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Fundamental question
Equality testing: are two such objects equal? (e.g. V2 —1= —1.)

1+v2
By A=B <= A— B =0 is often reduced to zero-testing.
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In symbolic computation:

e Polynomial equations — algebraic numbers
Zero-test: Liouville's theorem

e Linear differential equations — D-finite power series
Zero-test: folklore?

e Algebraic differential equations — D-algebraic power series
Zero-test: Denef & Lipshitz (1984), Shackell (1993),
van der Hoeven (2002, 2019) — Two weeks ago

e Algebraic difference equations
(eg., fap1 = o+ fa_ror T(z+ 1) = 2 (2)):
1. o-algebraic sequences
Zero-test: Kauers (2007) for a large class
2. o-algebraic power series
Zero-test: This talk!
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Background: computable power series

Let K be a computable ground field (e.g., Q).

Computable power series
0 .

A power series f = > fit' € K[z] is called computable if there exists an
i=0

algorithm computing f, given n as input.

Remark

e sum, product, quotient, and composition (if well-defined) of
computable power series are computable;

e BUT given computable f and g, it is not decidable whether f = g
(or, equivalently, whether f — g = 0)

Wanted: zero-test
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o-algebraic power series

Fix g = z + O(2%) € K[z] and consider difference operator

o: f(z) = f(g(z)) for every f(z) € K[z]

Definition
f is o-algebraic of order r

e 3P € K[Xo,..., X\ {0}: P(F,o(f),...,0"(f)) =0

Examples
e g=z+2%f=z = o(f)—f—f2=0
e [-function satisfies ['(n+ 1) = nl(n),
BUT after z := % the shift n — n+ 1 becomes z —

PA— .
14z =z




o-algebraic power series

Fix g = z + O(2%) € K[z] and consider difference operator
o: f(z) = f(g(z)) for every f(z) € K[z]
Definition

f is o-algebraic of order r
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o-algebraic f € K[z] is computable if represented by

o P(Xo, ..., X,) with 52(f,0(f),...,0"(f)) #0

e sufficiently many initial terms.



o-algebraic power series

Fix g = z + O(2%) € K[z] and consider difference operator

o: f(z) = f(g(z)) for every f(z) € K[z]

Definition
f is o-algebraic of order r

e 3P € K[Xo,..., X\ {0}: P(F,o(f),...,0"(f)) =0

Computability
o-algebraic f € K[z] is computable if represented by
o P(Xo, ..., X,) with 52(f,0(f),...,0"(f)) #0
Differential case: the latter not required but achieved;

e sufficiently many initial terms.
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Our algorithm

We give the first algorithm such that

Input: e a o-algebraic power series f defined as above
(annihilator P + terms)
e polynomial Q in f,o(f),o?(f),...
Output: True if @ = 0 and False otherwise
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Our algorithm

We give the first algorithm such that

Input: e a o-algebraic power series f defined as above
(annihilator P + terms)
e polynomial Q in f,o(f),o?(f),...
Output: True if @ = 0 and False otherwise

Important remark
The annihilator P may be not over K but over A C K[z] such that
e Ais a subalgebra closed under o
o A has a zero test
= One can build towers of extensions with zero-test (later in example)
We provide a proof-of-concept Julia implementation

https://github.com/pogudingleb/DifferenceZeroTest
(gives a good idea how one should not implement this)


https://github.com/pogudingleb/DifferenceZeroTest

Example (Legendre’s duplication formula)

r(n)l <n + ;) = 2172 /7[(2n)



Example (Legendre’s duplication formula)

r(n)l <n + ;) = 2172 /7[(2n)

How we represent -function?

NE
3»‘;9

1
Stirling's series: logl(n+1) = nlogn—n+ 5 log(2mn) +

i
I




Example (Legendre’s duplication formula)

r(n)l <n + ;) = 2172 /7[(2n)

How we represent -function?

NE
3»‘;9

1
Stirling's series: logl(n+1) = nlogn—n+ 5 log(2mn) +

i
I

For 5(z) := io: skz¥ and o(f(2)) = f (1_%2) we have
k=1

20(S) — 25—z + (1+ g) log(1 + z) = 0.



Example (Legendre’s duplication formula)

r(n)l <n + ;) = 2172 /7[(2n)

How we represent -function?

NE
3»‘;9

1
Stirling's series: logl(n+1) = nlogn—n+ 5 log(2mn) +

k=1
For 5(z) := §=C:1 skz¥ and o(f(2)) = f (1_%2) we have
20(S) — 25—z + (1 + g) log(1 + z) = 0.
Legendre's formula turns into
2(s(5) - st)-5 (15275) ) —ter + ) - 3
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e S(z) is given by zo(S) — 25 —z+ (1 + %) log(1 + z) = 0 and
enough terms;

e We want to check z (5 (%) —-S5(z)-S <1+ZZ/2>) =log(l+2)— 2
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Example (Legendre’s duplication formula)

Setup

e S(z) is given by zo(S) — 25 —z+ (1 + %) log(1 + z) = 0 and
enough terms;

e We want to check z (5 (%) —-S5(z)-S <1+ZZ/2>) =log(l+2)— 2

Building a zero-test

Starting with Q[z] (has zero-test!)

