σ-algebraic power series

Zero-test: This talk!

4

Background: computable power series

Let K be a computable ground field (e.g., Q).

Computable power series

A power series f =
∞∑
i=0

fi t
i ∈ K [[z]] is called computable if there exists an

algorithm computing fn given n as input.

Remark

• sum, product, quotient, and composition (if well-defined) of

computable power series are computable;

• BUT given computable f and g , it is not decidable whether f = g

(or, equivalently, whether f − g = 0)

Wanted: zero-test

5

Background: computable power series

Let K be a computable ground field (e.g., Q).

Computable power series

A power series f =
∞∑
i=0

fi t
i ∈ K [[z]] is called computable if there exists an

algorithm computing fn given n as input.

Remark

• sum, product, quotient, and composition (if well-defined) of

computable power series are computable;

• BUT given computable f and g , it is not decidable whether f = g

(or, equivalently, whether f − g = 0)

Wanted: zero-test

5

Background: computable power series

Let K be a computable ground field (e.g., Q).

Computable power series

A power series f =
∞∑
i=0

fi t
i ∈ K [[z]] is called computable if there exists an

algorithm computing fn given n as input.

Remark

• sum, product, quotient, and composition (if well-defined) of

computable power series are computable;

• BUT given computable f and g , it is not decidable whether f = g

(or, equivalently, whether f − g = 0)

Wanted: zero-test

5

Background: computable power series

Let K be a computable ground field (e.g., Q).

Computable power series

A power series f =
∞∑
i=0

fi t
i ∈ K [[z]] is called computable if there exists an

algorithm computing fn given n as input.

Remark

• sum, product, quotient, and composition (if well-defined) of

computable power series are computable;

• BUT given computable f and g , it is not decidable whether f = g

(or, equivalently, whether f − g = 0)

Wanted: zero-test

5

Background: computable power series

Let K be a computable ground field (e.g., Q).

Computable power series

A power series f =
∞∑
i=0

fi t
i ∈ K [[z]] is called computable if there exists an

algorithm computing fn given n as input.

Remark

• sum, product, quotient, and composition (if well-defined) of

computable power series are computable;

• BUT given computable f and g , it is not decidable whether f = g

(or, equivalently, whether f − g = 0)

Wanted: zero-test

5

σ-algebraic power series

Fix g = z +O(z2) ∈ K [[z]] and consider difference operator

σ : f (z)→ f (g(z)) for every f (z) ∈ K [[z]]

Definition

f is σ-algebraic of order r

⇐⇒ ∃P ∈ K [X0, . . . ,Xr] \ {0} : P(f , σ(f), . . . , σr (f)) = 0

6

σ-algebraic power series

Fix g = z +O(z2) ∈ K [[z]] and consider difference operator

σ : f (z)→ f (g(z)) for every f (z) ∈ K [[z]]

Definition

f is σ-algebraic of order r

⇐⇒ ∃P ∈ K [X0, . . . ,Xr] \ {0} : P(f , σ(f), . . . , σr (f)) = 0

6

σ-algebraic power series

Fix g = z +O(z2) ∈ K [[z]] and consider difference operator

σ : f (z)→ f (g(z)) for every f (z) ∈ K [[z]]

Definition

f is σ-algebraic of order r

⇐⇒ ∃P ∈ K [X0, . . . ,Xr] \ {0} : P(f , σ(f), . . . , σr (f)) = 0

Examples

• g = z + z2, f = z =⇒ σ(f)− f − f 2 = 0

• Γ-function satisfies Γ(n + 1) = nΓ(n)

,

BUT after z := 1
n the shift n→ n + 1 becomes z → z

1+z = z − . . .

