Lesson 3 — Generalized power series

Definition

A (partial) quasi-ordering is a reflexive and transitive relation \leq .

Definition

A (partial) quasi-ordering is a reflexive and transitive relation \leq .

The quasi-ordering \leq induces the equivalence relation $a \equiv b \iff a \leq b \leq a$.

Definition

A (partial) quasi-ordering is a reflexive and transitive relation \leq .

The quasi-ordering \leq induces the equivalence relation $a \equiv b \iff a \leq b \leq a$.

The quotient relation \leq / \equiv is an ordering (i.e. $\bar{a} \leq \bar{b} \leq \bar{a} \Longrightarrow \bar{a} = \bar{b}$).

Definition

A (partial) quasi-ordering is a reflexive and transitive relation \leq .

- The quasi-ordering \leq induces the equivalence relation $a \equiv b \iff a \leq b \leq a$.
- The quotient relation \leq / \equiv is an ordering (i.e. $\bar{a} \leq \bar{b} \leq \bar{a} \Longrightarrow \bar{a} = \bar{b}$).
- The quasi-ordering \leq also induces the strict ordering < by $a < b \iff a \leq b \land b \nleq a$.

Definition

A (partial) quasi-ordering is a reflexive and transitive relation \leq .

- The quasi-ordering \leq induces the equivalence relation $a \equiv b \iff a \leq b \leq a$.
- The quotient relation \leq / \equiv is an ordering (i.e. $\bar{a} \leq \bar{b} \leq \bar{a} \Longrightarrow \bar{a} = \bar{b}$).
- The quasi-ordering \leq also induces the strict ordering < by $a < b \iff a \leq b \land b \nleq a$.
- Conversely, < induces the ordering \leq ! by $a \leq$! $b \Leftrightarrow a < b \lor a = b$.

Definition

A (partial) quasi-ordering is a reflexive and transitive relation \leq .

- The quasi-ordering \leq induces the equivalence relation $a \equiv b \iff a \leq b \leq a$.
- The quotient relation \leq / \equiv is an ordering (i.e. $\bar{a} \leq \bar{b} \leq \bar{a} \Longrightarrow \bar{a} = \bar{b}$).
- The quasi-ordering \leq also induces the strict ordering < by $a < b \iff a \leq b \land b \nleq a$.
- Conversely, < induces the ordering \leq ! by $a \leq$! $b \Leftrightarrow a < b \lor a = b$.

Trivial examples

• The finest ordering on any set *E*: the equality on *E*.

Definition

A (partial) quasi-ordering is a reflexive and transitive relation \leq .

- The quasi-ordering \leq induces the equivalence relation $a \equiv b \iff a \leq b \leq a$.
- The quotient relation \leq / \equiv is an ordering (i.e. $\bar{a} \leq \bar{b} \leq \bar{a} \Longrightarrow \bar{a} = \bar{b}$).
- The quasi-ordering \leq also induces the strict ordering < by $a < b \iff a \leq b \land b \nleq a$.
- Conversely, < induces the ordering \leq ! by $a \leq$! $b \Leftrightarrow a < b \lor a = b$.

Trivial examples

- The finest ordering on any set *E*: the equality on *E*.
- The coarsest ordering on any set E: the relation \approx with $a \approx b$ for all $a, b \in E$.

Let (E, \leq_E) and (F, \leq_F) be quasi-orderings.

Let (E, \leq_E) and (F, \leq_F) be quasi-orderings.

Disjoint union. $(E \sqcup F, \leq_{E \sqcup F})$

$$a \leqslant_{E \sqcup F} b :\iff (E \ni a \leqslant_E b \in E) \lor (F \ni a \leqslant_F b \in F)$$

Let (E, \leq_E) and (F, \leq_F) be quasi-orderings.

Disjoint union. $(E \sqcup F, \leq_{E \sqcup F})$

$$a \leqslant_{E \sqcup F} b :\iff (E \ni a \leqslant_E b \in E) \lor (F \ni a \leqslant_F b \in F)$$

Ordered union. $(E \dot{\sqcup} F, \leqslant_{E \dot{\sqcup} F})$

$$a \leq_{E \sqcup F} b :\iff (E \ni a \leq_E b \in E) \lor (a \in E \land b \in F) \lor (F \ni a \leq_F b \in F)$$

Let (E, \leq_E) and (F, \leq_F) be quasi-orderings.

Disjoint union. $(E \sqcup F, \leq_{E \sqcup F})$

$$a \leqslant_{E \sqcup F} b :\iff (E \ni a \leqslant_E b \in E) \lor (F \ni a \leqslant_F b \in F)$$

Ordered union. $(E \dot{\sqcup} F, \leqslant_{E \dot{\sqcup} F})$

$$a \leq_{E \sqcup F} b :\iff (E \ni a \leq_E b \in E) \lor (a \in E \land b \in F) \lor (F \ni a \leq_F b \in F)$$

Cartesian product. $(E \times F, \leqslant_{E \times F})$

Let (E, \leq_E) and (F, \leq_F) be quasi-orderings.

Disjoint union. $(E \sqcup F, \leq_{E \sqcup F})$

$$a \leqslant_{E \sqcup F} b :\iff (E \ni a \leqslant_E b \in E) \lor (F \ni a \leqslant_F b \in F)$$

Ordered union. $(E \dot{\sqcup} F, \leqslant_{E \dot{\sqcup} F})$

$$a \leq_{E \sqcup F} b :\iff (E \ni a \leq_E b \in E) \lor (a \in E \land b \in F) \lor (F \ni a \leq_F b \in F)$$

Cartesian product. $(E \times F, \leq_{E \times F})$

$$(a,a') \leqslant_{E\times F} (b,b') :\iff a \leqslant_E a' \land b \leqslant_F b'$$

Let (E, \leq_E) and (F, \leq_F) be quasi-orderings.

Disjoint union. $(E \sqcup F, \leq_{E \sqcup F})$

$$a \leqslant_{E \sqcup F} b :\iff (E \ni a \leqslant_E b \in E) \lor (F \ni a \leqslant_F b \in F)$$

Ordered union. $(E \dot{\sqcup} F, \leqslant_{E \dot{\sqcup} F})$

$$a \leq_{E \sqcup F} b :\iff (E \ni a \leq_E b \in E) \lor (a \in E \land b \in F) \lor (F \ni a \leq_F b \in F)$$

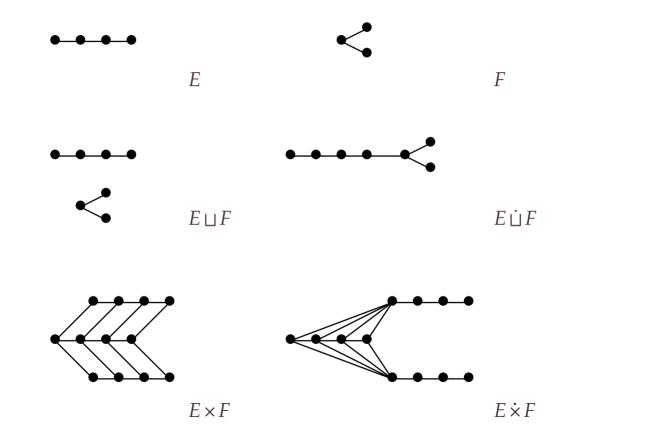
Cartesian product. $(E \times F, \leq_{E \times F})$

$$(a,a') \leqslant_{E\times F} (b,b') :\iff a \leqslant_E a' \land b \leqslant_F b'$$

Anti-lexicographical product. $(E \times F, \leq_{E \times F})$

$$(a,a') \leqslant_{E \times F} (b,b') :\iff a' <_F b' \lor (a' \equiv_F b' \land a \leqslant_E b)$$

Operations on quasi-orderings — example



Definition

We say that (E, \leq) *is* **well-founded**, *if there are no infinite sequences* $x_1 > x_2 > \cdots$ *in* E.

Definition

We say that (E, \leq) *is well-founded, if there are no infinite sequences* $x_1 > x_2 > \cdots$ *in* E.

Definition

A quasi-ordering (E, \leq) *is* **total** *if* $a \leq b$ *or* $b \leq a$ *for any* $a, b \in E$.

Definition

We say that (E, \leq) *is well-founded, if there are no infinite sequences* $x_1 > x_2 > \cdots$ *in* E.

Definition

A quasi-ordering (E, \leq) *is* **total** *if* $a \leq b$ *or* $b \leq a$ *for any* $a, b \in E$.

Definition

A total well-founded ordering is called a **well-ordering**.

Definition

We say that (E, \leq) *is* **well-founded**, *if there are no infinite sequences* $x_1 > x_2 > \cdots$ *in* E.

Definition

A quasi-ordering (E, \leq) *is* **total** *if* $a \leq b$ *or* $b \leq a$ *for any* $a, b \in E$.

Definition

A total well-founded ordering is called a **well-ordering**.

• A well-ordering is isomorphic to a unique **ordinal number**

$$0,1,2,\ldots,\omega,\omega+1,\ldots,\omega\cdot 2,\omega\cdot 2+1,\ldots,\omega\cdot 3,\ldots,\omega^2,\ldots,\omega^3,\ldots,\omega^\omega,\ldots$$

Definition

We say that (E, \leq) *is* **well-founded**, *if there are no infinite sequences* $x_1 > x_2 > \cdots$ *in* E.

Definition

A quasi-ordering (E, \leq) *is* **total** *if* $a \leq b$ *or* $b \leq a$ *for any* $a, b \in E$.

Definition

A total well-founded ordering is called a **well-ordering**.

- A well-ordering is isomorphic to a unique **ordinal number** $0,1,2,...,\omega,\omega+1,...,\omega\cdot2,\omega\cdot2+1,...,\omega\cdot3,...,\omega^2,...,\omega^3,...,\omega^\omega,...$
- The operations $\dot{\sqcup}$ and $\dot{\times}$ correspond to ordinal addition and multiplication.

Well-quasi-orderings

Definition

An **anti-chain** of a quasi-ordering (E, \leq) is a set $C \subseteq E$ of pairwise incomparable elements.

Well-quasi-orderings

Definition

An **anti-chain** of a quasi-ordering (E, \leq) is a set $C \subseteq E$ of pairwise incomparable elements.

Definition

A well-quasi-ordering is a well-founded quasi-ordering with no infinite anti-chains.

Well-quasi-orderings

Definition

An **anti-chain** of a quasi-ordering (E, \leq) is a set $C \subseteq E$ of pairwise incomparable elements.

Definition

A well-quasi-ordering is a well-founded quasi-ordering with no infinite anti-chains.

Theorem

Let (E, \leq) be a quasi-ordering. The following conditions are equivalent:

- *a*) (E, \leq) *is a well-quasi-ordering.*
- *b)* Any final segment of E is finitely generated.
- c) The final segments of E satisfy the ascending chain condition.
- *d*) Each sequence $x_1, x_2, \ldots \in E$ has an increasing subsequence.
- *e)* Any extension of \leq into a total quasi-ordering on E is well-founded.

Proof $(a) \Rightarrow (b)$

- *a*) (E, \leq) *is a well-quasi-ordering.*
- *b)* Any final segment of E is finitely generated.

Proof $(a) \Rightarrow (b)$

- *a*) (E, \leq) *is a well-quasi-ordering.*
- *b)* Any final segment of E is finitely generated.

Consider a final segment $F \subseteq E$.

(i.e. $x \in F \land x \leq y \in E \Longrightarrow y \in F$)

Proof $(a) \Rightarrow (b)$

- *a*) (E, \leq) *is a well-quasi-ordering.*
- *b)* Any final segment of E is finitely generated.

Consider a final segment
$$F \subseteq E$$
.

Let *G* be the set of minimal elements of *F*.

(i.e.
$$x \in F \land x \leq y \in E \Longrightarrow y \in F$$
)

(i.e. $G = \{x \in F : (\forall y \in F) \ y \not< x\}$)

Proof $(a) \Rightarrow (b)$

- *a*) (E, \leq) *is a well-quasi-ordering.*
- *b)* Any final segment of E is finitely generated.

Consider a final segment
$$F \subseteq E$$
. (i.e. $x \in F \land x \leqslant y \in E \Longrightarrow y \in F$)

Let *G* be the set of minimal elements of *F*. (i.e.
$$G = \{x \in F : (\forall y \in F) \ y \not< x\}$$
)

We claim that
$$G$$
 generates F . (i.e. $F = Fin(G) := \{x \in E : (\exists y \in G) \ y \leqslant x\}$)

```
Proof (a) \Rightarrow (b)
```

- *a*) (E, \leq) *is a well-quasi-ordering.*
- *b)* Any final segment of E is finitely generated.

Consider a final segment
$$F \subseteq E$$
. (i.e. $x \in F \land x \leqslant y \in E \Longrightarrow y \in F$)

Let *G* be the set of minimal elements of *F*. (i.e.
$$G = \{x \in F : (\forall y \in F) \ y \not< x\}$$
)

We claim that *G* generates *F*. (i.e.
$$F = \text{Fin}(G) := \{x \in E : (\exists y \in G) \ y \leqslant x\}$$
)

If not, let $x_1 \in F \setminus Fin(G)$.

```
Proof (a) \Rightarrow (b)
```

- *a*) (E, \leq) *is a well-quasi-ordering.*
- *b)* Any final segment of E is finitely generated.

Consider a final segment
$$F \subseteq E$$
. (i.e. $x \in F \land x \leqslant y \in E \Longrightarrow y \in F$)

Let *G* be the set of minimal elements of *F*. (i.e.
$$G = \{x \in F : (\forall y \in F) \ y \not< x\}$$
)

We claim that *G* generates *F*. (i.e.
$$F = Fin(G) := \{x \in E : (\exists y \in G) \ y \leqslant x\}$$
)

If not, let $x_1 \in F \setminus Fin(G)$.

