Lesson 4 — Newton polygon method

Support types

Definition

A support type for a monomial monoid \mathfrak{M} is a subset $\mathscr{S}(\mathfrak{M}) \subseteq \mathscr{P}(\mathfrak{M})$ such that

- **T1.** Every $\mathfrak{S} \in \mathcal{S}(\mathfrak{M})$ is well-based.
- **T2.** If $\mathfrak{m} \in \mathfrak{M}$, then $\{\mathfrak{m}\} \in \mathcal{S}(\mathfrak{M})$.
- **T3.** If $\mathfrak{S} \in \mathcal{S}(\mathfrak{M})$ and $\mathfrak{T} \subseteq \mathfrak{S}$, then $\mathfrak{T} \in \mathcal{S}(\mathfrak{M})$.
- **T4.** If $\mathfrak{S}, \mathfrak{T} \in \mathcal{S}(\mathfrak{M})$, then $\mathfrak{S} \cup \mathfrak{T} \in \mathcal{S}(\mathfrak{M})$.
- **T5.** If $\mathfrak{S}, \mathfrak{T} \in \mathcal{S}(\mathfrak{M})$, then $\mathfrak{S} \mathfrak{T} := \{\mathfrak{m} \mathfrak{n} : \mathfrak{m} \in \mathfrak{S}, \mathfrak{n} \in \mathfrak{T}\} \in \mathcal{S}(\mathfrak{M})$.
- **T6.** If $\mathfrak{S} \in \mathcal{S}(\mathfrak{M})$ and $\mathcal{S} < 1$, then $\mathfrak{S}^* := \{\mathfrak{m}_1 \cdots \mathfrak{m}_n : \mathfrak{m}_1, \dots, \mathfrak{m}_n \in \mathfrak{S}\} \in \mathcal{S}(\mathfrak{M})$.

Support types

Definition

A support type for a monomial monoid \mathfrak{M} is a subset $\mathscr{S}(\mathfrak{M}) \subseteq \mathscr{P}(\mathfrak{M})$ such that

- **T1.** Every $\mathfrak{S} \in \mathcal{S}(\mathfrak{M})$ is well-based.
- **T2.** If $\mathfrak{m} \in \mathfrak{M}$, then $\{\mathfrak{m}\} \in \mathcal{S}(\mathfrak{M})$.
- **T3.** If $\mathfrak{S} \in \mathcal{S}(\mathfrak{M})$ and $\mathfrak{T} \subseteq \mathfrak{S}$, then $\mathfrak{T} \in \mathcal{S}(\mathfrak{M})$.
- **T4.** If $\mathfrak{S}, \mathfrak{T} \in \mathcal{S}(\mathfrak{M})$, then $\mathfrak{S} \cup \mathfrak{T} \in \mathcal{S}(\mathfrak{M})$.
- **T5.** If $\mathfrak{S}, \mathfrak{T} \in \mathcal{S}(\mathfrak{M})$, then $\mathfrak{S} \mathfrak{T} := \{\mathfrak{m} \mathfrak{n} : \mathfrak{m} \in \mathfrak{S}, \mathfrak{n} \in \mathfrak{T}\} \in \mathcal{S}(\mathfrak{M})$.
- **T6.** If $\mathfrak{S} \in \mathcal{S}(\mathfrak{M})$ and $\mathcal{S} < 1$, then $\mathfrak{S}^* := \{\mathfrak{m}_1 \cdots \mathfrak{m}_n : \mathfrak{m}_1, \dots, \mathfrak{m}_n \in \mathfrak{S}\} \in \mathcal{S}(\mathfrak{M})$.
- Let \mathscr{S} be a map that associates a support type $\mathscr{S}(\mathfrak{M})$ for \mathfrak{M} to any monomial monoid \mathfrak{M} . We say that \mathscr{S} is a **support type** if:
- **ST.** For every strictly increasing morphism $\varphi: \mathfrak{M} \to \mathfrak{N}$ and $\mathfrak{S} \in \mathcal{S}(\mathfrak{M})$, we have $\varphi(\mathfrak{S}) \in \mathcal{S}(\mathfrak{N})$.

 \mathcal{S} : support type, R: coefficient ring, \mathfrak{M} : monomial ring

 \mathcal{S} : support type, R: coefficient ring, \mathfrak{M} : monomial ring

Definition

A series $f \in R[[\mathfrak{M}]]$ is **\mathscr{P}-based** if supp $f \in \mathscr{S}(\mathfrak{M})$.

We denote by $R[[\mathfrak{M}]]_{\mathscr{S}}$ *the set of all such series.*

 \mathcal{S} : support type, R: coefficient ring, \mathfrak{M} : monomial ring

Definition

A series $f \in R[[\mathfrak{M}]]$ is **\mathscr{P}-based** if supp $f \in \mathscr{S}(\mathfrak{M})$.

We denote by $R[[\mathfrak{M}]]_{\mathscr{S}}$ *the set of all such series.*

Definition

A well-based family $(f_i)_{i \in \mathfrak{M}} \in R[[\mathfrak{M}]]_{\mathscr{S}}$ is \mathscr{P} -based if $\bigcup_{i \in I} \operatorname{supp} f_i \in \mathscr{S}(\mathfrak{M})$.

Then $\sum_{i \in I} f_i \in R[[\mathfrak{M}]]_{\mathscr{S}}$. This defines "the natural" strong summation on $R[[\mathfrak{M}]]_{\mathscr{S}}$.

 \mathcal{S} : support type, R: coefficient ring, \mathfrak{M} : monomial ring

Definition

A series $f \in R[[\mathfrak{M}]]$ is **\mathscr{P}-based** if supp $f \in \mathscr{S}(\mathfrak{M})$.

We denote by $R[[\mathfrak{M}]]_{\mathscr{S}}$ *the set of all such series.*

Definition

A well-based family $(f_i)_{i \in \mathfrak{M}} \in R[[\mathfrak{M}]]_{\mathscr{S}}$ is \mathscr{P} -based if $\bigcup_{i \in I} \operatorname{supp} f_i \in \mathscr{S}(\mathfrak{M})$.

Then $\sum_{i \in I} f_i \in R[[\mathfrak{M}]]_{\mathscr{S}}$. This defines "the natural" strong summation on $R[[\mathfrak{M}]]_{\mathscr{S}}$.

Proposition

- a) $R[[\mathfrak{M}]]_{\mathscr{S}}$ is a ring.
- *b)* If R is a field and \mathfrak{M} a totally ordered group, then $R[[\mathfrak{M}]]_{\mathscr{S}}$ is a field.

Well-based supports.

$$\mathcal{S}(\mathfrak{M}) = \{\mathfrak{S} \subseteq \mathfrak{M} : \mathfrak{S} \text{ is well-based}\}.$$

Well-based supports.

$$\mathcal{S}(\mathfrak{M}) = \{\mathfrak{S} \subseteq \mathfrak{M} : \mathfrak{S} \text{ is well-based}\}.$$

Countable supports.

$$\mathcal{S}(\mathfrak{M}) = \{\mathfrak{S} \subseteq \mathfrak{M} : \mathfrak{S} \text{ is countable, } \mathfrak{S} \text{ is well-based} \}.$$

Well-based supports.

$$\mathcal{S}(\mathfrak{M}) = \{\mathfrak{S} \subseteq \mathfrak{M} : \mathfrak{S} \text{ is well-based}\}.$$

Countable supports.

$$\mathcal{S}(\mathfrak{M}) = \{\mathfrak{S} \subseteq \mathfrak{M} : \mathfrak{S} \text{ is countable, } \mathfrak{S} \text{ is well-based} \}.$$

Finitely generated supports.

$$\mathcal{S}(\mathfrak{M}) = \{\mathfrak{S} \subseteq \mathfrak{F}^* : \mathfrak{F} \text{ is finite, } \mathfrak{S} \text{ is well-based} \}.$$

Well-based supports.

$$\mathcal{S}(\mathfrak{M}) = \{\mathfrak{S} \subseteq \mathfrak{M} : \mathfrak{S} \text{ is well-based}\}.$$

Countable supports.

$$\mathcal{S}(\mathfrak{M}) = \{\mathfrak{S} \subseteq \mathfrak{M} : \mathfrak{S} \text{ is countable, } \mathfrak{S} \text{ is well-based} \}.$$

Finitely generated supports.

$$\mathcal{S}(\mathfrak{M}) = \{\mathfrak{S} \subseteq \mathfrak{F}^* : \mathfrak{F} \text{ is finite, } \mathfrak{S} \text{ is well-based} \}.$$

$$\zeta(x) = 1 + 2^{-x} + 3^{-x} + \dots = 1 + e^{-(\log 2)x} + e^{-(\log 3)x} + \dots \notin \mathbb{R}[[e^{-\mathbb{R}x}]]_{\mathscr{S}}.$$

Well-based supports.

$$\mathcal{S}(\mathfrak{M}) = \{\mathfrak{S} \subseteq \mathfrak{M} : \mathfrak{S} \text{ is well-based}\}.$$

Countable supports.

$$\mathcal{S}(\mathfrak{M}) = \{\mathfrak{S} \subseteq \mathfrak{M} : \mathfrak{S} \text{ is countable, } \mathfrak{S} \text{ is well-based} \}.$$

Finitely generated supports.

$$\mathcal{S}(\mathfrak{M}) = \{\mathfrak{S} \subseteq \mathfrak{F}^* : \mathfrak{F} \text{ is finite, } \mathfrak{S} \text{ is well-based} \}.$$

$$\zeta(x) = 1 + 2^{-x} + 3^{-x} + \dots = 1 + e^{-(\log 2)x} + e^{-(\log 3)x} + \dots \notin \mathbb{R}[[e^{-\mathbb{R}x}]]_{\mathscr{S}}.$$

Intersections. Let \mathcal{S} and \mathcal{T} be support types.

$$(\mathcal{S} \cap \mathcal{T})(\mathfrak{M}) = \mathcal{S}(\mathfrak{M}) \cap \mathcal{T}(\mathfrak{M}).$$

Definition

We say that $\mathfrak{S} \subseteq \mathfrak{M}$ is **grid-based** if there exist finite sets $\mathfrak{F} \subseteq \mathfrak{M}$ and $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ with

$$\mathfrak{S}\subseteq\mathfrak{FE}^*$$
.

Definition

We say that $\mathfrak{S} \subseteq \mathfrak{M}$ is **grid-based** if there exist finite sets $\mathfrak{F} \subseteq \mathfrak{M}$ and $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ with

$$\mathfrak{S}\subseteq\mathfrak{FE}^*$$
.

Note. By Dickson's lemma, \mathfrak{E}^* and therefore \mathfrak{S} are well-based.

Definition

We say that $\mathfrak{S} \subseteq \mathfrak{M}$ *is grid-based if there exist finite sets* $\mathfrak{F} \subseteq \mathfrak{M}$ *and* $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ *with*

$$\mathfrak{S}\subseteq\mathfrak{FE}^*$$
.

