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Quasi-orderings

Definition
A (partial) quasi-ordering is a reflexive and transitive relation <.

The quasi-ordering < induces the equivalence relation a1 =b=a<b<a.

The quotient relation < /= is an ordering (i.e. a < b<ai=—a=b ).

The quasi-ordering < also induces the strict ordering < by a<b«=a<bAb<a.
Conversely, < induces the ordering <'by a<'bea<bva=b.

Trivial examples
e The finest ordering on any set E: the equality on E.
e The coarsest ordering on any set E: the relation & withaz b for alla,b €E.



Operations on quasi-orderings

Let (E, <p) and (F, <p) be quasi-orderings.



Operations on quasi-orderings

Let (E, <p) and (F, <p) be quasi-orderings.
Disjoint union. (EUF, <gyr)

a <E|_|p b = (EBQgEbEE) V (FaagprF)



Operations on quasi-orderings

Let (E, <p) and (F, <p) be quasi-orderings.
Disjoint union. (EUF, <gyr)
a <gur b = (EDa<gb€E) v (Foa<rb€eF)
Ordered union. (EUF, <gyr)
a <ggr b = (EDa<gb€E) v @a€EAbEF) v (Fa<rb€eEF)



Operations on quasi-orderings

Let (E, <p) and (F, <p) be quasi-orderings.
Disjoint union. (EUF, <gyr)
a <gur b = (EDa<gb€E) v (Foa<rb€eF)
Ordered union. (EUF, <gyr)
a <ggr b = (EDa<gb€E) v @a€EAbEF) v (Fa<rb€eEF)
Cartesian product. (E xF, <g«r)



Operations on quasi-orderings

Let (E, <p) and (F, <p) be quasi-orderings.
Disjoint union. (EUF, <gyr)
a <gur b = (EDa<gb€E) v (Foa<rb€eF)
Ordered union. (EUF, <gyr)
a <ggr b = (EDa<gb€E) v @a€EAbEF) v (Fa<rb€eEF)
Cartesian product. (E xF, <g«r)

(a,a") <gxr (b,b") = a<pga’ AN b<pb’



Operations on quasi-orderings

Let (E, <p) and (F, <p) be quasi-orderings.
Disjoint union. (EUF, <gyr)
a <gur b = (EDa<gb€E) v (Foa<rb€eF)
Ordered union. (EUF, <gyr)
a <ggr b = (EDa<gb€E) v @a€EAbEF) v (Fa<rb€eEF)
Cartesian product. (E xF, <g«r)
(a,a") <pxr (b,0") 1= a<pga’ N Db
Anti-lexicographical product. (E xF, <gxr)

(a,a") <gsr U,b") 1= a' ' <pb’ v @' =pb' ANa<eh)



Operations on quasi-orderings — example

.<: EuUF EUF

<< =<

ExF ExF
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Well-orderings Sy

Definition

We say that (E, <) is well-founded, if there are no infinite sequences x1>x,> - - - in E.

Definition
A quasi-ordering (E, <) is total if a<b or b<a forany a,b L.

Definition
A total well-founded ordering is called a well-ordering.

e A well-ordering is isomorphic to a unique ordinal number
0,1,2,...,w,w+1,...,w-2,w-2+1,...,w-3,..., 0% ..., w0° ..., w"...
e The operations LI and x correspond to ordinal addition and multiplication.
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Well-quasi-orderings

Definition
An anti-chain of a quasi-ordering (E, <) is a set C C E of pairwise incomparable elements.

Definition
A well-quasi-ordering is a well-founded quasi-ordering with no infinite anti-chains.

Iheorem
Let (E, <) be a quasi-ordering. The following conditions are equivalent:
a) (E, <) is a well-quasi-ordering.
b) Any final segment of E is finitely generated.
c) The final segments of E satisfy the ascending chain condition.
d) Each sequence x1,x,, ... € E has an increasing subsequence.
e) Any extension of < into a total quasi-ordering on E is well-founded.
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b) Any final segment of E is finitely generated.

Consider a final segment FCE. (ie.xeFAx<yeE=yeF)
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Proof (a) = (b)
a) (E, <) is a well-quasi-ordering.

b) Any final segment of E is finitely generated.

Consider a final segment FCE. (ie.xeFAx<yeE=yeF)

Let G be the set of minimal elements of F. (ie. G={xeF:(VyeF)y<x})

We claim that G generates F. (i.e. F=Fin(G):={x€E:(JyeG)y<x})
If not, let x; € F \ Fin(G).

