MULTIPLICATION RAPIDE II

Joris van der Hoeven

CNRS, École polytechnique

JNCF, Luminy 1 mars, 2022

Complexités de multiplication

- b précision en chiffres binaires
- d degré ou ordre
- r taille d'une matrice ou ordre différentiel
- s taille d'un support creux

Algèbre	Complexité	Notes	Référence
\mathbb{Z}_p	$I(b)e^{O\left(\sqrt{\log\log b}\right)}$	détendu	vdH
K[[z]]	$M_{\mathbb{K}}(d) e^{O(\sqrt{\log\log d})}$	détendu	vdH
$\mathbb{K}^{r \times r}[x]$	$O(\Omega_{\mathbb{K}}(r) d + r^2 M_{\mathbb{K}}(d))$	I K > <i>d</i>	Bostan-Schost
$\mathbb{K}[x,\partial_x]$	$O(\Omega_{\mathbb{K}}(r)^{d}/_{r} + r M_{\mathbb{K}}(d) \log d)$	$d \ge r := \deg_{\partial}$	Benoit-Bostan-vdH
	$O(\Omega_{\mathbb{K}}(d)^{r}/_{d} + d M_{\mathbb{K}}(r) \log r)$	$r \ge d := \deg_x$	
L K tower	$M_{\mathbb{K}}(d) e^{O(\sqrt{\log d})}$	$d = [\mathbb{L} : \mathbb{K}]$	vdH–Lecerf
$\mathbb{K}[x_1,\ldots,x_n]$	$O(M_{\mathbb{K}}(s))$	creux, heuristique	vdH–Lecerf, vdH

Évaluation multi-points :
$$P \in \mathbb{K}[x]$$
, $\deg P < d$, $\alpha_1, \dots, \alpha_d \in \mathbb{K} \stackrel{?}{\longrightarrow} P(\alpha_1), \dots, P(\alpha_d)$

3/30

Évaluation-interpolation et opérations transposées

Évaluation multi-points:
$$P \in \mathbb{K}[x]$$
, $\deg P < d$, $\alpha_1, \ldots, \alpha_d \in \mathbb{K} \stackrel{?}{\longrightarrow} P(\alpha_1), \ldots, P(\alpha_d)$

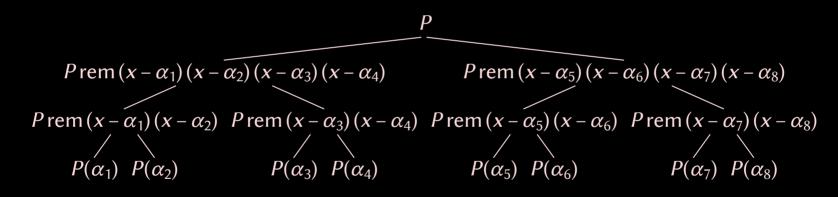
Observation:
$$P(\alpha_k) = P \operatorname{rem}(x - \alpha_k)$$

Évaluation-interpolation et opérations transposées

Évaluation multi-points: $P \in \mathbb{K}[x]$, $\deg P < d$, $\alpha_1, \dots, \alpha_d \in \mathbb{K} \stackrel{?}{\to} P(\alpha_1), \dots, P(\alpha_d)$

Observation: $P(\alpha_k) = P \operatorname{rem} (x - \alpha_k)$

Arbre de restes



3/30

Évaluation-interpolation et opérations transposées

Évaluation multi-points: $P \in \mathbb{K}[x]$, $\deg P < d$, $\alpha_1, \dots, \alpha_d \in \mathbb{K} \stackrel{?}{\to} P(\alpha_1), \dots, P(\alpha_d)$

Observation: $P(\alpha_k) = P \operatorname{rem} (x - \alpha_k)$

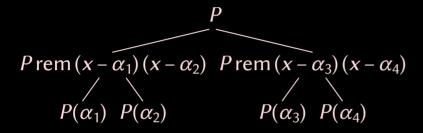
Arbre de restes

$$P \operatorname{rem}(x - \alpha_{1})(x - \alpha_{2})(x - \alpha_{3})(x - \alpha_{4}) \qquad P \operatorname{rem}(x - \alpha_{5})(x - \alpha_{6})(x - \alpha_{7})(x - \alpha_{8})$$

$$P \operatorname{rem}(x - \alpha_{1})(x - \alpha_{2}) \qquad P \operatorname{rem}(x - \alpha_{3})(x - \alpha_{4}) \qquad P \operatorname{rem}(x - \alpha_{5})(x - \alpha_{6}) \qquad P \operatorname{rem}(x - \alpha_{7})(x - \alpha_{8})$$

$$P(\alpha_{1}) \qquad P(\alpha_{2}) \qquad P(\alpha_{3}) \qquad P(\alpha_{4}) \qquad P(\alpha_{5}) \qquad P(\alpha_{6}) \qquad P(\alpha_{7}) \qquad P(\alpha_{8})$$

$$E_{\mathbb{IK}}(d) = O(2 M_{\mathbb{K}}(d/2) + 4 M_{\mathbb{K}}(d/4) + \cdots) = O(M_{\mathbb{K}}(d) \log d)$$



$$E_{\mathbb{K}}(d) = O(M_{\mathbb{K}}(d) \log d)$$

$$E_{\mathbb{K}}^{-1}(d) = O(M_{\mathbb{K}}(d) \log d)$$

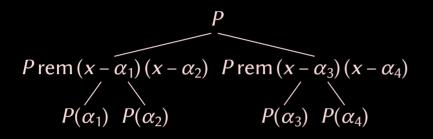
$P \operatorname{rem}(x - \alpha_1)(x - \alpha_2) P \operatorname{rem}(x - \alpha_3)(x - \alpha_4)$ $P(\alpha_1) P(\alpha_2) P(\alpha_3) P(\alpha_4)$

$$E_{\mathbb{K}}(d) = O(M_{\mathbb{K}}(d) \log d)$$

$$E_{\mathbb{K}}^{-1}(d) = O(M_{\mathbb{K}}(d) \log d)$$

Évaluation multi-points

$$\begin{pmatrix} P(\alpha_1) \\ \vdots \\ P(\alpha_d) \end{pmatrix} = \begin{pmatrix} 1 & \alpha_1 & \cdots & \alpha_1^{d-1} \\ \vdots & \vdots & & \vdots \\ 1 & \alpha_d & \cdots & \alpha_d^{d-1} \end{pmatrix} \begin{pmatrix} P_0 \\ \vdots \\ P_{d-1} \end{pmatrix}$$



$$E_{\mathbb{K}}(d) = O(M_{\mathbb{K}}(d) \log d)$$

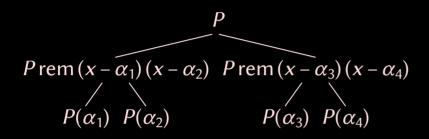
$$E_{\mathbb{K}}^{-1}(d) = O(M_{\mathbb{K}}(d) \log d)$$

Évaluation multi-points

$$\begin{pmatrix} P(\alpha_1) \\ \vdots \\ P(\alpha_d) \end{pmatrix} = \begin{pmatrix} 1 & \alpha_1 & \cdots & \alpha_1^{d-1} \\ \vdots & \vdots & & \vdots \\ 1 & \alpha_d & \cdots & \alpha_d^{d-1} \end{pmatrix} \begin{pmatrix} P_0 \\ \vdots \\ P_{d-1} \end{pmatrix}$$

Opération transposée

$$\begin{pmatrix} 1 & \cdots & 1 \\ \alpha_1 & \cdots & \alpha_d \\ \vdots & & \vdots \\ \alpha_1^{d-1} & \cdots & \alpha_d^{d-1} \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{d-1} \end{pmatrix}$$



$$E_{\mathbb{K}}(d) = O(M_{\mathbb{K}}(d) \log d)$$

$$E_{\mathbb{K}}^{-1}(d) = O(M_{\mathbb{K}}(d) \log d)$$

$$E_{\mathbb{K}}^{\top}(d) = O(M_{\mathbb{K}}(d) \log d)$$

$$E_{\mathbb{K}}^{-1,\top}(d) = O(M_{\mathbb{K}}(d) \log d)$$

Évaluation multi-points

$$\begin{pmatrix} P(\alpha_1) \\ \vdots \\ P(\alpha_d) \end{pmatrix} = \begin{pmatrix} 1 & \alpha_1 & \cdots & \alpha_1^{d-1} \\ \vdots & \vdots & & \vdots \\ 1 & \alpha_1 & \cdots & \alpha_d^{d-1} \end{pmatrix} \begin{pmatrix} P_0 \\ \vdots \\ P_{d-1} \end{pmatrix}$$

Opération transposée

$$\begin{pmatrix} 1 & \cdots & 1 \\ \alpha_1 & \cdots & \alpha_d \\ \vdots & & \vdots \\ \alpha_1^{d-1} & \cdots & \alpha_d^{d-1} \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{d-1} \end{pmatrix}$$

Cas 1: 2 d < n, $n \sim 2 d$, $\omega^n = 1$

Cas 1: 2 d < n, $n \sim 2 d$, $\omega^n = 1$

 \longrightarrow Multiplication FFT à coefficients dans $\mathbb{K}^{r \times r}$

Cas 1: 2 d < n, $n \sim 2 d$, $\omega^n = 1$

 \longrightarrow Multiplication FFT à coefficients dans $\mathbb{K}^{r \times r}$

$$M_{\mathbb{K}^{r \times r}}(d) \leq 3 F_{\mathbb{K}^{r \times r}}(n) + n \Omega_{\mathbb{K}}(r)$$

$$= 3 r^2 F_{\mathbb{K}}(n) + n \Omega_{\mathbb{K}}(r)$$

$$\leq r^2 M_{\mathbb{K}}(d) + n \Omega_{\mathbb{K}}(r).$$

Cas 1:
$$2 d < n$$
, $n \sim 2 d$, $\omega^n = 1$

 \longrightarrow Multiplication FFT à coefficients dans $\mathbb{K}^{r \times r}$

$$M_{\mathbb{K}^{r\times r}}(d) \leq 3 F_{\mathbb{K}^{r\times r}}(n) + n \Omega_{\mathbb{K}}(r)$$

$$= 3 r^2 F_{\mathbb{K}}(n) + n \Omega_{\mathbb{K}}(r)$$

$$\leq r^2 M_{\mathbb{K}}(d) + n \Omega_{\mathbb{K}}(r).$$

Cas 2:
$$2 d < n$$
, $n = O(d)$, $\omega^n = 1$

Cas 1:
$$2d < n$$
, $n \sim 2d$, $\omega^n = 1$

 \longrightarrow Multiplication FFT à coefficients dans $\mathbb{K}^{r \times r}$

$$\begin{split} M_{\mathbb{K}^{r\times r}}(d) &\leqslant 3\,\mathsf{F}_{\mathbb{K}^{r\times r}}(n) + n\,\Omega_{\mathbb{K}}(r) \\ &= 3\,r^2\,\mathsf{F}_{\mathbb{K}}(n) + n\,\Omega_{\mathbb{K}}(r) \\ &\lesssim r^2\,M_{\mathbb{K}}(d) + n\,\Omega_{\mathbb{K}}(r). \end{split}$$

Cas 2:
$$2 d < n$$
, $n = O(d)$, $\omega^n = 1$

 \longrightarrow Multiplication TFT à coefficients dans $\mathbb{K}^{r \times r}$

Cas 1:
$$2d < n$$
, $n \sim 2d$, $\omega^n = 1$

 \longrightarrow Multiplication FFT à coefficients dans $\mathbb{K}^{r \times r}$

$$M_{\mathbb{K}^{r\times r}}(d) \leq 3 F_{\mathbb{K}^{r\times r}}(n) + n \Omega_{\mathbb{K}}(r)$$

$$= 3 r^2 F_{\mathbb{K}}(n) + n \Omega_{\mathbb{K}}(r)$$

$$\leq r^2 M_{\mathbb{K}}(d) + n \Omega_{\mathbb{K}}(r).$$

Cas 2:
$$2 d < n$$
, $n = O(d)$, $\omega^n = 1$

 \longrightarrow Multiplication TFT à coefficients dans $\mathbb{K}^{r \times r}$

Cas 3: $|\mathbb{K}| > d$

 \longrightarrow Évaluation-interpolation suite géométrique de d points

Cas 1:
$$2 d < n$$
, $n \sim 2 d$, $\omega^n = 1$

$$\longrightarrow$$
 Multiplication FFT à coefficients dans $\mathbb{K}^{r \times r}$

$$M_{\mathbb{K}^{r \times r}}(d) \leq 3 F_{\mathbb{K}^{r \times r}}(n) + n \Omega_{\mathbb{K}}(r)$$

$$= 3 r^{2} F_{\mathbb{K}}(n) + n \Omega_{\mathbb{K}}(r)$$

$$\leq r^{2} M_{\mathbb{K}}(d) + n \Omega_{\mathbb{K}}(r).$$

Cas 2:
$$2 d < n$$
, $n = O(d)$, $\omega^n = 1$

$$\longrightarrow$$
 Multiplication TFT à coefficients dans $\mathbb{K}^{r \times r}$

Cas 3:
$$|\mathbb{K}| > d$$

 \longrightarrow Évaluation-interpolation suite géométrique de d points

$$M_{\mathbb{K}^{r\times r}}(d) \leq O(r^2 M_{\mathbb{K}}(n)) + n \Omega_{\mathbb{K}}(r)$$

Inverse d'une série de matrices

$$M = 1 + M_1 z + M_2 z^2 + \cdots \in \mathbb{K}^{r \times r}[[z]]$$

Calcul de
$$M^{-1}$$
 + $O(z^d)$ en temps $O(MM(d,r))$

Inverse d'une série de matrices

$$M = 1 + M_1 z + M_2 z^2 + \cdots \in \mathbb{K}^{r \times r}[[z]]$$

Calcul de M^{-1} + $O(z^d)$ en temps O(MM(d,r))