L. Adjoin log(1 + z) and log(1 + 7% /2) (o-transcendental)
2. Adjoin log(1 + z/2) (o-algebraic)
3. Adjoin 5(z), 5(5). and 5(57%73) (o-algebraic)

And now we can perform the desired zero-test (well, implementation can).
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Nuts and bolts: how do we do this?
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Difference reduction

Main notions
e Difference polynomial over a difference ring A is an element of
AlX,o(X),a%(X),...].
e Let P be difference polynomial:

o Leader is o“X appearing in P s.t. £ is maximal;
e let d be the degree of P in oX;
e (¢,d) := Ritt rank of P.
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Difference reduction

Main notions

e Difference polynomial over a difference ring A is an element of
AlX,o(X),a%(X),...].
e Let P be difference polynomial:

o Leader is o“X appearing in P s.t. £ is maximal;
e let d be the degree of P in oX;
e (¢,d) := Ritt rank of P.

Reduction
e P and Q have Ritt ranks (¢p, dp) and (g, do);
o if {p < /g and dp < dg, Q is reducible w.r.t. P
<= pseudo-Euclidean division of Q by o’@~*? P w.r.t c’eX.
Oh I3 1a!
differential reducibility — total ordering

difference reducibility — partial ordering
12
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Coherent autoreduced set

Autoreduced set

For {Q1,...,Qs}, every Q; is not reducible w.r.t. the rest
—> autoreduced set

Coherent autoreduced set (“minimal annihilator”)

Autoreduced { @1, ..., Qs} is coherent if A(Q;, Q;) reducible to zero Vi, j.
(for a suitable notion of A-polynomial)

Issue

For a coherent autoreduced Q1,..., Qs in a single indeterminate:

o differential case — s=1;

o difference case: can be s > 1.

13



Let o: f(z) — f(z — z°?) and we consider f = z°.

14



Let o: f(z) — f(z — z°?) and we consider f = z°.

The annihilator of the minimal order is:

Py = X* —2X3 - 2X?%0(X) + X2 — 2Xo(X) + o(X)?

14



Let o: f(z) — f(z — z°?) and we consider f = z°.

The annihilator of the minimal order is:

Py = X* —2X3 - 2X?%0(X) + X2 — 2Xo(X) + o(X)?

But there is also:

5

Py = Xa(X)? —2Xa(X)?+ Xa(X)+(=2X +o(X) + X* — Xo(X))o”(X)
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Let o: f(z) — f(z — z°?) and we consider f = z°.

The annihilator of the minimal order is:

Py = X* —2X3 - 2X?%0(X) + X2 — 2Xo(X) + o(X)?

But there is also:

Py = Xo(X)? —2Xa(X)? + Xo(X) + (—2X +o(X) + X? = Xo (X))o’ (X)

None of P; and P, is reducible w.r.t. another!

14



Solution: one polynomial to rule them all

Key theoretical lemma

Let Q1,..., Qs be coherent and autoreduced and @ be of minimal order.
Then there exists M:

(@) =0&vi>2Q(f) = 0E") = @(f)=...= Q(f) =0
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Solution: one polynomial to rule them all

Key theoretical lemma

Let Q1,..., Qs be coherent and autoreduced and @ be of minimal order.
Then there exists M:

(@) =0&vi>2Q(f) = 0E") = @(f)=...= Q(f) =0

So what?

We can focus on @1 and mimic the strategy from the differential
algorithm presented by Joris.
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Outline of the algorithm

Fix o-algebraic f. Describe algorithm ZeroTest(Q1,. .., Qs)

Input @i,..., Qs — difference polynomials
Output YES if @(f) =...= Qs(f) =0 and NO otherwise
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Outline of the algorithm

Fix o-algebraic f. Describe algorithm ZeroTest(Q1,. .., Qs)

Input @i,..., Qs — difference polynomials
Output YES if @(f) =...= Qs(f) =0 and NO otherwise
Steps (simplified)
1. If there exists @ — initial or a separant of @1, ..., Qs not reducible
to zero

1.1 if ZeroTest(Q, @1, ..., Qs), return YES
1.2 find who among Q, Q1, ..., Qs does not vanish at f
1.3 if one of Qi,..., Qs, return NO

(by this line, none of the initials and separants vanish at f)

2. If a pairwise reminder or a A-polynomial @ is not reducible to zero,
return ZeroTest(Q, Q1,. .., Qs)
(by this line, Q, ..., Qs can be assumed coherent autoreduced)

3. Compute special N (Joris talk + lemma from prev slide)

4. 1f Qi(f) = ... = Qs(f) = O(z"), return YES. Otherwise, NO. 16
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e the first zero-test algorithm for o-algebraic power series

e and it actually works
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Summary and outlook

We have
e the first zero-test algorithm for o-algebraic power series

e and it actually works

We do not have (yet)

e implementation handling both ¢ and differential equations
(we have the theory)

e automatic transform of shift into o (like I — S in the example)
e more examples (e.g., fractional special functions)

e other o’'s like z — z¥
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