Since x; is not minimal in F, there exists an x, € F \ Fin(G) with x, <x;
Repeating this argument yields a sequence x; >x, >x3> - - - in E: contradiction
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Proof (a) = (b)
a) (E, <) is a well-quasi-ordering.
b) Any final segment of E is finitely generated.
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Well-quasi-orderings — continued

Proof (a) = (b)
a) (E, <) is a well-quasi-ordering.

b) Any final segment of E is finitely generated.

Consider a final segment FCE. (ie.xeFAx<yeE=yeF)
Let G be the set of minimal elements of F. (ie. G={xeF:(VyeF)y<x})
Then G generates F. (i.e. F=Fin(G):={x€E:(JyeG)y<x})

G /= is an antichain for < /=, whence finite.
Let H C G be such that H contains exactly one element in each class of G/ =.
Then |H|=|G/=| and H also generates F.
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Well-quasi-orderings — continued

b) Any final segment of E is finitely generated.
d) Each sequence x1,x,, ... € E has an increasing subsequence.

By induction on k, let us construct x; <x;, < --- <x; such that
the set Ji:= {j>i:x;, <x;} is infinite.

Trivial for k=0 and i;=0, so assume that k> 1.

Consider the final segment F =Fin(x;: j € [i).

Then F is finitely generated, say by x;,, ..., x;.

For any ;' € ], we have x; <x; for somene{1,...,1}

Take ix.1:=x;, such that {j" € J:x;, <x;} is infinite.
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Let (E, <p) and (F, <) be well-quasi-orderings.
Then soare ELUF, ELUF, ExF, and E x F.

Proof. Use the increasing subsequence criterion.



Well-quasi-orderings — continued

Let (E, <p) and (F, <) be well-quasi-orderings.
Then soare ELUF, ELUF, ExF, and E x F.

Proof. Use the increasing subsequence criterion.

Corollary (Dickson's lemma)

The set IN" =N x . x IN is well-quasi-ordered.
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EY: the set of words x;* ---*x, with x{,...,x,€E

Xy ek X, S Yrxeooxyy, = 3P {1, n} {1, m}) (Vie(l,...,n}) x; < Ygo)

HxOsT < T*EsM*PsExRx«AxTx*E

Theorem (Higman)
If E is well-quasi-ordered, then so is E™.

Proof. (Following Nash-Williams.)
We say that x4, x,,... is a bad sequence if there are no i < j with x; <x;.
Assume for contradiction that w,,w,, ... is a bad sequence in E".
Take wq,w,, ... minimal in the following sense:
Each w; is chosen of minimal length in E" \ Fin(wy, ..., w;_1).
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Theorem (Higman)

If E is well-quasi-ordered, then so is E".

Proof. We say that x4, x,,... is a bad sequence if there are no i < j with x; <x;.
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Take wq, wy, ... minimal in the following sense:
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. / /
Consider wy, ..., w; 1, w;, Wi, ...
By the minimality of wq, w,, ..., this sequence is good.

If w,<w), then wy,w,, ... is a good sequence = contradiction.
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Theorem (Higman)

If E is well-quasi-ordered, then so is E".

Proof. We say that x4, x,,... is a bad sequence if there are no i < j with x; <x;.
Assume for contradiction that w,,w,, ... is a bad sequence in E".
Take wq, wy, ... minimal in the following sense:

Each w; is chosen of minimal length in E" \ Fin(w;, ..., w;_1).

Factor w,=x;*w; with x,EE, w; €E"Y, fori=1,2,...
Extract subsequence x;, <x;, < - -
. / /
Consider wy, ..., w; 1, w;, Wi, ...
By the minimality of wq, w,, ..., this sequence is good.

If w, < wj, then w, <w; < x; *w; =w; = contradiction.
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Theorem (Higman)

If E is well-quasi-ordered, then so is E".

Proof. We say that x4, x,,... is a bad sequence if there are no i < j with x; <x;.
Assume for contradiction that w,,w,, ... is a bad sequence in E".
Take wq, wy, ... minimal in the following sense:

Each w; is chosen of minimal length in E" \ Fin(w;, ..., w;_1).

Factor w,=x;*w; with x,EE, w; €E"Y, fori=1,2,...
Extract subsequence x; <x;,<---
. / /
Consider wy, ..., w; 1, w;, Wi, ...
By the minimality of wq, w,, ..., this sequence is good.

If w; <wj, then w; =x; *w;] <x;*w; <w; = contradiction.