Note. By Dickson's lemma, \mathfrak{E}^* and therefore \mathfrak{S} are well-based.

Note. If \mathfrak{M} is a totally ordered group, then \mathfrak{F} can be taken to be a singleton.

Definition

We say that $\mathfrak{S} \subseteq \mathfrak{M}$ *is grid-based if there exist finite sets* $\mathfrak{F} \subseteq \mathfrak{M}$ *and* $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ *with*

$$\mathfrak{S}\subseteq\mathfrak{FE}^*$$
.

Proposition

The map $\mathcal{G}: \mathfrak{M} \mapsto \{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text{ is grid-based}\}$ is a support type.

Definition

We say that $\mathfrak{S} \subseteq \mathfrak{M}$ *is grid-based if there exist finite sets* $\mathfrak{F} \subseteq \mathfrak{M}$ *and* $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ *with*

$$\mathfrak{S}\subseteq\mathfrak{FE}^*$$
.

Proposition

The map $\mathcal{G}: \mathfrak{M} \mapsto \{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text{ is grid-based}\}$ is a support type.

Lemma

If $\mathfrak{S} \subseteq \mathfrak{M}^{<1}$ *is grid-based, then there is a finite* $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ *with* $\mathfrak{S} \subseteq \mathfrak{E}^*$ *(whence* $\mathfrak{S}^* \subseteq \mathfrak{E}^*$).

Definition

We say that $\mathfrak{S} \subseteq \mathfrak{M}$ *is grid-based if there exist finite sets* $\mathfrak{F} \subseteq \mathfrak{M}$ *and* $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ *with*

$$\mathfrak{S}\subseteq\mathfrak{FE}^*$$
.

Proposition

The map $\mathcal{G}: \mathfrak{M} \mapsto \{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text{ is grid-based}\}$ is a support type.

Lemma

If $\mathfrak{S} \subseteq \mathfrak{M}^{<1}$ *is grid-based, then there is a finite* $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ *with* $\mathfrak{S} \subseteq \mathfrak{E}^*$ (whence $\mathfrak{S}^* \subseteq \mathfrak{E}^*$).

Proof. Let $\mathfrak{F} \subseteq \mathfrak{M}$ and $\mathfrak{G} \subseteq \mathfrak{M}^{<1}$ be finite with $\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{G}^*$.

Definition

We say that $\mathfrak{S} \subseteq \mathfrak{M}$ *is grid-based if there exist finite sets* $\mathfrak{F} \subseteq \mathfrak{M}$ *and* $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ *with*

$$\mathfrak{S}\subseteq\mathfrak{FE}^*$$
.

Proposition

The map $\mathcal{G}: \mathfrak{M} \mapsto \{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text{ is grid-based}\}$ is a support type.

Lemma

If $\mathfrak{S} \subseteq \mathfrak{M}^{<1}$ *is grid-based, then there is a finite* $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ *with* $\mathfrak{S} \subseteq \mathfrak{E}^*$ (whence $\mathfrak{S}^* \subseteq \mathfrak{E}^*$).

Proof. Let $\mathfrak{F} \subseteq \mathfrak{M}$ and $\mathfrak{G} \subseteq \mathfrak{M}^{<1}$ be finite with $\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{G}^*$.

Given $\mathfrak{f} \in \mathfrak{F}$, the set $(\mathfrak{f} \mathfrak{G}^*) \cap \mathfrak{M}^{<1}$ is a final segment of $\mathfrak{f} \mathfrak{G}^*$ for \geq !.

Definition

We say that $\mathfrak{S} \subseteq \mathfrak{M}$ *is grid-based if there exist finite sets* $\mathfrak{F} \subseteq \mathfrak{M}$ *and* $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ *with*

$$\mathfrak{S}\subseteq\mathfrak{FE}^*$$
.

Proposition

The map $\mathcal{G}: \mathfrak{M} \mapsto \{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text{ is grid-based}\}$ is a support type.

Lemma

If $\mathfrak{S} \subseteq \mathfrak{M}^{<1}$ *is grid-based, then there is a finite* $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ *with* $\mathfrak{S} \subseteq \mathfrak{E}^*$ (whence $\mathfrak{S}^* \subseteq \mathfrak{E}^*$).

Proof. Let $\mathfrak{F} \subseteq \mathfrak{M}$ and $\mathfrak{G} \subseteq \mathfrak{M}^{<1}$ be finite with $\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{G}^*$.

Given $\mathfrak{f} \in \mathfrak{F}$, the set $(\mathfrak{f} \mathfrak{G}^*) \cap \mathfrak{M}^{<1}$ is a final segment of $\mathfrak{f} \mathfrak{G}^*$ for \geq !.

Let $\mathfrak{H}_{\mathfrak{f}} \subseteq \mathfrak{M}^{<1}$ be a finite set of generators. Note that $(\mathfrak{f} \mathfrak{G}^*) \cap \mathfrak{M}^{<1} \subseteq \mathfrak{H}_{\mathfrak{f}} \mathfrak{G}^*$.

Definition

We say that $\mathfrak{S} \subseteq \mathfrak{M}$ is **grid-based** if there exist finite sets $\mathfrak{F} \subseteq \mathfrak{M}$ and $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ with $\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{E}^*$.

Proposition

The map $\mathcal{G}: \mathfrak{M} \mapsto \{\mathfrak{S} \subseteq \mathfrak{M} : \mathfrak{S} \text{ is grid-based}\}$ is a support type.

Lemma

If $\mathfrak{S} \subseteq \mathfrak{M}^{<1}$ is grid-based, then there is a finite $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ with $\mathfrak{S} \subseteq \mathfrak{E}^*$ (whence $\mathfrak{S}^* \subseteq \mathfrak{E}^*$).

Proof. Let $\mathfrak{F} \subseteq \mathfrak{M}$ and $\mathfrak{G} \subseteq \mathfrak{M}^{<1}$ be finite with $\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{G}^*$.

Given $\mathfrak{f} \in \mathfrak{F}$, the set $(\mathfrak{f} \mathfrak{G}^*) \cap \mathfrak{M}^{<1}$ is a final segment of $\mathfrak{f} \mathfrak{G}^*$ for \geq !.

Let $\mathfrak{H}_f \subseteq \mathfrak{M}^{<1}$ be a finite set of generators. Note that $(\mathfrak{f} \mathfrak{G}^*) \cap \mathfrak{M}^{<1} \subseteq \mathfrak{H}_f \mathfrak{G}^*$.

Now it suffices to take $\mathfrak{E} := \mathfrak{G} \cup \bigcup_{\mathfrak{f} \in \mathfrak{F}} \mathfrak{H}_{\mathfrak{f}}$.

Grid-based series — continued

Proposition

The map $\mathcal{G}: \mathfrak{M} \mapsto \{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text{ is grid-based}\}$ is a support type.

Proposition

The map $\mathcal{G}: \mathfrak{M} \mapsto \{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text{ is grid-based}\}$ is a support type.

Remark. For any other support type \mathcal{S} , we have $\mathcal{S}(\mathfrak{M}) \supseteq \mathcal{S}(\mathfrak{M})$, for all \mathfrak{M} .

Proposition

The map $\mathcal{G}: \mathfrak{M} \mapsto \{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text{ is grid-based}\}$ is a support type.

Remark. For any other support type \mathcal{S} , we have $\mathcal{S}(\mathfrak{M}) \supseteq \mathcal{S}(\mathfrak{M})$, for all \mathfrak{M} .

We denote $R[[\mathfrak{M}]] := R[[\mathfrak{M}]]_{\mathscr{G}}$.

Grid-based series — continued

Proposition

The map $\mathcal{G}: \mathfrak{M} \mapsto \{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text{ is grid-based}\}$ is a support type.

Remark. For any other support type \mathcal{S} , we have $\mathcal{S}(\mathfrak{M}) \supseteq \mathcal{S}(\mathfrak{M})$, for all \mathfrak{M} .

We denote $R[[\mathfrak{M}]] := R[[\mathfrak{M}]]_{\mathscr{G}}$.

Elements of $R[[\mathfrak{M}]]$ are called **grid-based series**.

Grid-based series — continued

Proposition

The map $\mathcal{G}: \mathfrak{M} \mapsto \{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text{ is grid-based}\}$ is a support type.

Remark. For any other support type \mathcal{S} , we have $\mathcal{S}(\mathfrak{M}) \supseteq \mathcal{G}(\mathfrak{M})$, for all \mathfrak{M} .

We denote $R[[\mathfrak{M}]] := R[[\mathfrak{M}]]_{\mathscr{G}}$.

Elements of $R[[\mathfrak{M}]]$ are called **grid-based series**.

 \mathscr{G} -based families are called **grid-based families**. Etc.

Cartesian representations

Proposition

For any $f \in R[[\mathfrak{M}]]$, there exist power series $\check{f}_1,...,\check{f}_l \in R[[z_1,...,z_k]]$, monomials $\mathfrak{f}_1,...,\mathfrak{f}_l \in \mathfrak{M}$ and $\mathfrak{e}_1,...,\mathfrak{e}_k \in \mathfrak{M}^{<1}$ with

$$f = \sum_{1 \leq i \leq l} (\check{f}_i \circ (\mathfrak{e}_1, \dots, \mathfrak{e}_k)) \mathfrak{f}_i.$$

Proposition

Assume that \mathfrak{M} is a totally ordered group.

For any $f \in R[[\mathfrak{M}]]$, there exists a Laurent series $\check{f} \in R((z_1,...,z_k))$ and $e_1,...,e_k \in \mathfrak{M}^{<1}$ with

$$f = \check{f} \circ (\mathfrak{e}_1, \dots, \mathfrak{e}_k).$$
 (*

Here $(gz_1^{i_1}\cdots z_k^{i_k})\circ(\mathfrak{e}_1,\ldots,\mathfrak{e}_k):=(g\circ(\mathfrak{e}_1,\ldots,\mathfrak{e}_k))\mathfrak{e}_1^{i_1}\cdots\mathfrak{e}_k^{i_k}$ for any $g\in R[[z_1,\ldots,z_k]], i_1,\ldots,i_k\in\mathbb{Z}$.

Cartesian representations

Proposition

For any $f \in R[[\mathfrak{M}]]$, there exist power series $\check{f}_1,...,\check{f}_l \in R[[z_1,...,z_k]]$, monomials $\mathfrak{f}_1,...,\mathfrak{f}_l \in \mathfrak{M}$ and $\mathfrak{e}_1,...,\mathfrak{e}_k \in \mathfrak{M}^{<1}$ with

$$f = \sum_{1 \leq i \leq l} (\check{f}_i \circ (\mathfrak{e}_1, \dots, \mathfrak{e}_k)) \mathfrak{f}_i.$$

Proposition

Assume that \mathfrak{M} is a totally ordered group.

For any $f \in R[[\mathfrak{M}]]$, there exists a Laurent series $\check{f} \in R((z_1,...,z_k))$ and $e_1,...,e_k \in \mathfrak{M}^{<1}$ with

$$f = \check{f} \circ (\mathfrak{e}_1, \dots, \mathfrak{e}_k).$$
 (\star)

We call (\star) a **Cartesian representation** of f.