Padé-Hermite

 $f_1, \ldots, f_r \in \mathbb{K}[[z]]$. Trouver $p_1, \ldots, p_r \in \mathbb{K}[z]$ de degré < d avec

$$p_1 f_1 + \cdots + p_r f_r = O(z^{dr-1})$$

Génériquement en temps $O(MM(d, r) \log d)$

$$f = f_0 + \cdots$$

$$f = f_0 + f_1 z + \cdots$$

$$f = f_0 + f_1 z + f_2 z^2 + \cdots$$

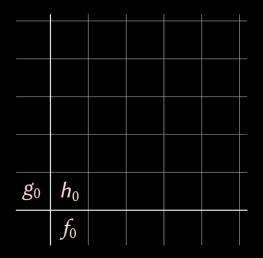
$$f = f_0 + f_1 z + f_2 z^2 + f_3 z^3 + \cdots$$

$$f = f_0 + f_1 z + f_2 z^2 + f_3 z^3 + \cdots$$

$$f = f_0 + \cdots$$

$$g = g_0 + \cdots$$

$$h = fg = (fg)_0 + \cdots$$

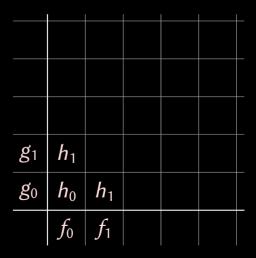


$$f = f_0 + f_1 z + f_2 z^2 + f_3 z^3 + \cdots$$

$$f = f_0 + f_1 z + \cdots$$

$$g = g_0 + g_1 z + \cdots$$

$$h = fg = (fg)_0 + (fg)_1 z + \cdots$$



$$f = f_0 + f_1 z + f_2 z^2 + f_3 z^3 + \cdots$$

$$f = f_0 + f_1 z + f_2 z^2 + \cdots$$

$$g = g_0 + g_1 z + g_2 z^2 + \cdots$$

$$h = fg = (fg)_0 + (fg)_1 z + (fg)_2 z^2 + \cdots$$



$$f = f_0 + f_1 z + f_2 z^2 + f_3 z^3 + \cdots$$

$$f = f_0 + f_1 z + f_2 z^2 + f_3 z^3 + \cdots$$

$$g = g_0 + g_1 z + g_2 z^2 + g_3 z^2 + \cdots$$

$$h = fg = (fg)_0 + (fg)_1 z + (fg)_2 z^2 + (fg)_3 z^3 + \cdots$$

g_3	h_3				
g_2	h_2	h_3			
g ₁	h_1	h_2	h_3		
g_0	h_0	h_1	h_2	h_3	
	f_0	f_1	f_2	f_3	

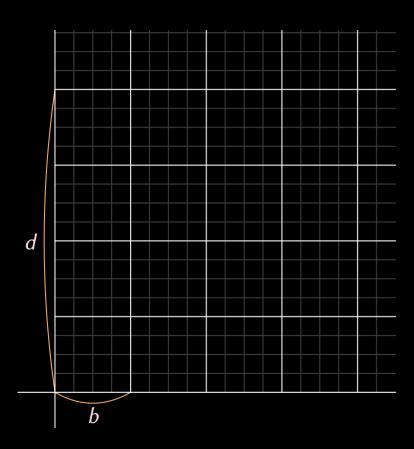
$$f = f_0 + f_1 z + f_2 z^2 + f_3 z^3 + \cdots$$

Multiplication paresseuse

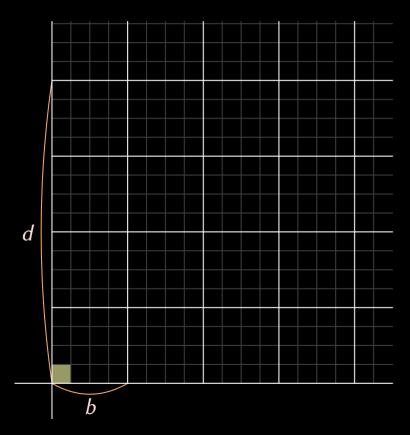
$f = f_0 + f_1 z + f_2 z^2 + f_3 z^3 + \cdots$	
$g = g_0 + g_1 z + g_2 z^2 + g_3 z^2 + \cdots$	
$h = fg = (fg)_0 + (fg)_1 z + (fg)_2 z^2 + (fg)_3 z^3 + \cdots$	

					L
g_3	h_3				
g_2	h_2	h_3			
g ₁	h_1	h_2	h_3		
g_0	h_0	h_1	h_2	h_3	
	f_0	f_1	f_2	f_3	

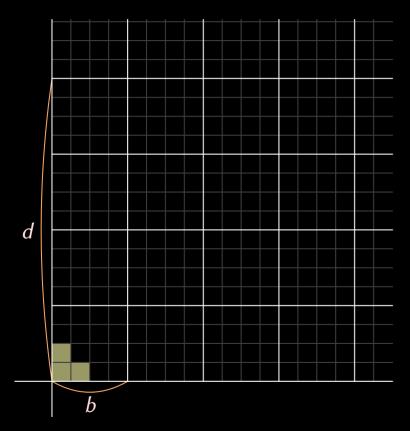
Complexité en $O(d^2)$



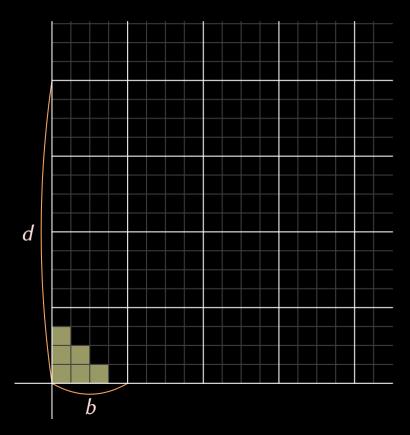
$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



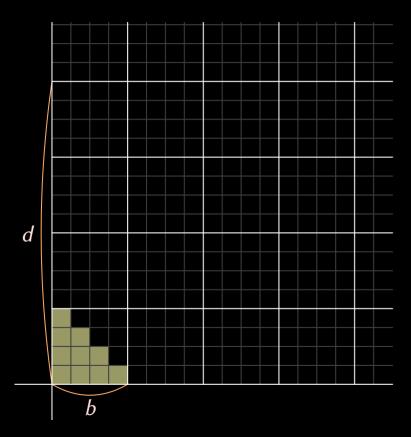
$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



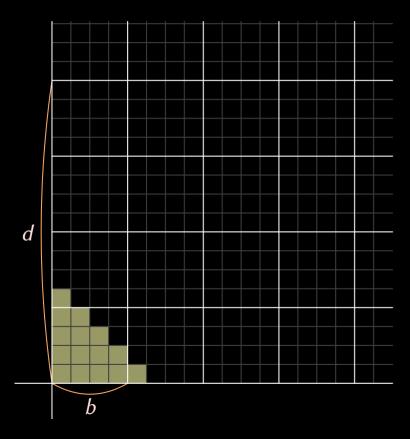
$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



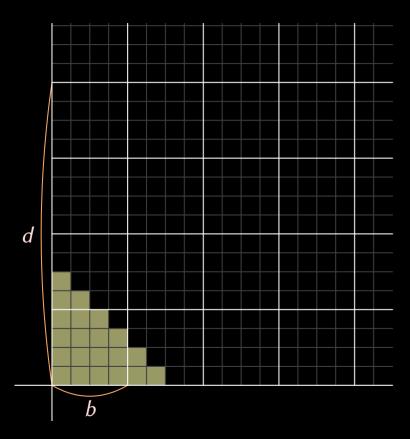
$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



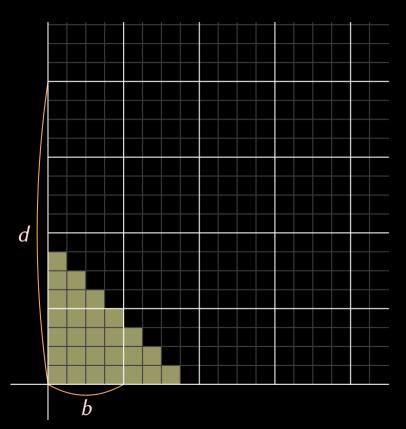
$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



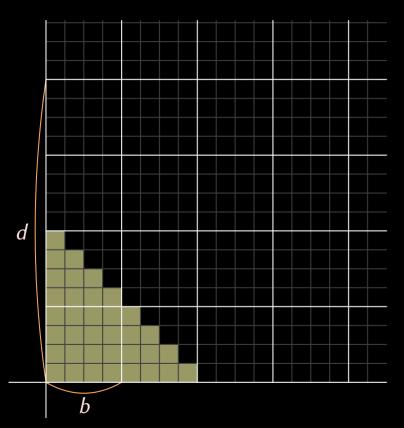
$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



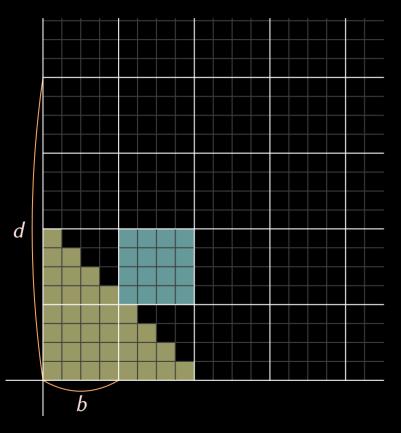
$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?

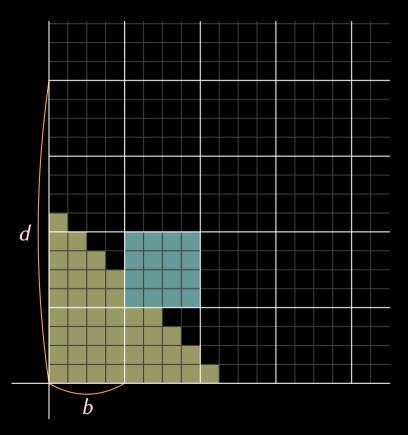


$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?

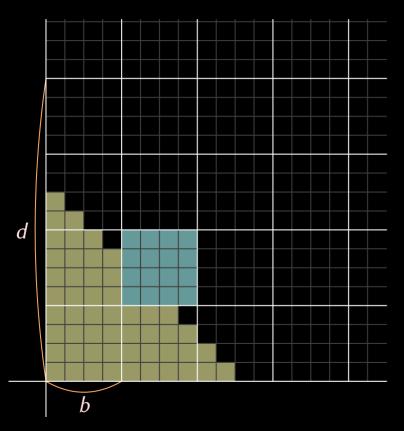
$$\hat{f}_0 := \mathsf{DFT}_{\omega}(f_b + \dots + f_{2b-1}z^{b-1}) \in \mathbb{K}^{2b}$$

$$\hat{g}_0 := \mathsf{DFT}_{\omega}(g_b + \dots + g_{2b-1}z^{b-1}) \in \mathbb{K}^{2b}$$

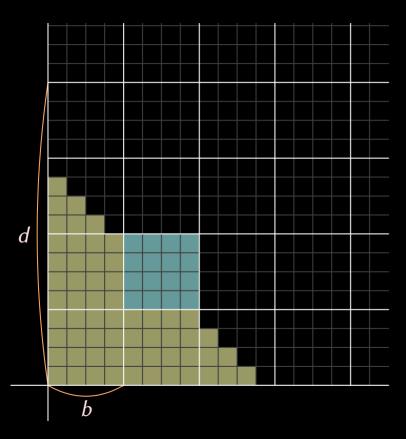
$$h_{2b} + \dots + h_{4b-1}z^{2b-1} + = \mathsf{DFT}_{\omega}^{-1}(\hat{f}_0 \, \hat{g}_0)$$



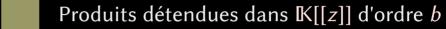
$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?

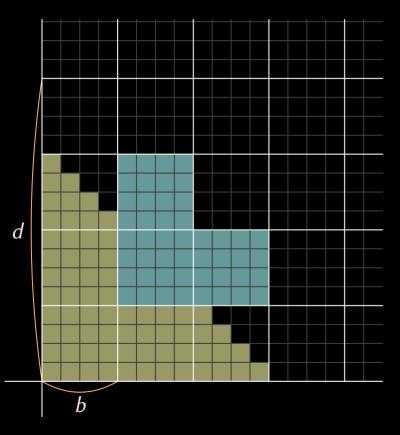


$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



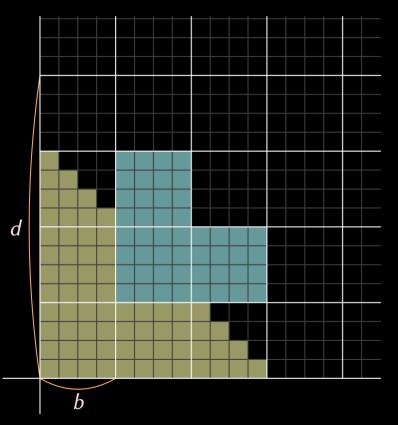


$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?

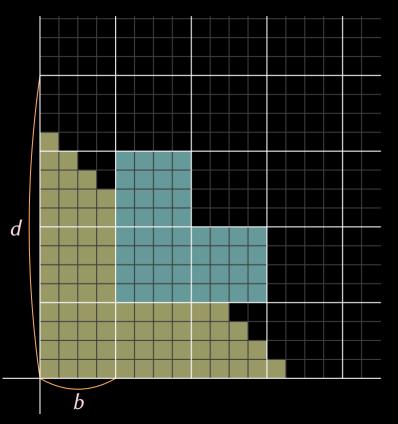
$$\hat{f}_1 := \mathsf{DFT}_{\omega}(f_{2b} + \dots + f_{3b-1}z^{b-1})$$

$$\hat{g}_1 := \mathsf{DFT}_{\omega}(g_{2b} + \dots + g_{3b-1}z^{b-1})$$

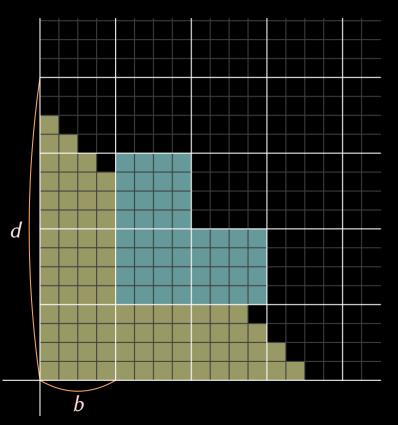
$$h_{3b} + \dots + h_{5b-1}z^{2b-1} + = \mathsf{DFT}_{\omega}^{-1}(\hat{f}_0 \hat{g}_1 + \hat{f}_1 \hat{g}_0)$$



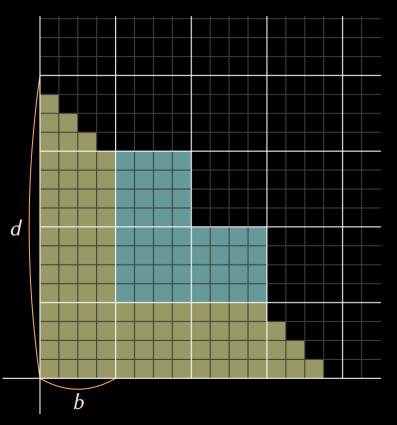
$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



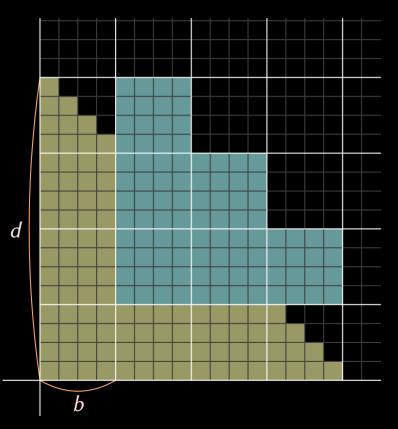
$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



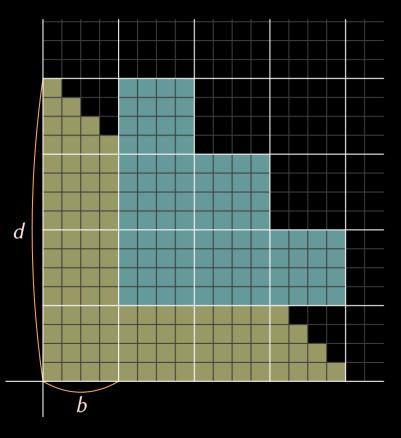
$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?