6

σ-algebraic power series

Fix g = z +O(z2) ∈ K [[z]] and consider difference operator

σ : f (z)→ f (g(z)) for every f (z) ∈ K [[z]]

Definition

f is σ-algebraic of order r

⇐⇒ ∃P ∈ K [X0, . . . ,Xr] \ {0} : P(f , σ(f), . . . , σr (f)) = 0

Examples

• g = z + z2, f = z =⇒ σ(f)− f − f 2 = 0

• Γ-function satisfies Γ(n + 1) = nΓ(n)

,

BUT after z := 1
n the shift n→ n + 1 becomes z → z

1+z = z − . . .

6

σ-algebraic power series

Fix g = z +O(z2) ∈ K [[z]] and consider difference operator

σ : f (z)→ f (g(z)) for every f (z) ∈ K [[z]]

Definition

f is σ-algebraic of order r

⇐⇒ ∃P ∈ K [X0, . . . ,Xr] \ {0} : P(f , σ(f), . . . , σr (f)) = 0

Examples

• g = z + z2, f = z =⇒ σ(f)− f − f 2 = 0

• Γ-function satisfies Γ(n + 1) = nΓ(n),

BUT after z := 1
n the shift n→ n + 1 becomes z → z

1+z = z − . . .

6

σ-algebraic power series

Fix g = z +O(z2) ∈ K [[z]] and consider difference operator

σ : f (z)→ f (g(z)) for every f (z) ∈ K [[z]]

Definition

f is σ-algebraic of order r

⇐⇒ ∃P ∈ K [X0, . . . ,Xr] \ {0} : P(f , σ(f), . . . , σr (f)) = 0

Computability

σ-algebraic f ∈ K [[z]] is computable if represented by

• P(X0, . . . ,Xr) with ∂P
∂Xr

(f , σ(f), . . . , σr (f)) 6= 0

Differential case: the latter not required but achieved

;

• sufficiently many initial terms.

6

σ-algebraic power series

Fix g = z +O(z2) ∈ K [[z]] and consider difference operator

σ : f (z)→ f (g(z)) for every f (z) ∈ K [[z]]

Definition

f is σ-algebraic of order r

⇐⇒ ∃P ∈ K [X0, . . . ,Xr] \ {0} : P(f , σ(f), . . . , σr (f)) = 0

Computability

σ-algebraic f ∈ K [[z]] is computable if represented by

• P(X0, . . . ,Xr) with ∂P
∂Xr

(f , σ(f), . . . , σr (f)) 6= 0

Differential case: the latter not required but achieved;

• sufficiently many initial terms.

6

Our results: what can we do?

7

Our algorithm

We give the first algorithm such that

Input: • a σ-algebraic power series f defined as above

(annihilator P + terms)

• polynomial Q in f , σ(f), σ2(f), . . .

Output: True if Q = 0 and False otherwise

Important remark

The annihilator P may be not over K but over A ⊂ K [[z]] such that

• A is a subalgebra closed under σ

• A has a zero test

=⇒ One can build towers of extensions with zero-test (later in example)

We provide a proof-of-concept Julia implementation

https://github.com/pogudingleb/DifferenceZeroTest

(gives a good idea how one should not implement this)

8

https://github.com/pogudingleb/DifferenceZeroTest

Our algorithm

We give the first algorithm such that

Input: • a σ-algebraic power series f defined as above

(annihilator P + terms)

• polynomial Q in f , σ(f), σ2(f), . . .

Output: True if Q = 0 and False otherwise

Important remark

The annihilator P may be not over K but over A ⊂ K [[z]] such that

• A is a subalgebra closed under σ

• A has a zero test

=⇒ One can build towers of extensions with zero-test (later in example)

We provide a proof-of-concept Julia implementation

https://github.com/pogudingleb/DifferenceZeroTest

(gives a good idea how one should not implement this)

8

https://github.com/pogudingleb/DifferenceZeroTest

Our algorithm

We give the first algorithm such that

Input: • a σ-algebraic power series f defined as above

(annihilator P + terms)

• polynomial Q in f , σ(f), σ2(f), . . .