Definition

Let \mathcal{L} be a collection of subsets $\mathcal{L}_k \subseteq R[[z_1, \ldots, z_k]]$ for $k \in \mathbb{N}$, such that

- **L1.** $z_i \in \mathcal{L}_k$ for i = 1, ..., k.
- **L2.** \mathcal{L}_k is an R-subalgebra of $R[[z_1, \ldots, z_k]]$.
- **L3.** For any $f \in \mathcal{L}_k$ with $z_1 | f$, we have $z^{-1} f \in \mathcal{L}_k$.
- **L4.** Given $f \in \mathcal{L}_k$ and $g_1, \ldots, g_k \in \mathcal{L}_l^{<1}$, we have $f \circ (g_1, \ldots, g_k) \in \mathcal{L}_l$.
- **L5.** Given $f \in \mathcal{L}_{k+1}$ with f(0,...,0) = 0 and $(\partial f / \partial z_{k+1})(0,...,0) = 1$, the unique $\varphi \in R[[z_1,...,z_k]]$ with $f \circ (z_1,...,z_k,\varphi) = 0$ is in \mathcal{L}_k .

Definition

Let \mathcal{L} be a collection of subsets $\mathcal{L}_k \subseteq R[[z_1, \ldots, z_k]]$ for $k \in \mathbb{N}$, such that

- **L1.** $z_i \in \mathcal{L}_k$ for i = 1, ..., k.
- **L2.** \mathcal{L}_k is an R-subalgebra of $R[[z_1, \ldots, z_k]]$.
- **L3.** For any $f \in \mathcal{L}_k$ with $z_1 | f$, we have $z^{-1} f \in \mathcal{L}_k$.
- **L4.** Given $f \in \mathcal{L}_k$ and $g_1, \dots, g_k \in \mathcal{L}_l^{<1}$, we have $f \circ (g_1, \dots, g_k) \in \mathcal{L}_l$.
- **L5.** Given $f \in \mathcal{L}_{k+1}$ with f(0,...,0) = 0 and $(\partial f / \partial z_{k+1})(0,...,0) = 1$, the unique $\varphi \in R[[z_1,...,z_k]]$ with $f \circ (z_1,...,z_k,\varphi) = 0$ is in \mathcal{L}_k .

Examples.

Definition

Let \mathcal{L} be a collection of subsets $\mathcal{L}_k \subseteq R[[z_1, \ldots, z_k]]$ for $k \in \mathbb{N}$, such that

- **L1.** $z_i \in \mathcal{L}_k$ for i = 1, ..., k.
- **L2.** \mathcal{L}_k is an R-subalgebra of $R[[z_1, \ldots, z_k]]$.
- **L3.** For any $f \in \mathcal{L}_k$ with $z_1 | f$, we have $z^{-1} f \in \mathcal{L}_k$.
- **L4.** Given $f \in \mathcal{L}_k$ and $g_1, \ldots, g_k \in \mathcal{L}_l^{<1}$, we have $f \circ (g_1, \ldots, g_k) \in \mathcal{L}_l$.
- **L5.** Given $f \in \mathcal{L}_{k+1}$ with f(0,...,0) = 0 and $(\partial f / \partial z_{k+1})(0,...,0) = 1$, the unique $\varphi \in R[[z_1,...,z_k]]$ with $f \circ (z_1,...,z_k,\varphi) = 0$ is in \mathcal{L}_k .

Examples.

• $\mathcal{L}_k = \mathbb{K}\{\{z_1, \dots, z_k\}\}\$, convergent power series, $\mathbb{K} \subseteq \mathbb{C}$.

Definition

Let \mathcal{L} be a collection of subsets $\mathcal{L}_k \subseteq R[[z_1, \ldots, z_k]]$ for $k \in \mathbb{N}$, such that

- **L1.** $z_i \in \mathcal{L}_k$ for i = 1, ..., k.
- **L2.** \mathcal{L}_k is an R-subalgebra of $R[[z_1, \ldots, z_k]]$.
- **L3.** For any $f \in \mathcal{L}_k$ with $z_1 | f$, we have $z^{-1} f \in \mathcal{L}_k$.
- **L4.** Given $f \in \mathcal{L}_k$ and $g_1, \ldots, g_k \in \mathcal{L}_l^{<1}$, we have $f \circ (g_1, \ldots, g_k) \in \mathcal{L}_l$.
- **L5.** Given $f \in \mathcal{L}_{k+1}$ with f(0,...,0) = 0 and $(\partial f / \partial z_{k+1})(0,...,0) = 1$, the unique $\varphi \in R[[z_1,...,z_k]]$ with $f \circ (z_1,...,z_k,\varphi) = 0$ is in \mathcal{L}_k .

Examples.

- $\mathcal{L}_k = \mathbb{K}\{\{z_1, \dots, z_k\}\}\$, convergent power series, $\mathbb{K} \subseteq \mathbb{C}$.
- $\mathcal{L}_k = K[[z_1, ..., z_k]]^{alg}$, algebraic power series, K any field.

Definition

Let \mathcal{L} be a collection of subsets $\mathcal{L}_k \subseteq R[[z_1, \ldots, z_k]]$ for $k \in \mathbb{N}$, such that

- **L1.** $z_i \in \mathcal{L}_k$ for i = 1, ..., k.
- **L2.** \mathcal{L}_k is an R-subalgebra of $R[[z_1, \ldots, z_k]]$.
- **L3.** For any $f \in \mathcal{L}_k$ with $z_1 | f$, we have $z^{-1} f \in \mathcal{L}_k$.
- **L4.** Given $f \in \mathcal{L}_k$ and $g_1, \ldots, g_k \in \mathcal{L}_l^{<1}$, we have $f \circ (g_1, \ldots, g_k) \in \mathcal{L}_l$.
- **L5.** Given $f \in \mathcal{L}_{k+1}$ with f(0,...,0) = 0 and $(\partial f / \partial z_{k+1})(0,...,0) = 1$, the unique $\varphi \in R[[z_1,...,z_k]]$ with $f \circ (z_1,...,z_k,\varphi) = 0$ is in \mathcal{L}_k .

Examples.

- $\mathcal{L}_k = \mathbb{K}\{\{z_1, \dots, z_k\}\}\$, convergent power series, $\mathbb{K} \subseteq \mathbb{C}$.
- $\mathcal{L}_k = K[[z_1, ..., z_k]]^{alg}$, algebraic power series, K any field.
- $\mathcal{L}_k = K[[z_1, ..., z_k]]^{\text{dalg}}$, d-algebraic power series, K any field with char K = 0.

- \mathfrak{M} totally ordered monomial group
- \mathcal{L} local community

- m totally ordered monomial group
- \mathscr{L} local community

Definition

We define $R[[\mathfrak{M}]]_{\mathscr{L}}$ to be the set of $f \in R[[\mathfrak{M}]]$ with

$$f = \check{f} \circ (\mathfrak{e}_1, \ldots, \mathfrak{e}_k),$$

for some $\check{f} \in \mathcal{L}_k z_1^{\mathbb{Z}} \cdots z_k^{\mathbb{Z}}$ and $\mathfrak{e}_1, \ldots, \mathfrak{e}_k \in \mathfrak{M}^{<1}$.

Digression — local communities

- m totally ordered monomial group
- \mathscr{L} local community

Definition

We define $R[[\mathfrak{M}]]_{\mathscr{L}}$ to be the set of $f \in R[[\mathfrak{M}]]$ with

$$f = \check{f} \circ (\mathfrak{e}_1, \ldots, \mathfrak{e}_k),$$

for some $\check{f} \in \mathcal{L}_k z_1^{\mathbb{Z}} \cdots z_k^{\mathbb{Z}}$ and $e_1, \ldots, e_k \in \mathfrak{M}^{<1}$.

Theorem

If K is a field, then so is $K[[\mathfrak{M}]]_{\mathscr{L}}$ is a field. Moreover, if \mathfrak{M} has \mathbb{Q} -powers, then

- *a)* If K is algebraically closed and of characteristic zero, then so is $K[[\mathfrak{M}]]_{\mathscr{L}}$.
- *b)* If *K* is real closed, then so is $K[[\mathfrak{M}]]_{\mathscr{L}}$.

```
K algebraically closed field
```

Γ divisible totally ordered *abelian* group: $(\forall \gamma \in \Gamma)$ $(\forall n \in \mathbb{N}^{>0})$ $(\exists \alpha \in \Gamma)$ $n\alpha = \gamma$ z^{Γ} corresponding monomial group, $z^{\alpha} \leq z^{\beta} \Leftrightarrow \alpha \geq \beta$.

- *K* algebraically closed field
- Γ divisible totally ordered *abelian* group: (∀γ∈Γ) $(∀n∈ℕ^{>0})$ (∃α∈Γ) nα=γ
- z^{Γ} corresponding monomial group, $z^{\alpha} \leq z^{\beta} \Leftrightarrow \alpha \geq \beta$.

Our goal

Given $P \in K[[z^{\Gamma}]][Y] \setminus K[[z^{\Gamma}]]$, compute the solutions in $K[[z^{\Gamma}]]$ of

$$P(y) = 0.$$

- *K* algebraically closed field
- Γ divisible totally ordered *abelian* group: (∀γ∈Γ) $(∀n∈ℕ^{>0})$ (∃α∈Γ) nα=γ
- z^{Γ} corresponding monomial group, $z^{\alpha} \leq z^{\beta} \Leftrightarrow \alpha \geq \beta$.

Our goal

Given $P \in K[[z^{\Gamma}]][Y] \setminus K[[z^{\Gamma}]]$ and $\gamma \in \Gamma$, compute the solutions in $K[[z^{\Gamma}]]$ of

$$P(y) = 0, \qquad (y < z^{\gamma}).$$

- *K* algebraically closed field
- Γ divisible totally ordered *abelian* group: $(\forall \gamma \in \Gamma)$ $(\forall n \in \mathbb{N}^{>0})$ $(\exists \alpha \in \Gamma)$ $n\alpha = \gamma$
- z^{Γ} corresponding monomial group, $z^{\alpha} \leq z^{\beta} \Leftrightarrow \alpha \geqslant \beta$.

Our goal

Given $P \in K[[z^{\Gamma}]][Y] \setminus K[[z^{\Gamma}]]$ and $\gamma \in \Gamma$, compute the solutions in $K[[z^{\Gamma}]]$ of

$$P(y) = 0, \qquad (y < z^{\gamma}).$$

We may replace $K[[z^{\Gamma}]]$ by $K[[z^{\Gamma}]]_{\mathscr{S}}$ or $K[[z^{\Gamma}]]_{\mathscr{L}}$.

$$P_d y^d + \dots + P_0 = 0, \qquad (y < z^{\gamma}). \tag{*}$$

 $P_d y^d + \dots + P_0 = 0, \qquad (y < z^{\gamma}).$

$$(y < z')$$
.

