

Definition

A **Hardy field** is a subfield of \mathcal{G}^1 that is closed under derivation.

Definition

A **Hardy field** is a subfield of \mathcal{G}^1 that is closed under derivation.

Definition

A **Hardy field** is a subfield of \mathcal{G}^1 that is closed under derivation.

Examples

• Any subfield of \mathbb{R} .

Definition

A **Hardy field** is a subfield of \mathcal{G}^1 that is closed under derivation.

- Any subfield of \mathbb{R} .
- The fields $\mathbb{R}(x)$ and $\mathbb{R}(x, e^x)$.

Definition

A **Hardy field** is a subfield of \mathcal{G}^1 that is closed under derivation.

- Any subfield of \mathbb{R} .
- The fields $\mathbb{R}(x)$ and $\mathbb{R}(x, e^x)$.
- The field $\mathbb{R}(g_1, \dots, g_n)$, for any germs $g_1 \ll \dots \ll g_n$ in \mathcal{G}^1 , such that $g'_1, \dots, g'_n \in \mathbb{R}(g_1, \dots, g_n)$.

Definition

A **Hardy field** is a subfield of \mathcal{G}^1 that is closed under derivation.

- Any subfield of \mathbb{R} .
- The fields $\mathbb{R}(x)$ and $\mathbb{R}(x, e^x)$.
- The field $\mathbb{R}(g_1, \dots, g_n)$, for any germs $g_1 \ll \dots \ll g_n$ in \mathcal{G}^1 , such that $g'_1, \dots, g'_n \in \mathbb{R}(g_1, \dots, g_n)$.
- If *K* is a Hardy field and $g \in \mathcal{G}$ is such that $g' \circ g^{inv} \in K$, then $K \circ g$ is a Hardy field.

Definition

A **Hardy field** is a subfield of \mathcal{G}^1 that is closed under derivation.

- Any subfield of \mathbb{R} .
- The fields $\mathbb{R}(x)$ and $\mathbb{R}(x, e^x)$.
- The field $\mathbb{R}(g_1, \dots, g_n)$, for any germs $g_1 \ll \dots \ll g_n$ in \mathcal{G}^1 , such that $g'_1, \dots, g'_n \in \mathbb{R}(g_1, \dots, g_n)$.
- If *K* is a Hardy field and $g \in \mathcal{G}$ is such that $g' \circ g^{inv} \in K$, then $K \circ g$ is a Hardy field.
- If K is a Hardy field, then its real closure K^{rc} is a Hardy field.

Definition

A **Hardy field** is a subfield of \mathcal{G}^1 that is closed under derivation.

- Any subfield of \mathbb{R} .
- The fields $\mathbb{R}(x)$ and $\mathbb{R}(x, e^x)$.
- The field $\mathbb{R}(g_1, \dots, g_n)$, for any germs $g_1 \ll \dots \ll g_n$ in \mathcal{G}^1 , such that $g'_1, \dots, g'_n \in \mathbb{R}(g_1, \dots, g_n)$.
- If *K* is a Hardy field and $g \in \mathcal{G}$ is such that $g' \circ g^{inv} \in K$, then $K \circ g$ is a Hardy field.
- If K is a Hardy field, then its real closure $K^{\rm rc}$ is a Hardy field. Indeed, if P(y) = 0 for $P \in K[Y]$ and $y \in K^{\rm rc}$, then $y' = -\frac{\partial P}{\partial X}(y) / \frac{\partial P}{\partial Y}(y) \in K(y) \subseteq K^{\rm rc}$

Variants

Remark. If $K \subseteq \mathcal{G}^1$ is a Hardy field, then actually $K \subseteq \mathcal{G}^{<\infty} := \bigcap_{k \in \mathbb{N}} \mathcal{G}^k$.

Definition

A germ $\mathcal{G}^{<\infty}$ is **Hardian** if it lies in some Hardy field K.

Definition

A germ $\mathcal{G}^{<\infty}$ is **Hardian** if it lies in some Hardy field K.

Remark. $y \in \mathcal{G}^{<\infty}$ is Hardian \iff

for any $P \in \mathbb{R}[Y, Y', Y'', ...]$, the sign of $P(y, y', ..., y^{(r)})$ is eventually constant.

Definition

A germ $\mathcal{G}^{<\infty}$ is **Hardian** if it lies in some Hardy field K.