Since x_1 is not minimal in F, there exists an $x_2 \in F \setminus Fin(G)$ with $x_2 < x_1$

Proof $(a) \Rightarrow (b)$

- *a*) (E, \leq) *is a well-quasi-ordering.*
- *b)* Any final segment of E is finitely generated.

Consider a final segment
$$F \subseteq E$$
. (i.e. $x \in F \land x \leqslant y \in E \Longrightarrow y \in F$)

Let *G* be the set of minimal elements of *F*. (i.e.
$$G = \{x \in F : (\forall y \in F) \ y \not< x\}$$
)

We claim that *G* generates *F*. (i.e.
$$F = Fin(G) := \{x \in E : (\exists y \in G) \ y \leqslant x\}$$
)

If not, let $x_1 \in F \setminus Fin(G)$.

Since x_1 is not minimal in F, there exists an $x_2 \in F \setminus Fin(G)$ with $x_2 < x_1$

Repeating this argument yields a sequence $x_1 > x_2 > x_3 > \cdots$ in E: contradiction

$Proof(a) \Rightarrow (b)$

- a) (E, \leq) is a well-quasi-ordering.
- *b)* Any final segment of E is finitely generated.

Consider a final segment
$$F \subseteq E$$
.

(i.e.
$$x \in F \land x \leq y \in E \Longrightarrow y \in F$$
)

(i.e.
$$G = \{x \in F : (\forall y \in F) \ y \not < x\}$$
)

(i.e.
$$F = \operatorname{Fin}(G) := \{x \in E : (\exists y \in G) \ y \leqslant x\}$$
)

Proof $(a) \Rightarrow (b)$

- *a*) (E, \leq) *is a well-quasi-ordering.*
- *b)* Any final segment of E is finitely generated.

Consider a final segment
$$F \subseteq E$$
. (i.e. $x \in F \land x \leqslant y \in E \Longrightarrow y \in F$)

Let *G* be the set of minimal elements of *F*. (i.e.
$$G = \{x \in F : (\forall y \in F) \ y \not< x\}$$
)

Then *G* generates *F*. (i.e.
$$F = Fin(G) := \{x \in E : (\exists y \in G) \ y \leqslant x\}$$
)

 G/\equiv is an antichain for \leq/\equiv , whence finite.

Proof $(a) \Rightarrow (b)$

- *a*) (E, \leq) *is a well-quasi-ordering.*
- *b)* Any final segment of E is finitely generated.

Consider a final segment
$$F \subseteq E$$
.

(i.e.
$$x \in F \land x \leq y \in E \Longrightarrow y \in F$$
)

Let *G* be the set of minimal elements of *F*.

(i.e.
$$G = \{x \in F : (\forall y \in F) \ y \not< x\}$$
)

Then *G* generates *F*.

(i.e.
$$F = \operatorname{Fin}(G) := \{x \in E : (\exists y \in G) \ y \leqslant x\}$$
)

 G/\equiv is an antichain for \leqslant/\equiv , whence finite.

Let $H \subseteq G$ be such that H contains exactly one element in each class of G/\equiv .

Proof $(a) \Rightarrow (b)$

- a) (E, \leq) is a well-quasi-ordering.
- *b)* Any final segment of E is finitely generated.

Consider a final segment
$$F \subseteq E$$
.

(i.e.
$$F = \operatorname{Fin}(G) := \{x \in E : (\exists y \in G) \ y \leqslant x\}$$
)

(i.e. $x \in F \land x \leq y \in E \Longrightarrow y \in F$)

(i.e. $G = \{x \in F : (\forall y \in F) \ y \not< x\}$)

 G/\equiv is an antichain for \leqslant/\equiv , whence finite.

Let $H \subseteq G$ be such that H contains exactly one element in each class of G/\equiv .

Then $|H| = |G/\equiv|$ and H also generates F.

Proof $(b) \Rightarrow (d)$

- *b)* Any final segment of E is finitely generated.
- *d*) Each sequence $x_1, x_2, ... \in E$ has an increasing subsequence.

Proof $(b) \Rightarrow (d)$

- *b)* Any final segment of E is finitely generated.
- *d*) Each sequence $x_1, x_2, ... \in E$ has an increasing subsequence.

By induction on k, let us construct $x_{i_1} \le x_{i_2} \le \cdots \le x_{i_k}$ such that the set $J_k := \{j > i_k : x_{i_k} \le x_j\}$ is infinite.

- *b)* Any final segment of E is finitely generated.
- *d*) Each sequence $x_1, x_2, ... \in E$ has an increasing subsequence.
- By induction on k, let us construct $x_{i_1} \le x_{i_2} \le \cdots \le x_{i_k}$ such that the set $J_k := \{j > i_k : x_{i_k} \le x_j\}$ is infinite.
- Trivial for k = 0 and $i_0 = 0$, so assume that $k \ge 1$.

- *b)* Any final segment of E is finitely generated.
- *d*) Each sequence $x_1, x_2, ... \in E$ has an increasing subsequence.
- By induction on k, let us construct $x_{i_1} \le x_{i_2} \le \cdots \le x_{i_k}$ such that the set $J_k := \{j > i_k : x_{i_k} \le x_j\}$ is infinite.
- Trivial for k = 0 and $i_0 = 0$, so assume that $k \ge 1$.
- Consider the final segment $F = \text{Fin}(x_i : j \in J_k)$.

- *b)* Any final segment of E is finitely generated.
- *d*) Each sequence $x_1, x_2, ... \in E$ has an increasing subsequence.
- By induction on k, let us construct $x_{i_1} \le x_{i_2} \le \cdots \le x_{i_k}$ such that the set $J_k := \{j > i_k : x_{i_k} \le x_j\}$ is infinite.
- Trivial for k = 0 and $i_0 = 0$, so assume that $k \ge 1$.
- Consider the final segment $F = \text{Fin}(x_i : j \in J_k)$.
- Then *F* is finitely generated, say by x_{j_1}, \ldots, x_{j_l} .

- *b)* Any final segment of E is finitely generated.
- *d*) Each sequence $x_1, x_2, ... \in E$ has an increasing subsequence.
- By induction on k, let us construct $x_{i_1} \le x_{i_2} \le \cdots \le x_{i_k}$ such that the set $J_k := \{j > i_k : x_{i_k} \le x_j\}$ is infinite.
- Trivial for k = 0 and $i_0 = 0$, so assume that $k \ge 1$.
- Consider the final segment $F = \text{Fin}(x_j : j \in J_k)$.
- Then *F* is finitely generated, say by x_{j_1}, \ldots, x_{j_l} .
- For any $j' \in J_k$ we have $x_{j_n} \leq x_{j'}$ for some $n \in \{1, ..., l\}$

- *b)* Any final segment of E is finitely generated.
- *d*) Each sequence $x_1, x_2, ... \in E$ has an increasing subsequence.
- By induction on k, let us construct $x_{i_1} \le x_{i_2} \le \cdots \le x_{i_k}$ such that the set $J_k := \{j > i_k : x_{i_k} \le x_j\}$ is infinite.
- Trivial for k = 0 and $i_0 = 0$, so assume that $k \ge 1$.
- Consider the final segment $F = \text{Fin}(x_j : j \in J_k)$.
- Then *F* is finitely generated, say by x_{j_1}, \ldots, x_{j_l} .
- For any $j' \in J_k$ we have $x_{j_n} \leq x_{j'}$ for some $n \in \{1, ..., l\}$
- Take $i_{k+1} := x_{j_n}$, such that $\{j' \in J_k : x_{j_n} \leq x_{j'}\}$ is infinite.

Corollary

Let (E, \leq_E) and (F, \leq_F) be well-quasi-orderings.

Then so are $E \sqcup F$, $E \dot{\sqcup} F$, $E \times F$, and $E \dot{\times} F$.

Corollary

Let (E, \leq_E) and (F, \leq_F) be well-quasi-orderings.

Then so are $E \sqcup F$, $E \dot{\sqcup} F$, $E \times F$, and $E \dot{\times} F$.

Proof. Use the increasing subsequence criterion.

Corollary

Let (E, \leq_E) and (F, \leq_F) be well-quasi-orderings.

Then so are $E \sqcup F$, $E \dot{\sqcup} F$, $E \times F$, and $E \dot{\times} F$.

Proof. Use the increasing subsequence criterion.

Corollary (Dickson's lemma)

The set $\mathbb{N}^n = \mathbb{N} \times \stackrel{n \times}{\dots} \times \mathbb{N}$ *is well-quasi-ordered.*

(E, ≤): a quasi-ordering

 E^{w} : the set of **words** $x_1 * \cdots * x_n$ with $x_1, \dots, x_n \in E$

(E, ≤): a quasi-ordering

 E^{w} : the set of **words** $x_1 * \cdots * x_n$ with $x_1, \dots, x_n \in E$

$$x_1 * \cdots * x_n \leq y_1 * \cdots * y_m : \iff (\exists \phi : \{1, \dots, n\} \nearrow \{1, \dots, m\}) \ (\forall i \in \{1, \dots, n\}) \ x_i \leq y_{\phi(i)}$$

$$H*O*T \leq T*E*M*P*E*R*A*T*E$$

(E, ≤): a quasi-ordering

 E^{w} : the set of **words** $x_1 * \cdots * x_n$ with $x_1, \ldots, x_n \in E$

$$x_1*\cdots*x_n\leqslant y_1*\cdots*y_m:\Longleftrightarrow (\exists \phi\colon\{1,\ldots,n\}\nearrow\{1,\ldots,m\})\;(\forall i\in\{1,\ldots,n\})\;x_i\leqslant y_{\phi(i)}$$

$$H*O*T \leq T*E*M*P*E*R*A*T*E$$

Theorem (Higman)

If E *is* well-quasi-ordered, then so is E^w .

(E, ≤): a quasi-ordering

 E^{w} : the set of **words** $x_1 * \cdots * x_n$ with $x_1, \ldots, x_n \in E$

$$x_1*\cdots*x_n\leqslant y_1*\cdots*y_m:\Longleftrightarrow (\exists \phi\colon\{1,\ldots,n\}\nearrow\{1,\ldots,m\})\;(\forall i\in\{1,\ldots,n\})\;x_i\leqslant y_{\phi(i)}$$

$$H*O*T \leq T*E*M*P*E*R*A*T*E$$

Theorem (Higman)

If E *is well-quasi-ordered, then so is* E^{w} .

Proof. (Following Nash-Williams.)

We say that $x_1, x_2, ...$ is a **bad sequence** if there are no i < j with $x_i \le x_j$.

(E, ≤): a quasi-ordering

 E^{w} : the set of **words** $x_1 * \cdots * x_n$ with $x_1, \ldots, x_n \in E$

$$x_1 * \cdots * x_n \leq y_1 * \cdots * y_m : \iff (\exists \phi : \{1, \dots, n\} \nearrow \{1, \dots, m\}) \ (\forall i \in \{1, \dots, n\}) \ x_i \leq y_{\phi(i)}$$

$$H*O*T \leq T*E*M*P*E*R*A*T*E$$

Theorem (Higman)

If E *is well-quasi-ordered, then so is* E^{w} .

Proof. (Following Nash-Williams.)

We say that $x_1, x_2, ...$ is a **bad sequence** if there are no i < j with $x_i \le x_j$.

Assume for contradiction that w_1, w_2, \ldots is a bad sequence in E^w .

 (E, \leq) : a quasi-ordering

 E^{w} : the set of **words** $x_1 * \cdots * x_n$ with $x_1, \ldots, x_n \in E$

$$x_1 * \cdots * x_n \leq y_1 * \cdots * y_m : \Longleftrightarrow (\exists \phi : \{1, \dots, n\} \nearrow \{1, \dots, m\}) \ (\forall i \in \{1, \dots, n\}) \ x_i \leq y_{\phi(i)}$$

$$H*O*T \leq T*E*M*P*E*R*A*T*E$$

Theorem (Higman)

If E *is* well-quasi-ordered, then so is E^w .

Proof. (Following Nash-Williams.)

We say that $x_1, x_2, ...$ is a **bad sequence** if there are no i < j with $x_i \le x_j$.

Assume for contradiction that $w_1, w_2, ...$ is a bad sequence in E^w .

Take w_1, w_2, \ldots **minimal** in the following sense:

Theorem (Higman)

If E *is* well-quasi-ordered, then so is E^{w} .

Proof. We say that $x_1, x_2,...$ is a **bad sequence** if there are no i < j with $x_i \le x_j$.

Assume for contradiction that w_1, w_2, \ldots is a bad sequence in E^w .

Take w_1, w_2, \ldots **minimal** in the following sense:

Theorem (Higman)

If E *is* well-quasi-ordered, then so is E^w .

Proof. We say that $x_1, x_2, ...$ is a **bad sequence** if there are no i < j with $x_i \le x_j$.

Assume for contradiction that w_1, w_2, \ldots is a bad sequence in E^w .

Take w_1, w_2, \ldots **minimal** in the following sense:

Each w_i is chosen of minimal length in $E^w \setminus \text{Fin}(w_1, \dots, w_{i-1})$.

Factor $w_i = x_i * w_i'$ with $x_i \in E$, $w_i' \in E^w$, for i = 1, 2, ...

Theorem (Higman)

If E *is* well-quasi-ordered, then so is E^w .

Proof. We say that $x_1, x_2, ...$ is a **bad sequence** if there are no i < j with $x_i \le x_j$.

Assume for contradiction that w_1, w_2, \ldots is a bad sequence in E^w .

Take w_1, w_2, \ldots **minimal** in the following sense:

Each w_i is chosen of minimal length in $E^w \setminus \text{Fin}(w_1, \dots, w_{i-1})$.

Factor $w_i = x_i * w'_i$ with $x_i \in E$, $w'_i \in E^w$, for i = 1, 2, ...

Extract subsequence $x_{i_1} \leqslant x_{i_2} \leqslant \cdots$

Theorem (Higman)

If E *is* well-quasi-ordered, then so is E^w .

Proof. We say that $x_1, x_2, ...$ is a **bad sequence** if there are no i < j with $x_i \le x_j$.