Output: True if Q = 0 and False otherwise

Important remark

The annihilator P may be not over K but over A ⊂ K [[z]] such that

• A is a subalgebra closed under σ

• A has a zero test

=⇒ One can build towers of extensions with zero-test (later in example)

We provide a proof-of-concept Julia implementation

https://github.com/pogudingleb/DifferenceZeroTest

(gives a good idea how one should not implement this)

8

https://github.com/pogudingleb/DifferenceZeroTest

Our algorithm

We give the first algorithm such that

Input: • a σ-algebraic power series f defined as above

(annihilator P + terms)

• polynomial Q in f , σ(f), σ2(f), . . .

Output: True if Q = 0 and False otherwise

Important remark

The annihilator P may be not over K but over A ⊂ K [[z]] such that

• A is a subalgebra closed under σ

• A has a zero test

=⇒ One can build towers of extensions with zero-test (later in example)

We provide a proof-of-concept Julia implementation

https://github.com/pogudingleb/DifferenceZeroTest

(gives a good idea how one should not implement this)
8

https://github.com/pogudingleb/DifferenceZeroTest

Example (Legendre’s duplication formula)

Γ(n)Γ

(
n +

1

2

)
= 21−2n√πΓ(2n)

How we represent Γ-function?

Stirling’s series: log Γ(n + 1) = n log n − n +
1

2
log(2πn) +

∞∑
k=1

sk
nk

For S(z) :=
∞∑
k=1

skz
k and σ(f (z)) = f

(
z

1+z

)
, we have

zσ(S)− zS − z +
(

1 +
z

2

)
log(1 + z) = 0.

Legendre’s formula turns into

z

(
S
(z

2

)
− S(z)− S

(
z

1 + z/2

))
= log(1 +

z

2
)− z

2

9

Example (Legendre’s duplication formula)

Γ(n)Γ

(
n +

1

2

)
= 21−2n√πΓ(2n)

How we represent Γ-function?

Stirling’s series: log Γ(n + 1) = n log n − n +
1

2
log(2πn) +

∞∑
k=1

sk
nk

For S(z) :=
∞∑
k=1

skz
k and σ(f (z)) = f

(
z

1+z

)
, we have

zσ(S)− zS − z +
(

1 +
z

2

)
log(1 + z) = 0.

Legendre’s formula turns into

z

(
S
(z

2

)
− S(z)− S

(
z

1 + z/2

))
= log(1 +

z

2
)− z

2

9

Example (Legendre’s duplication formula)

Γ(n)Γ

(
n +

1

2

)
= 21−2n√πΓ(2n)

How we represent Γ-function?

Stirling’s series: log Γ(n + 1) = n log n − n +
1

2
log(2πn) +

∞∑
k=1

sk
nk

For S(z) :=
∞∑
k=1

skz
k and σ(f (z)) = f

(
z

1+z

)
, we have

zσ(S)− zS − z +
(

1 +
z

2

)
log(1 + z) = 0.

Legendre’s formula turns into

z

(
S
(z

2

)
− S(z)− S

(
z

1 + z/2

))
= log(1 +

z

2
)− z

2

9

Example (Legendre’s duplication formula)

Γ(n)Γ

(
n +

1

2

)
= 21−2n√πΓ(2n)

How we represent Γ-function?

Stirling’s series: log Γ(n + 1) = n log n − n +
1

2
log(2πn) +

∞∑
k=1

sk
nk

For S(z) :=
∞∑
k=1

skz
k and σ(f (z)) = f

(
z

1+z

)
, we have

zσ(S)− zS − z +
(

1 +
z

2

)
log(1 + z) = 0.