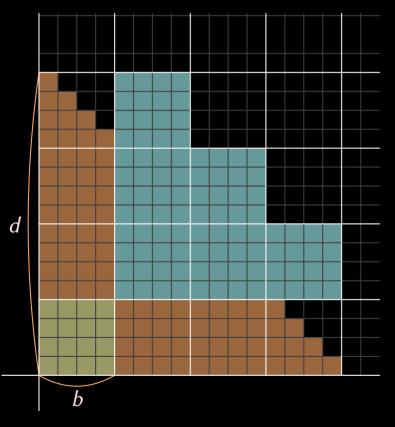


$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?



$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?

$$R_{\mathbb{K}}(d) \le (2l-1)R_{\mathbb{K}}(b) + 2bR_{\mathbb{K}}(l-1) + 6lF_{\mathbb{K}}(2b)$$

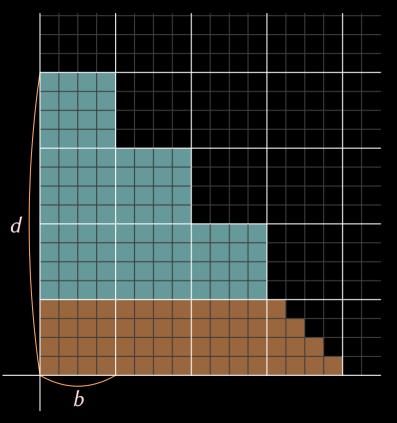


$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?

- Produits détendues dans $\mathbb{K}[[z]]$ d'ordre b
- Produits semi-détendues d'ordre *b*
 - Produit détendu dans $\mathbb{K}^{2b}[[z]]$ d'ordre l-1

$$R_{\mathbb{K}}(d) \le R_{\mathbb{K}}(b) + 2 l R_{\mathbb{K}}^*(b) + 2 b R_{\mathbb{K}}(l) + 6 l F_{\mathbb{K}}(2 b)$$

Multiplication détendue d'ordre d = bl

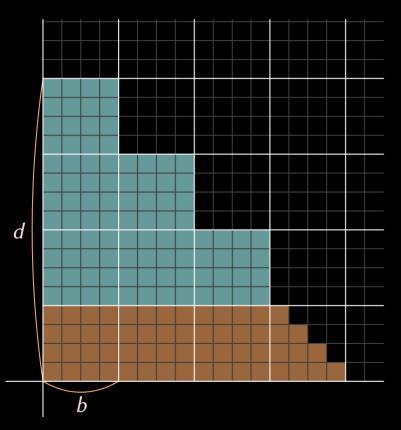


$$\omega^{2b} = 1$$
 $R_{\mathbb{K}}(d)$?

- Produits détendues dans $\mathbb{K}[[z]]$ d'ordre b
- Produits semi-détendues d'ordre *b*
 - Produit détendu dans $\mathbb{K}^{2b}[[z]]$ d'ordre l-1

$$R_{\mathbb{K}}(d) \le R_{\mathbb{K}}(b) + 2 l R_{\mathbb{K}}^*(b) + 2 b R_{\mathbb{K}} l + 6 F_{\mathbb{K}}(2 b)$$

$$R_{\mathbb{K}}^*(d) \le l R_{\mathbb{K}}^*(b) + 2 b R_{\mathbb{K}}^*(l) + 4 F_{\mathbb{K}}(2 b)$$



$$\omega^{2b} = 1$$
 $R_{IK}(d)$?

$$b \approx \exp \frac{\log d}{e^{\sqrt{2\log 2\log \log d}}}$$

Produits semi-détendues d'ordre b

$$R_{\mathbb{K}}(d) \le R_{\mathbb{K}}(b) + 2 l R_{\mathbb{K}}^*(b) + 2 b R_{\mathbb{K}} l + 6 F_{\mathbb{K}}(2 b)$$

$$R_{\mathbb{K}}^*(d) \le l R_{\mathbb{K}}^*(b) + 2b R_{\mathbb{K}}^*(l) + 4F_{\mathbb{K}}(2b)$$

$$R_{\mathbb{K}}(d) = O(R_{\mathbb{K}}^*(d)) = M_{\mathbb{K}}(d) e^{O(\sqrt{\log\log d})}$$

$$g' = f'g$$

$$g' = f'g$$

 $g = 1 + \int f'g$

$$g' = f'g$$

$$g = 1 + \int f'g$$

$$g_k = \left(\int f'g\right)_k \qquad (k>0)$$

$$g' = f'g$$

$$g = 1 + \int f'g$$

$$g_k = \left(\int f'g\right)_k$$

$$= \frac{1}{k}(f'g)_{k-1} \qquad (k>0)$$

$$g' = f'g$$

 $g = 1 + \int f'g$
 $g_k = (\int f'g)_k$
 $= \frac{1}{k}(f'g)_{k-1}$
 $= \frac{1}{k}(f_1g_{k-1} + 2f_2g_{k-2} + \dots + kf_kg_0)$ $(k>0)$

$$g' = f'g$$

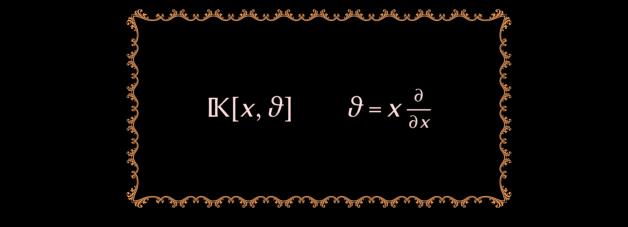
 $g = 1 + \int f'g$
 $g_k = \left(\int f'g\right)_k$
 $= \frac{1}{k}(f'g)_{k-1}$
 $= \frac{1}{k}(f_1g_{k-1} + 2f_2g_{k-2} + \dots + kf_kg_0)$ $(k>0)$

$$\longrightarrow E(d) \leq R(d) + O(d)$$

$$g' = f'g$$

 $g = 1 + \int f'g$
 $g_k = \left(\int f'g\right)_k$
 $= \frac{1}{k}(f'g)_{k-1}$
 $= \frac{1}{k}(f_1g_{k-1} + 2f_2g_{k-2} + \dots + kf_kg_0)$ $(k>0)$

$$\longrightarrow E(d) \leq R(d) + O(d)$$



$$\begin{aligned}
\partial x &= x \, \partial + x \\
\partial (x^k) &= k x^k
\end{aligned}$$

$$\begin{aligned}
\partial x &= x \, \partial + x \\
\partial (x^k) &= k x^k
\end{aligned}$$

$$L = \sum_{i=0}^{a} \sum_{j=0}^{r} L_{i,j} x^{i} \vartheta^{j}$$

$$\begin{aligned}
\partial x &= x \partial + x \\
\partial (x^k) &= k x^k
\end{aligned}$$

$$L = \sum_{j=0}^{d} \sum_{j=0}^{r} L_{i,j} x^{i} \vartheta^{j}$$

Multiplication par évaluation-interpolation?

$$\begin{aligned}
\vartheta x &= x \vartheta + x \\
\vartheta(x^k) &= k x^k
\end{aligned}$$

$$L = \sum_{i=0}^{d} \sum_{j=0}^{r} L_{i,j} x^{i} \vartheta^{j}$$

Multiplication par évaluation-interpolation?

$$\mathbb{K}[x]_n := \{ P \in \mathbb{K}[x] : \deg P \le n \}$$

$$L : \mathbb{K}[x]_n \longrightarrow \mathbb{K}[x]_{n+d}$$

$$\begin{aligned}
\vartheta x &= x \vartheta + x \\
\vartheta(x^k) &= k x^k
\end{aligned}$$

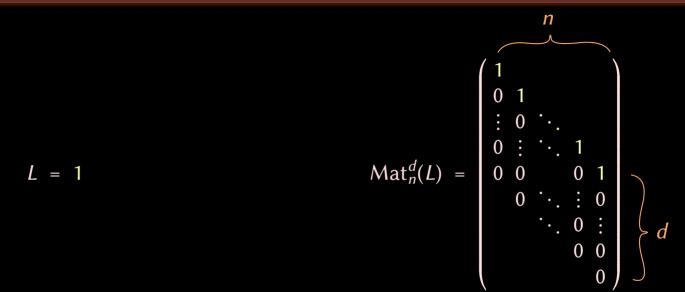
$$L = \sum_{i=0}^{d} \sum_{j=0}^{r} L_{i,j} x^{i} \vartheta^{j}$$

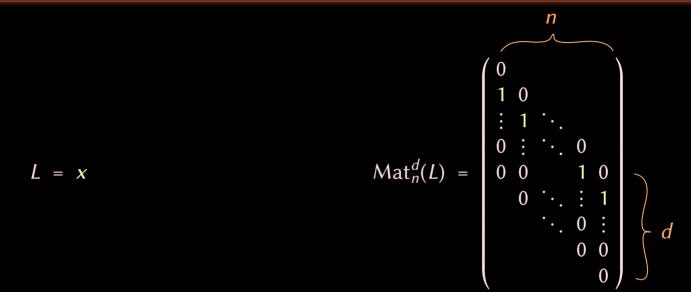
Multiplication par évaluation-interpolation?

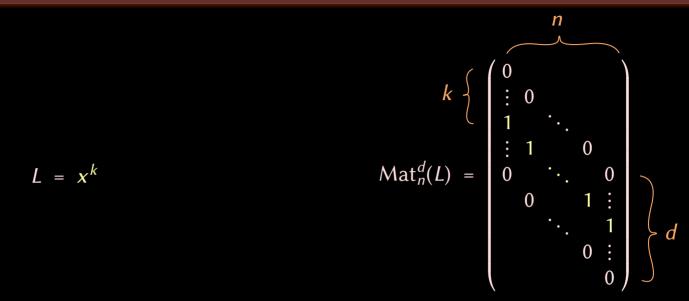
$$\mathbb{K}[x]_n := \{ P \in \mathbb{K}[x] : \deg P \leq n \}$$

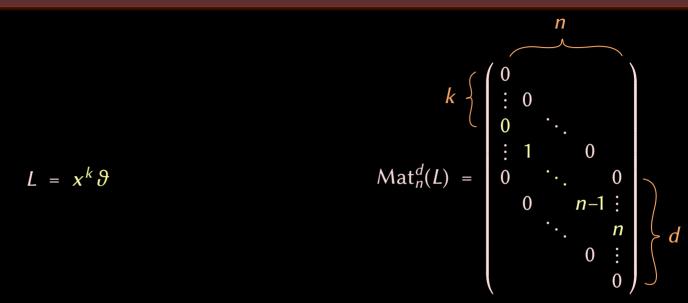
$$L : \mathbb{K}[x]_n \to \mathbb{K}[x]_{n+d}$$

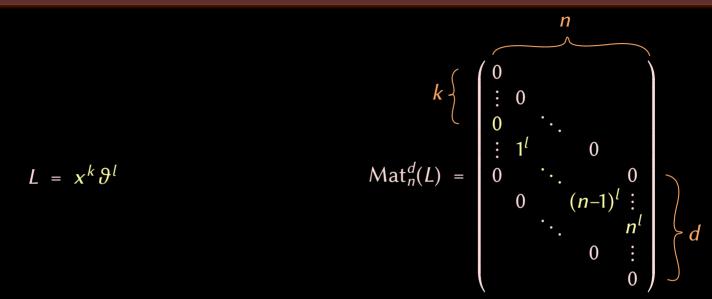
$$L \Longrightarrow \operatorname{Mat}_n^d(L)$$
? n ?











$$\Lambda = \begin{pmatrix} L_{0,0} & \cdots & L_{0,r} \\ \vdots & & \vdots \\ L_{d,0} & \cdots & L_{d,r} \end{pmatrix} \qquad \operatorname{Mat}_{n}^{d}(L) = \begin{pmatrix} M_{0,0} \\ \vdots & \ddots \\ M_{d,0} & M_{0,n} \\ & \ddots & \vdots \\ & & M_{d,n} \end{pmatrix} \qquad M = \Lambda \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & \cdots & n \\ 0 & 1^{2} & 2^{2} & \cdots & n^{2} \\ \vdots & \vdots & & & \vdots \\ 0 & 1^{r} & 2^{r} & \cdots & n^{r} \end{pmatrix}$$

Opérateurs différentiels

$$\Lambda = \begin{pmatrix} L_{0,0} & \cdots & L_{0,r} \\ \vdots & & \vdots \\ L_{d,0} & \cdots & L_{d,r} \end{pmatrix} \qquad \operatorname{Mat}_{n}^{d}(L) = \begin{pmatrix} M_{0,0} \\ \vdots & \ddots \\ M_{d,0} & M_{0,n} \\ & \ddots & \vdots \\ & & M_{d,n} \end{pmatrix} \qquad M = \Lambda \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & \cdots & n \\ 0 & 1^{2} & 2^{2} & \cdots & n^{2} \\ \vdots & \vdots & & & \vdots \\ 0 & 1^{r} & 2^{r} & \cdots & n^{r} \end{pmatrix}$$

$$L \longrightarrow \operatorname{Mat}_n^d(L)$$
 en temps $O(d(n/r)\operatorname{M}(r)\log r)$ si $n \ge r$