Assume for contradiction that w_1, w_2, \ldots is a bad sequence in E^w .

Take w_1, w_2, \ldots **minimal** in the following sense:

Each w_i is chosen of minimal length in $E^w \setminus \text{Fin}(w_1, \dots, w_{i-1})$.

Factor $w_i = x_i * w_i'$ with $x_i \in E$, $w_i' \in E^w$, for i = 1, 2, ...

Extract subsequence $x_{i_1} \leqslant x_{i_2} \leqslant \cdots$

Consider $w_1, ..., w_{i_1-1}, w'_{i_1}, w'_{i_2}, ...$

Theorem (Higman)

If E *is* well-quasi-ordered, then so is E^w .

Proof. We say that $x_1, x_2, ...$ is a **bad sequence** if there are no i < j with $x_i \le x_j$.

Assume for contradiction that w_1, w_2, \ldots is a bad sequence in E^w .

Take w_1, w_2, \ldots **minimal** in the following sense:

Each w_i is chosen of minimal length in $E^w \setminus \text{Fin}(w_1, \dots, w_{i-1})$.

Factor $w_i = x_i * w_i'$ with $x_i \in E$, $w_i' \in E^w$, for i = 1, 2, ...

Extract subsequence $x_{i_1} \leqslant x_{i_2} \leqslant \cdots$

Consider $w_1, ..., w_{i_1-1}, w'_{i_1}, w'_{i_2}, ...$

By the minimality of w_1, w_2, \ldots , this sequence is good.

Theorem (Higman)

If E *is* well-quasi-ordered, then so is E^w .

Proof. We say that $x_1, x_2, ...$ is a **bad sequence** if there are no i < j with $x_i \le x_j$.

Assume for contradiction that w_1, w_2, \ldots is a bad sequence in E^w .

Take w_1, w_2, \ldots **minimal** in the following sense:

Each w_i is chosen of minimal length in $E^w \setminus \text{Fin}(w_1, \dots, w_{i-1})$.

Factor $w_i = x_i * w_i'$ with $x_i \in E$, $w_i' \in E^w$, for i = 1, 2, ...

Extract subsequence $x_{i_1} \leqslant x_{i_2} \leqslant \cdots$

Consider $w_1, ..., w_{i_1-1}, w'_{i_1}, w'_{i_2}, ...$

By the minimality of w_1, w_2, \ldots , this sequence is good.

Theorem (Higman)

If E *is* well-quasi-ordered, then so is E^w .

Proof. We say that $x_1, x_2, ...$ is a **bad sequence** if there are no i < j with $x_i \le x_j$.

Assume for contradiction that w_1, w_2, \ldots is a bad sequence in E^{w} .

Take w_1, w_2, \ldots **minimal** in the following sense:

- Factor $w_i = x_i * w_i'$ with $x_i \in E$, $w_i' \in E^w$, for i = 1, 2, ...
- Extract subsequence $x_{i_1} \leqslant x_{i_2} \leqslant \cdots$
- Consider $w_1, ..., w_{i_1-1}, w'_{i_1}, w'_{i_2}, ...$
- By the minimality of w_1, w_2, \ldots , this sequence is good.
- If $w_k \leq w_l$, then w_1, w_2, \ldots is a good sequence \Longrightarrow contradiction.

Theorem (Higman)

If E *is* well-quasi-ordered, then so is E^w .

Proof. We say that $x_1, x_2, ...$ is a **bad sequence** if there are no i < j with $x_i \le x_j$.

Assume for contradiction that $w_1, w_2, ...$ is a bad sequence in E^w .

Take w_1, w_2, \ldots **minimal** in the following sense:

- Factor $w_i = x_i * w_i'$ with $x_i \in E$, $w_i' \in E^w$, for i = 1, 2, ...
- Extract subsequence $x_{i_1} \leqslant x_{i_2} \leqslant \cdots$
- Consider $w_1, \ldots, w_{i_1-1}, w'_{i_1}, w'_{i_2}, \ldots$
- By the minimality of w_1, w_2, \ldots , this sequence is good.
- If $w_k \leq w'_{i_l}$, then $w_k \leq w'_{i_l} \leq x_{i_l} * w'_{i_l} = w_{i_l} \Longrightarrow$ contradiction.

Theorem (Higman)

If E *is* well-quasi-ordered, then so is E^w .

Proof. We say that $x_1, x_2, ...$ is a **bad sequence** if there are no i < j with $x_i \le x_j$.

Assume for contradiction that $w_1, w_2, ...$ is a bad sequence in E^w .

Take w_1, w_2, \ldots **minimal** in the following sense:

- Factor $w_i = x_i * w_i'$ with $x_i \in E$, $w_i' \in E^w$, for i = 1, 2, ...
- Extract subsequence $x_{i_1} \leqslant x_{i_2} \leqslant \cdots$
- Consider $w_1, \ldots, w_{i_1-1}, w'_{i_1}, w'_{i_2}, \ldots$
- By the minimality of w_1, w_2, \ldots , this sequence is good.
- If $w'_{i_k} \leq w'_{i_{l'}}$ then $w_{i_k} = x_{i_k} * w'_{i_k} \leq x_{i_l} * w'_{i_l} \leq w_{i_l} \Longrightarrow$ contradiction.

Theorem (Higman)

If E *is* well-quasi-ordered, then so is E^w .

Proof. We say that $x_1, x_2,...$ is a **bad sequence** if there are no i < j with $x_i \le x_j$.

Assume for contradiction that w_1, w_2, \ldots is a bad sequence in E^w .

Take w_1, w_2, \ldots **minimal** in the following sense:

Each w_i is chosen of minimal length in $E^w \setminus \text{Fin}(w_1, \dots, w_{i-1})$.

Factor $w_i = x_i * w_i'$ with $x_i \in E$, $w_i' \in E^w$, for i = 1, 2, ...

Extract subsequence $x_{i_1} \leqslant x_{i_2} \leqslant \cdots$

Consider $w_1, ..., w_{i_1-1}, w'_{i_1}, w'_{i_2}, ...$

By the minimality of w_1, w_2, \ldots , this sequence is good.

Contradiction.

Generalized power series

- *R* the coefficient ring
- \mathfrak{M} the set (often a monoid or group) of monomials, quasi-ordered by \leq

Generalized power series

- R the coefficient ring
- \mathfrak{M} the set (often a monoid or group) of monomials, quasi-ordered by \leq

Definition

A subset $\mathfrak{S} \subseteq \mathfrak{M}$ is **well-based** if it is well-quasi-ordered for \geq !.

Generalized power series

- R the coefficient ring
- \mathfrak{M} the set (often a monoid or group) of monomials, quasi-ordered by \leq

Definition

A subset $\mathfrak{S} \subseteq \mathfrak{M}$ is **well-based** if it is well-quasi-ordered for $\geq !$.

Definition

A well-based series in \mathfrak{M} over R is a map $f: \mathfrak{M} \longrightarrow R$ such that

$$\operatorname{supp} f := \{ \mathfrak{m} \in \mathfrak{M} : f(\mathfrak{m}) \neq 0 \}$$

is well-based. We denote by $R[[\mathfrak{M}]]$ the set of all such series. Given $f \in R[[\mathfrak{M}]]$, we will also write $f_{\mathfrak{m}} := f(\mathfrak{m})$ for all $\mathfrak{m} \in \mathfrak{M}$ and

$$f = \sum_{m} f_m m.$$

Power series.

$$R[[z]] = R[[z^{\mathbb{N}}]],$$

$$z^k \leqslant z^l \iff k \geqslant l$$

Power series.

$$R[[z]] = R[[z^{\mathbb{N}}]], z^{k} \leq z^{l} \iff k \geq l$$

$$R[[x^{-1}]] = R[[x^{-\mathbb{N}}]], x^{k} \leq x^{l} \iff k \leq l$$

Examples

Power series.

$$R[[z]] = R[[z^{\mathbb{N}}]], z^{k} \leqslant z^{l} \iff k \geqslant l$$

$$R[[x^{-1}]] = R[[x^{-\mathbb{N}}]], x^{k} \leqslant x^{l} \iff k \leqslant l$$

Laurent series.

$$R((z)) = R[[z^{\mathbb{Z}}]]$$

Examples

Power series.

$$R[[z]] = R[[z^{\mathbb{N}}]], z^{k} \leqslant z^{l} \iff k \geqslant l$$

$$R[[x^{-1}]] = R[[x^{-\mathbb{N}}]], x^{k} \leqslant x^{l} \iff k \leqslant l$$

Laurent series.

$$R((z)) = R[[z^{\mathbb{Z}}]]$$

Multivariate power series.

$$R[[z_1,\ldots,z_n]] = R[[z_1^{\mathbb{N}} \times \cdots \times z_n^{\mathbb{N}}]]$$

Examples

Power series.

$$R[[z]] = R[[z^{\mathbb{N}}]], z^{k} \leqslant z^{l} \iff k \geqslant l$$

$$R[[x^{-1}]] = R[[x^{-\mathbb{N}}]], x^{k} \leqslant x^{l} \iff k \leqslant l$$

Laurent series.

$$R((z)) = R[[z^{\mathbb{Z}}]]$$

Multivariate power series.

$$R[[z_1,\ldots,z_n]] = R[[z_1^{\mathbb{N}} \times \cdots \times z_n^{\mathbb{N}}]]$$

Multivariate Laurent series.

$$R((z_1,\ldots,z_n)) = R[[z_1^{\mathbb{Z}} \times \cdots \times z_n^{\mathbb{Z}}]]$$

Power series.

$$R[[z]] = R[[z^{\mathbb{N}}]], \qquad z^{k} \leqslant z^{l} \iff k \geqslant l$$

$$R[[x^{-1}]] = R[[x^{-\mathbb{N}}]], \qquad x^{k} \leqslant x^{l} \iff k \leqslant l$$

Laurent series.

$$R((z)) = R[[z^{\mathbb{Z}}]]$$

Multivariate power series.

$$R[[z_1,\ldots,z_n]] = R[[z_1^{\mathbb{N}} \times \cdots \times z_n^{\mathbb{N}}]]$$

Multivariate Laurent series.

$$R((z_1,\ldots,z_n)) = R[[z_1^{\mathbb{Z}} \times \cdots \times z_n^{\mathbb{Z}}]]$$

Lexicographical Laurent series.

$$R((z_1))\cdots((z_n)) = R[[z_1^{\mathbb{Z}} \dot{\times} \cdots \dot{\times} z_n^{\mathbb{Z}}]]$$

Infinite summation

Definition

A family $(f_i)_{i \in I} \in R[[\mathfrak{M}]]^I$ is well-based (or summable) if

- $\bigcup_{i \in I} \text{supp } f_i \text{ is well-based.}$
- $I_{\mathfrak{m}} := \{i \in I : f_{i,\mathfrak{m}} := (f_i)_{\mathfrak{m}} \neq 0\}$ is finite, for every $\mathfrak{m} \in \mathfrak{M}$.

In that case, we define $\sum_{i \in I} f_i \in R[[\mathfrak{M}]]$ by

$$\left(\sum_{i\in I}f_i\right)_{\mathfrak{m}}:=\sum_{i\in I_{\mathfrak{m}}}f_{\mathfrak{m}}.$$

Infinite summation

Definition

A family $(f_i)_{i \in I} \in R[[\mathfrak{M}]]^I$ is well-based (or summable) if

- $\bigcup_{i \in I} \text{supp } f_i \text{ is well-based.}$
- $I_{\mathfrak{m}} := \{i \in I : f_{i,\mathfrak{m}} := (f_i)_{\mathfrak{m}} \neq 0\}$ is finite, for every $\mathfrak{m} \in \mathfrak{M}$.

In that case, we define $\sum_{i \in I} f_i \in R[[\mathfrak{M}]]$ by

$$\left(\sum_{i\in I}f_i\right)_{\mathfrak{m}}:=\sum_{i\in I_{\mathfrak{m}}}f_{\mathfrak{m}}.$$

Remark. Given $f \in R[[\mathfrak{M}]]$, the family $(f_{\mathfrak{m}}\mathfrak{m})_{\mathfrak{m} \in \text{supp } f}$ is well-based.

Infinite summation

Definition

A family $(f_i)_{i \in I} \in R[[\mathfrak{M}]]^I$ is well-based (or summable) if

- $\bigcup_{i \in I} \text{supp } f_i \text{ is well-based.}$
- $I_{\mathfrak{m}} := \{i \in I : f_{i,\mathfrak{m}} := (f_i)_{\mathfrak{m}} \neq 0\}$ is finite, for every $\mathfrak{m} \in \mathfrak{M}$.

In that case, we define $\sum_{i \in I} f_i \in R[[\mathfrak{M}]]$ by

$$\left(\sum_{i\in I}f_i\right)_{\mathfrak{m}}:=\sum_{i\in I_{\mathfrak{m}}}f_{\mathfrak{m}}.$$

Remark. Given $f \in R[[\mathfrak{M}]]$, the family $(f_{\mathfrak{m}}\mathfrak{m})_{\mathfrak{m} \in \text{supp } f}$ is well-based.

Remark. Given $f \in R[[\mathfrak{M}]]$, the family $(f_{\mathfrak{m}}\mathfrak{m})_{\mathfrak{m} \in \mathfrak{M}}$ is also well-based.

Infinite summation

Definition

A family $(f_i)_{i \in I} \in R[[\mathfrak{M}]]^I$ is well-based (or summable) if

- $\bigcup_{i \in I} \text{supp } f_i \text{ is well-based.}$
- $I_{\mathfrak{m}} := \{i \in I : f_{i,\mathfrak{m}} := (f_i)_{\mathfrak{m}} \neq 0\}$ is finite, for every $\mathfrak{m} \in \mathfrak{M}$.