Legendre’s formula turns into

z

(
S
(z

2

)
− S(z)− S

(
z

1 + z/2

))
= log(1 +

z

2
)− z

2
9

Example (Legendre’s duplication formula)

Setup

• S(z) is given by zσ(S)− zS − z +
(
1 + z

2

)
log(1 + z) = 0 and

enough terms;

• We want to check z
(
S
(
z
2

)
− S(z)− S

(
z

1+z/2

))
= log(1 + z

2)− z
2

Building a zero-test

Starting with Q[z] (has zero-test!)

1. Adjoin log(1 + z) and log(1 + z
1+z/2) (σ-transcendental)

2. Adjoin log(1 + z/2) (σ-algebraic)

3. Adjoin S(z), S(z
2), and S(z

1+z/2) (σ-algebraic)

And now we can perform the desired zero-test (well, implementation can).

10

Example (Legendre’s duplication formula)

Setup

• S(z) is given by zσ(S)− zS − z +
(
1 + z

2

)
log(1 + z) = 0 and

enough terms;

• We want to check z
(
S
(
z
2

)
− S(z)− S

(
z

1+z/2

))
= log(1 + z

2)− z
2

Building a zero-test

Starting with Q[z] (has zero-test!)

1. Adjoin log(1 + z) and log(1 + z
1+z/2) (σ-transcendental)

2. Adjoin log(1 + z/2) (σ-algebraic)

3. Adjoin S(z), S(z
2), and S(z

1+z/2) (σ-algebraic)

And now we can perform the desired zero-test (well, implementation can).

10

Example (Legendre’s duplication formula)

Setup

• S(z) is given by zσ(S)− zS − z +
(
1 + z

2

)
log(1 + z) = 0 and

enough terms;

• We want to check z
(
S
(
z
2

)
− S(z)− S

(
z

1+z/2

))
= log(1 + z

2)− z
2

Building a zero-test

Starting with Q[z] (has zero-test!)

1. Adjoin log(1 + z) and log(1 + z
1+z/2) (σ-transcendental)

2. Adjoin log(1 + z/2) (σ-algebraic)

3. Adjoin S(z), S(z
2), and S(z

1+z/2) (σ-algebraic)

And now we can perform the desired zero-test (well, implementation can).

10

Example (Legendre’s duplication formula)

Setup

• S(z) is given by zσ(S)− zS − z +
(
1 + z

2

)
log(1 + z) = 0 and

enough terms;

• We want to check z
(
S
(
z
2

)
− S(z)− S

(
z

1+z/2

))
= log(1 + z

2)− z
2

Building a zero-test

Starting with Q[z] (has zero-test!)

1. Adjoin log(1 + z) and log(1 + z
1+z/2) (σ-transcendental)

2. Adjoin log(1 + z/2) (σ-algebraic)

3. Adjoin S(z), S(z
2), and S(z

1+z/2) (σ-algebraic)

And now we can perform the desired zero-test (well, implementation can).

10

Example (Legendre’s duplication formula)

Setup

• S(z) is given by zσ(S)− zS − z +
(
1 + z

2

)
log(1 + z) = 0 and

enough terms;

• We want to check z
(
S
(
z
2

)
− S(z)− S

(
z

1+z/2

))
= log(1 + z

2)− z
2

Building a zero-test

Starting with Q[z] (has zero-test!)

1. Adjoin log(1 + z) and log(1 + z
1+z/2) (σ-transcendental)

2. Adjoin log(1 + z/2) (σ-algebraic)

3. Adjoin S(z), S(z
2), and S(z

1+z/2) (σ-algebraic)

And now we can perform the desired zero-test (well, implementation can).

10

Example (Legendre’s duplication formula)

Setup

• S(z) is given by zσ(S)− zS − z +
(
1 + z

2

)
log(1 + z) = 0 and

enough terms;

• We want to check z
(
S
(
z
2

)
− S(z)− S

(
z

1+z/2

))
= log(1 + z

2)− z
2

Building a zero-test

Starting with Q[z] (has zero-test!)