Higman's theorem — continued proof 1127

Theorem (Higman)

If E is well-quasi-ordered, then so is E".

Proof. We say that x4, x,,... is a bad sequence if there are no i < j with x; <x;.
Assume for contradiction that w,,w,, ... is a bad sequence in E".
Take wq, wy, ... minimal in the following sense:

Each w; is chosen of minimal length in E" \ Fin(w;, ..., w;_1).

Factor w,=x;*w; with x,EE, w; €E"Y, fori=1,2,...

Extract subsequence x;, <x;, < - -

Consider wy, ..., w; 1, w;,w;,...

By the minimality of wq, w,, ..., this sequence is good.

Contradiction. O
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R the coefficient ring
9 the set (often a monoid or group) of monomials, quasi-ordered by <

A subset G CON is well-based if it is well-quasi-ordered for 7',

Definition
A well-based series in N over R is a map f: 91 — R such that
supp f = {meM: f(m)+£0}

is well-based. We denote by R[[9)1]] the set of all such series. Given f € R[[91]], we will
also write f,:= f(m) for all m &9 and

f = mem.
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Power series.

R[[z]] = R[[zM]], g7 = k>l

R[[x71] = R[[x™N]], gl = k<l
Laurent series.

R((2)) = R[[z“]]

Multivariate power series.

R[[zy,...,2,]]1 = Rl[z1 x---xzp']]
Multivariate Laurent series.

R((z1,.--,20)) = Rl[2fx -+ xz7]]
Lexicographical Laurent series.

R((z1) -+ ((z)) = RI[z{ % %xzy]]
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A family (f)icr € R[[IN]]' is well-based (or summable) if
o |J;o;supp fiis well-based.
o [.:={i€l: fin:=(f)un#0} is finite, for every m & M.
In that case, we define ) . _, f; € R[[90]] by

(24, - 2~

iel =N

Remark. Given f € R[[9]], the family (fu m)mesupp r is well-based.

Remark. Given f € R[[9)1]], the family (f,m)necon is also well-based.
Wehave f=) o7 fam=2 o fum.
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Basic arithmetic

Addition and subtraction. For f,ge R[[21]],
fig = Z (fmigm)m

mesupp fUsuppg

Remark. Let G be a well-based monomial set (not necessarily included in 1)

{ (Co)scs €ER®

@: G — M strictly increasing = (¢s9(5))see is well-based

Multiplication. Assuming that 9)1 is a quasi-ordered monoid,
f8 = Z fm&umn.
(m,n)Esupp fxsuppg
S:=supp fXsUpP g, Camm'=fugn @m,n)=mn
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Assume that R is a ring and 9 an ordered monoid. Then R[[I1]] is a ring.

Associativity of multiplication. Let f, g, 1 € R[[1]] and u M. Then
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= Z fm gnhm = Z fm gnht’o
(v,t0) E(supp fsuppg)xsupph (m,n,tv) Esupp f xsuppgxsupph
pro=u mnw=u
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Ring structure

Proposition
Assume that R is a ring and 9 an ordered monoid. Then R[[I1]] is a ring.

Associativity of multiplication. Let f, g, 1 € R[[1]] and u M. Then

(f) ) = > (fQ)oh = > (f8)u /1w
(v,10) Esupp (fg)xsupph (v,t0) E(supp fsupp g)xsupph
bto=u bto=u
= Z fmgnhm = Z fmgnhm
(v,t0) E(supp fsuppg)xsupph (m,n,tv) Esupp f xsuppgxsupph
pro=u mnto=u
(m,n)Esupp fxsuppg
mn=uv
= - = (fgM)y

using a similar computation.
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Conceptually simpler proof 1727

Fully expand and recombine in different ways.

5 fo gl mn =( y fmgnmn)( 5 huu)=<fg>h

(m,n,u) Esupp fxsuppgxsupph (m,n)Esupp fxsuppg uesupph
= ( > fmm)( > gnhunu) = f(gh)
mesupp f (nu) Esuppgxsupph

Strong distributivity.
If (f)ier and (g));c; are summable, then so is (f;¢/) jerxy and

Y fig = (Zﬁ)(zgf)

(i,))elx] iel j€]
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Strong distributivity. If (f;);c; and (g));c; are summable, then so is (f;g)i jeixy and
> fig = (Zfz) (Z 8]')

@,Helx] iel jEJ
Strong associativity. Let (f;);c; be summable and I = |, ie ]
Then (f});e;, is summable for each j, the family (), _ L fi).., is summable, and

j€]
Lfi= 2 ) f
i€l JEJ i€l;

Termification. If (f;);c; is summable, then so is (f;w™M)icr,mesupp £, and

) Ji= ) fmm

i€l iel,mesupp f;
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0r:=maxgsupp f dominant monomial of f

cri= fo, dominant coefficient of f
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Then R[[21]] is an ordered ring (the ordering being total).
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Asymptotic relations

Assume that 91 is totally ordered.

