Lesson 2 — Hardy fields
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A Hardy field is a subfield of " that is closed under derivation. |

Examples
e Any subfield of R.
e The fields R(x) and R(x, e¥).
e The field R(gy,...,g,), for any germs ¢; < - < ¢, in ¢/,

such that ¢1,...,¢, €R(Qy, .-, gn)-
e If Kisa Hardy field and g€ ¢ is such that ¢’ o ¢ €K, then Ko g is a Hardy field.

e If Kis a Hardy field, then its real closure K™ is a Hardy field.

Indeed, if P(y))=0 for PEK[Y] and y €K™, then y' = —2=(y) /o< (y) € K(yy) CK"
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Remark. If KC ¢ is a Hardy field, then actually KC ¢ ~~:=, _,, ¥~

Definition
A germ & =% is Hardian if it lies in some Hardy field K.

Remark. y € ¢ <~ is Hardian <

forany PER[Y,Y’,Y",...], the sign of P(y,y’,...,y"") is eventually constant.

Let k€ {co,w}. A €"-Hardy field is a subfield of G that is closed under derivation.

Remark. There exist Hardy fields that are not ¢ ~-Hardy fields.

1
ex—*—.l‘.
e

Then R(y,y’,...) is a € *-Hardy field, but not a ¥ “-Hardy field.

Remark. Let y= % + el +
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Initial value problems e

Theorem ((Cauchy, Lipschitz, Picard, Lindelof; ...)

Let UCIR" and open set, and f: U —R"a €" function. Then the differential equation
y'(x) = f(yx)

with initial condition y(0) =y, € U has a unique solution y:[—e¢, e] — U for some & > 0.

Proof. Given ¢ >0, let ¥ be the Banach space of %Y functions [—¢,e] — R™.
Given 6 >0, let 98 C & be the ball with center y, and radius .
Taking ¢ and ¢ sufficiently small, we have a contracting functional
OB — B
y — yo+ | fu®)dt

Its unique fixed point is the desired solution. O
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Proof. | ... ] Taking ¢ and ¢ sufficiently small, we have a contracting functional
O:B — B
y — yo+ | fu®)dt
Indeed,

| P(y2) — Pyl

| [, CFaon— faammdt|

| 1) = Fanenide

ellfoyr—foysl
elJell s ly2—yal.

Take 6, e with e || Jll s <1. [...] O

NN IN
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Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let f € K(Y)?. Let y€ " be a solution of
y'(x) = fyx)).

Then K(y) is a Hardy field.

Proof. Without loss of generality, we may assume that K is real closed.
Given P € K[Y], we have to show that sign P(y) is constant, eventually.
Without loss of generality, we may assume that P is monic, irreducible.

K real closed = deg P=1 or deg P =2.

Case 1.deg P=2,50 P=(Y —¢)*+h with geKand h € K.
Then P(y(x)) = (y(x) — g(x))* + h(x) >0, eventually.
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Case 2.degP=1,s0 P=Y — g with geK.

Modulo a shift Y — Y + ¢, we may assume without loss of generality that g=0.
Write f=Y"A/BwithreZ, A,BeK[Y], where Ay=A(0)# 0 and By=B(0) #0.
Leta e R be such that f(y(x)) is defined and A((x), By(x) have constant sign on [a, o)
Assume for contraduction that y has arbitrarily large zeros on [a, ).

Let x;<x,<--- be those zeros.

Since f(y(x1))= f(0) is defined, we must have r > 0.

If r>0, theny'=y"A/B with y(x;) =0 has y =0 as its unique solution: contradiction.
Hence =0 and sign y'(x1) = sign Ao(x1) / Bo(x1) = sign Ag(x,) / Bo(x2) =sign y'(xy).
So y(x1) =y(x,) =0, y has constant sign on (x1, x,), but sign y'(x;) =sign y'(x,).

Contradiction. O
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Liouville closure i
Corollary

Let K be a Hardy field and let ¢ € K. Then

o K([ ¢)isa Hardy field. y' =g
e K(e?) is a Hardy field. y'=¢'y
o K(log @) is a Hardy field, whenever ¢ > 0. y'=9¢'/¢

Definition
A Hardy field is Liouville closed if it is real closed and closed under [ and exp.

Given a Hardy field K, the smallest real closed field K'* C 4 <> which contains K and
which is closed under [ and exp is a Hardy field, called the Liouville closure of K.
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An exp-log function (or L-function) is any function constructed from the real numbers
and an indeterminate x, using the field operations, exponention, and the logarithm.

Let € C G = be the set of germs of exp-log functions that are eventually defined.
Then € is a Hardy field.
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A Hardy field K is maximal if there is no Hardy field L with L 2 K. We define
E(K) := () L.

LDK,L is maximal

We call E(K) the perfect hull of K and say that K is perfect if E(K) =K.

Maximal Hardy fields are Liouville closed and so are perfect Hardy fields.

Questions

e First order axiomatization of the theory of maximal Hardy fields?
e First order characterization of perfect hulls?
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An example by Boshernitzan

y// n y = ex2 (*)
Consider two solutions v, # i, of (x)

W2—y)" +W2—y) = 0
Yo—Yy1 = asin(x+Db), a,beR.

There exists no Hardy field that contains both 1, and v,

Theorem (Boshernitzan)
Any maximal Hardy field contains exactly one solution of ().
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e Analytic aspects become difficult for differential equations of order >2.
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e Analytic aspects become difficult for differential equations of order >2.

e Class & not closed under natural operations, such as functional inversion.
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