Remark. $y \in \mathcal{G}^{<\infty}$ is Hardian \iff

for any $P \in \mathbb{R}[Y, Y', Y'', ...]$, the sign of $P(y, y', ..., y^{(r)})$ is eventually constant.

Definition

Let $k \in \{\infty, \omega\}$. A \mathscr{C}^k -Hardy field is a subfield of \mathscr{G}^k that is closed under derivation.

Definition

A germ $\mathcal{G}^{<\infty}$ is **Hardian** if it lies in some Hardy field K.

Remark. $y \in \mathcal{G}^{<\infty}$ is Hardian \iff

for any $P \in \mathbb{R}[Y, Y', Y'', ...]$, the sign of $P(y, y', ..., y^{(r)})$ is eventually constant.

Definition

Let $k \in \{\infty, \omega\}$. A \mathscr{C}^k -Hardy field is a subfield of \mathscr{G}^k that is closed under derivation.

Remark. There exist Hardy fields that are not \mathscr{C}^{∞} -Hardy fields.

Definition

A germ $\mathcal{G}^{<\infty}$ is **Hardian** if it lies in some Hardy field K.

Remark. $y \in \mathcal{G}^{<\infty}$ is Hardian \iff

for any $P \in \mathbb{R}[Y, Y', Y'', ...]$, the sign of $P(y, y', ..., y^{(r)})$ is eventually constant.

Definition

Let $k \in \{\infty, \omega\}$. A \mathscr{C}^k -Hardy field is a subfield of \mathscr{G}^k that is closed under derivation.

Remark. There exist Hardy fields that are not \mathscr{C}^{∞} -Hardy fields.

Remark. Let $y = \frac{1}{x} + \frac{1}{e^x} + \frac{1}{e^{e^x}} + \cdots$.

Then $\mathbb{R}(y, y', ...)$ is a \mathscr{C}^{∞} -Hardy field, but not a \mathscr{C}^{ω} -Hardy field.

Initial value problems

Theorem (Cauchy, Lipschitz, Picard, Lindelöf, ...)

Let $U \subseteq \mathbb{R}^n$ and open set, and $f: U \to \mathbb{R}^n$ a \mathscr{C}^1 function. Then the differential equation

$$y'(x) = f(y(x))$$

with initial condition $y(0) = y_0 \in U$ has a unique solution $y: [-\varepsilon, \varepsilon] \to U$ for some $\varepsilon > 0$.

Initial value problems

Theorem (Cauchy, Lipschitz, Picard, Lindelöf, ...)

Let $U \subseteq \mathbb{R}^n$ and open set, and $f: U \to \mathbb{R}^n$ a \mathscr{C}^1 function. Then the differential equation

$$y'(x) = f(y(x))$$

with initial condition $y(0) = y_0 \in U$ has a unique solution $y: [-\varepsilon, \varepsilon] \to U$ for some $\varepsilon > 0$.

Proof. Given $\varepsilon > 0$, let \mathscr{F} be the Banach space of \mathscr{C}^0 functions $[-\varepsilon, \varepsilon] \to \mathbb{R}^n$.

Given $\delta > 0$, let $\mathcal{B} \subseteq \mathcal{F}$ be the ball with center y_0 and radius δ .

Initial value problems

Theorem (Cauchy, Lipschitz, Picard, Lindelöf, ...)

Let $U \subseteq \mathbb{R}^n$ and open set, and $f: U \to \mathbb{R}^n$ a \mathscr{C}^1 function. Then the differential equation

$$y'(x) = f(y(x))$$

with initial condition $y(0) = y_0 \in U$ has a unique solution $y: [-\varepsilon, \varepsilon] \to U$ for some $\varepsilon > 0$.

- **Proof.** Given $\varepsilon > 0$, let \mathscr{F} be the Banach space of \mathscr{C}^0 functions $[-\varepsilon, \varepsilon] \to \mathbb{R}^n$.
- Given $\delta > 0$, let $\mathcal{B} \subseteq \mathcal{F}$ be the ball with center y_0 and radius δ .
- Taking δ and ε sufficiently small, we have a contracting functional

$$\Phi \colon \mathcal{B} \longrightarrow \mathcal{B}$$

$$y \longmapsto y_0 + \int_0^x f(y(t)) \, \mathrm{d}t.$$

Its unique fixed point is the desired solution.