In that case, we define $\sum_{i \in I} f_i \in R[[\mathfrak{M}]]$ by

$$\left(\sum_{i\in I}f_i\right)_{\mathfrak{m}}:=\sum_{i\in I_{\mathfrak{m}}}f_{\mathfrak{m}}.$$

Remark. Given $f \in R[[\mathfrak{M}]]$, the family $(f_{\mathfrak{m}}\mathfrak{m})_{\mathfrak{m} \in \text{supp } f}$ is well-based.

Remark. Given $f \in R[[\mathfrak{M}]]$, the family $(f_{\mathfrak{m}}\mathfrak{m})_{\mathfrak{m} \in \mathfrak{M}}$ is also well-based.

We have
$$f = \sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \mathfrak{m} = \sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$$
.

Basic arithmetic

Addition and subtraction. For $f, g \in R[[\mathfrak{M}]]$,

$$f \pm g := \sum_{\mathfrak{m} \in \text{supp } f \cup \text{supp } g} (f_{\mathfrak{m}} \pm g_{\mathfrak{m}}) \mathfrak{m}.$$

Basic arithmetic

Addition and subtraction. For $f, g \in R[[\mathfrak{M}]]$,

$$f \pm g := \sum_{\mathfrak{m} \in \text{supp } f \cup \text{supp } g} (f_{\mathfrak{m}} \pm g_{\mathfrak{m}}) \mathfrak{m}.$$

Remark. Let \mathfrak{S} be a well-based monomial set (not necessarily included in \mathfrak{M})

$$\begin{cases} (c_{\mathfrak{s}})_{\mathfrak{s}\in\mathfrak{S}} \in R^{\mathfrak{S}} \\ \varphi : \mathfrak{S} \to \mathfrak{M} \text{ strictly increasing} \end{cases} \implies (c_{\mathfrak{s}}\varphi(\mathfrak{s}))_{\mathfrak{s}\in\mathfrak{S}} \text{ is well-based}$$

Addition and subtraction. For
$$f, g \in R[[\mathfrak{M}]]$$
,
$$f \pm g := \sum_{\mathfrak{m} \in \text{supp } f \cup \text{supp } g} (f_{\mathfrak{m}} \pm g_{\mathfrak{m}}) \mathfrak{m}.$$

Remark. Let \mathfrak{S} be a well-based monomial set (not necessarily included in \mathfrak{M})

 $\mathfrak{m} \in \operatorname{supp} f \cup \operatorname{supp} g$

$$\begin{cases} (c_{\mathfrak{s}})_{\mathfrak{s} \in \mathfrak{S}} \in R^{\mathfrak{S}} \\ \varphi : \mathfrak{S} \to \mathfrak{M} \text{ strictly increasing} \end{cases} \implies (c_{\mathfrak{s}} \varphi(\mathfrak{s}))_{\mathfrak{s} \in \mathfrak{S}} \text{ is well-based}$$

Multiplication. Assuming that \mathfrak{M} is a quasi-ordered monoid,

$$fg := \sum_{(\mathfrak{m},\mathfrak{n})\in\operatorname{supp} f\times\operatorname{supp} g} f_{\mathfrak{m}} g_{\mathfrak{n}} \mathfrak{m} \mathfrak{n}.$$

 $\mathfrak{S} := \operatorname{supp} f \times \operatorname{supp} g, \quad c_{(\mathfrak{m},\mathfrak{n})} := f_{\mathfrak{m}} g_{\mathfrak{n}}, \quad \varphi(\mathfrak{m},\mathfrak{n}) = \mathfrak{m} \mathfrak{n}$

Proposition

Assume that R is a ring and \mathfrak{M} an ordered monoid. Then $R[[\mathfrak{M}]]$ is a ring.

Proposition

Assume that R is a ring and \mathfrak{M} an ordered monoid. Then R[[\mathfrak{M}]] is a ring.

Associativity of multiplication. Let $f, g, h \in R[[\mathfrak{M}]]$ and $\mathfrak{u} \in \mathfrak{M}$. Then

$$((fg)h)_{\mathfrak{u}} = \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in\operatorname{supp}(fg)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}}} (fg)_{\mathfrak{v}}h_{\mathfrak{w}}$$

Proposition

Assume that R is a ring and \mathfrak{M} an ordered monoid. Then $R[[\mathfrak{M}]]$ is a ring.

Associativity of multiplication. Let $f,g,h \in R[[\mathfrak{M}]]$ and $\mathfrak{u} \in \mathfrak{M}$. Then

$$((fg)h)_{\mathfrak{u}} = \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in\operatorname{supp}(fg)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}}} (fg)_{\mathfrak{v}}h_{\mathfrak{w}} = \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in(\operatorname{supp}f\operatorname{supp}g)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}}} (fg)_{\mathfrak{v}}h_{\mathfrak{w}}$$

Proposition

Assume that R is a ring and \mathfrak{M} an ordered monoid. Then R[[\mathfrak{M}]] is a ring.

Associativity of multiplication. Let $f, g, h \in R[[\mathfrak{M}]]$ and $\mathfrak{u} \in \mathfrak{M}$. Then

$$((fg)h)_{\mathfrak{u}} = \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in\operatorname{supp}(fg)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}}} (fg)_{\mathfrak{v}}h_{\mathfrak{w}} = \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in(\operatorname{supp}f\operatorname{supp}g)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}}} (fg)_{\mathfrak{v}}h_{\mathfrak{w}}$$

$$= \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in(\operatorname{supp}f\operatorname{supp}g)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}\\(\mathfrak{m},\mathfrak{n})\in\operatorname{supp}f\times\operatorname{supp}g\\\mathfrak{m}\mathfrak{n}=\mathfrak{v}}} f_{\mathfrak{m}}g_{\mathfrak{n}}h_{\mathfrak{w}}$$

Proposition

Assume that R is a ring and \mathfrak{M} an ordered monoid. Then R[[\mathfrak{M}]] is a ring.

Associativity of multiplication. Let $f,g,h \in R[[\mathfrak{M}]]$ and $\mathfrak{u} \in \mathfrak{M}$. Then

$$((fg)h)_{\mathfrak{u}} = \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in\operatorname{supp}(fg)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}}} (fg)_{\mathfrak{v}}h_{\mathfrak{w}} = \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in(\operatorname{supp}f\operatorname{supp}g)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}}} (fg)_{\mathfrak{v}}h_{\mathfrak{w}}$$

$$= \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in(\operatorname{supp}f\operatorname{supp}g)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}\\(\mathfrak{m},\mathfrak{n})\in\operatorname{supp}f\times\operatorname{supp}g\\\mathfrak{m}\mathfrak{u}=\mathfrak{v}}} f_{\mathfrak{m}}g_{\mathfrak{n}}h_{\mathfrak{w}}$$

For any $(\mathfrak{m},\mathfrak{n}) \in \text{supp} \times \text{supp} g$, there exists a unique $\mathfrak{v} \in \text{supp} f \text{ supp} g$ with $\mathfrak{v} = \mathfrak{m} \mathfrak{n}$

Proposition

Assume that R is a ring and \mathfrak{M} an ordered monoid. Then $R[[\mathfrak{M}]]$ is a ring.

Associativity of multiplication. Let $f, g, h \in R[[\mathfrak{M}]]$ and $\mathfrak{u} \in \mathfrak{M}$. Then

$$((fg)h)_{\mathfrak{u}} = \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in\operatorname{supp}(fg)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}}} (fg)_{\mathfrak{v}}h_{\mathfrak{w}} = \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in(\operatorname{supp}f\operatorname{supp}g)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}}} (fg)_{\mathfrak{v}}h_{\mathfrak{w}}$$

$$= \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in(\operatorname{supp}f\operatorname{supp}g)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}\\(\mathfrak{m},\mathfrak{n})\in\operatorname{supp}f\times\operatorname{supp}g\\\mathfrak{m}\mathfrak{n}=\mathfrak{v}}} f_{\mathfrak{m}}g_{\mathfrak{n}}h_{\mathfrak{w}} = \sum_{\substack{(\mathfrak{m},\mathfrak{n},\mathfrak{w})\in\operatorname{supp}f\times\operatorname{supp}g\times\operatorname{supp}h\\\mathfrak{m}\mathfrak{w}=\mathfrak{u}}} f_{\mathfrak{m}}g_{\mathfrak{n}}h_{\mathfrak{w}}$$

For any $(\mathfrak{m},\mathfrak{n}) \in \text{supp} \times \text{supp} g$, there exists a unique $\mathfrak{v} \in \text{supp} f$ supp g with $\mathfrak{v} = \mathfrak{m} \mathfrak{n}$

Proposition

Assume that R is a ring and \mathfrak{M} an ordered monoid. Then R[[\mathfrak{M}]] is a ring.

Associativity of multiplication. Let $f,g,h \in R[[\mathfrak{M}]]$ and $\mathfrak{u} \in \mathfrak{M}$. Then

$$((fg)h)_{\mathfrak{u}} = \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in\operatorname{supp}(fg)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}}} (fg)_{\mathfrak{v}}h_{\mathfrak{w}} = \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in(\operatorname{supp}f\operatorname{supp}g)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}}} (fg)_{\mathfrak{v}}h_{\mathfrak{w}}$$

$$= \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in(\operatorname{supp}f\operatorname{supp}g)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}\\(\mathfrak{m},\mathfrak{n})\in\operatorname{supp}f\times\operatorname{supp}g\\\mathfrak{m}\mathfrak{m}=\mathfrak{v}}} f_{\mathfrak{m}}g_{\mathfrak{n}}h_{\mathfrak{w}} = \sum_{\substack{(\mathfrak{m},\mathfrak{n},\mathfrak{w})\in\operatorname{supp}f\times\operatorname{supp}g\times\operatorname{supp}h\\\mathfrak{m}\mathfrak{w}=\mathfrak{u}}} f_{\mathfrak{m}}g_{\mathfrak{n}}h_{\mathfrak{w}}$$

Proposition

Assume that R is a ring and \mathfrak{M} an ordered monoid. Then $R[[\mathfrak{M}]]$ is a ring.

Associativity of multiplication. Let $f,g,h \in R[[\mathfrak{M}]]$ and $\mathfrak{u} \in \mathfrak{M}$. Then

$$((fg)h)_{\mathfrak{u}} = \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in\operatorname{supp}(fg)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}}} (fg)_{\mathfrak{v}}h_{\mathfrak{w}} = \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in(\operatorname{supp}f\operatorname{supp}g)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}}} (fg)_{\mathfrak{v}}h_{\mathfrak{w}}$$

$$= \sum_{\substack{(\mathfrak{v},\mathfrak{w})\in(\operatorname{supp}f\operatorname{supp}g)\times\operatorname{supp}h\\\mathfrak{v}\mathfrak{w}=\mathfrak{u}\\\mathfrak{w}=\mathfrak{u}\\\mathfrak{m}\mathfrak{w}=\mathfrak{v}}} f_{\mathfrak{w}}g_{\mathfrak{n}}h_{\mathfrak{w}} = \sum_{\substack{(\mathfrak{w},\mathfrak{n},\mathfrak{w})\in\operatorname{supp}f\times\operatorname{supp}g\times\operatorname{supp}h\\\mathfrak{m}\mathfrak{w}=\mathfrak{u}\\\mathfrak{m}\mathfrak{w}=\mathfrak{u}}} f_{\mathfrak{w}}g_{\mathfrak{n}}h_{\mathfrak{w}}$$

$$= \cdots = (f(gh))_{\mathfrak{u}},$$

using a similar computation.

Conceptually simpler proof

Fully expand and recombine in different ways.

$$\sum_{(\mathfrak{m},\mathfrak{n},\mathfrak{u})\in\operatorname{supp} f\times\operatorname{supp} g\times\operatorname{supp} h}f_{\mathfrak{m}}g_{\mathfrak{n}}h_{\mathfrak{u}}\mathfrak{m}\mathfrak{n}\mathfrak{u} = \left(\sum_{(\mathfrak{m},\mathfrak{n})\in\operatorname{supp} f\times\operatorname{supp} g}f_{\mathfrak{m}}g_{\mathfrak{n}}\mathfrak{m}\mathfrak{n}\right)\left(\sum_{\mathfrak{u}\in\operatorname{supp} h}h_{\mathfrak{u}}\mathfrak{u}\right) = (fg)h$$

$$= \left(\sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \mathfrak{m}\right) \left(\sum_{(\mathfrak{n}, \mathfrak{u}) \in \text{supp } g \times \text{supp } h} g_{\mathfrak{n}} h_{\mathfrak{u}} \mathfrak{n} \mathfrak{u}\right) = f(gh)$$

Conceptually simpler proof

Fully expand and recombine in different ways.

$$\sum_{(\mathfrak{m},\mathfrak{n},\mathfrak{u})\in\operatorname{supp} f\times\operatorname{supp} g\times\operatorname{supp} h}f_{\mathfrak{m}}g_{\mathfrak{n}}h_{\mathfrak{u}}\mathfrak{m}\mathfrak{n}\mathfrak{u} = \left(\sum_{(\mathfrak{m},\mathfrak{n})\in\operatorname{supp} f\times\operatorname{supp} g}f_{\mathfrak{m}}g_{\mathfrak{n}}\mathfrak{m}\mathfrak{n}\right)\left(\sum_{\mathfrak{u}\in\operatorname{supp} h}h_{\mathfrak{u}}\mathfrak{u}\right) = (fg)h$$

$$= \left(\sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \mathfrak{m}\right) \left(\sum_{(\mathfrak{n},\mathfrak{u}) \in \text{supp } g \times \text{supp } h} g_{\mathfrak{n}} h_{\mathfrak{u}} \mathfrak{n} \mathfrak{u}\right) = f(gh)$$

Strong distributivity.