Opérateurs différentiels

$$\Lambda = \begin{pmatrix} L_{0,0} & \cdots & L_{0,r} \\ \vdots & & \vdots \\ L_{d,0} & \cdots & L_{d,r} \end{pmatrix} \qquad \operatorname{Mat}_{n}^{d}(L) = \begin{pmatrix} M_{0,0} \\ \vdots & \ddots \\ M_{d,0} & M_{0,n} \\ & \ddots & \vdots \\ & & M_{d,n} \end{pmatrix} \qquad M = \Lambda \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & \cdots & n \\ 0 & 1^{2} & 2^{2} & \cdots & n^{2} \\ \vdots & \vdots & & \vdots \\ 0 & 1^{r} & 2^{r} & \cdots & n^{r} \end{pmatrix}$$

$$L \longrightarrow \operatorname{Mat}_n^d(L)$$
 en temps $O(d(n/r)\operatorname{M}(r)\log r)$ si $n \ge r$

$$\operatorname{Mat}_n^d(L) \longrightarrow L$$
 en temps $O(d\operatorname{M}(r)\log r)$ si $n \ge r$

$$\Lambda = \begin{pmatrix} L_{0,0} & \cdots & L_{0,r} \\ \vdots & & \vdots \\ L_{d,0} & \cdots & L_{d,r} \end{pmatrix} \qquad Mat_n^d(L) = \begin{pmatrix} M_{0,0} \\ \vdots & \ddots \\ M_{d,0} & M_{0,n} \\ & \ddots & \vdots \\ & M_{d,n} \end{pmatrix} \qquad M = \Lambda \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & \cdots & n \\ 0 & 1^2 & 2^2 & \cdots & n^2 \\ \vdots & \vdots & & \vdots \\ 0 & 1^r & 2^r & \cdots & n^r \end{pmatrix}$$

$$L \longrightarrow \operatorname{Mat}_n^d(L)$$
 en temps $O(d(n/r)\operatorname{M}(r)\log r)$ si $n \ge r$
 $\operatorname{Mat}_n^d(L) \longrightarrow L$ en temps $O(d\operatorname{M}(r)\log r)$ si $n \ge r$
 $\operatorname{Mat}_{2r}^{2d}(KL) = \operatorname{Mat}_{2r+d}^d(K)\operatorname{Mat}_{2r}^d(L)$

$$\Lambda = \begin{pmatrix} L_{0,0} & \cdots & L_{0,r} \\ \vdots & & \vdots \\ L_{d,0} & \cdots & L_{d,r} \end{pmatrix} \qquad Mat_n^d(L) = \begin{pmatrix} M_{0,0} \\ \vdots & \ddots \\ M_{d,0} & M_{0,n} \\ & \ddots & \vdots \\ & & M_{d,n} \end{pmatrix} \qquad M = \Lambda \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & \cdots & n \\ 0 & 1^2 & 2^2 & \cdots & n^2 \\ \vdots & \vdots & & \vdots \\ 0 & 1^r & 2^r & \cdots & n^r \end{pmatrix}$$

$$L \longrightarrow \operatorname{Mat}_n^d(L)$$
 en temps $O(d(n/r)\operatorname{M}(r)\log r)$ si $n \ge r$

$$\operatorname{Mat}_n^d(L) \longrightarrow L$$
 en temps $O(d \operatorname{M}(r) \log r)$ si $n \ge r$

$$\operatorname{Mat}_{2r}^{2d}(KL) = \operatorname{Mat}_{2r+d}^{d}(K) \operatorname{Mat}_{2r}^{d}(L)$$

$$SM_{\mathbb{K},\partial}(d,r) = O(\Omega(r)^{d/r} + dM(r) \log r)$$

si *r* ≥ *d*

Opérateurs différentiels

$$\Lambda = \begin{pmatrix} L_{0,0} & \cdots & L_{0,r} \\ \vdots & & \vdots \\ L_{d,0} & \cdots & L_{d,r} \end{pmatrix} \qquad \operatorname{Mat}_n^d(L) = \begin{pmatrix} M_{0,0} \\ \vdots & \ddots \\ M_{d,0} & M_{0,n} \\ & \ddots & \vdots \\ & & M_{d,n} \end{pmatrix} \qquad M = \Lambda \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & \cdots & n \\ 0 & 1^2 & 2^2 & \cdots & n^2 \\ \vdots & \vdots & & \vdots \\ 0 & 1^r & 2^r & \cdots & n^r \end{pmatrix}$$

$$L \longrightarrow \operatorname{Mat}_n^d(L)$$
 en temps $O(d(n/r)\operatorname{M}(r)\log r)$ si $n \ge r$

$$\operatorname{Mat}_n^d(L) \longrightarrow L$$
 en temps $O(d \operatorname{M}(r) \log r)$ si $n \ge r$

$$\operatorname{Mat}_{2r}^{2d}(KL) = \operatorname{Mat}_{2r+d}^{d}(K)\operatorname{Mat}_{2r}^{d}(L)$$

$$SM_{\mathbb{K},\vartheta}(d,r) = O(\Omega(r)^{d}/r + dM(r)\log r)$$

$$\Omega_{\mathbb{K}}(r) = O(SM_{\mathbb{K},\vartheta}(r,r) + rM(r)\log r)$$

si r≥d si d=r

Applications

Opération	Complexité	Notes
Produit	$SM_{\mathbb{K},\partial}(d,r)$	détendu
Division exacte	$O(SM_{\mathbb{K},\vartheta}(d,r)\log d)$	$d \ge r$
Pseudo-division	$O(SM_{\mathbb{K},\partial}(d',r)\log d')$	résultats simplifiés de degré ≤d'
Pseudo-pgcd à droite	$O(SM_{\mathbb{K},\vartheta}(d',r)\log d')$	pgcd de degré $\leq d'$ et $d \leq d'$, Las Vegas
Pseudo-ppcm à gauche	$O(SM_{\mathbb{K},\vartheta}(d',r)\log d')$	ppcm de degré $\leq d'$ et $d \leq d'$, Las Vegas
Système fondamental	$O(SM_{\mathbb{K},\partial}(d,r)\log d)$	à l'ordre $O(x^d)$
Annulateur	$O(SM_{\mathbb{K},\partial}(d,r)\log r)$	à l'ordre $O(x^d)$

 $\mathbb{L} = \mathbb{K}[\alpha_1, \dots, \alpha_t] / (\mu_1(\alpha_1), \dots, \mu_t(\alpha_1, \dots, \alpha_t))$

Tours d'extensions algébriques

$$\mathbb{K} \begin{bmatrix} \sqrt[4]{2}, \sqrt[3]{5}, \sqrt{7}, \sqrt{3}, \sqrt[8]{43}, \sqrt{11 + \sqrt{3}} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt[4]{2}, \sqrt[3]{5}, \sqrt{7}, \sqrt{3}, \sqrt{43}, \sqrt{11 + \sqrt{3}} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt[4]{2}, \sqrt[3]{5}, \sqrt{7}, \sqrt{3}, \sqrt{43} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt[4]{2}, \sqrt[3]{5}, \sqrt{7}, \sqrt{3} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt{2}, \sqrt[3]{5}, \sqrt{7}, \sqrt{3} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt{2}, \sqrt[3]{5}, \sqrt{7} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt{2}, \sqrt[3]{5} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt{2}, \sqrt[3]{5} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt{2}, \sqrt[3]{5} \end{bmatrix}$$

Tours d'extensions algébriques

$$\mathbb{K}_{t} := \mathbb{K}_{t-1}[\alpha_{t}]$$

$$\mathbb{K}_{t-1} := \mathbb{K}_{t-2}[\alpha_{t-1}]$$

$$\mathbb{K}_{t-2} := \mathbb{K}_{t-3}[\alpha_{t-2}]$$

$$\vdots$$

$$\mathbb{K}_{3} := \mathbb{K}_{2}[\alpha_{3}]$$

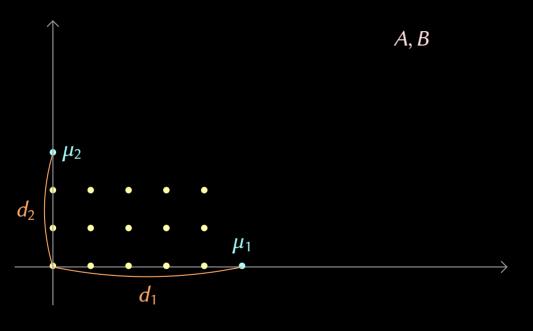
$$\mathbb{K}_{2} := \mathbb{K}_{1}[\alpha_{2}]$$

$$\mathbb{K}_{1} := \mathbb{K}_{0}[\alpha_{1}]$$

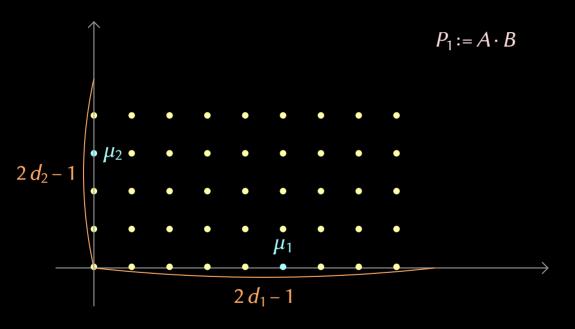
$$\mathbb{K}_{0} := \mathbb{K}$$

$$\mathbb{L} = \mathbb{K}[\alpha_1, \alpha_2] / (\mu_1(\alpha_1), \mu_2(\alpha_1, \alpha_2)), \quad d_1 := \deg_{\alpha_1} \mu_1 = [\mathbb{K}_1 : \mathbb{K}_0], \quad d_2 := \deg_{\alpha_2} \mu_2 = [\mathbb{K}_2 : \mathbb{K}_1]$$

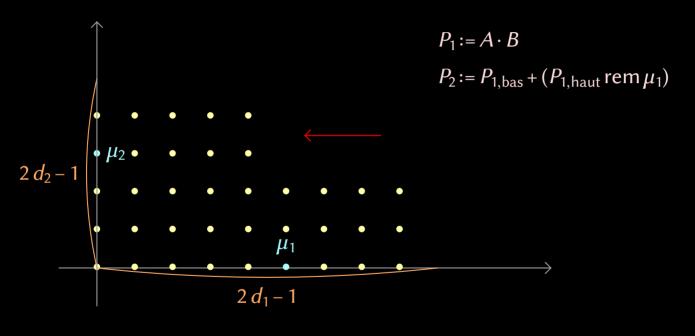
$$\mathbb{L} = \mathbb{K}[\alpha_1, \alpha_2] / (\mu_1(\alpha_1), \mu_2(\alpha_1, \alpha_2)), \quad d_1 := \deg_{\alpha_1} \mu_1 = [\mathbb{K}_1 : \mathbb{K}_0], \quad d_2 := \deg_{\alpha_2} \mu_2 = [\mathbb{K}_2 : \mathbb{K}_1]$$



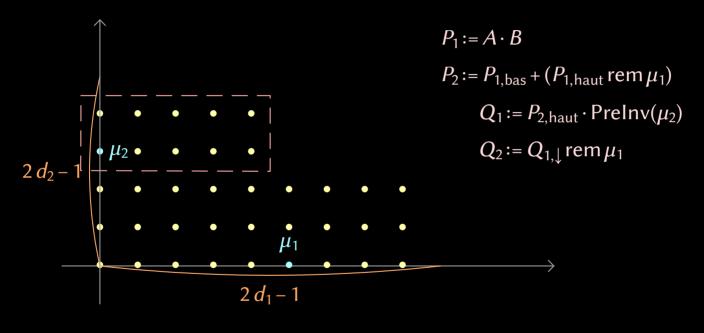
$$\mathbb{L} = \mathbb{K}[\alpha_1, \alpha_2] / (\mu_1(\alpha_1), \mu_2(\alpha_1, \alpha_2)), \quad d_1 := \deg_{\alpha_1} \mu_1 = [\mathbb{K}_1 : \mathbb{K}_0], \quad d_2 := \deg_{\alpha_2} \mu_2 = [\mathbb{K}_2 : \mathbb{K}_1]$$



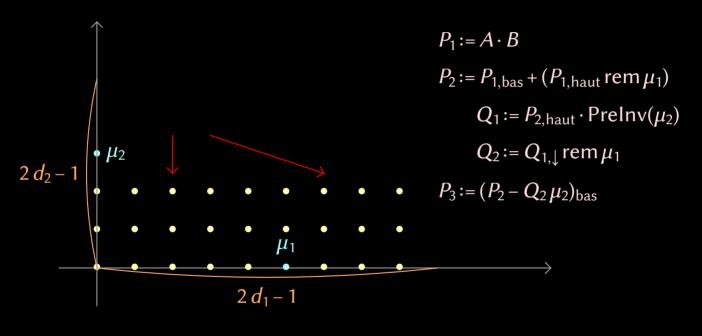
$$\mathbb{L} = \mathbb{K}[\alpha_1, \alpha_2] / (\mu_1(\alpha_1), \mu_2(\alpha_1, \alpha_2)), \quad d_1 := \deg_{\alpha_1} \mu_1 = [\mathbb{K}_1 : \mathbb{K}_0], \quad d_2 := \deg_{\alpha_2} \mu_2 = [\mathbb{K}_2 : \mathbb{K}_1]$$



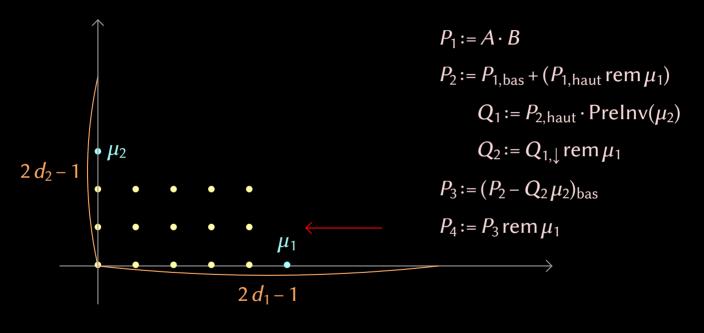
$$\mathbb{L} = \mathbb{K}[\alpha_1, \alpha_2] / (\mu_1(\alpha_1), \mu_2(\alpha_1, \alpha_2)), \quad d_1 := \deg_{\alpha_1} \mu_1 = [\mathbb{K}_1 : \mathbb{K}_0], \quad d_2 := \deg_{\alpha_2} \mu_2 = [\mathbb{K}_2 : \mathbb{K}_1]$$



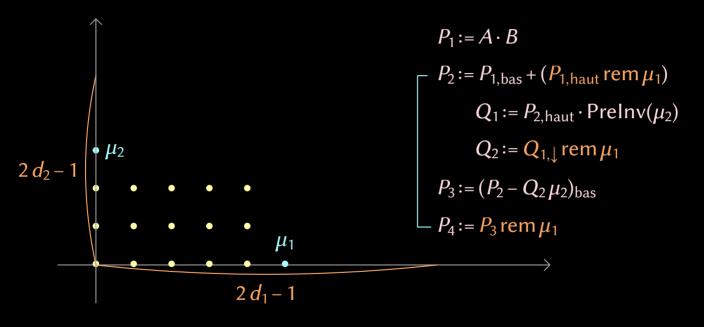
$$\mathbb{L} = \mathbb{K}[\alpha_1, \alpha_2] / (\mu_1(\alpha_1), \mu_2(\alpha_1, \alpha_2)), \quad d_1 := \deg_{\alpha_1} \mu_1 = [\mathbb{K}_1 : \mathbb{K}_0], \quad d_2 := \deg_{\alpha_2} \mu_2 = [\mathbb{K}_2 : \mathbb{K}_1]$$



$$\mathbb{L} = \mathbb{K}[\alpha_1, \alpha_2] / (\mu_1(\alpha_1), \mu_2(\alpha_1, \alpha_2)), \quad d_1 := \deg_{\alpha_1} \mu_1 = [\mathbb{K}_1 : \mathbb{K}_0], \quad d_2 := \deg_{\alpha_2} \mu_2 = [\mathbb{K}_2 : \mathbb{K}_1]$$

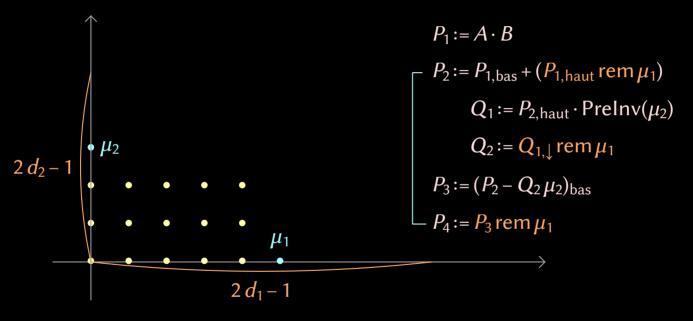


$$\mathbb{L} = \mathbb{K}[\alpha_1, \alpha_2] / (\mu_1(\alpha_1), \mu_2(\alpha_1, \alpha_2)), \quad d_1 := \deg_{\alpha_1} \mu_1 = [\mathbb{K}_1 : \mathbb{K}_0], \quad d_2 := \deg_{\alpha_2} \mu_2 = [\mathbb{K}_2 : \mathbb{K}_1]$$