Dominant terms. Given f € R[[21]]7", we define
0r:=maxgsupp f dominant monomial of f
cri= fo, dominant coefficient of f
Tpi=Cf 05 dominant term of f
Asymptotic relations. Given f, g € R[[91]], we may then define
fR8 =<0y
<

f <& = %<0
f ~ g &= Tf = Tg

Convention 0p<9and f~0=0~ fe f=0
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Division

Special inversion. Assume ¢ € R[[9)1]] with supp e <1

1
1_8 = Z gml”'gmkml"'mk-
myx- - xmpE(suppe)”

S:=(supp f)", Cmps-coxmei=Emy o Emy @My - xmp) =my - - Wy
General inversion. Given a field R, a totally ordered group 91, and f € C[[99t]]7",
f = cor(1—9), supp €< 1,
1
1 ._ —1a-1
gy 1—¢

Proposition
Assume that R is a field and 9 a totally ordered group. Then R[[9)1]] is a field.
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1
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= ]_-|— Z 8m1"'€mkm1"'mk
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Division — proof inversion formula

1
1_¢ - Z Emy Em, MY My
myx- .- xmE(suppe)”
= ]_-|— Z 8m1"'€mkm1"'mk
my*- - xmE(suppe)V
k>1
1
8.]—8 = Z EmgEm, ** " Em, Mo MMy - - - My
myEsuppe
myx- .- xmE(suppe)”
f— Z gml...gmkml...mk
my*- - xmE(suppe)V
k>1
1
(1—e¢)- =1

1—¢
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Strong linearity

Let 90t, 0 be monomial sets and consider a linear map ¢: R[[9N]] — R[[D1]]. We say that
@ is strongly linear if (¢(f))ic; is summable whenever (f;)icr € R[[ON]Y is, and

go(zfl-) = Y ol

iel iel

We say that ¢: 9 — R[[N]] is well-based, if, for any well-based subset S C 9N, the family
(p(m))mce is well-based.

Theorem (extension by strong linearity)

Consider a well-based map ¢: 901 — R[[I]]. Then there exists a unique strongly linear map
@: R[[9]] - R[[D1]] that extends g.




Extension by strong linearity — proof

Theorem (extension by strong linearity)

Consider a well-based map ¢:9t — R[[I]]. Then there exists a unique strongly linear map
@: R[] - R[[D1]] that extends g.

Uniqueness. Let f € R[[DT]]. Then (¢(m))nesupp AN (fn @(M))mesupp r are summable.
Given a strongly linear extension ¢ of ¢, we must have

q?)(f)=¢( y fmm): Y oam = Y fapm) =Y fug(m).

mesupp f mesupp f mesupp f mesupp f
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Extension by strong linearity — proof

Existence. Given f € R[[9)1]], let
) = ) fuplm).
mesupp f

Let us show that ¢ preserves strong summation.

Let (f;);c; be summable.

Claim: (f; m @(m))i,meixs is summable, where & :=| J,_, supp f..
The set U ; . erxe SUPP fim@(m) T, c s SUppP @(m) is well-based.
Given ne M, the set G,:= {m e G :nEsupp @(m)} is finite.
For every me G,, the set I, ,:= {i€l:m &supp f;} is finite.
Hence {(i, m) eI x &G :n&supp f; n@(m)} is finite.
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Existence. Given f € R[[9)1]], let
) = ) fuplm).

mesupp f
Let us show that ¢ preserves strong summation.
Let (f;);c; be summable.
Then (f;m@(m))meixe is summable, where & :=( J,_, supp f..

Y o) =Y > fimem)
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Extension by strong linearity — proof

Existence. Given f € R[[9)1]], let
) = ) fuplm).

mesupp f
Let us show that ¢ preserves strong summation.

Let (f;);c; be summable.
Then (f;m@(m))meixe is summable, where & :=( J,_, supp f..

Y o) =Y > fimem)

iel iel me®
= ) fime(m)
(Im)elxs
= Y Y frnpm) = qﬁ(Zﬁ)
meo iel iel



Application to power series substitution

90T monomial monoid, e € R[[2]], supp e < 1.