If $(f_i)_{i \in I}$ and $(g_i)_{i \in I}$ are summable, then so is $(f_i g_i)_{(i,j) \in I \times I}$ and

$$\sum_{(i,j)\in I\times J} f_i g_j = \left(\sum_{i\in I} f_i\right) \left(\sum_{j\in J} g_j\right)$$

Properties of strong summation

Strong distributivity. If $(f_i)_{i \in I}$ and $(g_j)_{j \in J}$ are summable, then so is $(f_i g_j)_{(i,j) \in I \times J}$ and

$$\sum_{(i,j)\in I\times J} f_i g_j = \left(\sum_{i\in I} f_i\right) \left(\sum_{j\in J} g_j\right)$$

Properties of strong summation

Strong distributivity. If $(f_i)_{i\in I}$ and $(g_j)_{j\in J}$ are summable, then so is $(f_ig_j)_{(i,j)\in I\times J}$ and

$$\sum_{(i,j)\in I\times J} f_i g_j = \left(\sum_{i\in I} f_i\right) \left(\sum_{j\in J} g_j\right)$$

Strong associativity. Let $(f_i)_{i \in I}$ be summable and $I = \bigsqcup_{i \in I} I_i$.

Then $(f_i)_{i \in I_j}$ is summable for each j, the family $(\sum_{i \in I_i} f_i)_{j \in I}$ is summable, and

$$\sum_{i \in I} f_i = \sum_{j \in J} \sum_{i \in I_j} f_i.$$

Properties of strong summation

Strong distributivity. If $(f_i)_{i \in I}$ and $(g_j)_{j \in J}$ are summable, then so is $(f_i g_j)_{(i,j) \in I \times J}$ and

$$\sum_{(i,j)\in I\times J} f_i g_j = \left(\sum_{i\in I} f_i\right) \left(\sum_{j\in J} g_j\right)$$

Strong associativity. Let $(f_i)_{i \in I}$ be summable and $I = \bigsqcup_{i \in I} I_i$.

Then $(f_i)_{i \in I_j}$ is summable for each j, the family $(\sum_{i \in I_i} f_i)_{i \in I}$ is summable, and

$$\sum_{i \in I} f_i = \sum_{i \in I} \sum_{i \in I_i} f_i.$$

Termification. If $(f_i)_{i \in I}$ is summable, then so is $(f_{i,m} \mathfrak{m})_{i \in I, \mathfrak{m} \in \text{supp } f_i}$ and

$$\sum_{i \in I} f_i = \sum_{i \in I, \mathfrak{m} \in \operatorname{supp} f_i} f_{i,\mathfrak{m}} \mathfrak{m}.$$

Assume that $\mathfrak M$ is totally ordered.

Assume that \mathfrak{M} is totally ordered.

Dominant terms. Given $f \in R[[\mathfrak{M}]]^{\neq 0}$, we define

```
\mathfrak{d}_f := \max_{\leq} \operatorname{supp} f
 dominant monomial of f c_f := f_{\mathfrak{d}_f} dominant coefficient of f \tau_f := c_f \mathfrak{d}_f dominant term of f
```

Assume that \mathfrak{M} is totally ordered.

Dominant terms. Given $f \in R[[\mathfrak{M}]]^{\neq 0}$, we define

$$\mathfrak{d}_f := \max_{\leq} \operatorname{supp} f$$
 dominant monomial of f $c_f := f_{\mathfrak{d}_f}$ dominant coefficient of f $\tau_f := c_f \mathfrak{d}_f$ dominant term of f

Ordering. If *R* is an ordered field and $f \in R[[\mathfrak{M}]]^{\neq 0}$, we may then define

$$f > 0 \iff c_f > 0.$$

Then $R[[\mathfrak{M}]]$ is an ordered ring (the ordering being total).

Assume that \mathfrak{M} is totally ordered.

Dominant terms. Given $f \in R[[\mathfrak{M}]]^{\neq 0}$, we define

```
\mathfrak{d}_f \coloneqq \max_{\leqslant} \operatorname{supp} f
 dominant monomial of f c_f \coloneqq f_{\mathfrak{d}_f} dominant coefficient of f \tau_f \coloneqq c_f \mathfrak{d}_f dominant term of f
```

Asymptotic relations. Given $f, g \in R[[\mathfrak{M}]]^{\neq 0}$, we may then define

$$f \leq g \iff \mathfrak{d}_f \leq \mathfrak{d}_g$$

$$f < g \iff \mathfrak{d}_f < \mathfrak{d}_g$$

$$f \approx g \iff \mathfrak{d}_f = \mathfrak{d}_g$$

$$f \sim g \iff \tau_f = \tau_g$$

Assume that \mathfrak{M} is totally ordered.

Dominant terms. Given $f \in R[[\mathfrak{M}]]^{\neq 0}$, we define

$$\mathfrak{d}_f := \max_{\leqslant} \operatorname{supp} f$$
 $c_f := f_{\mathfrak{d}_f}$
 $dominant monomial of f
 $dominant coefficient of f
 $\tau_f := c_f \mathfrak{d}_f$
 $dominant term of $f$$$$

Asymptotic relations. Given $f, g \in R[[\mathfrak{M}]]$, we may then define

$$f \leqslant g \iff \mathfrak{d}_f \leqslant \mathfrak{d}_g$$

$$f < g \iff \mathfrak{d}_f < \mathfrak{d}_g$$

$$f \approx g \iff \mathfrak{d}_f = \mathfrak{d}_g$$

$$f \sim g \iff \tau_f = \tau_g$$

Convention $\mathfrak{d}_0 < \mathfrak{M}$ and $f \sim 0 \Leftrightarrow 0 \sim f \Leftrightarrow f = 0$

Special inversion. Assume $\varepsilon \in R[[\mathfrak{M}]]$ with supp $\varepsilon < 1$

$$\frac{1}{1-\varepsilon} := \sum_{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp} \varepsilon)^{\operatorname{w}}} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_1 \cdots \mathfrak{m}_k.$$

$$\mathfrak{S} := (\operatorname{supp} f)^{\mathsf{w}}, \quad c_{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k} := \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k}, \quad \varphi(\mathfrak{m}_1 * \cdots * \mathfrak{m}_k) = \mathfrak{m}_1 \cdots \mathfrak{m}_k.$$

Special inversion. Assume $\varepsilon \in R[[\mathfrak{M}]]$ with supp $\varepsilon < 1$

$$\frac{1}{1-\varepsilon} := \sum_{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp} \varepsilon)^{\operatorname{w}}} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_1 \cdots \mathfrak{m}_k.$$

$$\mathfrak{S} := (\operatorname{supp} f)^{\operatorname{w}}, \quad c_{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k} := \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k}, \quad \varphi(\mathfrak{m}_1 * \cdots * \mathfrak{m}_k) = \mathfrak{m}_1 \cdots \mathfrak{m}_k.$$

General inversion. Given a field R, a totally ordered group \mathfrak{M} , and $f \in C[[\mathfrak{M}]]^{\neq 0}$,

$$f = c_f \mathfrak{d}_f (1 - \varepsilon), \quad \text{supp } \varepsilon < 1,$$

$$f^{-1} := c_f^{-1} \mathfrak{d}_f^{-1} \frac{1}{1 - \varepsilon}.$$

Division

Special inversion. Assume $\varepsilon \in R[[\mathfrak{M}]]$ with supp $\varepsilon < 1$

$$\frac{1}{1-\varepsilon} := \sum_{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp} \varepsilon)^{\operatorname{w}}} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_1 \cdots \mathfrak{m}_k.$$

$$\mathfrak{S} := (\operatorname{supp} f)^{\mathsf{w}}, \quad c_{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k} := \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k}, \quad \varphi(\mathfrak{m}_1 * \cdots * \mathfrak{m}_k) = \mathfrak{m}_1 \cdots \mathfrak{m}_k.$$

General inversion. Given a field R, a totally ordered group \mathfrak{M} , and $f \in C[[\mathfrak{M}]]^{\neq 0}$,

$$f = c_f \mathfrak{d}_f (1 - \varepsilon), \quad \text{supp } \varepsilon < 1,$$

$$f^{-1} := c_f^{-1} \mathfrak{d}_f^{-1} \frac{1}{1 - \varepsilon}.$$

Proposition

Assume that R is a field and \mathfrak{M} a totally ordered group. Then $R[[\mathfrak{M}]]$ is a field.

$$\frac{1}{1-\varepsilon} := \sum_{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp} \varepsilon)^{\operatorname{w}}} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_1 \cdots \mathfrak{m}_k$$

$$\frac{1}{1-\varepsilon} := \sum_{\substack{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\text{supp }\varepsilon)^{\mathsf{w}} \\ \mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\text{supp }\varepsilon)^{\mathsf{w}}}} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_1 \cdots \mathfrak{m}_k$$

$$= 1 + \sum_{\substack{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\text{supp }\varepsilon)^{\mathsf{w}} \\ k \geqslant 1}} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_1 \cdots \mathfrak{m}_k$$

$$\frac{1}{1-\varepsilon} := \sum_{\substack{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp}\varepsilon)^{\mathsf{w}} \\ = 1 + \sum_{\substack{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp}\varepsilon)^{\mathsf{w}} \\ k \geqslant 1}} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_1 \cdots \mathfrak{m}_k$$

$$\varepsilon \cdot \frac{1}{1-\varepsilon} := \sum_{\substack{\mathfrak{m}_0 \in \operatorname{supp}\varepsilon \\ \mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp}\varepsilon)^{\mathsf{w}}}} \varepsilon_{\mathfrak{m}_0} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_0 \mathfrak{m}_1 \cdots \mathfrak{m}_k$$

$$\frac{1}{1-\varepsilon} := \sum_{\substack{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp}\varepsilon)^{\mathsf{w}} \\ k \geq 1}} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_1 \cdots \mathfrak{m}_k$$

$$= 1 + \sum_{\substack{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp}\varepsilon)^{\mathsf{w}} \\ k \geq 1}} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_1 \cdots \mathfrak{m}_k$$

$$\varepsilon \cdot \frac{1}{1-\varepsilon} := \sum_{\substack{\mathfrak{m}_0 \in \operatorname{supp}\varepsilon \\ \mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp}\varepsilon)^{\mathsf{w}} \\ k \geq 1}} \varepsilon_{\mathfrak{m}_0} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_0 \mathfrak{m}_1 \cdots \mathfrak{m}_k$$

$$= \sum_{\substack{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp}\varepsilon)^{\mathsf{w}} \\ k \geq 1}} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_1 \cdots \mathfrak{m}_k$$

$$\frac{1}{1-\varepsilon} := \sum_{\substack{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp}\varepsilon)^{\mathsf{w}} \\ k \geq 1}} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_1 \cdots \mathfrak{m}_k$$

$$= 1 + \sum_{\substack{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp}\varepsilon)^{\mathsf{w}} \\ k \geq 1}} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_1 \cdots \mathfrak{m}_k$$

$$\varepsilon \cdot \frac{1}{1-\varepsilon} := \sum_{\substack{\mathfrak{m}_0 \in \operatorname{supp}\varepsilon \\ \mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp}\varepsilon)^{\mathsf{w}} \\ k \geq 1}} \varepsilon_{\mathfrak{m}_0} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_0 \mathfrak{m}_1 \cdots \mathfrak{m}_k$$

$$= \sum_{\substack{\mathfrak{m}_1 * \cdots * \mathfrak{m}_k \in (\operatorname{supp}\varepsilon)^{\mathsf{w}} \\ k \geq 1}} \varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_k} \mathfrak{m}_1 \cdots \mathfrak{m}_k$$

$$(1-\varepsilon) \cdot \frac{1}{1-\varepsilon} = 1$$

Strong linearity

Definition

Let \mathfrak{M} , \mathfrak{N} be monomial sets and consider a linear map φ : $R[[\mathfrak{M}]] \to R[[\mathfrak{N}]]$. We say that φ is **strongly linear** if $(\varphi(f_i))_{i\in I}$ is summable whenever $(f_i)_{i\in I} \in R[[\mathfrak{M}]]^I$ is, and

$$\varphi\left(\sum_{i\in I}f_i\right) = \sum_{i\in I}\varphi(f_i).$$

Strong linearity

Definition

Let \mathfrak{M} , \mathfrak{N} be monomial sets and consider a linear map φ : $R[[\mathfrak{M}]] \to R[[\mathfrak{N}]]$. We say that φ is **strongly linear** if $(\varphi(f_i))_{i\in I}$ is summable whenever $(f_i)_{i\in I} \in R[[\mathfrak{M}]]^I$ is, and

$$\varphi\left(\sum_{i\in I}f_i\right) = \sum_{i\in I}\varphi(f_i).$$

Definition

We say that $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ is **well-based**, if, for any well-based subset $\mathfrak{S} \subseteq \mathfrak{M}$, the family $(\varphi(\mathfrak{m}))_{\mathfrak{m} \subset \mathfrak{S}}$ is well-based.

Strong linearity

Definition

Let \mathfrak{M} , \mathfrak{N} be monomial sets and consider a linear map φ : $R[[\mathfrak{M}]] \to R[[\mathfrak{N}]]$. We say that φ is **strongly linear** if $(\varphi(f_i))_{i\in I}$ is summable whenever $(f_i)_{i\in I} \in R[[\mathfrak{M}]]^I$ is, and

$$\varphi\left(\sum_{i\in I}f_i\right) = \sum_{i\in I}\varphi(f_i).$$

Definition

We say that $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ is **well-based**, if, for any well-based subset $\mathfrak{S} \subseteq \mathfrak{M}$, the family $(\varphi(\mathfrak{m}))_{\mathfrak{m} \subseteq \mathfrak{S}}$ is well-based.

Theorem (extension by strong linearity)

Consider a well-based map $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$. Then there exists a unique strongly linear map $\hat{\varphi}: R[[\mathfrak{M}]] \to R[[\mathfrak{N}]]$ that extends φ .

Extension by strong linearity — proof

Theorem (extension by strong linearity)

Consider a well-based map $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$. Then there exists a unique strongly linear map $\hat{\varphi}: R[[\mathfrak{M}]] \to R[[\mathfrak{N}]]$ that extends φ .