1. Adjoin log(1 + z) and log(1 + z
1+z/2) (σ-transcendental)

2. Adjoin log(1 + z/2) (σ-algebraic)

3. Adjoin S(z), S(z
2), and S(z

1+z/2) (σ-algebraic)

And now we can perform the desired zero-test (well, implementation can).

10

Nuts and bolts: how do we do this?

11

Difference reduction

Main notions

• Difference polynomial over a difference ring A is an element of

A[X , σ(X), σ2(X), . . .].

• Let P be difference polynomial:

• Leader is σ`X appearing in P s.t. ` is maximal;

• let d be the degree of P in σ`X ;

• (`, d) := Ritt rank of P.

Reduction

• P and Q have Ritt ranks (`P , dP) and (`Q , dQ);

• if `P 6 `Q and dP 6 dQ , Q is reducible w.r.t. P

⇐= pseudo-Euclidean division of Q by σ`Q−`PP w.r.t σ`QX .

Oh lá lá!
differential reducibility→ total ordering

difference reducibility→ partial ordering

12

Difference reduction

Main notions

• Difference polynomial over a difference ring A is an element of

A[X , σ(X), σ2(X), . . .].

• Let P be difference polynomial:

• Leader is σ`X appearing in P s.t. ` is maximal;

• let d be the degree of P in σ`X ;

• (`, d) := Ritt rank of P.

Reduction

• P and Q have Ritt ranks (`P , dP) and (`Q , dQ);

• if `P 6 `Q and dP 6 dQ , Q is reducible w.r.t. P

⇐= pseudo-Euclidean division of Q by σ`Q−`PP w.r.t σ`QX .

Oh lá lá!
differential reducibility→ total ordering

difference reducibility→ partial ordering

12

Difference reduction

Main notions

• Difference polynomial over a difference ring A is an element of

A[X , σ(X), σ2(X), . . .].

• Let P be difference polynomial:

• Leader is σ`X appearing in P s.t. ` is maximal;

• let d be the degree of P in σ`X ;

• (`, d) := Ritt rank of P.

Reduction

• P and Q have Ritt ranks (`P , dP) and (`Q , dQ);

• if `P 6 `Q and dP 6 dQ , Q is reducible w.r.t. P

⇐= pseudo-Euclidean division of Q by σ`Q−`PP w.r.t σ`QX .

Oh lá lá!
differential reducibility→ total ordering

difference reducibility→ partial ordering

12

Coherent autoreduced set

Autoreduced set

For {Q1, . . . ,Qs}, every Qi is not reducible w.r.t. the rest

=⇒ autoreduced set

Coherent autoreduced set (“minimal annihilator”)

Autoreduced {Q1, . . . ,Qs} is coherent if ∆(Qi ,Qj) reducible to zero ∀i , j .
(for a suitable notion of ∆-polynomial)

Issue

For a coherent autoreduced Q1, . . . ,Qs in a single indeterminate:

• differential case =⇒ s = 1;

• difference case: can be s > 1.

13

Coherent autoreduced set

Autoreduced set

For {Q1, . . . ,Qs}, every Qi is not reducible w.r.t. the rest

=⇒ autoreduced set

Coherent autoreduced set (“minimal annihilator”)

Autoreduced {Q1, . . . ,Qs} is coherent if ∆(Qi ,Qj) reducible to zero ∀i , j .
(for a suitable notion of ∆-polynomial)

Issue

For a coherent autoreduced Q1, . . . ,Qs in a single indeterminate:

• differential case =⇒ s = 1;

• difference case: can be s > 1.

13

Coherent autoreduced set

Autoreduced set

For {Q1, . . . ,Qs}, every Qi is not reducible w.r.t. the rest

=⇒ autoreduced set

Coherent autoreduced set (“minimal annihilator”)

Autoreduced {Q1, . . . ,Qs} is coherent if ∆(Qi ,Qj) reducible to zero ∀i , j .
(for a suitable notion of ∆-polynomial)

Issue

For a coherent autoreduced Q1, . . . ,Qs in a single indeterminate:

• differential case =⇒ s = 1;

• difference case: can be s > 1.