Consider some $y \in K[[z^{\Gamma}]]^{\neq 0}$ with $y < z^{\gamma}$.

$$P_d y^d + \dots + P_0 = 0, \qquad (y < z^{\gamma}). \tag{*}$$

Consider some $y \in K[[z^{\Gamma}]]^{\neq 0}$ with $y < z^{\gamma}$.

Let *i* be an index for which $P_i y^i$ is \leq -maximal.

 (\star)

Starting monomials

$$P_d y^d + \dots + P_0 = 0, \qquad (y < z^{\gamma}).$$

Consider some $y \in K[[z^{\Gamma}]]^{\neq 0}$ with $y < z^{\gamma}$.

Let *i* be an index for which $P_i y^i$ is \leq -maximal.

If $P_j y^j < P_i y^i$ for all $j \neq i$, then $P_d y^d + \cdots + P_0 \sim P_i y^i \neq 0$.

$$P_d y^d + \dots + P_0 = 0, \qquad (y < z^{\gamma}). \tag{*}$$

- Consider some $y \in K[[z^{\Gamma}]]^{\neq 0}$ with $y < z^{\gamma}$.
- Let *i* be an index for which $P_i y^i$ is \leq -maximal.
- If $P_i y^j < P_i y^i$ for all $j \neq i$, then $P_d y^d + \cdots + P_0 \sim P_i y^i \neq 0$.
- If *y* satisfies (\star), it follows that there exists a $j \neq i$ with

$$P_i y^i \approx P_j y^j \geqslant P_k y^k$$
, for all k .

$$P_d y^d + \dots + P_0 = 0, \qquad (y < z^{\gamma}). \tag{*}$$

- Consider some $y \in K[[z^{\Gamma}]]^{\neq 0}$ with $y < z^{\gamma}$.
- Let *i* be an index for which $P_i y^i$ is \leq -maximal.
- If $P_i y^j < P_i y^i$ for all $j \neq i$, then $P_d y^d + \cdots + P_0 \sim P_i y^i \neq 0$.
- If *y* satisfies (\star), it follows that there exists a $j \neq i$ with

$$P_i y^i \approx P_i y^j \geqslant P_k y^k$$
, for all k .

Setting $z^{\pi_k} := \mathfrak{d}_{P_k}$ for $k = 0, \ldots, d$, and $z^{\nu} := \mathfrak{d}_y$, this means that there exist $i \neq j$ with

$$\nu > \gamma$$
, $\pi_i + i\nu = \pi_i + j\nu \leqslant \pi_k + k\nu$, for all k .

$$P_d y^d + \dots + P_0 = 0, \qquad (y < z^{\gamma}). \tag{*}$$

Consider some $y \in K[[z^{\Gamma}]]^{\neq 0}$ with $y < z^{\gamma}$.

Let *i* be an index for which $P_i y^i$ is \leq -maximal.

If $P_i y^j < P_i y^i$ for all $j \neq i$, then $P_d y^d + \cdots + P_0 \sim P_i y^i \neq 0$.

If *y* satisfies (\star), it follows that there exists a $j \neq i$ with

$$P_i y^i \approx P_j y^j \geqslant P_k y^k$$
, for all k .

Setting $z^{\pi_k} := \mathfrak{d}_{P_k}$ for k = 0, ..., d, and $z^{\nu} := \mathfrak{d}_y$, this means that there exist $i \neq j$ with $\nu > \gamma$, $\pi_i + i\nu = \pi_j + j\nu \leqslant \pi_k + k\nu$, for all k.

We call z^{ν} a **starting monomial** for the equation (*).

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

•
$$P_0 \approx P_1 y \implies z = z^{3+\nu} \implies \nu = -2$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

Starting monomials $z^{\nu} = y$?

• $P_0 \approx P_1 y \implies z = z^{3+\nu} \implies \nu = -2$ But then $P_2 y^2 \approx z^{0+2\nu} = z^{-4} > z \approx P_0$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

Starting monomials $z^{\nu} = y$?

• $P_0 \approx P_1 y \implies z = z^{3+\nu} \implies \nu = -2$ Not OK, since $P_2 y^2 > P_0$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

- $P_0 \approx P_1 y \implies z = z^{3+\nu} \implies \nu = -2$ Not OK, since $P_2 y^2 > P_0$
- $P_0 \approx P_2 y^2 \implies z = z^{0+2\nu} \implies \nu = \frac{1}{2}$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

- $P_0 \approx P_1 y \implies z = z^{3+\nu} \implies \nu = -2$ Not OK, since $P_2 y^2 > P_0$
- $P_0 \approx P_2 y^2 \implies z = z^{0+2\nu} \implies (\nu = \frac{1}{2})^2$ OK, since $P_1 y \approx z^{3+\nu} = z^{3\frac{1}{2}} \leqslant z \approx P_0$ $P_3 y^3 \approx z^{2+3\nu} = z^{3\frac{1}{2}} \leqslant z \approx P_0$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

- $P_0 \approx P_1 y \implies z = z^{3+\nu} \implies \nu = -2$ Not OK, since $P_2 y^2 > P_0$
- $P_0 \approx P_2 y^2 \implies z = z^{0+2\nu} \implies (\nu = \frac{1}{2})$ OK, since $P_1 y$, $P_3 y^2 \leqslant P_0$
- $P_0 \approx P_3 y^3 \implies z = z^{2+3\nu} \implies \nu = -1/3$ Not OK, since $P_2 y^2 > P_0$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

•
$$P_0 \approx P_1 y \implies z = z^{3+\nu} \implies \nu = -2$$

Not OK, since $P_2 y^2 > P_0$

- $P_0 \approx P_2 y^2 \implies z = z^{0+2\nu} \implies v = \frac{1}{2}$ OK, since $P_1 y, P_3 y^2 \leqslant P_0$
- $P_0 \approx P_3 y^3 \implies z = z^{2+3\nu} \implies \nu = -1/3$ Not OK, since $P_2 y^2 > P_0$
- • •
- $P_2 y^2 = P_3 y^3 \implies z^{0+2\nu} = z^{2+3\nu} \implies (\nu = -2)$ OK, since $P_0, P_1 y > P_2 y^2$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

- $\nu = \frac{1}{2}$
- $\nu = -2$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

Consider the starting monomial $z^{1/2}$.

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

Consider the starting monomial $z^{1/2}$.

If $y \sim c z^{1/2}$, then

$$5z^{2}y^{3} < z$$

$$y^{2} \sim c^{2}z$$

$$3z^{2}y < z$$

$$-\frac{z}{1-z} \sim -z$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

Consider the starting monomial $z^{1/2}$.

If $y \sim c z^{1/2}$, then

$$5z^{2}y^{3} < z$$

$$y^{2} \sim c^{2}z$$

$$3z^{2}y < z$$

$$-\frac{z}{1-z} \sim -z$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = (c^2 - 1)z + o(z)$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

If $y \sim c z^{1/2}$, then

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = (c^2 - 1)z + o(z).$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

If $y \sim c z^{1/2}$, then

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = (c^2 - 1)z + o(z).$$

If the right-hand side vanishes, then

$$c^2 - 1 = 0$$
,

whence

$$c = 1 \lor c = -1.$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

If $y \sim c z^{1/2}$, then

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = (c^2 - 1)z + o(z).$$

If the right-hand side vanishes, then

$$c^2 - 1 = 0$$
,

whence

$$c = 1 \lor c = -1.$$

We call $z^{1/2}$ and $-z^{1/2}$ **starting terms** for the equation.

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

If $y \sim c z^{1/2}$, then

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = (c^2 - 1)z + o(z).$$

If the right-hand side vanishes, then

$$c^2 - 1 = 0.$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

If $y \sim c z^{1/2}$, then

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = (c^2 - 1)z + o(z).$$

If the right-hand side vanishes, then

$$c^2 - 1 = 0.$$

 $N(c) = c^2 - 1$ is the **Newton polynomial** for $z^{1/2}$.

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

If $y \sim c z^{-2}$, then $c \neq 0$ and

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = (5c^3 + c^2)z^{-4} + o(z^{-4}).$$

If the right-hand side vanishes, then

$$5c^3 + c^2 = 0.$$

 $N(c) = 5c^3 + c^2$ is the **Newton polynomial** for z^{-2} .

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

If $y \sim c z^{-2}$, then $c \neq 0$ and

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = (5c^3 + c^2)z^{-4} + o(z^{-4}).$$

If the right-hand side vanishes, then

$$5c^3 + c^2 = 0.$$

 $N(c) = 5c^3 + c^2$ is the **Newton polynomial** for z^{-2} .

 $-\frac{1}{5}z^{-2}$ is a starting term for the equation.

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

The starting terms for the equation are:

- $z^{1/2}$
- $-z^{1/2}$
- $-\frac{1}{5}z^{-2}$

Refinements

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

Assume $y \sim z^{1/2}$ and perform the change of variables

$$y = z^{1/2} + \tilde{y}$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

Assume $y \sim z^{1/2}$ and consider

$$y = z^{1/2} + \tilde{y}$$
 $(\tilde{y} < z^{1/2}).$

Refinement := change of variable + asymptotic constraint

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

The refinement

$$y = z^{1/2} + \tilde{y} \qquad (\tilde{y} < z^{1/2}).$$

yields

$$5z^{2}\tilde{y}^{3} + (1+15z^{2^{1/2}})\tilde{y}^{2} + (2z^{1/2}+18z^{2^{1/2}})\tilde{y} - z^{2}-z^{3}+8z^{3^{1/2}}-z^{4}-\cdots = 0, \quad (\tilde{y} < z^{1/2}).$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

The refinement

$$y = z^{1/2} + \tilde{y} \qquad (\tilde{y} < z^{1/2}).$$

yields

$$5z^{2}\tilde{y}^{3} + (1+15z^{2^{1/2}})\tilde{y}^{2} + (2z^{1/2}+18z^{2^{1/2}})\tilde{y} - z^{2}-z^{3}+8z^{3^{1/2}}-z^{4}-\cdots = 0, \quad (\tilde{y} < z^{1/2}).$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

The refinement

$$y = z^{1/2} + \tilde{y} \qquad (\tilde{y} < z^{1/2}).$$

yields

$$5z^{2}\tilde{y}^{3} + (1+15z^{2^{1/2}})\tilde{y}^{2} + (2z^{1/2}+18z^{2^{1/2}})\tilde{y} - z^{2}-z^{3}+8z^{3^{1/2}}-z^{4}-\cdots = 0, \quad (\tilde{y} < z^{1/2}).$$

Only new starting monomial: $\tilde{y} = z^{3/2}$.

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

The refinement

$$y = z^{1/2} + \tilde{y}$$
 $(\tilde{y} < z^{1/2}).$

yields

$$5z^{2}\tilde{y}^{3} + (1+15z^{2^{1/2}})\tilde{y}^{2} + (2z^{1/2}+18z^{2^{1/2}})\tilde{y} - z^{2}-z^{3}+8z^{3^{1/2}}-z^{4}-\cdots = 0, \quad (\tilde{y} < z^{1/2}).$$

Only new starting monomial: $\tilde{y} \approx z^{3/2}$.