Initial value problems — continued

Proof. [...] Taking δ and ε sufficiently small, we have a contracting functional

$$\Phi: \mathcal{B} \longrightarrow \mathcal{B}$$

$$y \longmapsto y_0 + \int_0^x f(y(t)) \, \mathrm{d}t.$$

Indeed,

$$\|\Phi(y_{2}) - \Phi(y_{1})\| = \|\int_{0}^{x} (f(y_{2}(t)) - f(y_{1}(t))) dt\|$$

$$\leq \int_{0}^{x} \|f(y_{2}(t)) - f(y_{1}(t))\| dt$$

$$\leq \varepsilon \|f \circ y_{2} - f \circ y_{1}\|$$

$$\leq \varepsilon \|J_{f}\|_{\mathcal{B}} \|y_{2} - y_{1}\|.$$

Take δ , ε with $\varepsilon \parallel J_f \parallel_{\mathcal{B}} < 1$. [...]

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathcal{G}^1$ be a solution of

$$y'(x) = f(y(x)).$$

Then K(y) is a Hardy field.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathcal{G}^1$ be a solution of

$$y'(x) = f(y(x)).$$

Then K(y) is a Hardy field.

Proof. Without loss of generality, we may assume that *K* is real closed.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathcal{G}^1$ be a solution of

$$y'(x) = f(y(x)).$$

Then K(y) is a Hardy field.

Proof. Without loss of generality, we may assume that *K* is real closed.

Given $P \in K[Y]$, we have to show that sign P(y) is constant, eventually.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathcal{G}^1$ be a solution of

$$y'(x) = f(y(x)).$$

Then K(y) is a Hardy field.

Proof. Without loss of generality, we may assume that *K* is real closed.

Given $P \in K[Y]$, we have to show that sign P(y) is constant, eventually.

Without loss of generality, we may assume that P is monic, irreducible.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathcal{G}^1$ be a solution of

$$y'(x) = f(y(x)).$$

Then K(y) is a Hardy field.

Proof. Without loss of generality, we may assume that *K* is real closed.

Given $P \in K[Y]$, we have to show that sign P(y) is constant, eventually.

Without loss of generality, we may assume that P is monic, irreducible.

 $K \text{ real closed} \implies \deg P = 1 \text{ or } \deg P = 2.$

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathcal{G}^1$ be a solution of

$$y'(x) = f(y(x)).$$

Then K(y) is a Hardy field.

Proof. Without loss of generality, we may assume that *K* is real closed.

Given $P \in K[Y]$, we have to show that sign P(y) is constant, eventually.

Without loss of generality, we may assume that P is monic, irreducible.

 $K \text{ real closed} \implies \deg P = 1 \text{ or } \deg P = 2.$

Case 1. deg P = 2, so $P = (Y - g)^2 + h$ with $g \in K$ and $h \in K^{>0}$.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathcal{G}^1$ be a solution of

$$y'(x) = f(y(x)).$$

Then K(y) is a Hardy field.

- **Proof.** Without loss of generality, we may assume that *K* is real closed.
- Given $P \in K[Y]$, we have to show that sign P(y) is constant, eventually.
- Without loss of generality, we may assume that P is monic, irreducible.
- $K \text{ real closed} \Longrightarrow \deg P = 1 \text{ or } \deg P = 2.$
- **Case 1.** deg P = 2, so $P = (Y g)^2 + h$ with $g \in K$ and $h \in K^{>0}$.
- Then $P(y(x)) = (y(x) g(x))^2 + h(x) > 0$, eventually.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathcal{G}^1$ be a solution of

$$y'(x) = f(y(x)).$$

Then K(y) is a Hardy field.

Case 2. deg P = 1, so P = Y - g with $g \in K$.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathcal{G}^1$ be a solution of

$$y'(x) = f(y(x)).$$

Then K(y) is a Hardy field.

Case 2. deg P = 1, so P = Y - g with $g \in K$.

Modulo a shift $Y \rightarrow Y + g$, we may assume without loss of generality that g = 0.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathcal{G}^1$ be a solution of

$$y'(x) = f(y(x)).$$

Then K(y) is a Hardy field.

Case 2. deg P = 1, so P = Y - g with $g \in K$.

Modulo a shift $Y \rightarrow Y + g$, we may assume without loss of generality that g = 0.