1 réduction à l'étage $t \longrightarrow 3$ réductions à l'étage t-1

$$\mathbb{L} = \mathbb{K}[\alpha_1, \alpha_2] / (\mu_1(\alpha_1), \mu_2(\alpha_1, \alpha_2)), \quad d_1 := \deg_{\alpha_1} \mu_1 = [\mathbb{K}_1 : \mathbb{K}_0], \quad d_2 := \deg_{\alpha_2} \mu_2 = [\mathbb{K}_2 : \mathbb{K}_1]$$



$$m_{\mathbb{L}} := M_{\mathbb{L}}(1) = O(M_{\mathbb{K}}(3^t d))$$
 $d = [\mathbb{L} : \mathbb{K}]$

$$d_1 = \cdots = d_t = 2 \implies m_{\mathbb{L}} = O(M_{\mathbb{K}}(6^t)) = O(M_{\mathbb{K}}(d^{2,585}))$$

$$d_1 = \cdots = d_t = 2 \implies m_{\mathbb{L}} = O(M_{\mathbb{K}}(6^t)) = O(M_{\mathbb{K}}(d^{2,585}))$$

Éléments primitif β

$$\mathbb{L} \cong \mathbb{K}[\beta]$$

$$\mathsf{m}_{\mathbb{K}[\beta]} = O(\mathsf{M}_{\mathbb{K}}(d))$$

$$d_1 = \cdots = d_t = 2 \implies m_{\mathbb{L}} = O(M_{\mathbb{K}}(6^t)) = O(M_{\mathbb{K}}(d^{2,585}))$$

Éléments primitif β

$$\mathbb{L} \cong \mathbb{K}[\beta]$$

$$\mathsf{m}_{\mathbb{K}[\beta]} = O(\mathsf{M}_{\mathbb{K}}(d))$$

Problèmes

Il faut pré-calculer l'élément primitif

$$d_1 = \cdots = d_t = 2 \implies m_{\mathbb{L}} = O(M_{\mathbb{K}}(6^t)) = O(M_{\mathbb{K}}(d^{2,585}))$$

Éléments primitif β

$$\mathbb{L} \cong \mathbb{K}[\beta]$$

$$\mathsf{m}_{\mathbb{K}[\beta]} = O(\mathsf{M}_{\mathbb{K}}(d))$$

Problèmes

Il faut pré-calculer l'élément primitif

Coût des conversions $\mathbb{L} \iff \mathbb{K}[\beta]$ en $O(\mathsf{m}_{\mathbb{K}} d^{\varpi})$ où $\frac{3}{2} < \varpi \le 2$

$$\mathbb{K} \begin{bmatrix} \sqrt[4]{2}, \sqrt[3]{5}, \sqrt{7}, \sqrt{3}, \sqrt[8]{43}, \sqrt{11 + \sqrt{3}} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt[4]{2}, \sqrt[3]{5}, \sqrt{7}, \sqrt{3}, \sqrt{43}, \sqrt{11 + \sqrt{3}} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt[4]{2}, \sqrt[3]{5}, \sqrt{7}, \sqrt{3}, \sqrt{43} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt[4]{2}, \sqrt[3]{5}, \sqrt{7}, \sqrt{3} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt{2}, \sqrt[3]{5}, \sqrt{7}, \sqrt{3} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt{2}, \sqrt[3]{5}, \sqrt{7} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt{2}, \sqrt[3]{5} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt{2}, \sqrt[3]{5} \end{bmatrix}$$

$$\mathbb{K} \begin{bmatrix} \sqrt{2}, \sqrt[3]{5} \end{bmatrix}$$

$$\mathbb{IK}\left[\sqrt[4]{2} + \sqrt[3]{5} + \sqrt{7} + \sqrt{3}, \sqrt[8]{43} + \sqrt{11 + \sqrt{3}}\right]$$

$$\mathbb{K}\left[\sqrt[4]{2} + \sqrt[3]{5} + \sqrt{7} + \sqrt{3}\right]$$

IK

Tours accélérés

$$\mathbb{K}_{t} \coloneqq \mathbb{K}_{t-1}[\alpha_{t}] \qquad \qquad \mathbb{K}_{3}^{\mathrm{acc}} \coloneqq \mathbb{K}_{2}^{\mathrm{acc}}[\beta_{3}]$$

$$\mathbb{K}_{t-1} \coloneqq \mathbb{K}_{t-2}[\alpha_{t-1}] \qquad \qquad \mathbb{K}_{2}^{\mathrm{acc}} \coloneqq \mathbb{K}_{2}^{\mathrm{acc}}[\beta_{2}]$$

$$\mathbb{K}_{t-2} \coloneqq \mathbb{K}_{t-3}[\alpha_{t-2}] \qquad \qquad \mathbb{K}_{2}^{\mathrm{acc}} \coloneqq \mathbb{K}_{1}^{\mathrm{acc}}[\beta_{2}]$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \mathbb{K}_{3}^{\mathrm{acc}} \coloneqq \mathbb{K}_{1}^{\mathrm{acc}}[\beta_{2}]$$

$$\mathbb{K}_{3} \coloneqq \mathbb{K}_{2}[\alpha_{3}] \qquad \qquad \mathbb{K}_{1}^{\mathrm{acc}} \coloneqq \mathbb{K}_{0}^{\mathrm{acc}}[\beta_{1}]$$

$$\mathbb{K}_{2} \coloneqq \mathbb{K}_{1}[\alpha_{2}] \qquad \qquad \mathbb{K}_{1}^{\mathrm{acc}} \coloneqq \mathbb{K}_{0}^{\mathrm{acc}}[\beta_{1}]$$

$$\mathbb{K}_{1} \coloneqq \mathbb{K}_{0}[\alpha_{1}] \qquad \qquad \mathbb{K}_{0}^{\mathrm{acc}} \coloneqq \mathbb{K}$$

Tours accélérés

$$m_{\mathbb{L}} = M_{\mathbb{K}}(d) e^{O(\sqrt{\log d})}$$

Complexité et applications

Tours accélérés

$$m_{\mathbb{L}} = M_{\mathbb{K}}(d) e^{O(\sqrt{\log d})}$$

Généralisation

Marche pour des tours séparables tant que l'on ne divise pas par zéro

Complexité et applications

Tours accélérés

$$m_{\mathbb{L}} = M_{\mathbb{K}}(d) e^{O(\sqrt{\log d})}$$

Généralisation

Marche pour des tours séparables tant que l'on ne divise pas par zéro

Évaluation dirigée

Séparer le calcul en deux branches en cas de division par zéro

- · Privilégier la branche de plus haut degré
- Traiter les branches résiduelles collectivement à la fin

(variante de l'« évaluation dynamique » de Duval et al.)

Tours accélérés

$$m_{\mathbb{L}} = M_{\mathbb{K}}(d) e^{O(\sqrt{\log d})}$$

Généralisation

Marche pour des tours séparables tant que l'on ne divise pas par zéro

Évaluation dirigée

Séparer le calcul en deux branches en cas de division par zéro

- Privilégier la branche de plus haut degré
- Traiter les branches résiduelles collectivement à la fin

(variante de l'« évaluation dynamique » de Duval et al.)

Application

Multiplication dans $\mathbb{L}^{r \times r}$ en temps $O(\Omega(r) d)$ lorsque $d = r^{O(1)}$

$$a,b \in \mathbb{K}[x] := \mathbb{K}[x_1,\ldots,x_n]$$

$$a, b \in \mathbb{K}[x] := \mathbb{K}[x_1, \dots, x_n]$$

$$f = ab$$

$$a,b \in \mathbb{K}[x] := \mathbb{K}[x_1,\ldots,x_n]$$

$$f = ab$$

$$f(x) = c_1 x^{e_1} + \dots + c_s x^{e_s} \qquad (x^{\epsilon} = x_1^{\epsilon_1} \cdots x_n^{\epsilon_n})$$

 $(x^{\epsilon} = x_1^{\epsilon_1} \cdots x_n^{\epsilon_n})$

$$a,b \in \mathbb{K}[x] := \mathbb{K}[x_1,\ldots,x_n]$$

$$f = ab$$

$$f(x) = c_1 x^{e_1} + \cdots + c_s x^{e_s}$$

Étape 1: déterminer
$$s, e_1, ..., e_s$$

 $(x^{\epsilon} = X_1^{\epsilon_1} \cdots X_n^{\epsilon_n})$

$$a, b \in \mathbb{K}[x] := \mathbb{K}[x_1, \dots, x_n]$$

$$f = ab$$

$$f(x) = c_1 x^{e_1} + \dots + c_s x^{e_s}$$

Étape 1: déterminer
$$s, e_1, ..., e_s$$

Étape 2: déterminer $c_1, ..., c_s$

$$a, b \in \mathbb{K}[x] := \mathbb{K}[x_1, \dots, x_n]$$

$$f = ab$$

$$J - ub$$

$$f(x) = c_1 x^{e_1} + \cdots + c_s x^{e_s}$$

$$(x^{\epsilon} = x_1^{\epsilon_1} \cdots x_n^{\epsilon_n})$$

- **Étape 1**: déterminer $s, e_1, ..., e_s$
- **Étape 2 :** déterminer c_1, \ldots, c_s
 - Étape 1 souvent facile : a et b sont denses jusqu'à un certain degré total
 - Ou peu cher : $\mathbb{K} = \mathbb{Q}$, c_1, \ldots, c_s « gros », et e_1, \ldots, e_s déterminés pour $f \mod p$

 $(x^{\epsilon} = x_1^{\epsilon_1} \cdots x_n^{\epsilon_n})$

$$a,b \in \mathbb{K}[x] := \mathbb{K}[x_1,\ldots,x_n]$$

$$f = ab$$

 $f(x) = c_1 x^{e_1} + \cdots + c_s x^{e_s}$

Étape 1 : déterminer s, e_1, \dots, e_s

Étape 2: déterminer c_1, \ldots, c_s

- Étape 1 souvent facile : a et b sont denses jusqu'à un certain degré total
- Ou peu cher : $\mathbb{K} = \mathbb{Q}$, c_1, \ldots, c_s « gros », et e_1, \ldots, e_s déterminés pour $f \mod p$

→ nous allons nous focaliser sur l'Étape 2

Idée: considérer l'évaluation de f sur une suite géométrique $1, \alpha, \alpha^2, \alpha^3, \ldots \in \mathbb{K}^n$

$$\begin{pmatrix} f(1) \\ f(\alpha) \\ f(\alpha^2) \\ \vdots \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha^{e_1} & \alpha^{e_2} & \cdots & \alpha^{e_s} \\ (\alpha^{e_1})^2 & (\alpha^{e_2})^2 & \cdots & (\alpha^{e_s})^2 \\ \vdots & \vdots & & \vdots \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_s \end{pmatrix}$$

Idée: considérer l'évaluation de f sur une suite géométrique $1, \alpha, \alpha^2, \alpha^3, ... \in \mathbb{K}^n$

$$\begin{pmatrix} f(1) \\ f(\alpha) \\ f(\alpha^2) \\ \vdots \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha^{e_1} & \alpha^{e_2} & \cdots & \alpha^{e_s} \\ (\alpha^{e_1})^2 & (\alpha^{e_2})^2 & \cdots & (\alpha^{e_s})^2 \\ \vdots & \vdots & & \vdots \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_s \end{pmatrix}$$

Évaluation:
$$a$$
 et $b \longrightarrow a(1), a(\alpha), \dots, a(\alpha^{s-1})$ et $b(1), b(\alpha), \dots, b(\alpha^{s-1})$

Multiplication par Vandermonde = transposé de l'évaluation multi-points

Idée: considérer l'évaluation de f sur une suite géométrique $1, \alpha, \alpha^2, \alpha^3, ... \in \mathbb{K}^n$

$$\begin{pmatrix} f(1) \\ f(\alpha) \\ f(\alpha^2) \\ \vdots \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha^{e_1} & \alpha^{e_2} & \cdots & \alpha^{e_s} \\ (\alpha^{e_1})^2 & (\alpha^{e_2})^2 & \cdots & (\alpha^{e_s})^2 \\ \vdots & \vdots & & \vdots \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_s \end{pmatrix}$$

Évaluation:
$$a$$
 et $b \longrightarrow a(1), a(\alpha), \dots, a(\alpha^{s-1})$ et $b(1), b(\alpha), \dots, b(\alpha^{s-1})$

Multiplication par Vandermonde = transposé de l'évaluation multi-points

Interpolation:
$$f(1), f(\alpha), ..., f(\alpha^{s-1}) \longrightarrow f$$

Multiplication par inverse Vandermonde = transposé de l'interpolation polynomiale

Idée: considérer l'évaluation de f sur une suite géométrique $1, \alpha, \alpha^2, \alpha^3, ... \in \mathbb{K}^n$

$$\begin{pmatrix} f(1) \\ f(\alpha) \\ f(\alpha^2) \\ \vdots \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha^{e_1} & \alpha^{e_2} & \cdots & \alpha^{e_s} \\ (\alpha^{e_1})^2 & (\alpha^{e_2})^2 & \cdots & (\alpha^{e_s})^2 \\ \vdots & \vdots & & \vdots \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_s \end{pmatrix}$$

Évaluation:
$$a$$
 et $b \longrightarrow a(1), a(\alpha), \dots, a(\alpha^{s-1})$ et $b(1), b(\alpha), \dots, b(\alpha^{s-1})$

Multiplication par Vandermonde = transposé de l'évaluation multi-points

Interpolation:
$$f(1), f(\alpha), \dots, f(\alpha^{s-1}) \longrightarrow f$$

Multiplication par inverse Vandermonde = transposé de l'interpolation polynomiale

(suppose $\alpha^{e_1}, \alpha^{e_2}, \dots, \alpha^{e_s}$ deux à deux distincts)

Idée: considérer l'évaluation de f sur une suite géométrique $1, \alpha, \alpha^2, \alpha^3, ... \in \mathbb{K}^n$

$$\begin{pmatrix} f(1) \\ f(\alpha) \\ f(\alpha^2) \\ \vdots \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha^{e_1} & \alpha^{e_2} & \cdots & \alpha^{e_s} \\ (\alpha^{e_1})^2 & (\alpha^{e_2})^2 & \cdots & (\alpha^{e_s})^2 \\ \vdots & \vdots & & \vdots \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_s \end{pmatrix}$$

Évaluation:
$$a$$
 et $b \longrightarrow a(1), a(\alpha), \dots, a(\alpha^{s-1})$ et $b(1), b(\alpha), \dots, b(\alpha^{s-1})$

Multiplication par Vandermonde = transposé de l'évaluation multi-points

Interpolation:
$$f(1), f(\alpha), \dots, f(\alpha^{s-1}) \longrightarrow f$$

Multiplication par inverse Vandermonde = transposé de l'interpolation polynomiale