Uniqueness. Let $f \in R[[\mathfrak{M}]]$. Then $(\varphi(\mathfrak{m}))_{\mathfrak{m} \in \text{supp } f}$ and $(f_{\mathfrak{m}}\varphi(\mathfrak{m}))_{\mathfrak{m} \in \text{supp } f}$ are summable.

Given a strongly linear extension $\hat{\varphi}$ of φ , we must have

$$\hat{\varphi}(f) = \hat{\varphi}\left(\sum_{\mathfrak{m} \in \operatorname{supp} f} f_{\mathfrak{m}} \mathfrak{m}\right) = \sum_{\mathfrak{m} \in \operatorname{supp} f} \hat{\varphi}(f_{\mathfrak{m}} \mathfrak{m}) = \sum_{\mathfrak{m} \in \operatorname{supp} f} f_{\mathfrak{m}} \hat{\varphi}(\mathfrak{m}) = \sum_{\mathfrak{m} \in \operatorname{supp} f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

Extension by strong linearity — proof

Existence. Given $f \in R[[\mathfrak{M}]]$,

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \varphi(\mathfrak{m})$$

is well-defined, $\hat{\varphi}$ clearly extends φ and $\hat{\varphi}(cf) = c \hat{\varphi}(f)$ for any $c \in R$.

Extension by strong linearity — proof

Existence. Given $f \in R[[\mathfrak{M}]]$,

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \varphi(\mathfrak{m})$$

is well-defined, $\hat{\varphi}$ clearly extends φ and $\hat{\varphi}(cf) = c \hat{\varphi}(f)$ for any $c \in R$. Let us show that $\hat{\varphi}$ preserves strong summation.

Existence. Given $f \in R[[\mathfrak{M}]]$, let

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \operatorname{supp} f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

Let us show that $\hat{\varphi}$ preserves strong summation.

Existence. Given $f \in R[[\mathfrak{M}]]$, let

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \operatorname{supp} f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

Let us show that $\hat{\varphi}$ preserves strong summation.

Let $(f_i)_{i \in I}$ be summable.

Existence. Given $f \in R[[\mathfrak{M}]]$, let

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \operatorname{supp} f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

Let us show that $\hat{\varphi}$ preserves strong summation.

Let $(f_i)_{i \in I}$ be summable.

Claim: $(f_{i,\mathfrak{m}}\varphi(\mathfrak{m}))_{(i,\mathfrak{m})\in I\times\mathfrak{S}}$ is summable, where $\mathfrak{S}\coloneqq\bigcup_{i\in I}\operatorname{supp} f_i$.

Existence. Given $f \in R[[\mathfrak{M}]]$, let

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \operatorname{supp} f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

Let us show that $\hat{\varphi}$ preserves strong summation.

Let $(f_i)_{i \in I}$ be summable.

Claim: $(f_{i,\mathfrak{m}}\varphi(\mathfrak{m}))_{(i,\mathfrak{m})\in I\times\mathfrak{S}}$ is summable, where $\mathfrak{S}:=\bigcup_{i\in I}\operatorname{supp} f_i$.

The set $\bigcup_{(i,\mathfrak{m})\in I\times\mathfrak{S}}\sup f_{i,\mathfrak{m}}\varphi(\mathfrak{m})\subseteq\bigcup_{\mathfrak{m}\in\mathfrak{S}}\sup \varphi(\mathfrak{m})$ is well-based.

Existence. Given $f \in R[[\mathfrak{M}]]$, let

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

Let us show that $\hat{\varphi}$ preserves strong summation.

Let $(f_i)_{i \in I}$ be summable.

Claim: $(f_{i,\mathfrak{m}}\varphi(\mathfrak{m}))_{(i,\mathfrak{m})\in I\times\mathfrak{S}}$ is summable, where $\mathfrak{S}:=\bigcup_{i\in I}\operatorname{supp} f_i$.

The set $\bigcup_{(i,\mathfrak{m})\in I\times\mathfrak{S}}$ supp $f_{i,\mathfrak{m}}\varphi(\mathfrak{m})\subseteq\bigcup_{\mathfrak{m}\in\mathfrak{S}}$ supp $\varphi(\mathfrak{m})$ is well-based.

Given $\mathfrak{n} \in \mathfrak{N}$, the set $\mathfrak{S}_{\mathfrak{n}} := {\mathfrak{m} \in \mathfrak{S} : \mathfrak{n} \in \text{supp } \varphi(\mathfrak{m})}$ is finite.

Existence. Given $f \in R[[\mathfrak{M}]]$, let

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

Let us show that $\hat{\varphi}$ preserves strong summation.

Let $(f_i)_{i \in I}$ be summable.

Claim: $(f_{i,\mathfrak{m}}\varphi(\mathfrak{m}))_{(i,\mathfrak{m})\in I\times\mathfrak{S}}$ is summable, where $\mathfrak{S}:=\bigcup_{i\in I}\operatorname{supp} f_i$.

The set $\bigcup_{(i,\mathfrak{m})\in I\times\mathfrak{S}}\sup f_{i,\mathfrak{m}}\varphi(\mathfrak{m})\subseteq\bigcup_{\mathfrak{m}\in\mathfrak{S}}\sup \varphi(\mathfrak{m})$ is well-based.

Given $\mathfrak{n} \in \mathfrak{N}$, the set $\mathfrak{S}_{\mathfrak{n}} := {\mathfrak{m} \in \mathfrak{S} : \mathfrak{n} \in \text{supp } \varphi(\mathfrak{m})}$ is finite.

For every $\mathfrak{m} \in \mathfrak{S}_{\mathfrak{n}}$, the set $I_{\mathfrak{m},\mathfrak{n}} := \{i \in I : \mathfrak{m} \in \text{supp } f_i\}$ is finite.

Existence. Given $f \in R[[\mathfrak{M}]]$, let

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

Let us show that $\hat{\varphi}$ preserves strong summation.

Let $(f_i)_{i \in I}$ be summable.

Claim: $(f_{i,\mathfrak{m}}\varphi(\mathfrak{m}))_{(i,\mathfrak{m})\in I\times\mathfrak{S}}$ is summable, where $\mathfrak{S}:=\bigcup_{i\in I}\operatorname{supp} f_i$.

The set $\bigcup_{(i,\mathfrak{m})\in I\times\mathfrak{S}}$ supp $f_{i,\mathfrak{m}}\varphi(\mathfrak{m})\subseteq\bigcup_{\mathfrak{m}\in\mathfrak{S}}$ supp $\varphi(\mathfrak{m})$ is well-based.

Given $\mathfrak{n} \in \mathfrak{N}$, the set $\mathfrak{S}_{\mathfrak{n}} := {\mathfrak{m} \in \mathfrak{S} : \mathfrak{n} \in \text{supp } \varphi(\mathfrak{m})}$ is finite.

For every $\mathfrak{m} \in \mathfrak{S}_{\mathfrak{n}}$, the set $I_{\mathfrak{m},\mathfrak{n}} := \{i \in I : \mathfrak{m} \in \text{supp } f_i\}$ is finite.

Hence $\{(i, \mathfrak{m}) \in I \times \mathfrak{S} : \mathfrak{n} \in \text{supp } f_{i,\mathfrak{m}} \varphi(\mathfrak{m})\}$ is finite.

Existence. Given $f \in R[[\mathfrak{M}]]$, let

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

Let us show that $\hat{\varphi}$ preserves strong summation.

Let $(f_i)_{i \in I}$ be summable.

Then $(f_{i,\mathfrak{m}}\varphi(\mathfrak{m}))_{(i,\mathfrak{m})\in I\times\mathfrak{S}}$ is summable, where $\mathfrak{S}\coloneqq\bigcup_{i\in I}\operatorname{supp} f_i$.

Existence. Given $f \in R[[\mathfrak{M}]]$, let

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

Let us show that $\hat{\varphi}$ preserves strong summation.

Let $(f_i)_{i \in I}$ be summable.

Then $(f_{i,\mathfrak{m}}\varphi(\mathfrak{m}))_{(i,\mathfrak{m})\in I\times\mathfrak{S}}$ is summable, where $\mathfrak{S}:=\bigcup_{i\in I}\operatorname{supp} f_i$.

$$\sum_{(i,\mathfrak{m})\in I\times\mathfrak{S}} f_{i,\mathfrak{m}}\,\varphi(\mathfrak{m})$$

Existence. Given $f \in R[[\mathfrak{M}]]$, let

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

- Let us show that $\hat{\varphi}$ preserves strong summation.
- Let $(f_i)_{i \in I}$ be summable.
- Then $(f_{i,\mathfrak{m}}\varphi(\mathfrak{m}))_{(i,\mathfrak{m})\in I\times\mathfrak{S}}$ is summable, where $\mathfrak{S}:=\bigcup_{i\in I}\operatorname{supp} f_i$.

$$\sum_{i \in I} \sum_{\mathfrak{m} \in \mathfrak{S}} f_{i,\mathfrak{m}} \varphi(\mathfrak{m})$$

$$= \sum_{(i,\mathfrak{m}) \in I \times \mathfrak{S}} f_{i,\mathfrak{m}} \varphi(\mathfrak{m})$$

Existence. Given $f \in R[[\mathfrak{M}]]$, let

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

- Let us show that $\hat{\varphi}$ preserves strong summation.
- Let $(f_i)_{i \in I}$ be summable.
- Then $(f_{i,\mathfrak{m}}\varphi(\mathfrak{m}))_{(i,\mathfrak{m})\in I\times\mathfrak{S}}$ is summable, where $\mathfrak{S}:=\bigcup_{i\in I}\operatorname{supp} f_i$.

$$\sum_{i \in I} \hat{\varphi}(f_i) = \sum_{i \in I} \sum_{\mathfrak{m} \in \mathfrak{S}} f_{i,\mathfrak{m}} \varphi(\mathfrak{m})$$
$$= \sum_{(i,\mathfrak{m}) \in I \times \mathfrak{S}} f_{i,\mathfrak{m}} \varphi(\mathfrak{m})$$

Existence. Given $f \in R[[\mathfrak{M}]]$, let

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

Let us show that $\hat{\varphi}$ preserves strong summation.

Let $(f_i)_{i \in I}$ be summable.

Then $(f_{i,\mathfrak{m}}\varphi(\mathfrak{m}))_{(i,\mathfrak{m})\in I\times\mathfrak{S}}$ is summable, where $\mathfrak{S}:=\bigcup_{i\in I}\operatorname{supp} f_i$.

$$\sum_{i \in I} \hat{\varphi}(f_i) = \sum_{i \in I} \sum_{\mathfrak{m} \in \mathfrak{S}} f_{i,\mathfrak{m}} \varphi(\mathfrak{m})$$
$$= \sum_{(i,\mathfrak{m}) \in I \times \mathfrak{S}} f_{i,\mathfrak{m}} \varphi(\mathfrak{m})$$

 $\mathfrak{m} \in \mathfrak{S} \ i \in I$

$$=\sum_{\mathfrak{m}\in\mathfrak{S}}\sum_{i\in I}f_{i,\mathfrak{m}}\varphi(\mathfrak{m})$$

Existence. Given $f \in R[[\mathfrak{M}]]$, let

$$\hat{\varphi}(f) := \sum_{\mathfrak{m} \in \text{supp } f} f_{\mathfrak{m}} \varphi(\mathfrak{m}).$$

Let us show that $\hat{\varphi}$ preserves strong summation.

Let $(f_i)_{i \in I}$ be summable.

Then $(f_{i,\mathfrak{m}}\varphi(\mathfrak{m}))_{(i,\mathfrak{m})\in I\times\mathfrak{S}}$ is summable, where $\mathfrak{S}:=\bigcup_{i\in I}\operatorname{supp} f_i$.

$$\sum_{i \in I} \hat{\varphi}(f_i) = \sum_{i \in I} \sum_{\mathfrak{m} \in \mathfrak{S}} f_{i,\mathfrak{m}} \varphi(\mathfrak{m})$$
$$= \sum_{i \in I} f_{i,\mathfrak{m}} \varphi(\mathfrak{m})$$

$$= \sum_{(i,\mathfrak{m})\in I\times\mathfrak{S}} f_{i,\mathfrak{m}} \varphi(\mathfrak{m})$$

$$= \sum_{\mathfrak{m}\in\mathfrak{S}} \sum_{i\in I} f_{i,\mathfrak{m}} \varphi(\mathfrak{m}) = \hat{\varphi}\left(\sum_{i\in I} f_i\right)$$

 \mathfrak{M} monomial monoid, $\varepsilon \in R[[\mathfrak{M}]]$, supp $\varepsilon < 1$.

 \mathfrak{M} monomial monoid, $\varepsilon \in R[[\mathfrak{M}]]$, supp $\varepsilon < 1$. $(\varepsilon^n)_{n \in \mathbb{N}}$ is summable.

 \mathfrak{M} monomial monoid, $\varepsilon \in R[[\mathfrak{M}]]$, supp $\varepsilon < 1$. $(\varepsilon^n)_{n \in \mathbb{N}}$ is summable, since $(\varepsilon_{\mathfrak{m}_1} \cdots \varepsilon_{\mathfrak{m}_n} \mathfrak{m}_1 \cdots \mathfrak{m}_n)_{\mathfrak{m}_1 * \cdots * \mathfrak{m}_n \in (\text{supp } \varepsilon)^w}$ is summable.

 \mathfrak{M} monomial monoid, $\varepsilon \in R[[\mathfrak{M}]]$, supp $\varepsilon < 1$. $(\varepsilon^n)_{n \in \mathbb{N}}$ is summable.

 \mathfrak{M} monomial monoid, $\varepsilon \in R[[\mathfrak{M}]]$, supp $\varepsilon < 1$.

 $(\varepsilon^n)_{n\in\mathbb{N}}$ is summable.

 $\varphi: z^{\mathbb{N}} \to R[[\mathfrak{M}]]; z^n \mapsto \varepsilon^n$ is well-based.