13

Example

Let σ : f (z)→ f (z − z2) and we consider f = z2.

The annihilator of the minimal order is:

P1 = X 4 − 2X 3 − 2X 2σ(X) + X 2 − 2Xσ(X) + σ(X)2

But there is also:

P2 = Xσ(X)3−2Xσ(X)2 +Xσ(X) + (−2X +σ(X) +X 2−Xσ(X))σ2(X)

None of P1 and P2 is reducible w.r.t. another!

14

Example

Let σ : f (z)→ f (z − z2) and we consider f = z2.

The annihilator of the minimal order is:

P1 = X 4 − 2X 3 − 2X 2σ(X) + X 2 − 2Xσ(X) + σ(X)2

But there is also:

P2 = Xσ(X)3−2Xσ(X)2 +Xσ(X) + (−2X +σ(X) +X 2−Xσ(X))σ2(X)

None of P1 and P2 is reducible w.r.t. another!

14

Example

Let σ : f (z)→ f (z − z2) and we consider f = z2.

The annihilator of the minimal order is:

P1 = X 4 − 2X 3 − 2X 2σ(X) + X 2 − 2Xσ(X) + σ(X)2

But there is also:

P2 = Xσ(X)3−2Xσ(X)2 +Xσ(X) + (−2X +σ(X) +X 2−Xσ(X))σ2(X)

None of P1 and P2 is reducible w.r.t. another!

14

Example

Let σ : f (z)→ f (z − z2) and we consider f = z2.

The annihilator of the minimal order is:

P1 = X 4 − 2X 3 − 2X 2σ(X) + X 2 − 2Xσ(X) + σ(X)2

But there is also:

P2 = Xσ(X)3−2Xσ(X)2 +Xσ(X) + (−2X +σ(X) +X 2−Xσ(X))σ2(X)

None of P1 and P2 is reducible w.r.t. another!

14

Solution: one polynomial to rule them all

Key theoretical lemma

Let Q1, . . . ,Qs be coherent and autoreduced and Q1 be of minimal order.

Then there exists M:(
Q1(f̃) = 0 & ∀i > 2 Qi (f̃) = O(zM)

)
=⇒ Q1(f̃) = . . . = Qs(f̃) = 0

So what?

We can focus on Q1 and mimic the strategy from the differential

algorithm presented by Joris.

15

Solution: one polynomial to rule them all

Key theoretical lemma

Let Q1, . . . ,Qs be coherent and autoreduced and Q1 be of minimal order.

Then there exists M:(
Q1(f̃) = 0 & ∀i > 2 Qi (f̃) = O(zM)

)
=⇒ Q1(f̃) = . . . = Qs(f̃) = 0

So what?

We can focus on Q1 and mimic the strategy from the differential

algorithm presented by Joris.

15

Outline of the algorithm

Fix σ-algebraic f . Describe algorithm ZeroTest(Q1, . . . ,Qs)

Input Q1, . . . ,Qs — difference polynomials

Output YES if Q1(f) = . . . = Qs(f) = 0 and NO otherwise

Steps (simplified)

1. If there exists Q — initial or a separant of Q1, . . . ,Qs not reducible

to zero

1.1 if ZeroTest(Q,Q1, . . . ,Qs), return YES

1.2 find who among Q,Q1, . . . ,Qs does not vanish at f

1.3 if one of Q1, . . . ,Qs , return NO

(by this line, none of the initials and separants vanish at f)

2. If a pairwise reminder or a ∆-polynomial Q is not reducible to zero,

return ZeroTest(Q,Q1, . . . ,Qs)

(by this line, Q1, . . . ,Qs can be assumed coherent autoreduced)