(suppose $\alpha^{e_1}, \alpha^{e_2}, \dots, \alpha^{e_s}$ deux à deux distincts)

$$M_{\mathbb{K}}^{\text{sparse}}(s) = O(M_{\mathbb{K}}(s) \log s)$$

Espoir : évaluation-interpolation plus rapide pour α racine de l'unité

Espoir : évaluation-interpolation plus rapide pour α racine de l'unité

Problème : « collisions » dans $\{\alpha^{e_1}, ..., \alpha^{e_n}\}$

Exploitation de la FFT

Espoir : évaluation-interpolation plus rapide pour α racine de l'unité

Problème: « collisions » dans $\{\alpha^{e_1}, \ldots, \alpha^{e_n}\}$

Cadre plus précis : pour $r \times s$,

- Évaluation de a et de b en $t^{\lambda} := (t^{\lambda_1}, \dots, t^{\lambda_n})$ dans $\mathbb{K}[t]/(t^r 1) \longrightarrow \hat{a}$ et \hat{b}
- $\hat{f} := \hat{a}\hat{b}$ par multiplication FFT
- Interpoler f

Note: $(t^{\lambda})^{e_i} = (t^{\lambda})^{e_j} \iff t^{\lambda \cdot e_1} = t^{\lambda \cdot e_j} \iff (\lambda \cdot e_i = \lambda \cdot e_j \text{ modulo } r)$

Exploitation de la FFT

Espoir : évaluation-interpolation plus rapide pour α racine de l'unité

Problème : « collisions » dans $\{\alpha^{e_1}, \dots, \alpha^{e_n}\}$

Cadre plus précis : pour $r \times s$,

- Évaluation de a et de b en $t^{\lambda} := (t^{\lambda_1}, \dots, t^{\lambda_n})$ dans $\mathbb{K}[t]/(t^r 1) \longrightarrow \hat{a}$ et \hat{b}
- $\hat{f} := \hat{a}\hat{b}$ par multiplication FFT
- Interpoler f

Note:
$$(t^{\lambda})^{e_i} = (t^{\lambda})^{e_j} \iff t^{\lambda \cdot e_1} = t^{\lambda \cdot e_j} \iff (\lambda \cdot e_i = \lambda \cdot e_j \text{ modulo } r)$$

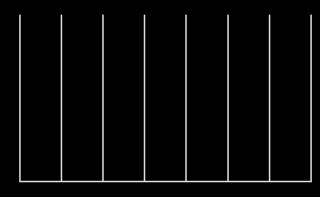
Modèle (ou hypothèse heuristique)

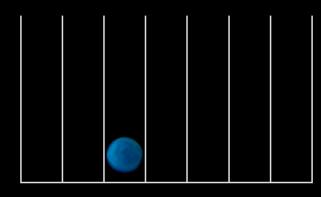
Pour $\lambda_1, \ldots, \lambda_n$ aléatoires :

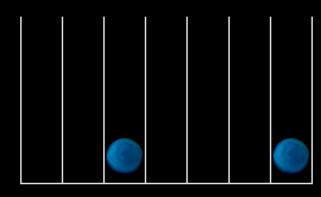
 $\lambda \cdot e_1, \dots, \lambda \cdot e_s$ modulo $r \iff$ tirage aléatoire de s entiers modulo r

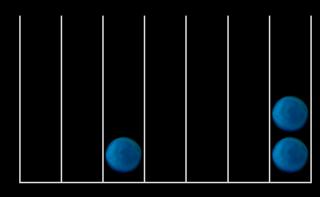
25/30

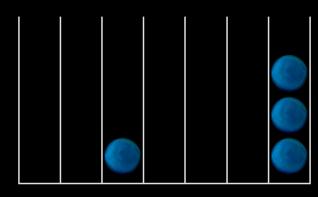
Tirages aléatoires de boules

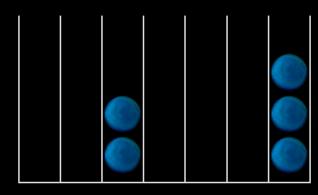


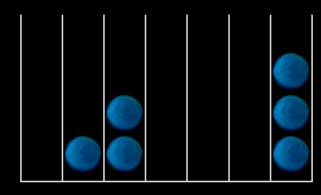


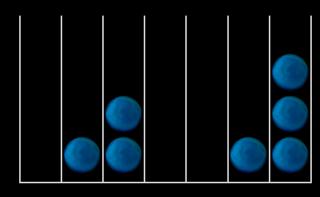










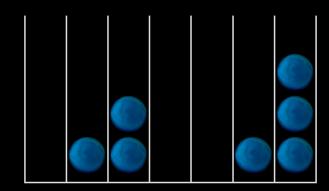




 p_k : probabilité pour une boule de finir dans un tiroir avec k boules

Tirages aléatoires de boules

s boules dans $r = \tau s$ tiroirs

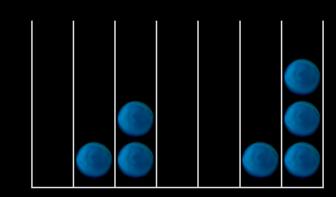


 p_k : probabilité pour une boule de finir dans un tiroir avec k boules

$$p_1 = \left(1 - \frac{1}{r}\right)^{s-1} = e^{(s-1)\log\left(1 - \frac{1}{rs}\right)} = e^{-\frac{1}{r} + O\left(\frac{1}{s}\right)} = e^{-\frac{1}{r}} + O\left(\frac{1}{s}\right)$$

Tirages aléatoires de boules

s boules dans $r = \tau s$ tiroirs



 p_k : probabilité pour une boule de finir dans un tiroir avec k boules

$$p_{1} = \left(1 - \frac{1}{r}\right)^{s-1} = e^{(s-1)\log\left(1 - \frac{1}{\tau s}\right)} = e^{-\frac{1}{\tau} + O\left(\frac{1}{s}\right)} = e^{-\frac{1}{\tau}} + O\left(\frac{1}{s}\right)$$

$$p_{k} = \left(\frac{s-1}{k-1}\right) \frac{1}{r^{k-1}} \left(1 - \frac{1}{r}\right)^{s-k} = \frac{e^{-\frac{1}{\tau}}}{(k-1)! \tau^{k-1}} + O\left(\frac{1}{s}\right)$$

(amélioration d'une technique de Arnold-Giesbrecht-Roche)

• En entrée : a, b et $\tilde{f} = \sum_{i \le \sigma} c_i x^{e_i}$ avec $\sigma < s$ (modulo permutation d'indices)

- En entrée : a, b et $\tilde{f} = \sum_{i \le \sigma} c_i x^{e_i}$ avec $\sigma < s$ (modulo permutation d'indices)
- Tirer au hasard λ pour $r = \tau (s \sigma)$

- En entrée : a, b et $\tilde{f} = \sum_{i \le \sigma} c_i x^{e_i}$ avec $\sigma < s$ (modulo permutation d'indices)
- Tirer au hasard λ pour $r = \tau (s \sigma)$
- Calculer $\delta := a(t^{\lambda}) b(t^{\lambda}) \tilde{f}(t^{\lambda})$ modulo $t^{r} 1$

- En entrée : a, b et $\tilde{f} = \sum_{i \le \sigma} c_i x^{e_i}$ avec $\sigma < s$ (modulo permutation d'indices)
- Tirer au hasard λ pour $r = \tau (s \sigma)$
- Calculer $\delta := a(t^{\lambda}) b(t^{\lambda}) \tilde{f}(t^{\lambda})$ modulo $t^{r} 1$
- Soit δ^* la partie « sans collisions » de δ

- En entrée : a, b et $\tilde{f} = \sum_{i \le \sigma} c_i x^{e_i}$ avec $\sigma < s$ (modulo permutation d'indices)
- Tirer au hasard λ pour $r = \tau (s \sigma)$
- Calculer $\delta := a(t^{\lambda}) b(t^{\lambda}) \tilde{f}(t^{\lambda})$ modulo $t^{r} 1$
- ullet Soit δ^* la partie « sans collisions » de δ
- Recommencer avec $\tilde{f} + \delta^*$ jusqu'à $\sigma = s$

(amélioration d'une technique de Arnold-Giesbrecht-Roche)

- En entrée : a, b et $\tilde{f} = \sum_{i \le \sigma} c_i x^{e_i}$ avec $\sigma < s$ (modulo permutation d'indices)
- Tirer au hasard λ pour $r = \tau (s \sigma)$
- Calculer $\delta := a(t^{\lambda}) b(t^{\lambda}) \tilde{f}(t^{\lambda})$ modulo $t^{r} 1$
- Soit δ^* la partie « sans collisions » de δ
- Recommencer avec $\tilde{f} + \delta^*$ jusqu'à $\sigma = s$

En moyenne : δ^* contient $e^{-\frac{\tau}{\tau}}(s-\sigma)$ termes

(amélioration d'une technique de Arnold-Giesbrecht-Roche)

- En entrée : a, b et $\tilde{f} = \sum_{i \le \sigma} c_i x^{e_i}$ avec $\sigma < s$ (modulo permutation d'indices)
- Tirer au hasard λ pour $r = \tau (s \sigma)$
- Calculer $\delta := a(t^{\lambda}) b(t^{\lambda}) \tilde{f}(t^{\lambda})$ modulo $t^{r} 1$
- ullet Soit δ^* la partie « sans collisions » de δ
- Recommencer avec $\tilde{f} + \delta^*$ jusqu'à $\sigma = s$

En moyenne : δ^* contient $e^{-\frac{1}{\tau}}(s-\sigma)$ termes

Complexité: $\sim \tau (M_{\text{IK}}^{\circ}(s) + M_{\text{IK}}^{\circ}((1 - e^{-\frac{1}{\tau}})s) + M_{\text{IK}}^{\circ}((1 - e^{-\frac{1}{\tau}})^{2}s) + \cdots) + O(s \log s)$

(amélioration d'une technique de Arnold-Giesbrecht-Roche)

- En entrée : a, b et $\tilde{f} = \sum_{i \le \sigma} c_i x^{e_i}$ avec $\sigma < s$ (modulo permutation d'indices)
- Tirer au hasard λ pour $r = \tau (s \sigma)$
- Calculer $\delta := a(t^{\lambda}) b(t^{\lambda}) \tilde{f}(t^{\lambda})$ modulo $t^{r} 1$
- ullet Soit δ^* la partie « sans collisions » de δ
- Recommencer avec $\tilde{f} + \delta^*$ jusqu'à $\sigma = s$

En moyenne : δ^* contient $e^{-\tau}(s-\sigma)$ termes

Complexité: $\sim \tau e^{\frac{1}{\tau}} M_{\mathbb{K}}^{\circ}(s) + O(s \log s)$

(amélioration d'une technique de Arnold-Giesbrecht-Roche)

- En entrée : a, b et $\tilde{f} = \sum_{i \le \sigma} c_i x^{e_i}$ avec $\sigma < s$ (modulo permutation d'indices)
- Tirer au hasard λ pour $r = \tau (s \sigma)$
- Calculer $\delta := a(t^{\lambda}) b(t^{\lambda}) \tilde{f}(t^{\lambda})$ modulo $t^{r} 1$
- Soit δ^* la partie « sans collisions » de δ
- Recommencer avec $\tilde{f} + \delta^*$ jusqu'à $\sigma = s$

En moyenne : δ^* contient $e^{-\frac{1}{\tau}}(s-\sigma)$ termes

Complexité: $\sim \tau e^{\frac{1}{\tau}} M_{\mathbb{K}}^{\circ}(s) + O(s \log s)$

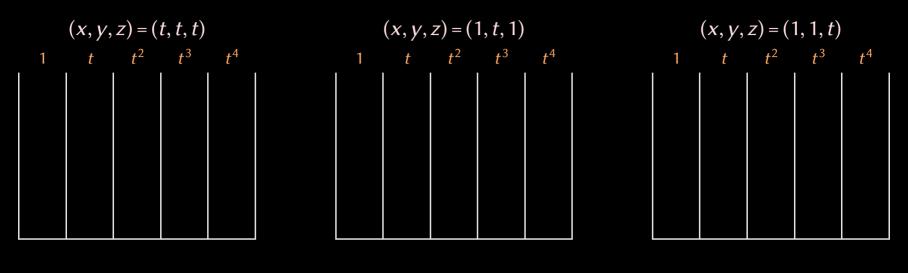
$$M_{\mathbb{K}}^{\text{sparse}}(s) \leq_{\text{heuristique}} (e + o(1)) M_{\mathbb{K}}^{\circ}(s) + O(s \log s)$$

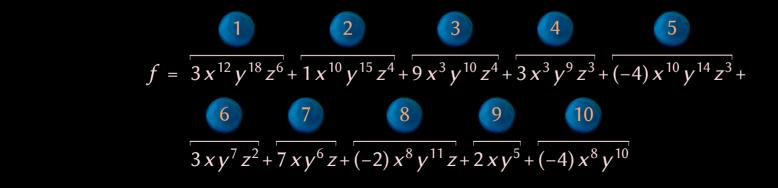
Jeux des boules mystères

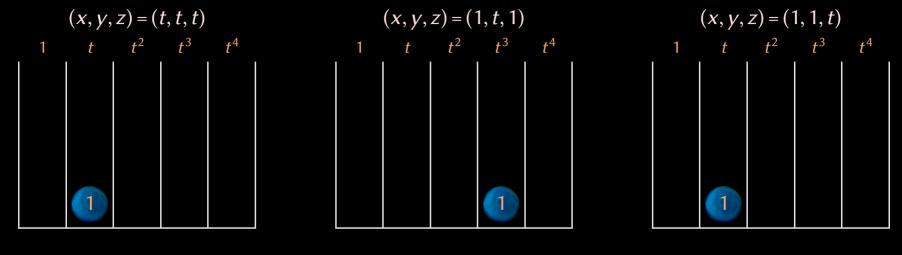
$$a = xy^{5} + 3xy^{6}z - 2x^{8}y^{10} + x^{10}y^{14}z^{3}$$

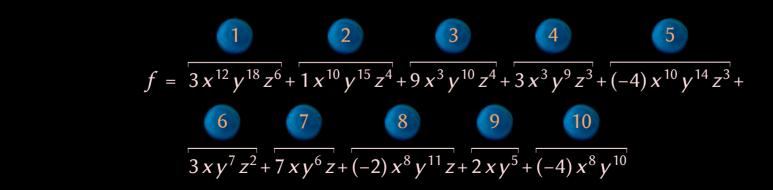
$$b = 2 + yz + 3x^{2}y^{4}z^{3}$$

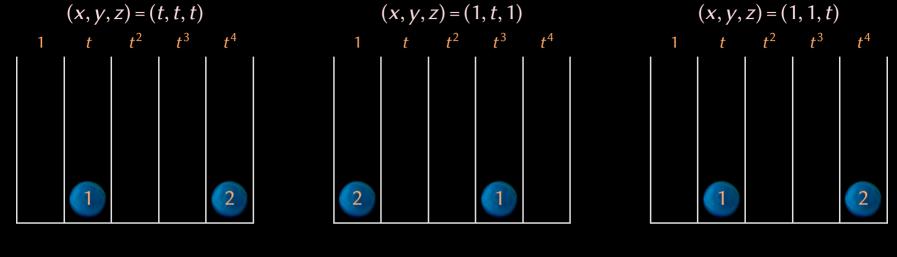
$$f = ab = 3x^{12}y^{18}z^6 + x^{10}y^{15}z^4 + 9x^3y^{10}z^4 + 3x^3y^9z^3 - 4x^{10}y^{14}z^3 + 3xy^7z^2 + 7xy^6z - 2x^8y^{11}z + 2xy^5 - 4x^8y^{10}$$