Write $f = Y^r A / B$ with $r \in \mathbb{Z}$, $A, B \in K[Y]$, where $A_0 = A(0) \neq 0$ and $B_0 = B(0) \neq 0$.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathcal{G}^1$ be a solution of

$$y'(x) = f(y(x)).$$

Then K(y) is a Hardy field.

Case 2. deg P = 1, so P = Y - g with $g \in K$.

Modulo a shift $Y \rightarrow Y + g$, we may assume without loss of generality that g = 0.

Write $f = Y^r A / B$ with $r \in \mathbb{Z}$, $A, B \in K[Y]$, where $A_0 = A(0) \neq 0$ and $B_0 = B(0) \neq 0$.

Let $a \in \mathbb{R}$ be such that f(y(x)) is defined and $A_0(x)$, $B_0(x)$ have constant sign on $[a, \infty)$.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathcal{G}^1$ be a solution of

$$y'(x) = f(y(x)).$$

Then K(y) is a Hardy field.

Case 2. deg P = 1, so P = Y - g with $g \in K$.

Modulo a shift $Y \rightarrow Y + g$, we may assume without loss of generality that g = 0.

Write $f = Y^r A / B$ with $r \in \mathbb{Z}$, $A, B \in K[Y]$, where $A_0 = A(0) \neq 0$ and $B_0 = B(0) \neq 0$.

Let $a \in \mathbb{R}$ be such that f(y(x)) is defined and $A_0(x)$, $B_0(x)$ have constant sign on $[a, \infty)$.

Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathcal{G}^1$ be a solution of

$$y'(x) = f(y(x)).$$

Then K(y) is a Hardy field.

Case 2. deg P = 1, so P = Y - g with $g \in K$.

Modulo a shift $Y \rightarrow Y + g$, we may assume without loss of generality that g = 0.

Write $f = Y^r A / B$ with $r \in \mathbb{Z}$, $A, B \in K[Y]$, where $A_0 = A(0) \neq 0$ and $B_0 = B(0) \neq 0$.

Let $a \in \mathbb{R}$ be such that f(y(x)) is defined and $A_0(x)$, $B_0(x)$ have constant sign on $[a, \infty)$.

Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.

Let $x_1 < x_2 < \cdots$ be those zeros.

Case 2. $\deg P = 1$, so P = Y - g with $g \in K$.

Modulo a shift $Y \rightarrow Y + g$, we may assume without loss of generality that g = 0.

Write $f = Y^r A / B$ with $r \in \mathbb{Z}$, $A, B \in K[Y]$, where $A_0 = A(0) \neq 0$ and $B_0 = B(0) \neq 0$.

Let $a \in \mathbb{R}$ be such that f(y(x)) is defined and $A_0(x)$, $B_0(x)$ have constant sign on $[a, \infty)$

Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.

Let $x_1 < x_2 < \cdots$ be those zeros.

Case 2. deg P = 1, so P = Y - g with $g \in K$.

Modulo a shift $Y \rightarrow Y + g$, we may assume without loss of generality that g = 0.

Write $f = Y^r A / B$ with $r \in \mathbb{Z}$, $A, B \in K[Y]$, where $A_0 = A(0) \neq 0$ and $B_0 = B(0) \neq 0$.

Let $a \in \mathbb{R}$ be such that f(y(x)) is defined and $A_0(x)$, $B_0(x)$ have constant sign on $[a, \infty)$

Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.

Let $x_1 < x_2 < \cdots$ be those zeros.

Since $f(y(x_1)) = f(0)$ is defined, we must have $r \ge 0$.

Case 2. deg P = 1, so P = Y - g with $g \in K$.

Modulo a shift $Y \rightarrow Y + g$, we may assume without loss of generality that g = 0.

Write $f = Y^r A / B$ with $r \in \mathbb{Z}$, $A, B \in K[Y]$, where $A_0 = A(0) \neq 0$ and $B_0 = B(0) \neq 0$.

Let $a \in \mathbb{R}$ be such that f(y(x)) is defined and $A_0(x)$, $B_0(x)$ have constant sign on $[a, \infty)$

Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.

Let $x_1 < x_2 < \cdots$ be those zeros.

Since $f(y(x_1)) = f(0)$ is defined, we must have $r \ge 0$.

If r > 0, then $y' = y^r A / B$ with $y(x_1) = 0$ has y = 0 as its unique solution: contradiction.

Case 2. deg P = 1, so P = Y - g with $g \in K$.