Only new starting monomial: $\tilde{y} = \frac{1}{2}z^{\frac{3}{2}}$.

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

Continued refinement process

$$y = z^{1/2} + \tilde{y} \qquad (\tilde{y} < z^{1/2})$$

$$\tilde{y} = \frac{1}{2}z^{3/2} + \tilde{\tilde{y}} \qquad (\tilde{\tilde{y}} < z^{3/2})$$

$$\vdots$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

Continued refinement process

$$y = z^{1/2} + \tilde{y} \qquad (\tilde{y} < z^{1/2})$$

$$\tilde{y} = 1/2 z^{3/2} + \tilde{\tilde{y}} \qquad (\tilde{\tilde{y}} < z^{3/2})$$

$$\vdots$$

yields asymptotic expansion

$$y \approx z^{1/2} + 1/2 z^{3/2} + \cdots$$

$$5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

Continued refinement process

$$y = z^{1/2} + \tilde{y} \qquad (\tilde{y} < z^{1/2})$$

$$\tilde{y} = 1/2 z^{3/2} + \tilde{\tilde{y}} \qquad (\tilde{\tilde{y}} < z^{3/2})$$

$$\vdots$$

yields asymptotic solution

$$y = z^{1/2} + 1/2 z^{3/2} + \cdots$$
?

$$P(y) = 5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z}$$

Multiplicative conjugate by $z^{1/2}$

$$P_{\times z^{1/2}}(y) := P(z^{1/2}y)$$

$$= 5z^{31/2}y^3 + zy^2 + 3z^{31/2}y - \frac{z}{1-z}$$

 $z^{1/2}$ is a starting monomial for

$$P(y) = 5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

 \iff 1 is a starting monomial for

$$P_{\times z^{1/2}}(y) = 5z^{31/2}y^3 + zy^2 + 3z^{31/2}y - \frac{z}{1-z} = 0.$$

 $z^{1/2}$ is a starting monomial for

$$P(y) = 5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

 \iff 1 is a starting monomial for

$$P_{\times z^{1/2}}(y) = 5z^{31/2}y^3 + zy^2 + 3z^{31/2}y - \frac{z}{1-z} = 0.$$

 $z^{1/2}$ is a starting monomial for

$$P(y) = 5z^2y^3 + y^2 + 3z^3y - \frac{z}{1-z} = 0$$

 \iff 1 is a starting monomial for

$$P_{\times z^{1/2}}(y) = 5z^{31/2}y^3 + zy^2 + 3z^{31/2}y - \frac{z}{1-z} = 0.$$

$$K[[z^{\Gamma}]][Y] \subseteq K[Y][[z^{\Gamma}]]$$

$$K[[z^{\Gamma}]][Y] \subseteq K[Y][[z^{\Gamma}]]$$

We define $D_P \in K[Y]$ to be the dominant coefficient of $P \in K[[z^{\Gamma}]][Y]^{\neq 0}$ as a series in z:

$$P = D_P \mathfrak{d}_P + o(\mathfrak{d}_P).$$

$$K[[z^{\Gamma}]][Y] \subseteq K[Y][[z^{\Gamma}]]$$

We define $D_P \in K[Y]$ to be the dominant coefficient of $P \in K[[z^{\Gamma}]][Y]^{\neq 0}$ as a series in z:

$$P = D_P \mathfrak{d}_P + o(\mathfrak{d}_P).$$

Characterization of starting monomials

 z^{ν} is a starting monomial for $P(y) = 0 \iff D_{P_{\times z^{\nu}}}$ is not homogeneous.

$$K[[z^{\Gamma}]][Y] \subseteq K[Y][[z^{\Gamma}]]$$

We define $D_P \in K[Y]$ to be the dominant coefficient of $P \in K[[z^{\Gamma}]][Y]^{\neq 0}$ as a series in z:

$$P = D_P \mathfrak{d}_P + o(\mathfrak{d}_P).$$

Characterization of starting monomials

 z^{ν} is a starting monomial for $P(y) = 0 \iff D_{P_{x,\nu}}$ is not homogeneous.

Newton polynomials

 $N_{P_{xz^{\nu}}} := D_{P_{xz^{\nu}}}$ is the Newton polynomial associated to z^{ν} .

$$K[[z^{\Gamma}]][Y] \subseteq K[Y][[z^{\Gamma}]]$$

We define $D_P \in K[Y]$ to be the dominant coefficient of $P \in K[[z^{\Gamma}]][Y]^{\neq 0}$ as a series in z:

$$P = D_P \mathfrak{d}_P + o(\mathfrak{d}_P).$$

Characterization of starting monomials

 z^{ν} is a starting monomial for $P(y) = 0 \iff D_{P_{xz^{\nu}}}$ is not homogeneous.

Newton polynomials

 $N_{P_{\times z^{\nu}}} := D_{P_{\times z^{\nu}}}$ is the Newton polynomial associated to z^{ν} .

Characterization of starting terms

$$cz^{\nu}$$
 is a starting term for $P(y) = 0 \iff N_{P_{xz^{\nu}}}(c) = 0.$ $(c \neq 0)$

$$P(y) = 0 (y < z^{\gamma}). (*)$$

Newton degree of (*)

$$\deg_{\prec z^{\gamma}}P := \operatorname{val} N_{P_{\times z^{\gamma}}}$$

$$P(y) = 0 (y < z^{\gamma}).$$

Newton degree of (*)

$$\deg_{\prec z^{\gamma}} P := \operatorname{val} N_{P_{\times z^{\gamma}}}$$

$$P(y) = 0$$
 $(y < z^{-2}).$
 $\deg_{< z^{-2}} P = \operatorname{val}(5Y^3 + Y^2) = 2$

$$P(y) = 0 (y < z^{\gamma}).$$

Newton degree of (*)

$$\deg_{\prec z^{\gamma}} P := \operatorname{val} N_{P_{\times z^{\gamma}}} \\ = \max_{z^{\nu} \prec z^{\gamma}} \deg N_{P_{\times z^{\nu}}}$$

$$P(y) = 0$$
 $(y < z^{-2}).$
 $\deg_{< z^{-2}} P = \operatorname{val}(5Y^3 + Y^2)$
 $= \deg Y^2 = 2$

$$P(y) = 0 (y < z^{\gamma}).$$

Newton degree of (*)

$$\deg_{\prec z^{\gamma}} P := \operatorname{val} N_{P_{\times z^{\gamma}}} \\ = \max_{z^{\nu} \prec z^{\gamma}} \deg N_{P_{\times z^{\nu}}}$$

$$P(y) = 0$$
 $(y < z^{-2}).$
 $\deg_{< z^{-2}} P = \operatorname{val}(5Y^3 + Y^2)$
 $= \deg Y^2 = 2$

$$P(y) = 0$$
 $(y < z^{\gamma}).$ (\star)

Newton degree of (\star) (if $\operatorname{val}_{Y} P < \deg_{< z^{\gamma}} P$)

 $\deg_{< z^{\gamma}} P := \operatorname{val} N_{P_{\times z^{\gamma}}}$
 $= \max_{z^{\nu} < z^{\gamma}} \deg N_{P_{\times z^{\nu}}}$

 $\max_{\text{starting monomial } z^{\nu} \prec z^{\gamma}} \deg N_{P_{\times z^{\nu}}}$

$$P(y) = 0$$
 $(y < z^{-2}).$
 $\deg_{< z^{-2}} P = \operatorname{val}(5Y^3 + Y^2)$
 $= \deg Y^2$
 $= \deg (Y^2 + 2Y) = 2$

$$P(y) = 0$$
 $(y < z^{\gamma}).$ (\star)
Newton degree of (\star) (if $\operatorname{val}_{Y} P < \deg_{< z^{\gamma}} P$)

$$\deg_{\prec z^{\gamma}} P := \operatorname{val} N_{P_{\times z^{\gamma}}}$$

$$= \max_{z^{\nu} \prec z^{\gamma}} \deg N_{P_{\times z^{\nu}}}$$

$$= \max_{\text{starting monomial } z^{\nu} \prec z^{\gamma}} \deg N_{P_{\times z^{\nu}}}$$

$$P(y) = 0$$
 $(y < z^{-2}).$
 $\deg_{< z^{-2}} P = \operatorname{val}(5Y^3 + Y^2)$
 $= \deg Y^2$
 $= \deg (Y^2 + 2Y) = 2$

Additive conjugation

Given $P \in K[[z^{\Gamma}]][Y]$ and $\varphi \in K[[z^{\Gamma}]]$, the **additive conjugate** of P by φ is

$$P_{+\varphi}(y) := P(\varphi + y)$$

Let $N \in K[Y]^{\neq 0}$ and let $c \in K$. Then

val N_{+c} = multiplicity of c as a root of N

Let $c_1, \ldots, c_\ell \in K$ be the roots of N. Since K is algebraically closed, we have

$$\deg N = \operatorname{val} N_{+c_1} + \dots + \operatorname{val} N_{+c_\ell}.$$

Consider an equation P(y) = 0, $y < z^{\gamma}$ of Newton degree d:

$$d = \deg_{\langle z^{\gamma}} P.$$

Consider an equation P(y) = 0, $y < z^{\gamma}$ of Newton degree d:

$$d = \deg_{\langle z^{\gamma}} P.$$

If $\operatorname{val}_Y P = d$, then y = 0 is a solution of multiplicity d.

Consider an equation P(y) = 0, $y < z^{\gamma}$ of Newton degree d:

$$d = \deg_{\langle z^{\gamma}} P.$$

Assume that $\operatorname{val}_Y P < d$ and let z^{ν} be the largest starting monomial. We have

$$d = \deg N, \qquad N := N_{P_{\times z^{\nu}}}.$$

Consider an equation P(y) = 0, $y < z^{\gamma}$ of Newton degree d:

$$d = \deg_{\langle z^{\gamma}} P.$$

Assume that $\operatorname{val}_Y P < d$ and let z^{ν} be the largest starting monomial. We have

$$d = \deg N$$
, $N := N_{P_{\times z}}$.

Let $c_1, \ldots, c_\ell \in K$ be the roots of N. Then

$$d = \deg N = \operatorname{val} N_{+c_1} + \dots + \operatorname{val} N_{+c_\ell}.$$

Consider an equation P(y) = 0, $y < z^{\gamma}$ of Newton degree d:

$$d = \deg_{\langle z^{\gamma}} P.$$

Assume that $\operatorname{val}_Y P < d$ and let z^{ν} be the largest starting monomial. We have

$$d = \deg N, \qquad N := N_{P_{\times z^{\nu}}}.$$

Let $c_1, \ldots, c_\ell \in K$ be the roots of N. Then

$$d = \deg N = \operatorname{val} N_{+c_1} + \cdots + \operatorname{val} N_{+c_\ell}.$$

For any $\alpha \in K$, we have $P_{\times z^{\nu}, +\alpha} = P_{+\alpha z^{\nu}, \times z^{\nu}}$ and $N_{P_{+\alpha}} = N_{P_{+\alpha}}$, whence

$$\operatorname{val} N_{+c_i} = \operatorname{val} N_{P_{+c_i z^{\nu}, \times z^{\nu}}} = \operatorname{deg}_{\prec z^{\nu}} P_{+c_i z^{\nu}}.$$

Consider an equation P(y) = 0, $y < z^{\gamma}$ of Newton degree d:

$$d = \deg_{\langle z^{\gamma}} P$$
.