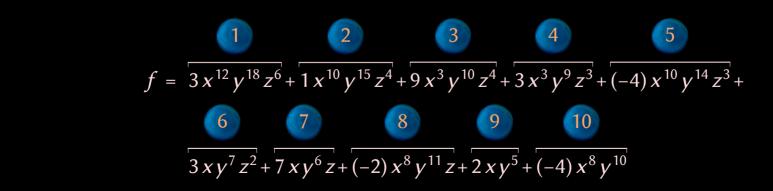


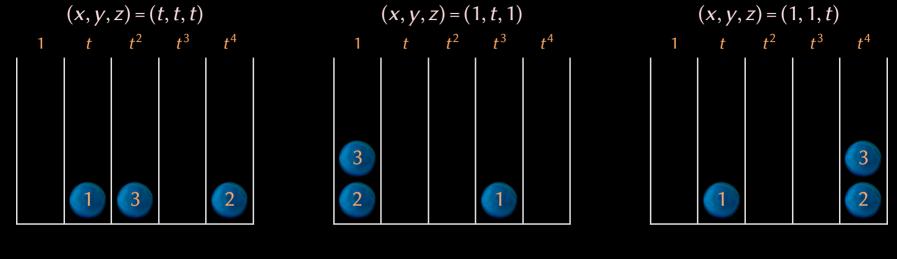


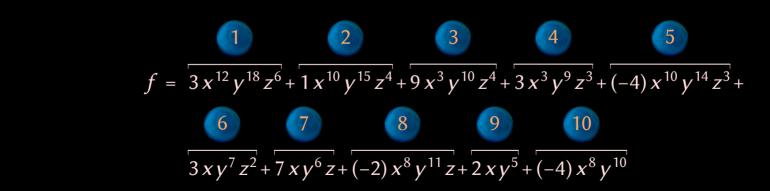


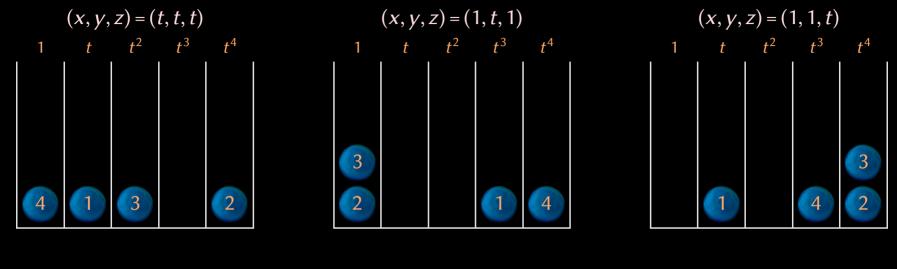




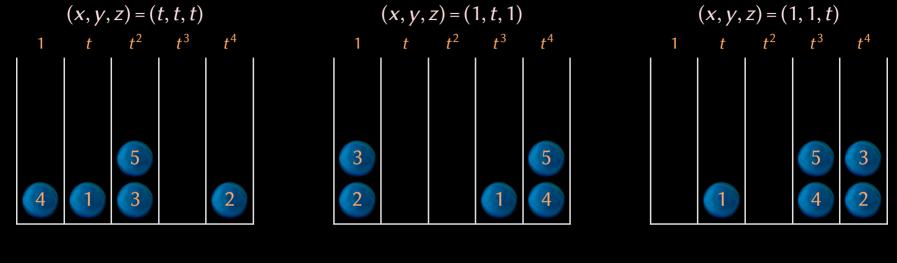


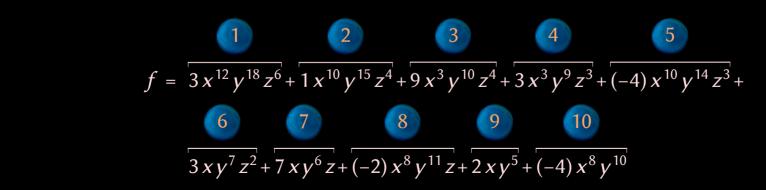


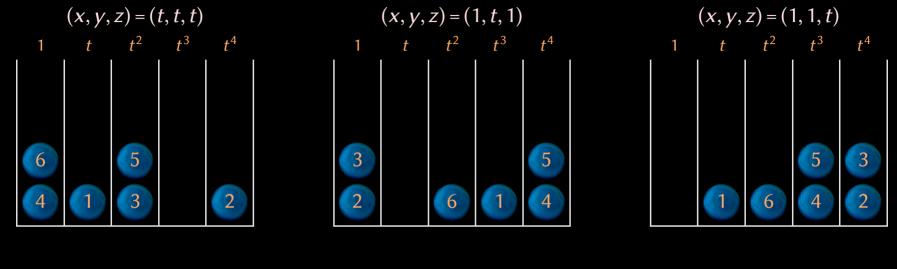




$$f = 3x^{12}y^{18}z^{6} + 1x^{10}y^{15}z^{4} + 9x^{3}y^{10}z^{4} + 3x^{3}y^{9}z^{3} + (-4)x^{10}y^{14}z^{3} + (-4)x^{10}y^{14}z^{3} + (-4)x^{10}y^{14}z^{2} + (-2)x^{10}z^{2} + (-2)x^{10}z^{2}$$



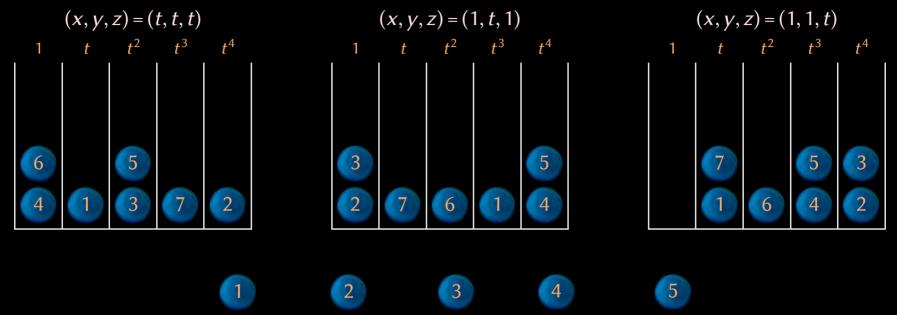




$$f = 3x^{12}y^{18}z^{6} + 1x^{10}y^{15}z^{4} + 9x^{3}y^{10}z^{4} + 3x^{3}y^{9}z^{3} + (-4)x^{10}y^{14}z^{3} +$$

$$6 \qquad 7 \qquad 8 \qquad 9 \qquad 10$$

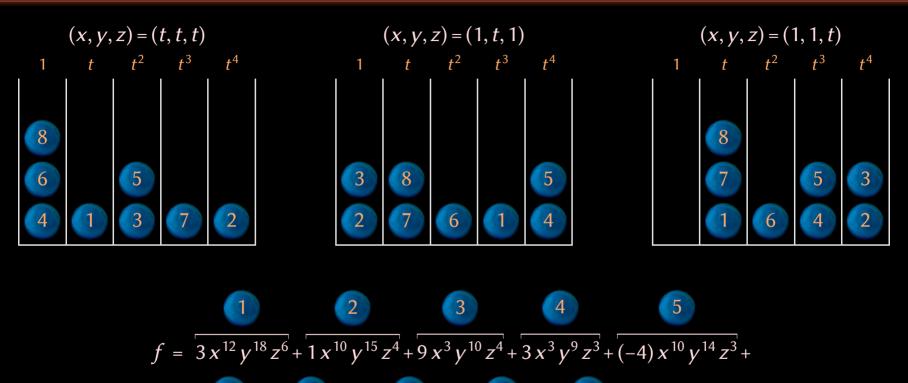
$$3xy^{7}z^{2} + 7xy^{6}z + (-2)x^{8}y^{11}z + 2xy^{5} + (-4)x^{8}y^{10}$$



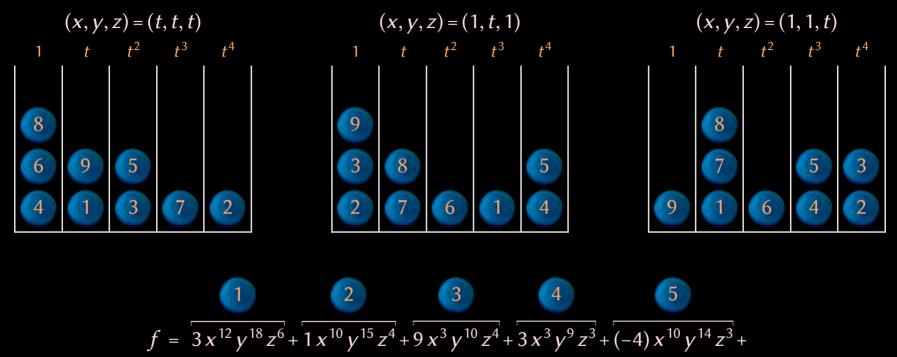
$$f = 3x^{12}y^{18}z^{6} + 1x^{10}y^{15}z^{4} + 9x^{3}y^{10}z^{4} + 3x^{3}y^{9}z^{3} + (-4)x^{10}y^{14}z^{3} +$$

$$6 \qquad 7 \qquad 8 \qquad 9 \qquad 10$$

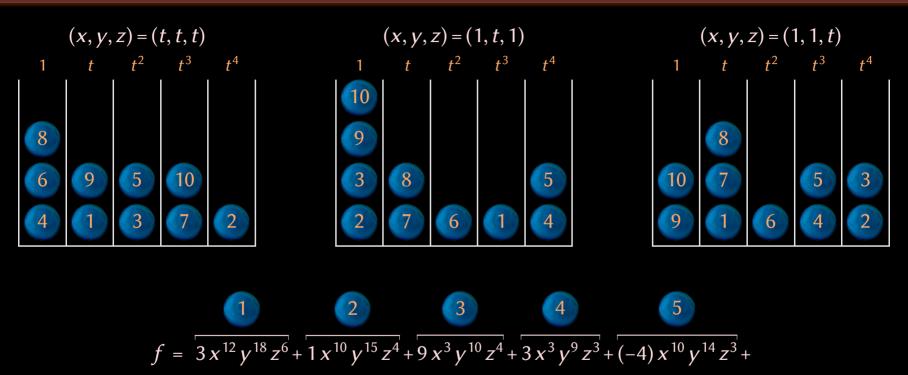
$$3xy^{7}z^{2} + 7xy^{6}z + (-2)x^{8}y^{11}z + 2xy^{5} + (-4)x^{8}y^{10}$$



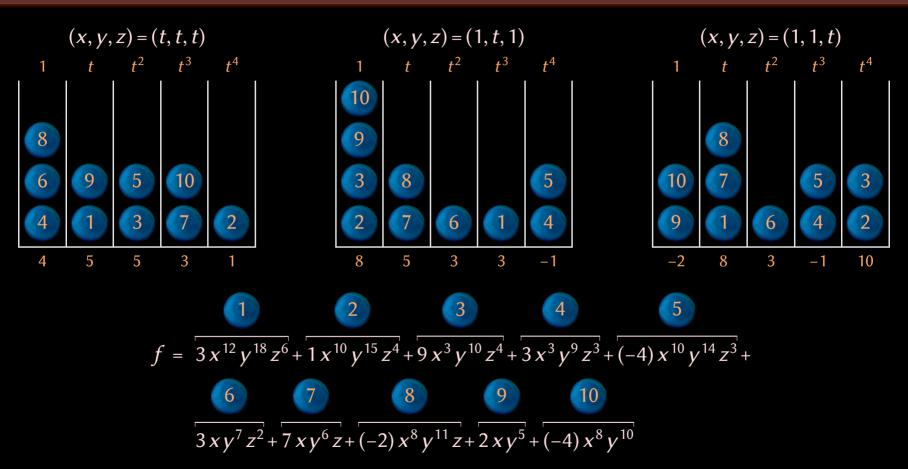
 $3xy^7z^2 + 7xy^6z + (-2)x^8y^{11}z + 2xy^5 + (-4)x^8y^{10}$

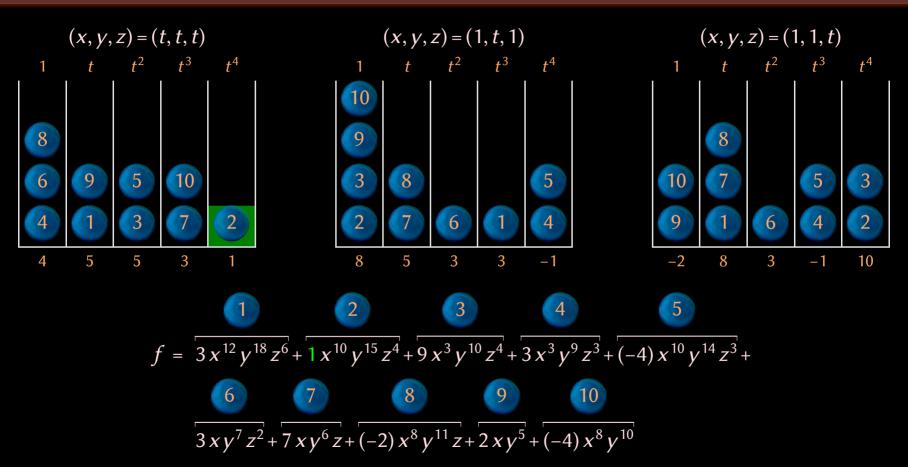


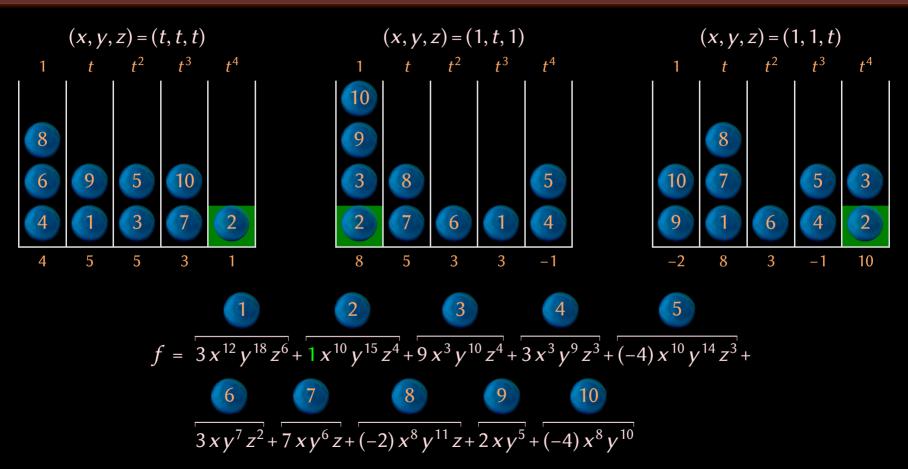
$$f = 3x^{12}y^{18}z^{6} + 1x^{10}y^{15}z^{4} + 9x^{3}y^{10}z^{4} + 3x^{3}y^{9}z^{3} + (-4)x^{10}y^{14}z^{3} + (-4)x^{10}y^{14}z^{3} + (-4)x^{10}y^{14}z^{2} + (-2)x^{10}z^{2} + (-2)x^{10}z^{2}$$