Modulo a shift $Y \rightarrow Y + g$, we may assume without loss of generality that g = 0.

Write $f = Y^r A / B$ with $r \in \mathbb{Z}$, $A, B \in K[Y]$, where $A_0 = A(0) \neq 0$ and $B_0 = B(0) \neq 0$.

Let $a \in \mathbb{R}$ be such that f(y(x)) is defined and $A_0(x)$, $B_0(x)$ have constant sign on $[a, \infty)$

Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.

Let $x_1 < x_2 < \cdots$ be those zeros.

Since $f(y(x_1)) = f(0)$ is defined, we must have $r \ge 0$.

If r > 0, then $y' = y^r A / B$ with $y(x_1) = 0$ has y = 0 as its unique solution: contradiction.

Hence r = 0 and sign $y'(x_1) = \operatorname{sign} A_0(x_1) / B_0(x_1) = \operatorname{sign} A_0(x_2) / B_0(x_2) = \operatorname{sign} y'(x_2)$.

First order closure — continued proof

Case 2. deg P = 1, so P = Y - g with $g \in K$.

Modulo a shift $Y \rightarrow Y + g$, we may assume without loss of generality that g = 0.

Write $f = Y^r A / B$ with $r \in \mathbb{Z}$, $A, B \in K[Y]$, where $A_0 = A(0) \neq 0$ and $B_0 = B(0) \neq 0$.

Let $a \in \mathbb{R}$ be such that f(y(x)) is defined and $A_0(x)$, $B_0(x)$ have constant sign on $[a, \infty)$

Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.

Let $x_1 < x_2 < \cdots$ be those zeros.

Since $f(y(x_1)) = f(0)$ is defined, we must have $r \ge 0$.

If r > 0, then $y' = y^r A / B$ with $y(x_1) = 0$ has y = 0 as its unique solution: contradiction.

Hence r = 0 and sign $y'(x_1) = \operatorname{sign} A_0(x_1) / B_0(x_1) = \operatorname{sign} A_0(x_2) / B_0(x_2) = \operatorname{sign} y'(x_2)$.

So $y(x_1) = y(x_2) = 0$, y has constant sign on (x_1, x_2) , but sign $y'(x_1) = \text{sign } y'(x_2)$.

First order closure — continued proof

Case 2. deg P = 1, so P = Y - g with $g \in K$.

Modulo a shift $Y \rightarrow Y + g$, we may assume without loss of generality that g = 0.

Write $f = Y^r A / B$ with $r \in \mathbb{Z}$, $A, B \in K[Y]$, where $A_0 = A(0) \neq 0$ and $B_0 = B(0) \neq 0$.

Let $a \in \mathbb{R}$ be such that f(y(x)) is defined and $A_0(x)$, $B_0(x)$ have constant sign on $[a, \infty)$

Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.

Let $x_1 < x_2 < \cdots$ be those zeros.

Since $f(y(x_1)) = f(0)$ is defined, we must have $r \ge 0$.

If r > 0, then $y' = y^r A / B$ with $y(x_1) = 0$ has y = 0 as its unique solution: contradiction.

Hence r = 0 and sign $y'(x_1) = \operatorname{sign} A_0(x_1) / B_0(x_1) = \operatorname{sign} A_0(x_2) / B_0(x_2) = \operatorname{sign} y'(x_2)$.

So $y(x_1) = y(x_2) = 0$, y has constant sign on (x_1, x_2) , but sign $y'(x_1) = \text{sign } y'(x_2)$.

Contradiction.

Corollary

Let K be a Hardy field and let $\varphi \in K$. Then

- $K(\int \varphi)$ is a Hardy field.
- $K(e^{\varphi})$ is a Hardy field.
- $K(\log \varphi)$ is a Hardy field, whenever $\varphi > 0$.

Corollary

Let K be a Hardy field and let $\varphi \in K$. Then

- $K(\int \varphi)$ is a Hardy field.
- $K(e^{\varphi})$ is a Hardy field.
- $K(\log \varphi)$ is a Hardy field, whenever $\varphi > 0$.

$$y' = \varphi$$

$$y' = \varphi' y$$

$$y' = \varphi' / \varphi$$

Corollary

Let K be a Hardy field and let $\varphi \in K$. Then

- $K(\int \varphi)$ is a Hardy field.
- $K(e^{\varphi})$ is a Hardy field.
- $K(\log \varphi)$ is a Hardy field, whenever $\varphi > 0$.

$$y' = \varphi$$

$$y' = \varphi' y$$

$$y' = \varphi' / \varphi$$

Definition

A Hardy field is **Liouville closed** if it is real closed and closed under \int and exp.