Assume that $\operatorname{val}_Y P < d$ and let z^{ν} be the largest starting monomial. We have

$$d = \deg N, \qquad N \coloneqq N_{P_{\times z}}.$$

Let $c_1, \ldots, c_\ell \in K$ be the roots of N. Then

$$d = \deg N = \operatorname{val} N_{+c_1} + \cdots + \operatorname{val} N_{+c_\ell}.$$

For any $\alpha \in K$, we have $P_{\times z^{\nu}, +\alpha} = P_{+\alpha z^{\nu}, \times z^{\nu}}$ and $N_{P_{+\alpha}} = N_{P, +\alpha}$, whence

$$\operatorname{val} N_{+c_i} = \operatorname{val} N_{P_{+c_i z^{\nu} \times z^{\nu}}} = \operatorname{deg}_{\prec z^{\nu}} P_{+c_i z^{\nu}}.$$

Hence

$$d = \deg_{\langle z^{\nu}} P_{+c_1 z^{\nu}} + \cdots + \deg_{\langle z^{\nu}} P_{+c_\ell z^{\nu}}.$$

Refinements revisited — conclusion

Conservation of Newton degree

Consider an asymptotic algebraic equation

$$P(y) = 0 (y < z^{\gamma}),$$

with $\operatorname{val}_Y P < \deg_{\prec z^{\gamma}} P$ and let z^{ν} be the largest starting monomial. Let c_1, \ldots, c_{ℓ} be the roots of $N := N_{P_{\times z^{\nu}}}$, so that each c_i determines a refined equation

$$P_{+c_i z^{\nu}}(\tilde{y}) = 0 \qquad (\tilde{y} \prec z^{\nu}).$$

If K is algebraically closed, then

$$\deg_{\prec z^{\gamma}} P = \deg_{\prec z^{\nu}} P_{+c_1 z^{\nu}} + \cdots + \deg_{\prec z^{\nu}} P_{+c_\ell z^{\nu}}.$$

Definition

The equation

$$P(y) = 0 \qquad (y < z^{\gamma})$$

is quasi-linear if $\deg_{\langle z^{\gamma}} P = 1$.

Consider a quasi-linear equation

$$P(y) = 0 \qquad (y < z^{\gamma})$$

Consider a quasi-linear equation

$$P(y) = 0 \qquad (y < z^{\gamma})$$

Without loss of generality, we may arrange that

$$val N_{\times z^{\gamma}} = \deg N_{\times z^{\gamma}} = 1.$$

Consider a quasi-linear equation

$$P(y) = 0 \qquad (y < z^{\gamma})$$

Consider a quasi-linear equation

$$P(y) = 0 \qquad (y < z^{\gamma})$$

Let

$$y := z^{\gamma} u$$

$$Q := P_{\times z^{\gamma}}.$$

Then (*) is equivalent to

$$Q(u) = 0 \qquad (u < 1)$$

We have $\deg_{<1} Q = \operatorname{val} N_O = \deg N_O = 1$.

Consider a quasi-linear equation

$$P(y) = 0 \qquad (y < z^{\gamma})$$

Let

$$y := z^{\gamma} u$$

$$Q := P_{\times z^{\gamma}}.$$

Then (\star) is equivalent to

$$Q(u) = 0 \qquad (u < 1)$$

We have $\deg_{<1} Q = \operatorname{val} N_Q = \deg N_Q = 1$.

Consider a quasi-linear equation

$$P(y) = 0 \qquad (y < z^{\gamma})$$

Let

$$y := z^{\gamma} u$$

$$Q := P_{\times z^{\gamma}}$$

$$R := \mathfrak{d}_{Q}^{-1} Q.$$

Then (\star) is equivalent to

$$R(u) = 0 \qquad (u < 1)$$

We have $\deg_{<1} R = \operatorname{val} N_R = \deg N_R = 1$ and $\mathfrak{d}_R = 1$.

Consider a quasi-linear equation

$$P(y) = 0 \qquad (y < z^{\gamma})$$

Let

$$y := z^{\gamma} u$$

$$Q := P_{\times z^{\gamma}}$$

$$R := \mathfrak{d}_{Q}^{-1} Q.$$

Then (\star) is equivalent to

$$R(u) = 0 \qquad (u < 1)$$

We have $\deg_{<1} R = \operatorname{val} N_R = \deg N_R = 1$ and $\mathfrak{d}_R = 1$.

The polynomial R is in **Hensel position**.

Consider a quasi-linear equation

$$P(y) = 0 \qquad (y < z^{\gamma})$$

Let

$$y := z^{\gamma} u$$

$$Q := P_{\times z^{\gamma}}$$

$$R := \mathfrak{d}_{Q}^{-1} Q$$

$$S := N_{R,1}^{-1} R.$$

Then (\star) is equivalent to

$$S(u) = 0 \qquad (u < 1)$$

We have val $N_S = \deg N_S = 1$, $\mathfrak{d}_S = 1$, and $N_{S,1} = 1$.

Consider a quasi-linear equation

$$P(y) = 0 \qquad (y < z^{\gamma})$$

Let

$$y := z^{\gamma} u$$

$$Q := P_{\times z^{\gamma}}$$

$$R := \mathfrak{d}_{Q}^{-1} Q$$

$$S := N_{R,1}^{-1} R$$

$$T := Y - S.$$

Then (*) is equivalent to

$$u = T(u) \qquad (u < 1)$$

We have T < 1. $u = -3z + 2zu^3 + O(z^2)$

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then

$$y = P(y) \qquad (y < 1)$$

has a unique solution $y \in K[[z^{\Gamma}]]$.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then

$$y = P(y) \qquad (y < 1)$$

has a unique solution $y \in K[[z^{\Gamma}]]$.

Uniqueness proof. Clear from the following lemma.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then

$$y = P(y) \qquad (y < 1)$$

has a unique solution $y \in K[[z^{\Gamma}]]$.

Uniqueness proof. Clear from the following lemma.

Lemma

Given $\varphi, \varepsilon < 1$ in $K[[z^{\gamma}]]$, we have

$$P(\varphi + \varepsilon) - P(\varphi) < \varepsilon$$
.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then

$$y = P(y) \qquad (y < 1)$$

has a unique solution $y \in K[[z^{\Gamma}]]$.

Uniqueness proof. Clear from the following lemma.

Lemma

Given $\varphi, \varepsilon < 1$ in $K[[z^{\gamma}]]$, we have

$$P(\varphi + \varepsilon) - P(\varphi) < \varepsilon$$
.

$$P(\varphi + \varepsilon) - P(\varphi) = P'(\varphi)\varepsilon + \frac{1}{2}P''(\varphi)\varepsilon^2 + \cdots < \varepsilon.$$

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then

$$y = P(y) \qquad (y < 1)$$

has a unique solution $y \in K[[z^{\Gamma}]]$.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then

$$y = P(y) \qquad (y < 1)$$

has a unique solution $y \in K[[z^{\Gamma}]]$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\deg P})^*$.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then

$$y = P(y) \qquad (y < 1)$$

has a unique solution $y \in K[[z^{\Gamma}]]$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then

$$y = P(y) \qquad (y < 1)$$

has a unique solution $y \in K[[z^{\Gamma}]]$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$. We proceed by transfinite induction.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then y = P(y) has a unique solution in $K[[z^{\Gamma}]]^{<1}$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$. We proceed by transfinite induction.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then y = P(y) has a unique solution in $K[[z^{\Gamma}]]^{<1}$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\deg P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geq n} - P(y_{\geq n}) < n$ for all $n \in \mathfrak{S}$ with $n \geq m$.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then y = P(y) has a unique solution in $K[[z^{\Gamma}]]^{<1}$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\deg P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant n} - P(y_{\geqslant n}) < n$ for all $n \in \mathfrak{S}$ with $n \geqslant m$.

We claim that $y_{>m} := \sum_{n>m} y_n n$ satisfies $y_{>m} - P(y_{>m}) \leq m$.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then y = P(y) has a unique solution in $K[[z^{\Gamma}]]^{<1}$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant n} - P(y_{\geqslant n}) < n$ for all $n \in \mathfrak{S}$ with $n \geqslant m$.

We claim that $y_{>m} := \sum_{n>m} y_n n$ satisfies $y_{>m} - P(y_{>m}) \leq m$.

Note that supp $y_{>m} \subseteq \mathfrak{S}$ and supp $(y_{>m} - P(y_{>m})) \subseteq \mathfrak{S}$.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then y = P(y) has a unique solution in $K[[z^{\Gamma}]]^{<1}$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant n} - P(y_{\geqslant n}) < n$ for all $n \in \mathfrak{S}$ with $n \geqslant m$.

We claim that $y_{>m} := \sum_{n>m} y_n n$ satisfies $y_{>m} - P(y_{>m}) \leq m$.

Note that supp $y_{>m} \subseteq \mathfrak{S}$ and supp $(y_{>m} - P(y_{>m})) \subseteq \mathfrak{S}$.

Given $\mathfrak{n} \in \mathfrak{S}$ with $\mathfrak{n} > \mathfrak{m}$, we have $y_{>\mathfrak{m}} - P(y_{>\mathfrak{m}}) = y_{\geqslant \mathfrak{n}} - P(y_{\geqslant \mathfrak{n}}) + o(\mathfrak{n}) < \mathfrak{n}$.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then y = P(y) has a unique solution in $K[[z^{\Gamma}]]^{<1}$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geq n} - P(y_{\geq n}) < n$ for all $n \in \mathfrak{S}$ with $n \geq m$.

Then $y_{>m} := \sum_{n>m} y_n n$ satisfies $y_{>m} - P(y_{>m}) \leq m$.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then y = P(y) has a unique solution in $K[[z^{\Gamma}]]^{<1}$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geq n} - P(y_{\geq n}) < n$ for all $n \in \mathfrak{S}$ with $n \geq m$.

Then $y_{>m} := \sum_{n>m} y_n n$ satisfies $y_{>m} - P(y_{>m}) \leq m$.

Take $y_{\mathfrak{m}} := P(y_{>\mathfrak{m}})_{\mathfrak{m}}$.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then y = P(y) has a unique solution in $K[[z^{\Gamma}]]^{<1}$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\deg P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant n} - P(y_{\geqslant n}) < n$ for all $n \in \mathfrak{S}$ with $n \geqslant m$.