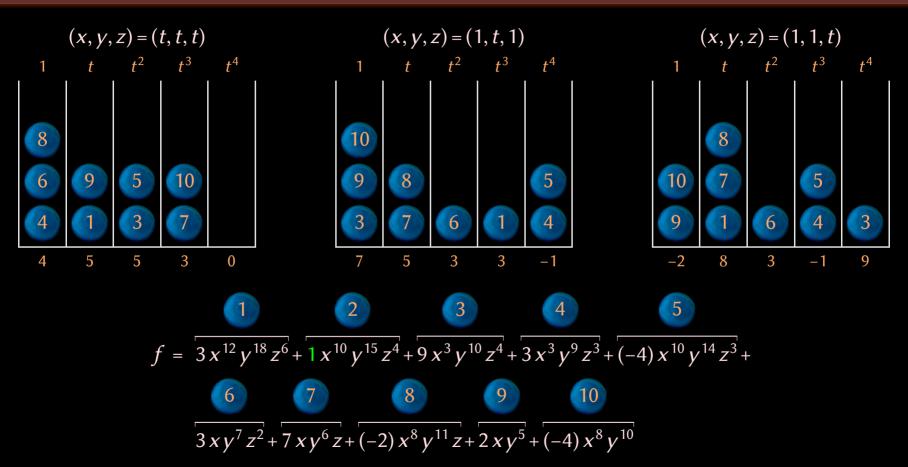


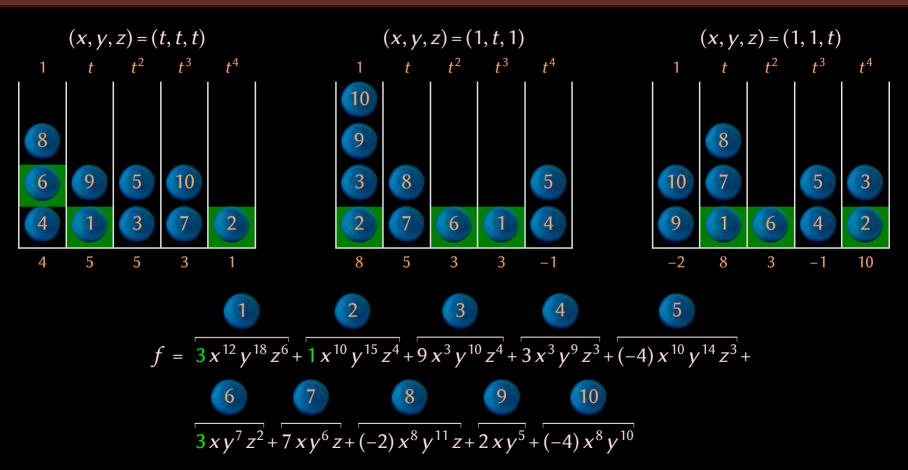
 $3xy^7z^2 + 7xy^6z + (-2)x^8y^{11}z + 2xy^5 + (-4)x^8y^{10}$

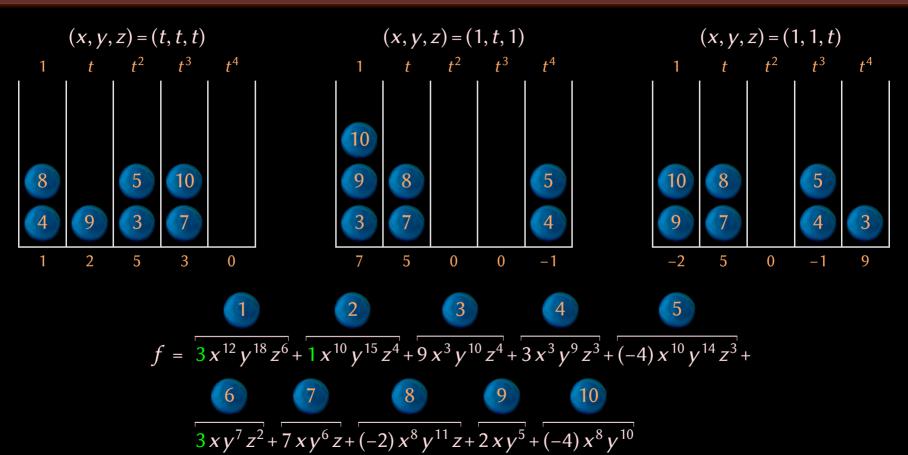


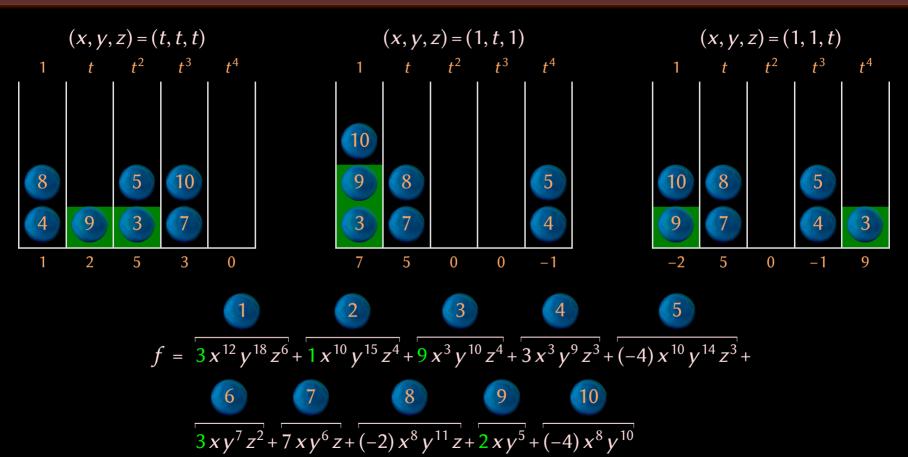


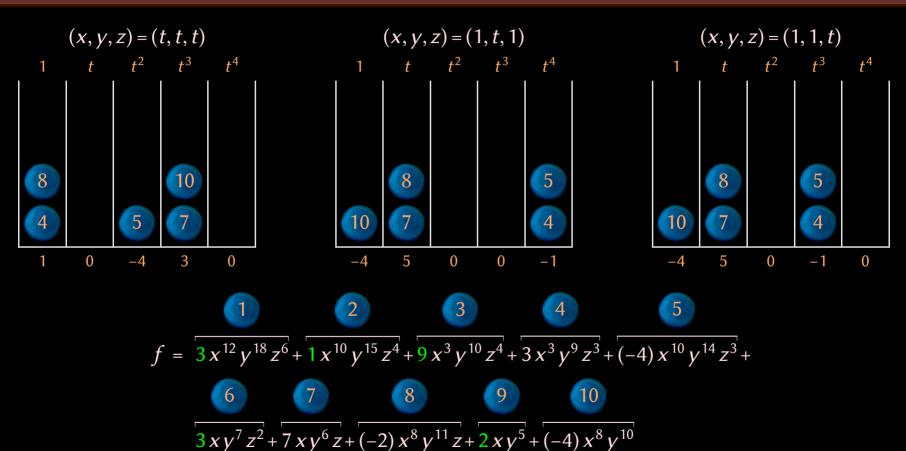


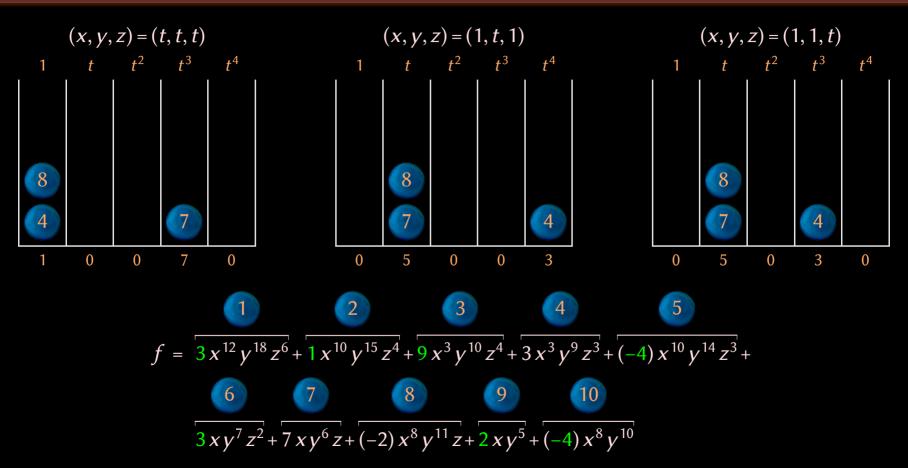


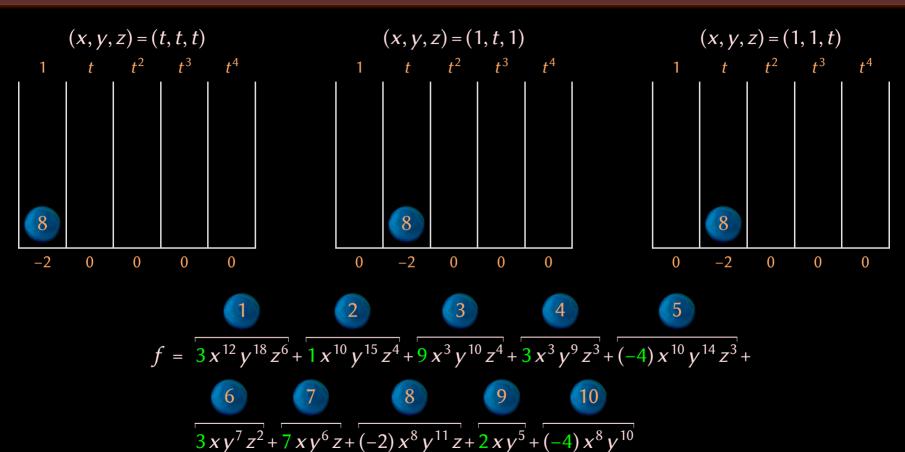


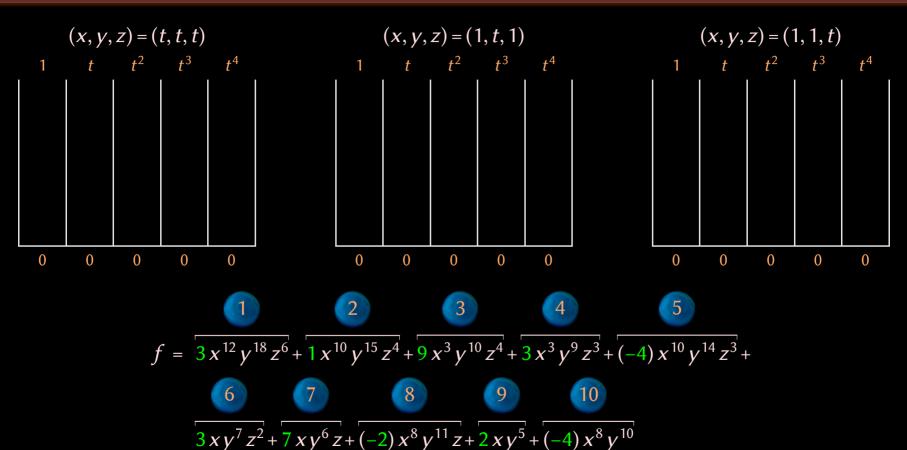












Probabilités pour $\tau = \frac{1}{2}$

 $p_{i,k}$ proportion des boules se trouvant dans un tiroir avec k boules au début du tour i

$p_{i,k}$	<i>k</i> = 1	2	3	4	5	6	7	σ_i
<i>i</i> = 1	0.13534	0.27067	0.27067	0.18045	0.09022	0.03609	0.01203	1.00000
2	0.06643	0.25063	0.18738	0.09340	0.03491	0.01044	0.00260	0.64646
3	0.04567	0.21741	0.13085	0.05251	0.01580	0.00380	0.00076	0.46696
4	0.03690	0.18019	0.08828	0.02883	0.00706	0.00138	0.00023	0.34292
5	0.03234	0.13952	0.05443	0.01416	0.00276	0.00043	0.00006	0.24371
6	0.02869	0.09578	0.02811	0.00550	0.00081	0.00009	0.00001	0.15899
7	0.02330	0.05240	0.01033	0.00136	0.00013	0.00001	0.00000	0.08752
8	0.01428	0.01823	0.00193	0.00014	0.00001	0.00000	0.00000	0.03459
9	0.00442	0.00249	0.00009	0.00000	0.00000	0.00000	0.00000	0.00700
10	0.00030	0.00005	0.00000	0.00000	0.00000	0.00000	0.00000	0.00035
11	0.00000	0.00000	0.000000	0.00000	0.00000	0.00000	0.00000	0.00000

Probabilités pour $\tau = \frac{1}{2}$

 $p_{i,k}$ proportion des boules se trouvant dans un tiroir avec k boules au début du tour i

$p_{i,k}$	<i>k</i> = 1	2	3	4	5	6	7	σ_i
<i>i</i> = 1	0.13534	0.27067	0.27067	0.18045	0.09022	0.03609	0.01203	1.00000
2	0.06643	0.25063	0.18738	0.09340	0.03491	0.01044	0.00260	0.64646
3	0.04567	0.21741	0.13085	0.05251	0.01580	0.00380	0.00076	0.46696
4	0.03690	0.18019	0.08828	0.02883	0.00706	0.00138	0.00023	0.34292
5	0.03234	0.13952	0.05443	0.01416	0.00276	0.00043	0.00006	0.24371
6	0.02869	0.09578	0.02811	0.00550	0.00081	0.00009	0.00001	0.15899
7	0.02330	0.05240	0.01033	0.00136	0.00013	0.00001	0.00000	0.08752
8	0.01428	0.01823	0.00193	0.00014	0.00001	0.00000	0.00000	0.03459
9	0.00442	0.00249	0.00009	0.00000	0.00000	0.00000	0.00000	0.00700
10	0.00030	0.00005	0.000000	0.00000	0.00000	0.00000	0.000000	0.00035
11	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

$$M_{\rm IK}^{\rm sparse}(s) \leq_{\rm heuristique} {}^{3}/_{2} M_{\rm IK}^{\circ}(s) + O(s)$$

 $0,407264 < \tau_{crit} < 0,407265$

$$0,407264 < \tau_{crit} < 0,407265$$

$$M_{\mathbb{K}}^{\text{sparse}}(s) \leq_{\text{heuristique}} 1,221795 M_{\mathbb{K}}^{\circ}(s) + O(s)$$

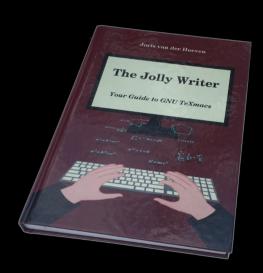
$$0,407264 < \tau_{crit} < 0,407265$$

$$M_{\mathbb{K}}^{\text{sparse}}(s) \leq_{\text{heuristique}} 1,221795 M_{\mathbb{K}}^{\circ}(s) + O(s)$$

Polynômes en n variables de degré total d

n	2	2	2	3	3	3	4	4	5	7	10
d	100	250	1000	25	50	100	20	40	20	15	10
S	5151	31626	501501	3276	23426	176853	10626	135751	53130	170544	184756
3 τ	1.14	1.14	1.14	1.14	1.14	1.14	1.11	1.14	1.14	1.17	1.20

Merci!



http://www.texmacs.org