 \mathfrak{M} monomial monoid, $\varepsilon \in R[[\mathfrak{M}]]$, supp $\varepsilon < 1$.

 $(\varepsilon^n)_{n\in\mathbb{N}}$ is summable.

 $\varphi: z^{\mathbb{N}} \to R[[\mathfrak{M}]]; z^n \mapsto \varepsilon^n$ is well-based.

$$f \circ \varepsilon := \hat{\varphi}(f)$$
, for any $f \in R[[z]]$.

 \mathfrak{M} monomial monoid, $\varepsilon \in R[[\mathfrak{M}]]$, supp $\varepsilon < 1$.

 $(\varepsilon^n)_{n\in\mathbb{N}}$ is summable.

 $\varphi: z^{\mathbb{N}} \to R[[\mathfrak{M}]]; z^n \mapsto \varepsilon^n$ is well-based.

$$f \circ \varepsilon := \hat{\varphi}(f)$$
, for any $f \in R[[z]]$.

Proposition

- *a)* For any $f,g \in R[[z]]$ with g < 1, we have supp $g \circ \varepsilon < 1$ and $f \circ (g \circ \varepsilon) = (f \circ g) \circ \varepsilon$.
- *b)* The map $f \mapsto f \circ \varepsilon$ is a ring homomorphism.

 \mathfrak{M} monomial monoid, $\varepsilon \in R[[\mathfrak{M}]]$, supp $\varepsilon < 1$.

 $(\varepsilon^n)_{n\in\mathbb{N}}$ is summable.

 $\varphi: z^{\mathbb{N}} \to R[[\mathfrak{M}]]; z^n \mapsto \varepsilon^n$ is well-based.

$$f \circ \varepsilon := \hat{\varphi}(f)$$
, for any $f \in R[[z]]$.

Proposition

- *a)* For any $f,g \in R[[z]]$ with g < 1, we have supp $g \circ \varepsilon < 1$ and $f \circ (g \circ \varepsilon) = (f \circ g) \circ \varepsilon$.
- *b)* The map $f \mapsto f \circ \varepsilon$ is a ring homomorphism.

Corollary

We have $(1-\varepsilon)\cdot\frac{1}{1-\varepsilon}=1$.

 \mathfrak{M} monomial monoid, $\varepsilon \in R[[\mathfrak{M}]]$, supp $\varepsilon < 1$.

 $(\varepsilon^n)_{n\in\mathbb{N}}$ is summable.

 $\varphi: z^{\mathbb{N}} \to R[[\mathfrak{M}]]; z^n \mapsto \varepsilon^n$ is well-based.

$$f \circ \varepsilon := \hat{\varphi}(f)$$
, for any $f \in R[[z]]$.

Proposition

- *a)* For any $f,g \in R[[z]]$ with g < 1, we have supp $g \circ \varepsilon < 1$ and $f \circ (g \circ \varepsilon) = (f \circ g) \circ \varepsilon$.
- *b)* The map $f \mapsto f \circ \varepsilon$ is a ring homomorphism.

Corollary

We have $(1-\varepsilon)\cdot\frac{1}{1-\varepsilon}=1$.

Proof. Follows from (b), since $(1-z)\frac{1}{1-z}=1$ in R[[z]].

Proposition

et $\psi: \mathfrak{M} \to R[[\mathfrak{N}]]$ and $\varphi: \mathfrak{N} \to R[[\mathfrak{V}]]$ be two well-based mappings. Then

$$\widehat{\hat{\varphi} \circ \psi} = \widehat{\varphi} \circ \widehat{\psi}.$$

Proposition

et $\psi: \mathfrak{M} \to R[[\mathfrak{N}]]$ and $\varphi: \mathfrak{N} \to R[[\mathfrak{V}]]$ be two well-based mappings. Then

$$\widehat{\hat{\varphi} \circ \psi} = \widehat{\varphi} \circ \widehat{\psi}.$$

Proof. The map $\hat{\varphi} \circ \psi : \mathfrak{M} \to R[[\mathfrak{V}]]$ is well-based.

The map $\hat{\varphi} \circ \hat{\psi}$ is the unique stongly linear map that extends $\hat{\varphi} \circ \psi$.

Proposition

et $\psi: \mathfrak{M} \to R[[\mathfrak{N}]]$ and $\varphi: \mathfrak{N} \to R[[\mathfrak{V}]]$ be two well-based mappings. Then

$$\widehat{\hat{\varphi} \circ \psi} = \widehat{\varphi} \circ \widehat{\psi}.$$

Corollary

For any $f, g \in R[[z]]$ with g < 1, we have supp $g \circ \varepsilon < 1$ and

$$f \circ (g \circ \varepsilon) = (f \circ g) \circ \varepsilon.$$

Proposition

et $\psi: \mathfrak{M} \to R[[\mathfrak{N}]]$ and $\varphi: \mathfrak{N} \to R[[\mathfrak{V}]]$ be two well-based mappings. Then

$$\widehat{\hat{\varphi} \circ \psi} = \widehat{\varphi} \circ \widehat{\psi}.$$

Corollary

For any $f, g \in R[[z]]$ with g < 1, we have supp $g \circ \varepsilon < 1$ and

$$f \circ (g \circ \varepsilon) = (f \circ g) \circ \varepsilon.$$

Proposition

et $\psi: \mathfrak{M} \to R[[\mathfrak{N}]]$ and $\varphi: \mathfrak{N} \to R[[\mathfrak{V}]]$ be two well-based mappings. Then

$$\widehat{\hat{\varphi} \circ \psi} = \widehat{\varphi} \circ \widehat{\psi}.$$

Corollary

For any $f, g \in R[[z]]$ with g < 1, we have supp $g \circ \varepsilon < 1$ and

$$f \circ (g \circ \varepsilon) = (f \circ g) \circ \varepsilon.$$

$$(\hat{\varphi} \circ \psi)(f) = f \circ ((\hat{\varphi} \circ \psi)(z)) = f \circ (\hat{\varphi}(\psi(z)))$$

Proposition

et $\psi: \mathfrak{M} \to R[[\mathfrak{N}]]$ and $\varphi: \mathfrak{N} \to R[[\mathfrak{V}]]$ be two well-based mappings. Then

$$\widehat{\widehat{\varphi} \circ \psi} = \widehat{\varphi} \circ \widehat{\psi}.$$

Corollary

For any $f, g \in R[[z]]$ with g < 1, we have supp $g \circ \varepsilon < 1$ and

$$f \circ (g \circ \varepsilon) = (f \circ g) \circ \varepsilon.$$

$$(\widehat{\widehat{\varphi} \circ \psi})(f) = f \circ ((\widehat{\varphi} \circ \psi)(z)) = f \circ (\widehat{\varphi}(\psi(z))) = f \circ (\widehat{\varphi}(g))$$

Proposition

et $\psi: \mathfrak{M} \to R[[\mathfrak{N}]]$ and $\varphi: \mathfrak{N} \to R[[\mathfrak{V}]]$ be two well-based mappings. Then

$$\widehat{\hat{\varphi} \circ \psi} = \widehat{\varphi} \circ \widehat{\psi}.$$

Corollary

For any $f, g \in R[[z]]$ with g < 1, we have supp $g \circ \varepsilon < 1$ and

$$f \circ (g \circ \varepsilon) = (f \circ g) \circ \varepsilon.$$

$$(\widehat{\widehat{\varphi} \circ \psi})(f) = f \circ ((\widehat{\varphi} \circ \psi)(z)) = f \circ (\widehat{\varphi}(\psi(z))) = f \circ (\widehat{\varphi}(g)) = f \circ (g \circ \varepsilon)$$

Proposition

et $\psi: \mathfrak{M} \to R[[\mathfrak{N}]]$ and $\varphi: \mathfrak{N} \to R[[\mathfrak{V}]]$ be two well-based mappings. Then

$$\widehat{\hat{\varphi} \circ \psi} = \widehat{\varphi} \circ \widehat{\psi}.$$

Corollary

For any $f, g \in R[[z]]$ with g < 1, we have supp $g \circ \varepsilon < 1$ and

$$f \circ (g \circ \varepsilon) = (f \circ g) \circ \varepsilon.$$

$$(\hat{\varphi} \circ \psi)(f) = f \circ ((\hat{\varphi} \circ \psi)(z)) = f \circ (\hat{\varphi}(\psi(z))) = f \circ (\hat{\varphi}(g)) = f \circ (g \circ \varepsilon)$$

$$(\hat{\varphi} \circ \hat{\psi})(f) = \hat{\varphi}(\hat{\psi}(f))$$

Proposition

et $\psi: \mathfrak{M} \to R[[\mathfrak{N}]]$ and $\varphi: \mathfrak{N} \to R[[\mathfrak{V}]]$ be two well-based mappings. Then

$$\widehat{\widehat{\varphi} \circ \psi} = \widehat{\varphi} \circ \widehat{\psi}.$$

Corollary

For any $f, g \in R[[z]]$ with g < 1, we have supp $g \circ \varepsilon < 1$ and

$$f \circ (g \circ \varepsilon) = (f \circ g) \circ \varepsilon.$$

$$(\hat{\varphi} \circ \psi)(f) = f \circ ((\hat{\varphi} \circ \psi)(z)) = f \circ (\hat{\varphi}(\psi(z))) = f \circ (\hat{\varphi}(g)) = f \circ (g \circ \varepsilon)$$

$$(\hat{\varphi} \circ \hat{\psi})(f) = \hat{\varphi}(\hat{\psi}(f)) = \hat{\varphi}(f \circ g)$$

Proposition

et $\psi: \mathfrak{M} \to R[[\mathfrak{N}]]$ and $\varphi: \mathfrak{N} \to R[[\mathfrak{V}]]$ be two well-based mappings. Then

$$\widehat{\widehat{\varphi} \circ \psi} = \widehat{\varphi} \circ \widehat{\psi}.$$

Corollary

For any $f, g \in R[[z]]$ with g < 1, we have supp $g \circ \varepsilon < 1$ and

$$f \circ (g \circ \varepsilon) = (f \circ g) \circ \varepsilon.$$

$$(\hat{\varphi} \circ \psi)(f) = f \circ ((\hat{\varphi} \circ \psi)(z)) = f \circ (\hat{\varphi}(\psi(z))) = f \circ (\hat{\varphi}(g)) = f \circ (g \circ \varepsilon)$$
$$(\hat{\varphi} \circ \hat{\psi})(f) = \hat{\varphi}(\hat{\psi}(f)) = \hat{\varphi}(f \circ g) = (f \circ g) \circ \varepsilon.$$

Proposition

If $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ is a multiplicative well-based mapping, then $\hat{\varphi}$ is a ring homomorphism.

Claim 1: for any $\mathfrak{m} \in \mathfrak{M}$ and $g \in R[[\mathfrak{M}]]$, we have $\hat{\varphi}(\mathfrak{m} g) = \varphi(\mathfrak{m}) \hat{\varphi}(g)$.

Proposition

If $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ *is a multiplicative well-based mapping, then* $\hat{\varphi}$ *is a ring homomorphism.*

Claim 1: for any $\mathfrak{m} \in \mathfrak{M}$ and $g \in R[[\mathfrak{M}]]$, we have $\hat{\varphi}(\mathfrak{m} g) = \varphi(\mathfrak{m}) \hat{\varphi}(g)$.

Proof. The mapping $\xi_{\mathfrak{m}}: \mathfrak{n} \mapsto \varphi(\mathfrak{m} \mathfrak{n}) = \varphi(\mathfrak{m}) \varphi(\mathfrak{n})$ is well-based.

Proposition

If $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ *is a multiplicative well-based mapping, then* $\hat{\varphi}$ *is a ring homomorphism.*

Claim 1: for any $\mathfrak{m} \in \mathfrak{M}$ and $g \in R[[\mathfrak{M}]]$, we have $\hat{\varphi}(\mathfrak{m} g) = \varphi(\mathfrak{m}) \hat{\varphi}(g)$.

Proof. The mapping $\xi_{\mathfrak{m}}: \mathfrak{n} \mapsto \varphi(\mathfrak{m} \mathfrak{n}) = \varphi(\mathfrak{m}) \varphi(\mathfrak{n})$ is well-based. Now

$$\widehat{\xi}_{\mathfrak{m}}(g) = \sum_{\mathfrak{n} \in \operatorname{supp} g} g_{\mathfrak{n}} \varphi(\mathfrak{m} \, \mathfrak{n})$$

Proposition

If $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ *is a multiplicative well-based mapping, then* $\hat{\varphi}$ *is a ring homomorphism.*

Claim 1: for any $\mathfrak{m} \in \mathfrak{M}$ and $g \in R[[\mathfrak{M}]]$, we have $\hat{\varphi}(\mathfrak{m} g) = \varphi(\mathfrak{m}) \hat{\varphi}(g)$.