Then $y_{>m} := \sum_{n>m} y_n n$ satisfies $y_{>m} - P(y_{>m}) \leq m$.

Take $y_{\mathfrak{m}} := P(y_{>\mathfrak{m}})_{\mathfrak{m}}$.

Then $y_{\geqslant m} = y_{>m} + y_m m$, whence $P(y_{\geqslant m}) = P(y_{>m}) + o(m)$.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then y = P(y) has a unique solution in $K[[z^{\Gamma}]]^{<1}$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\deg P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant n} - P(y_{\geqslant n}) < n$ for all $n \in \mathfrak{S}$ with $n \geqslant m$.

Then $y_{>m} := \sum_{n>m} y_n n$ satisfies $y_{>m} - P(y_{>m}) \leq m$.

Take $y_{\mathfrak{m}} := P(y_{>\mathfrak{m}})_{\mathfrak{m}}$.

Then $y_{\geqslant m} = y_{>m} + y_m m$, whence $P(y_{\geqslant m}) = P(y_{>m}) + o(m)$.

Hence $y_{\geq m} - P(y_{\geq m}) = y_{>m} - P(y_{>m}) + y_m \mathfrak{m} + o(\mathfrak{m}) \leq \mathfrak{m}$.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then y = P(y) has a unique solution in $K[[z^{\Gamma}]]^{<1}$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\deg P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant n} - P(y_{\geqslant n}) < n$ for all $n \in \mathfrak{S}$ with $n \geqslant m$.

Then $y_{>m} := \sum_{n>m} y_n n$ satisfies $y_{>m} - P(y_{>m}) \leq m$.

Take $y_{\mathfrak{m}} := P(y_{>\mathfrak{m}})_{\mathfrak{m}}$.

Then $y_{\geqslant m} = y_{>m} + y_m m$, whence $P(y_{\geqslant m}) = P(y_{>m}) + o(m)$.

Hence $y_{\geqslant m} - P(y_{\geqslant m}) = y_{>m} - P(y_{>m}) + y_m m + o(m) \leqslant m$.

Hence $y_{\geqslant m} - P(y_{\geqslant m}) = (y_{\geqslant m} - P(y_{\geqslant m}))_m \mathfrak{m} + o(\mathfrak{m})$

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then y = P(y) has a unique solution in $K[[z^{\Gamma}]]^{<1}$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\deg P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant n} - P(y_{\geqslant n}) < n$ for all $n \in \mathfrak{S}$ with $n \geqslant m$.

Then $y_{>m} := \sum_{n>m} y_n n$ satisfies $y_{>m} - P(y_{>m}) \leq m$.

Take $y_{\mathfrak{m}} := P(y_{>\mathfrak{m}})_{\mathfrak{m}}$.

Then $y_{\geqslant m} = y_{>m} + y_m m$, whence $P(y_{\geqslant m}) = P(y_{>m}) + o(m)$.

Hence $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) = y_{>\mathfrak{m}} - P(y_{>\mathfrak{m}}) + y_{\mathfrak{m}} \mathfrak{m} + o(\mathfrak{m}) \leqslant \mathfrak{m}$.

Hence $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) = (y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}))_{\mathfrak{m}} \mathfrak{m} + o(\mathfrak{m}) = (y_{\mathfrak{m}} - P(y_{> \mathfrak{m}})_{\mathfrak{m}}) \mathfrak{m} + o(\mathfrak{m})$

Theorem

Let $P \in K[[z^{\Gamma}]][Y]$ be such that P < 1. Then y = P(y) has a unique solution in $K[[z^{\Gamma}]]^{<1}$.

Existence proof. Let $\mathfrak{S} := (\operatorname{supp} P)^* = (\operatorname{supp} P_0 \cup \cdots \cup \operatorname{supp} P_{\deg P})^*$.

For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}} := \sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) < \mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant n} - P(y_{\geqslant n}) < n$ for all $n \in \mathfrak{S}$ with $n \geqslant m$.

Then $y_{>m} := \sum_{n>m} y_n n$ satisfies $y_{>m} - P(y_{>m}) \leq m$.

Take $y_{\mathfrak{m}} := P(y_{>\mathfrak{m}})_{\mathfrak{m}}$.

Then $y_{\geqslant m} = y_{>m} + y_m m$, whence $P(y_{\geqslant m}) = P(y_{>m}) + o(m)$.

Hence $y_{\geqslant m} - P(y_{\geqslant m}) = y_{>m} - P(y_{>m}) + y_m m + o(m) \leqslant m$.

Hence $y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}) = (y_{\geqslant \mathfrak{m}} - P(y_{\geqslant \mathfrak{m}}))_{\mathfrak{m}} \mathfrak{m} + o(\mathfrak{m}) = (y_{\mathfrak{m}} - P(y_{> \mathfrak{m}})_{\mathfrak{m}}) \mathfrak{m} + o(\mathfrak{m}) < \mathfrak{m}.$

Theorem

Let \mathfrak{M} be a monomial monoid and let $P \in K[[\mathfrak{M}]][Y]$ be such that P < 1 (i.e. supp P < 1).

Then y = P(y) has a unique solution in $K[[\mathfrak{M}]]^{<1}$.

Theorem

Let \mathfrak{M} be a monomial monoid and let $P \in K[[\mathfrak{M}]][Y]$ be such that P < 1 (i.e. supp P < 1).

Then y = P(y) has a unique solution in $K[[\mathfrak{M}]]^{<1}$.

Existence proof. Let $\mathfrak{S} = \text{supp } P$ and let \mathfrak{S}^{\top} be the set of finite \mathfrak{S} -labeled trees.

Theorem

Let \mathfrak{M} be a monomial monoid and let $P \in K[[\mathfrak{M}]][Y]$ be such that P < 1 (i.e. supp P < 1).

Then y = P(y) has a unique solution in $K[[\mathfrak{M}]]^{<1}$.

Existence proof. Let $\mathfrak{S} = \text{supp } P$ and let \mathfrak{S}^{\top} be the set of finite \mathfrak{S} -labeled trees.

We admit Kruskal's theorem: the set \mathfrak{S}^{\top} is well-based for some natural \leq .

Theorem

Let \mathfrak{M} be a monomial monoid and let $P \in K[[\mathfrak{M}]][Y]$ be such that P < 1 (i.e. supp P < 1). Then y = P(y) has a unique solution in $K[[\mathfrak{M}]]^{<1}$.

Existence proof. Let $\mathfrak{S} = \text{supp } P$ and let \mathfrak{S}^{\top} be the set of finite \mathfrak{S} -labeled trees.

We admit Kruskal's theorem: the set \mathfrak{S}^{\top} is well-based for some natural \leq .

For each $T \in \mathfrak{S}^{\top}$, we recursively define a term τ_T by

$$T = \mathfrak{m} \Longrightarrow \tau_T := P_{k,\mathfrak{m}} \mathfrak{m} \tau_{T_1} \cdots \tau_{T_k}.$$

Theorem

Let \mathfrak{M} be a monomial monoid and let $P \in K[[\mathfrak{M}]][Y]$ be such that P < 1 (i.e. supp P < 1). Then y = P(y) has a unique solution in $K[[\mathfrak{M}]]^{<1}$.

Existence proof. Let $\mathfrak{S} = \text{supp } P$ and let \mathfrak{S}^{\top} be the set of finite \mathfrak{S} -labeled trees.

We admit Kruskal's theorem: the set \mathfrak{S}^{\top} is well-based for some natural \leq .

For each $T \in \mathfrak{S}^{\top}$, we recursively define a term τ_T by

$$T = \mathfrak{m} \Longrightarrow \tau_T := P_{k,\mathfrak{m}} \mathfrak{m} \tau_{T_1} \cdots \tau_{T_k}.$$

The map $T \mapsto \tau_T$ is increasing, so $(\tau_T)_{T \in \mathfrak{S}^{\top}}$ is well-based.

Theorem

Let \mathfrak{M} be a monomial monoid and let $P \in K[[\mathfrak{M}]][Y]$ be such that P < 1 (i.e. supp P < 1). Then y = P(y) has a unique solution in $K[[\mathfrak{M}]]^{<1}$.

Existence proof. Let $\mathfrak{S} = \text{supp } P$ and let \mathfrak{S}^{\top} be the set of finite \mathfrak{S} -labeled trees.

We admit Kruskal's theorem: the set \mathfrak{S}^{\top} is well-based for some natural \leq .

For each $T \in \mathfrak{S}^{\top}$, we recursively define a term τ_T by

$$T = \mathfrak{m} \Longrightarrow \tau_T := P_{k,\mathfrak{m}} \mathfrak{m} \tau_{T_1} \cdots \tau_{T_k}.$$

The map $T \mapsto \tau_T$ is increasing, so $(\tau_T)_{T \in \mathfrak{S}^{\top}}$ is well-based.

Now
$$y = \sum_{T \in \mathfrak{S}^{\top}} \tau_T$$
 satisfies $y = P(y)$ and $y < 1$.

Existence proof. Let $\mathfrak{S} = \text{supp } P$ and let \mathfrak{S}^{\top} be the set of finite \mathfrak{S} -labeled trees.

We admit Kruskal's theorem: the set \mathfrak{S}^{\top} is well-based for some natural \leq .

For each $T \in \mathfrak{S}^{\top}$, we recursively define a term τ_T by

$$T = \mathfrak{m} \Longrightarrow \tau_T := P_{k,\mathfrak{m}} \mathfrak{m} \tau_{T_1} \cdots \tau_{T_k}.$$

The map $T \mapsto \tau_T$ is increasing, so $(\tau_T)_{T \in \mathfrak{S}^{\top}}$ is well-based.

Now $y = \sum_{T \in \mathfrak{S}^T} \tau_T$ satisfies y = P(y) and y < 1. Indeed:

$$P(y) = \sum_{k \in \mathbb{N}} \sum_{\mathfrak{m} \in \mathfrak{S}} P_{k,\mathfrak{m}} \mathfrak{m} y^k = \sum_{k \in \mathbb{N}} \sum_{\mathfrak{m} \in \mathfrak{S}} \sum_{T_1 \in \mathfrak{S}^{\top}} \cdots \sum_{T_k \in \mathfrak{S}^{\top}} P_{k,\mathfrak{m}} \mathfrak{m} \tau_{T_1} \cdots \tau_{T_k}$$
$$= \sum_{T \in \mathfrak{S}^{\top}} \tau_T = y.$$

Consider the equation

$$\left(y - \frac{1}{1-z}\right)^2 = z^{1000}.$$

Consider the equation

$$\left(y - \frac{1}{1 - z}\right)^2 = z^{1000}.$$

There is a unique starting term $y \sim 1$.

Consider the equation

$$\left(y - \frac{1}{1-z}\right)^2 = z^{1000}.$$

There is a unique starting term $y \sim 1$. After

$$y = 1 + \tilde{y} \qquad (\tilde{y} < 1),$$

we obtain

$$(\tilde{y} - \frac{z}{1-z})^2 = z^{1000}$$
 $(\tilde{y} < 1)$.