Application to power series substitution

90T monomial monoid, e € R[[2]], supp e < 1.
("), en is summable.



Application to power series substitution

90T monomial monoid, e € R[[2]], supp e < 1.
(€"),en is summable, since (g, «* + €, M1+ - M) s .. xm, e (suppe)~ 1S Summable.



Application to power series substitution

90T monomial monoid, e € R[[2]], supp e < 1.
("), en is summable.



Application to power series substitution

90T monomial monoid, e € R[[2]], supp e < 1.
("), en is summable.
@:z™N — R[[IM]];z" ~ " is well-based.



Application to power series substitution

90T monomial monoid, e € R[[2]], supp e < 1.
("), en is summable.
@:z™N — R[[IM]];z" ~ " is well-based.

foe == @(f), for any f € R[[z]].



Application to power series substitution

90T monomial monoid, e € R[[2]], supp e < 1.
("), en is summable.

@:z™N — R[[IM]];z" ~ " is well-based.
foe == @(f), for any f € R[[z]].

Proposition

a) For any f, g € R[[z]] with g< 1, we have supp goe<1and fo(goe)=(fog)oe.
b) The map f — f o ¢ is a ring homomorphism.




Application to power series substitution

90T monomial monoid, e € R[[2]], supp e < 1.
("), en is summable.
@:z™N — R[[IM]];z" ~ " is well-based.

foe == @(f), for any f € R[[z]].

Proposition

a) For any f, g € R[[z]] with g< 1, we have supp goe<1and fo(goe)=(fog)oe.
b) The map f — f o ¢ is a ring homomorphism.

Wehave(l—e)-%:l. |




Application to power series substitution

90T monomial monoid, e € R[[2]], supp e < 1.
("), en is summable.
@:z™N — R[[IM]];z" ~ " is well-based.

foe == @(f), for any f € R[[z]].

Proposition

a) For any f, g € R[[z]] with g< 1, we have supp goe<1and fo(goe)=(fog)oe.
b) The map f — f o ¢ is a ring homomorphism.

Wehave(l—e)-%:l. |

Proof. Follows from (b), since (1 —z) %_Z =1 in R[[z]]. O
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et Y: M — R[[N]] and @: N — R[[V]] be two well-based mappings. Then

oy = goy.
Proof. The map ¢ o : 91 — R[[V]] is well-based.
The map ¢ o ¢ is the unique stongly linear map that extends ¢ o 1. O
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et Y: M — R[[N]] and @: N — R[[V]] be two well-based mappings. Then
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Composition as a ring homomorphism

Proposition
If @:90 - R[[N]] is a multiplicative well-based mapping, then ¢ is a ring homomorphism.

Claim 2: for any f, g€ R[[D1]], we have ¢(fg)=@(f) ¢().
Proof. The mapping x,:m— ¢(mg) =¢(m) p(g) is well-based. Now
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Composition as a ring homomorphism

Proposition
If @:90 - R[[N]] is a multiplicative well-based mapping, then ¢ is a ring homomorphism.

Claim 2: for any f, g€ R[[D1]], we have ¢(fg)=@(f) ¢().
Proof. The mapping x,:m— ¢(mg) =¢(m) p(g) is well-based. Now

WO =Y fadmg) = q?)( y fmmg) = 0(fg)

mesupp f mesupp f
= Y fapm@@) = §© Y fagm) = G(HHQE). -
mesupp f mesupp f

Remark. More elegant proof possible using “extension by strong bilinearity”.
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A multivariate generalization

€1, ..., €, €ER[[M]]*':= {e €R[[IM]]:supp e < 1}.
@zl x o xZN S RN (2, ..., 28 - el ehr is well-based.

fo(er,...,en) = @(f), for any f €R[[zy,...,z.]].

a) ¢ is a ring homomorphism.
b) Forany f € R[[uy,...,ur]land g4,...,8xER[[z1, . .. 2 1Y, we have

fo(glo(gll'-°/€1’1)/°--/gko(gll'”/gn)) — (fo(g1/'°-/gk))o(81/°-°/€n)'

Corollary

IfFRDQand 6,e €R[[IM]], then e°* =e°ef, where e°:= e o § with e* € R[[z]].

Proof. e’ =e” %0 (§,¢) = (e” €?) 0 (§,£) = e* e?, using e " =e* e® in R[[zy,2,]].
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