3. Compute special N (Joris talk + lemma from prev slide)

4. If Q1(f) = . . . = Qs(f) = O(zN), return YES. Otherwise, NO.

16

Outline of the algorithm

Fix σ-algebraic f . Describe algorithm ZeroTest(Q1, . . . ,Qs)

Input Q1, . . . ,Qs — difference polynomials

Output YES if Q1(f) = . . . = Qs(f) = 0 and NO otherwise

Steps (simplified)

1. If there exists Q — initial or a separant of Q1, . . . ,Qs not reducible

to zero

1.1 if ZeroTest(Q,Q1, . . . ,Qs), return YES

1.2 find who among Q,Q1, . . . ,Qs does not vanish at f

1.3 if one of Q1, . . . ,Qs , return NO

(by this line, none of the initials and separants vanish at f)

2. If a pairwise reminder or a ∆-polynomial Q is not reducible to zero,

return ZeroTest(Q,Q1, . . . ,Qs)

(by this line, Q1, . . . ,Qs can be assumed coherent autoreduced)

3. Compute special N (Joris talk + lemma from prev slide)

4. If Q1(f) = . . . = Qs(f) = O(zN), return YES. Otherwise, NO.

16

Outline of the algorithm

Fix σ-algebraic f . Describe algorithm ZeroTest(Q1, . . . ,Qs)

Input Q1, . . . ,Qs — difference polynomials

Output YES if Q1(f) = . . . = Qs(f) = 0 and NO otherwise

Steps (simplified)

1. If there exists Q — initial or a separant of Q1, . . . ,Qs not reducible

to zero

1.1 if ZeroTest(Q,Q1, . . . ,Qs), return YES

1.2 find who among Q,Q1, . . . ,Qs does not vanish at f

1.3 if one of Q1, . . . ,Qs , return NO

(by this line, none of the initials and separants vanish at f)

2. If a pairwise reminder or a ∆-polynomial Q is not reducible to zero,

return ZeroTest(Q,Q1, . . . ,Qs)

(by this line, Q1, . . . ,Qs can be assumed coherent autoreduced)

3. Compute special N (Joris talk + lemma from prev slide)

4. If Q1(f) = . . . = Qs(f) = O(zN), return YES. Otherwise, NO.

16

Outline of the algorithm

Fix σ-algebraic f . Describe algorithm ZeroTest(Q1, . . . ,Qs)

Input Q1, . . . ,Qs — difference polynomials

Output YES if Q1(f) = . . . = Qs(f) = 0 and NO otherwise

Steps (simplified)

1. If there exists Q — initial or a separant of Q1, . . . ,Qs not reducible

to zero

1.1 if ZeroTest(Q,Q1, . . . ,Qs), return YES

1.2 find who among Q,Q1, . . . ,Qs does not vanish at f

1.3 if one of Q1, . . . ,Qs , return NO

(by this line, none of the initials and separants vanish at f)

2. If a pairwise reminder or a ∆-polynomial Q is not reducible to zero,

return ZeroTest(Q,Q1, . . . ,Qs)

(by this line, Q1, . . . ,Qs can be assumed coherent autoreduced)

3. Compute special N (Joris talk + lemma from prev slide)

4. If Q1(f) = . . . = Qs(f) = O(zN), return YES. Otherwise, NO. 16

Summary and outlook

We have

• the first zero-test algorithm for σ-algebraic power series

• and it actually works

We do not have (yet)

• implementation handling both σ and differential equations

(we have the theory)

• automatic transform of shift into σ (like Γ→ S in the example)

• more examples (e.g., fractional special functions)

• other σ’s like z → zk

17

Summary and outlook

We have

• the first zero-test algorithm for σ-algebraic power series

• and it actually works

We do not have (yet)

• implementation handling both σ and differential equations

(we have the theory)

• automatic transform of shift into σ (like Γ→ S in the example)

• more examples (e.g., fractional special functions)

• other σ’s like z → zk

17