Corollary

Let K be a Hardy field and let $\varphi \in K$. Then

- $K(\int \varphi)$ is a Hardy field.
- $K(e^{\varphi})$ is a Hardy field.
- $K(\log \varphi)$ is a Hardy field, whenever $\varphi > 0$.

$$y' = \varphi$$

 $y' = \varphi' y$

 $y' = \varphi' / \varphi$

Definition

A Hardy field is **Liouville closed** if it is real closed and closed under \int and exp.

Corollary

Given a Hardy field K, the smallest real closed field $K^{lc} \subseteq \mathcal{G}^{<\infty}$ which contains K and which is closed under \int and exp is a Hardy field, called the **Liouville closure** of K.

Exp-log functions

Definition

An **exp-log function** (or **L-function**) is any function constructed from the real numbers and an indeterminate x, using the field operations, exponention, and the logarithm.

Corollary

Let $\mathscr{E} \subseteq \mathscr{G}^{<\infty}$ be the set of germs of exp-log functions that are eventually defined.

Then & is a Hardy field.

Maximal and perfect Hardy fields

Definition

A Hardy field K is **maximal** if there is no Hardy field L with $L \supseteq K$. We define

$$E(K) := \bigcap_{L\supset K, L \text{ is maximal}} L.$$

We call E(K) the **perfect hull** of K and say that K is **perfect** if E(K) = K.

Maximal and perfect Hardy fields

Definition

A Hardy field K is **maximal** if there is no Hardy field L with $L \supseteq K$. We define

$$E(K) := \bigcap_{L \supseteq K, L \text{ is maximal}} L$$

We call E(K) the **perfect hull** of K and say that K is **perfect** if E(K) = K.

Corollary

Maximal Hardy fields are Liouville closed and so are perfect Hardy fields.

Maximal and perfect Hardy fields

Definition

A Hardy field K is **maximal** if there is no Hardy field L with $L \supseteq K$. We define

$$E(K) := \bigcap_{L\supset K, L \text{ is maximal}} L$$

We call E(K) the **perfect hull** of K and say that K is **perfect** if E(K) = K.

Corollary

Maximal Hardy fields are Liouville closed and so are perfect Hardy fields.

Questions

- First order axiomatization of the theory of maximal Hardy fields?
- First order characterization of perfect hulls?

 $y'' + y = e^{x^2}$

(*)

Consider two solutions $y_1 \neq y_2$ of (\star)

$$y'' + y = e^{x^2}$$

 (\star)

 $(y_2 - y_1)^{\prime\prime} + (y_2 - y_1) = 0$

 $y'' + y = e^{x^2}$

Consider two solutions $y_1 \neq y_2$ of (\star)

 (\star)

 $(y_2 - y_1)'' + (y_2 - y_1) = 0$

 $y_2 - y_1 = a \sin(x+b), \quad a, b \in \mathbb{R}.$

 $y'' + y = e^{x^2}$

Consider two solutions $y_1 \neq y_2$ of (\star)

$$y'' + y = e^{x^2} \tag{*}$$

Consider two solutions $y_1 \neq y_2$ of (\star)

$$(y_2 - y_1)'' + (y_2 - y_1) = 0$$

$$y_2 - y_1 = a \sin(x+b), \quad a, b \in \mathbb{R}.$$

There exists no Hardy field that contains both y_1 and y_2

$$y'' + y = e^{x^2} \tag{*}$$

Consider two solutions $y_1 \neq y_2$ of (\star)

$$(y_2 - y_1)'' + (y_2 - y_1) = 0$$

$$y_2 - y_1 = a\sin(x+b), \quad a, b \in \mathbb{R}.$$

There exists no Hardy field that contains both y_1 and y_2

Theorem (Boshernitzan)

Any maximal Hardy field contains exactly one solution of (\star) *.*

Problems with traditional techniques

• Analytic aspects become difficult for differential equations of order ≥ 2 .

Problems with traditional techniques

- Analytic aspects become difficult for differential equations of order ≥ 2 .
- Class & not closed under natural operations, such as functional inversion.