Proof. The mapping $\xi_{\mathfrak{m}}: \mathfrak{n} \mapsto \varphi(\mathfrak{m} \mathfrak{n}) = \varphi(\mathfrak{m}) \varphi(\mathfrak{n})$ is well-based. Now

$$\widehat{\xi}_{\mathfrak{m}}(g) = \sum_{\mathfrak{n} \in \operatorname{supp} g} g_{\mathfrak{n}} \varphi(\mathfrak{m} \mathfrak{n}) = \widehat{\varphi} \left(\sum_{\mathfrak{n} \in \operatorname{supp} g} g_{\mathfrak{n}} \mathfrak{m} \mathfrak{n} \right)$$

Proposition

If $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ *is a multiplicative well-based mapping, then* $\hat{\varphi}$ *is a ring homomorphism.*

Claim 1: for any $\mathfrak{m} \in \mathfrak{M}$ and $g \in R[[\mathfrak{M}]]$, we have $\hat{\varphi}(\mathfrak{m} g) = \varphi(\mathfrak{m}) \hat{\varphi}(g)$.

$$\widehat{\xi}_{\mathfrak{m}}(g) = \sum_{\mathfrak{n} \in \operatorname{supp} g} g_{\mathfrak{n}} \varphi(\mathfrak{m} \mathfrak{n}) = \widehat{\varphi} \left(\sum_{\mathfrak{n} \in \operatorname{supp} g} g_{\mathfrak{n}} \mathfrak{m} \mathfrak{n} \right) = \widehat{\varphi}(\mathfrak{m} g)$$

Proposition

If $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ *is a multiplicative well-based mapping, then* $\hat{\varphi}$ *is a ring homomorphism.*

Claim 1: for any $\mathfrak{m} \in \mathfrak{M}$ and $g \in R[[\mathfrak{M}]]$, we have $\hat{\varphi}(\mathfrak{m} g) = \varphi(\mathfrak{m}) \hat{\varphi}(g)$.

$$\widehat{\xi}_{\mathfrak{m}}(g) = \sum_{\mathfrak{n} \in \text{supp} g} g_{\mathfrak{n}} \varphi(\mathfrak{m} \mathfrak{n}) = \widehat{\varphi} \left(\sum_{\mathfrak{n} \in \text{supp} g} g_{\mathfrak{n}} \mathfrak{m} \mathfrak{n} \right) = \widehat{\varphi}(\mathfrak{m} g)$$

$$= \sum_{\mathfrak{n} \in \text{supp} g} g_{\mathfrak{n}} \varphi(\mathfrak{m}) \varphi(\mathfrak{n})$$

Proposition

If $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ *is a multiplicative well-based mapping, then* $\hat{\varphi}$ *is a ring homomorphism.*

Claim 1: for any $\mathfrak{m} \in \mathfrak{M}$ and $g \in R[[\mathfrak{M}]]$, we have $\hat{\varphi}(\mathfrak{m} g) = \varphi(\mathfrak{m}) \hat{\varphi}(g)$.

$$\widehat{\xi}_{\mathfrak{m}}(g) = \sum_{\mathfrak{n} \in \operatorname{supp} g} g_{\mathfrak{n}} \varphi(\mathfrak{m} \mathfrak{n}) = \widehat{\varphi} \left(\sum_{\mathfrak{n} \in \operatorname{supp} g} g_{\mathfrak{n}} \mathfrak{m} \mathfrak{n} \right) = \widehat{\varphi}(\mathfrak{m} g)$$

$$= \sum_{\mathfrak{n} \in \operatorname{supp} g} g_{\mathfrak{n}} \varphi(\mathfrak{m}) \varphi(\mathfrak{n}) = \varphi(\mathfrak{m}) \sum_{\mathfrak{n} \in \operatorname{supp} g} g_{\mathfrak{n}} \varphi(\mathfrak{n})$$

Proposition

If $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ *is a multiplicative well-based mapping, then* $\hat{\varphi}$ *is a ring homomorphism.*

Claim 1: for any $\mathfrak{m} \in \mathfrak{M}$ and $g \in R[[\mathfrak{M}]]$, we have $\hat{\varphi}(\mathfrak{m} g) = \varphi(\mathfrak{m}) \hat{\varphi}(g)$.

$$\widehat{\xi}_{\mathfrak{m}}(g) = \sum_{\mathfrak{n} \in \text{supp} g} g_{\mathfrak{n}} \varphi(\mathfrak{m} \mathfrak{n}) = \widehat{\varphi} \left(\sum_{\mathfrak{n} \in \text{supp} g} g_{\mathfrak{n}} \mathfrak{m} \mathfrak{n} \right) = \widehat{\varphi}(\mathfrak{m} g)$$

$$= \sum_{\mathfrak{n} \in \text{supp} g} g_{\mathfrak{n}} \varphi(\mathfrak{m}) \varphi(\mathfrak{n}) = \varphi(\mathfrak{m}) \sum_{\mathfrak{n} \in \text{supp} g} g_{\mathfrak{n}} \varphi(\mathfrak{n}) = \varphi(\mathfrak{m}) \widehat{\varphi}(g).$$

Proposition

If $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ *is a multiplicative well-based mapping, then* $\hat{\varphi}$ *is a ring homomorphism.*

Claim 2: for any $f, g \in R[[\mathfrak{M}]]$, we have $\hat{\varphi}(fg) = \hat{\varphi}(f) \hat{\varphi}(g)$.

Proposition

If $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ *is a multiplicative well-based mapping, then* $\hat{\varphi}$ *is a ring homomorphism.*

Claim 2: for any $f, g \in R[[\mathfrak{M}]]$, we have $\hat{\varphi}(fg) = \hat{\varphi}(f) \hat{\varphi}(g)$.

Proof. The mapping $\chi_g: \mathfrak{m} \mapsto \hat{\varphi}(\mathfrak{m} g) = \varphi(\mathfrak{m}) \hat{\varphi}(g)$ is well-based.

Proposition

If $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ *is a multiplicative well-based mapping, then* $\hat{\varphi}$ *is a ring homomorphism.*

Claim 2: for any $f, g \in R[[\mathfrak{M}]]$, we have $\hat{\varphi}(fg) = \hat{\varphi}(f) \hat{\varphi}(g)$.

Proof. The mapping $\chi_g: \mathfrak{m} \mapsto \hat{\varphi}(\mathfrak{m} g) = \varphi(\mathfrak{m}) \hat{\varphi}(g)$ is well-based. Now

$$\hat{\chi_g}(f) = \sum_{\mathfrak{m} \in \text{supp} f} f_{\mathfrak{m}} \hat{\varphi}(\mathfrak{m} g) = \hat{\varphi} \left(\sum_{\mathfrak{m} \in \text{supp} f} f_{\mathfrak{m}} \mathfrak{m} g \right) = \hat{\varphi}(fg)$$

$$= \sum_{\mathfrak{m} \in \text{supp} f} f_{\mathfrak{m}} \varphi(\mathfrak{m}) \hat{\varphi}(g) = \hat{\varphi}(g) \sum_{\mathfrak{m} \in \text{supp} f} f_{\mathfrak{m}} \varphi(\mathfrak{m}) = \hat{\varphi}(f) \hat{\varphi}(g). \qquad \square$$

Proposition

If $\varphi: \mathfrak{M} \to R[[\mathfrak{N}]]$ *is a multiplicative well-based mapping, then* $\hat{\varphi}$ *is a ring homomorphism.*

Claim 2: for any $f, g \in R[[\mathfrak{M}]]$, we have $\hat{\varphi}(fg) = \hat{\varphi}(f) \hat{\varphi}(g)$.

Proof. The mapping $\chi_g: \mathfrak{m} \mapsto \hat{\varphi}(\mathfrak{m} g) = \varphi(\mathfrak{m}) \hat{\varphi}(g)$ is well-based. Now

$$\hat{\chi_g}(f) = \sum_{\mathfrak{m} \in \text{supp} f} f_{\mathfrak{m}} \hat{\varphi}(\mathfrak{m} g) = \hat{\varphi} \left(\sum_{\mathfrak{m} \in \text{supp} f} f_{\mathfrak{m}} \mathfrak{m} g \right) = \hat{\varphi}(fg)$$

$$= \sum_{\mathfrak{m} \in \text{supp} f} f_{\mathfrak{m}} \varphi(\mathfrak{m}) \hat{\varphi}(g) = \hat{\varphi}(g) \sum_{\mathfrak{m} \in \text{supp} f} f_{\mathfrak{m}} \varphi(\mathfrak{m}) = \hat{\varphi}(f) \hat{\varphi}(g). \quad \Box$$

Remark. More elegant proof possible using "extension by strong bilinearity".

```
\varepsilon_1, \dots, \varepsilon_n \in R[[\mathfrak{M}]]^{<1} := \{ \varepsilon \in R[[\mathfrak{M}]] : \text{supp } \varepsilon < 1 \}.

\varphi : z_1^{\mathbb{N}} \times \dots \times z_n^{\mathbb{N}} \to R[[\mathfrak{M}]]; (z_1^{k_1}, \dots, z_n^{k_n}) \mapsto \varepsilon_1^{k_1} \cdots \varepsilon_n^{k_n} \text{ is well-based.}
```

$$\varepsilon_{1}, \dots, \varepsilon_{n} \in R[[\mathfrak{M}]]^{<1} := \{ \varepsilon \in R[[\mathfrak{M}]] : \text{supp } \varepsilon < 1 \}.$$

$$\varphi : z_{1}^{\mathbb{N}} \times \dots \times z_{n}^{\mathbb{N}} \to R[[\mathfrak{M}]]; (z_{1}^{k_{1}}, \dots, z_{n}^{k_{n}}) \mapsto \varepsilon_{1}^{k_{1}} \cdots \varepsilon_{n}^{k_{n}} \text{ is well-based.}$$

$$f \circ (\varepsilon_{1}, \dots, \varepsilon_{n}) := \hat{\varphi}(f), \quad \text{for any } f \in R[[z_{1}, \dots, z_{n}]].$$

```
\varepsilon_{1}, \dots, \varepsilon_{n} \in R[[\mathfrak{M}]]^{<1} := \{ \varepsilon \in R[[\mathfrak{M}]] : \text{supp } \varepsilon < 1 \}.
\varphi : z_{1}^{\mathbb{N}} \times \dots \times z_{n}^{\mathbb{N}} \to R[[\mathfrak{M}]]; (z_{1}^{k_{1}}, \dots, z_{n}^{k_{n}}) \mapsto \varepsilon_{1}^{k_{1}} \cdots \varepsilon_{n}^{k_{n}} \text{ is well-based.}
f \circ (\varepsilon_{1}, \dots, \varepsilon_{n}) := \hat{\varphi}(f), \quad \text{for any } f \in R[[z_{1}, \dots, z_{n}]].
```

Proposition

- *a*) $\hat{\varphi}$ *is a ring homomorphism.*
- b) For any $f \in R[[u_1, ..., u_k]]$ and $g_1, ..., g_k \in R[[z_1, ..., z_n]]^{<1}$, we have

$$f \circ (g_1 \circ (\varepsilon_1, \ldots, \varepsilon_n), \ldots, g_k \circ (\varepsilon_1, \ldots, \varepsilon_n)) = (f \circ (g_1, \ldots, g_k)) \circ (\varepsilon_1, \ldots, \varepsilon_n).$$

$$\varepsilon_{1}, \dots, \varepsilon_{n} \in R[[\mathfrak{M}]]^{<1} := \{ \varepsilon \in R[[\mathfrak{M}]] : \text{supp } \varepsilon < 1 \}.$$

$$\varphi : z_{1}^{\mathbb{N}} \times \dots \times z_{n}^{\mathbb{N}} \to R[[\mathfrak{M}]]; (z_{1}^{k_{1}}, \dots, z_{n}^{k_{n}}) \mapsto \varepsilon_{1}^{k_{1}} \cdots \varepsilon_{n}^{k_{n}} \text{ is well-based.}$$

$$f \circ (\varepsilon_{1}, \dots, \varepsilon_{n}) := \hat{\varphi}(f), \quad \text{for any } f \in R[[z_{1}, \dots, z_{n}]].$$

Proposition

- *a)* $\hat{\varphi}$ *is a ring homomorphism.*
- b) For any $f \in R[[u_1, ..., u_k]]$ and $g_1, ..., g_k \in R[[z_1, ..., z_n]]^{<1}$, we have

$$f \circ (g_1 \circ (\varepsilon_1, \ldots, \varepsilon_n), \ldots, g_k \circ (\varepsilon_1, \ldots, \varepsilon_n)) = (f \circ (g_1, \ldots, g_k)) \circ (\varepsilon_1, \ldots, \varepsilon_n).$$

Corollary

If $R \supseteq \mathbb{Q}$ and $\delta, \varepsilon \in R[[\mathfrak{M}]]^{\prec}$, then $e^{\delta+\varepsilon} = e^{\delta}e^{\varepsilon}$, where $e^{\delta} := e^{z} \circ \delta$ with $e^{z} \in R[[z]]$.

$$\varepsilon_{1}, \dots, \varepsilon_{n} \in R[[\mathfrak{M}]]^{<1} := \{ \varepsilon \in R[[\mathfrak{M}]] : \text{supp } \varepsilon < 1 \}.$$

$$\varphi : z_{1}^{\mathbb{N}} \times \dots \times z_{n}^{\mathbb{N}} \to R[[\mathfrak{M}]]; (z_{1}^{k_{1}}, \dots, z_{n}^{k_{n}}) \mapsto \varepsilon_{1}^{k_{1}} \cdots \varepsilon_{n}^{k_{n}} \text{ is well-based.}$$

$$f \circ (\varepsilon_{1}, \dots, \varepsilon_{n}) := \hat{\varphi}(f), \quad \text{for any } f \in R[[z_{1}, \dots, z_{n}]].$$

Proposition

- *a*) $\hat{\varphi}$ *is a ring homomorphism.*
- b) For any $f \in R[[u_1, ..., u_k]]$ and $g_1, ..., g_k \in R[[z_1, ..., z_n]]^{<1}$, we have

$$f \circ (g_1 \circ (\varepsilon_1, \ldots, \varepsilon_n), \ldots, g_k \circ (\varepsilon_1, \ldots, \varepsilon_n)) = (f \circ (g_1, \ldots, g_k)) \circ (\varepsilon_1, \ldots, \varepsilon_n).$$

Corollary

If $R \supseteq \mathbb{Q}$ *and* $\delta, \varepsilon \in R[[\mathfrak{M}]]^{\prec}$, then $e^{\delta+\varepsilon} = e^{\delta}e^{\varepsilon}$, where $e^{\delta} := e^{z} \circ \delta$ with $e^{z} \in R[[z]]$.

Proof. $e^{\delta+\varepsilon} = e^{z_1+z_2} \circ (\delta, \varepsilon) = (e^{z_1}e^{z_2}) \circ (\delta, \varepsilon) = e^{z_1}e^{z_2}$, using $e^{z_1+z_2} = e^{z_1}e^{z_2}$ in $R[[z_1, z_2]]$.