Consider the equation

$$\left(y - \frac{1}{1-z}\right)^2 = z^{1000}.$$

There is a unique starting term $y \sim 1$. After

$$y = 1 + \tilde{y} \qquad (\tilde{y} < 1),$$

we obtain

$$(\tilde{y} - \frac{z}{1-z})^2 = z^{1000}$$
 $(\tilde{y} < 1)$.

There is a unique starting term $\tilde{y} \sim z$.

Almost multiple solutions

Consider the equation

$$(y-\frac{1}{1-z})^2 = z^{1000}$$
.

There is a unique starting term $y \sim 1$. After

$$y = 1 + \tilde{y} \qquad (\tilde{y} < 1),$$

we obtain

$$(\tilde{y} - \frac{z}{1-z})^2 = z^{1000}$$
 $(\tilde{y} < 1)$.

There is a unique starting term $\tilde{y} \sim z$. After

$$\tilde{y} = z + \tilde{\tilde{y}} \qquad (\tilde{\tilde{y}} < z),$$

we obtain

$$\left(\tilde{\tilde{y}} - \frac{z^2}{1-z}\right)^2 = z^{1000} \qquad (\tilde{\tilde{y}} < z)$$

$$P(y) = 0 \qquad (y < z^{\gamma})$$

with unique *d*-fold starting term $y \sim c z^{\nu}$.

Then $N_{P_{\times z^{\nu}}} = \alpha (Y - c)^d$, where $d = \deg_{\prec z^{\gamma}} P$.

$$P(y) = 0 \qquad (y < z^{\gamma})$$

with unique *d*-fold starting term $y \sim c z^{\nu}$.

Then $N_{P_{\times z^{\nu}}} = (Y - c)^d$, where $d = \deg_{\langle z^{\gamma}} P$.

Note: char $K = 0 \Longrightarrow N_{P_{\times z^{\nu}}, d-1} = -dc \neq 0 \Longrightarrow P_{d-1} \neq 0$.

$$P(y) = 0 \qquad (y < z^{\gamma})$$

with unique *d*-fold starting term $y \sim c z^{\nu}$.

Note: char $K = 0 \Longrightarrow P_{d-1} \neq 0$.

 φ : the unique solution of the quasi-linear equation

$$Q(\varphi) := \frac{\partial^{d-1} P}{\partial V^{d-1}}(\varphi) \qquad (\varphi < z^{\gamma})$$

$$P(y) = 0 \qquad (y < z^{\gamma})$$

with unique *d*-fold starting term $y \sim c z^{\nu}$.

Note: char $K = 0 \Longrightarrow P_{d-1} \neq 0$.

 φ : the unique solution of the quasi-linear equation

$$Q(\varphi) := \frac{\partial^{d-1} P}{\partial Y^{d-1}}(\varphi) \qquad (\varphi < z^{\gamma})$$

Consider the refinement

$$y = \varphi + \tilde{y} \qquad (\tilde{y} < z^{\nu})$$

instead of

$$y = cz^{\nu} + \tilde{y} \qquad (\tilde{y} < z^{\nu}).$$

$$P(y) = 0 \qquad (y < z^{\gamma})$$

with unique *d*-fold starting term $y \sim c z^{\nu}$.

Note: char $K = 0 \Longrightarrow P_{d-1} \neq 0$.

 φ : the unique solution of the quasi-linear equation

$$Q(\varphi) := \frac{\partial^{d-1} P}{\partial Y^{d-1}}(\varphi) \qquad (\varphi < z^{\gamma})$$

Consider the refinement

$$y = \varphi + \tilde{y} \qquad (\tilde{y} < z^{\nu})$$

instead of

$$y = cz^{\nu} + \tilde{y} \qquad (\tilde{y} < z^{\nu}).$$

$$P(y) = 0 \qquad (y < z^{\gamma})$$

with unique *d*-fold starting term $y \sim c z^{\nu}$.

Note: char $K = 0 \Longrightarrow P_{d-1} \neq 0$.

 φ : the unique solution of the quasi-linear equation

$$Q(\varphi) := \frac{\partial^{d-1} P}{\partial Y^{d-1}}(\varphi) \qquad (\varphi < z^{\gamma})$$

Consider the refinement

$$y = \varphi + \tilde{y} \qquad (\tilde{y} < z^{\nu})$$

Then

$$P_{+\varphi}(\tilde{y}) = P(\varphi) + P'(\varphi)\tilde{y} + \cdots = 0 \qquad (\tilde{y} < z^{\nu}),$$

whence $P_{+\varphi,d-1} = 0$

Algorithm solve (P, z^{γ})

INPUT: $P \in K[[z^{\Gamma}]][Y]$ and $z^{\gamma} \in z^{\Gamma}$ with $d := \deg_{\langle z^{\gamma}} P > 0$ and char K = 0

OUTPUT: solutions $y_1, ..., y_d \in K[[z^{\Gamma}]]$ of $P(y) = 0, y < z^{\gamma}$, counted with multiplicities

Algorithm solve (P, z^{γ})

INPUT: $P \in K[[z^{\Gamma}]][Y]$ and $z^{\gamma} \in z^{\Gamma}$ with $d := \deg_{\langle z^{\gamma}} P > 0$ and char K = 0OUTPUT: solutions $y_1, \dots, y_d \in K[[z^{\Gamma}]]$ of $P(y) = 0, y < z^{\gamma}$, counted with multiplicities

• If $\operatorname{val}_Y P = d$, then return $0, \stackrel{d \times}{\dots}, 0$.

Algorithm solve (P, z^{γ})

- If $\operatorname{val}_Y P = d$, then return $0, \stackrel{d \times}{\dots}, 0$.
- If d = 1, then P(y) = 0, $y < z^{\gamma}$ is quasi-linear; return its unique solution

Algorithm solve (P, z^{γ})

- If $\operatorname{val}_Y P = d$, then return $0, \stackrel{d \times}{\dots}, 0$.
- If d = 1, then P(y) = 0, $y < z^{\gamma}$ is quasi-linear; return its unique solution
- Let z^{ν} be the largest starting monomial and let c_1, \ldots, c_{ℓ} be the roots of $N_{P_{xz}^{\gamma}}$

Algorithm solve (P, z^{γ})

- If $\operatorname{val}_Y P = d$, then return $0, \stackrel{d \times}{\dots}, 0$.
- If d = 1, then P(y) = 0, $y < z^{\gamma}$ is quasi-linear; return its unique solution
- Let z^{ν} be the largest starting monomial and let c_1, \ldots, c_{ℓ} be the roots of $N_{P_{\times z^{\gamma}}}$
- If $\ell = 1$, then
 - $\circ \text{ Compute } \varphi := \text{solve} \left(\frac{\partial^{d-1} P}{\partial Y^{d-1}}, Z^{\gamma} \right)$

Algorithm solve (P, z^{γ})

- If $\operatorname{val}_Y P = d$, then return $0, \stackrel{d \times}{\dots}, 0$.
- If d = 1, then P(y) = 0, $y < z^{\gamma}$ is quasi-linear; return its unique solution
- Let z^{ν} be the largest starting monomial and let c_1, \ldots, c_{ℓ} be the roots of $N_{P_{xz}^{\gamma}}$
- If $\ell = 1$, then
 - $\circ \text{ Compute } \varphi := \text{solve} \left(\frac{\partial^{d-1} P}{\partial Y^{d-1}}, Z^{\gamma} \right)$
 - \circ Compute $\tilde{y}_1, \ldots, \tilde{y}_d := \operatorname{solve}(P_{+\varphi}, z^{\nu})$

Algorithm solve (P, z^{γ})

- If $\operatorname{val}_Y P = d$, then return $0, \stackrel{d \times}{\dots}, 0$.
- If d = 1, then P(y) = 0, $y < z^{\gamma}$ is quasi-linear; return its unique solution
- Let z^{ν} be the largest starting monomial and let c_1, \ldots, c_{ℓ} be the roots of $N_{P_{\times z^{\gamma}}}$
- If $\ell = 1$, then
 - $\circ \text{ Compute } \varphi := \text{solve} \left(\frac{\partial^{d-1} P}{\partial Y^{d-1}}, Z^{\gamma} \right)$
 - \circ Compute $\tilde{y}_1, \ldots, \tilde{y}_d := \operatorname{solve}(P_{+\varphi}, z^{\nu})$
 - Return $\varphi + \tilde{y}_1, \dots, \varphi + \tilde{y}_d$

Algorithm solve (P, z^{γ})

- If $\operatorname{val}_Y P = d$, then return $0, \stackrel{d \times}{\dots}, 0$.
- If d = 1, then P(y) = 0, $y < z^{\gamma}$ is quasi-linear; return its unique solution
- Let z^{ν} be the largest starting monomial and let c_1, \ldots, c_{ℓ} be the roots of $N_{P_{xz}^{\gamma}}$
- If $\ell = 1$, then
 - Compute $\varphi := \text{solve}\left(\frac{\partial^{d-1} P}{\partial Y^{d-1}}, z^{\gamma}\right)$
 - \circ Compute $\tilde{y}_1, \dots, \tilde{y}_d := \text{solve}(P_{+\varphi}, z^{\nu})$
 - Return $\varphi + \tilde{y}_1, \dots, \varphi + \tilde{y}_d$
- For $i = 1, \ldots, \ell$, compute $y_{i,1}, \ldots, y_{i,d_i} := \operatorname{solve}(P_{+c,z^{\nu}}, z^{\nu})$

Algorithm solve (P, z^{γ})

- If $\operatorname{val}_Y P = d$, then return $0, \stackrel{d \times}{\dots}, 0$.
- If d = 1, then P(y) = 0, $y < z^{\gamma}$ is quasi-linear; return its unique solution
- Let z^{ν} be the largest starting monomial and let c_1, \ldots, c_{ℓ} be the roots of $N_{P_{xz}^{\gamma}}$
- If $\ell = 1$, then
 - $\circ \text{ Compute } \varphi := \text{solve} \left(\frac{\partial^{d-1} P}{\partial Y^{d-1}}, Z^{\gamma} \right)$
 - \circ Compute $\tilde{y}_1, \ldots, \tilde{y}_d := \text{solve}(P_{+\varphi}, z^{\nu})$
 - Return $\varphi + \tilde{y}_1, \dots, \varphi + \tilde{y}_d$
- For $i = 1, ..., \ell$, compute $y_{i,1}, ..., y_{i,d_i} := \text{solve}(P_{+c,z^{\nu}}, z^{\nu})$
- Return $y_{1,1}, \ldots, y_{1,d_1}, \ldots, y_{\ell,1}, \ldots, y_{\ell,d_\ell}$

Final theorem

Let *K* be a field of characteristic zero.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]^{\neq 0}$ and $z^{\gamma} \in z^{\Gamma}$. If K is algebraically closed and Γ divisible, then

$$P(y) = 0 \qquad (y < z^{\gamma})$$

has exactly $\deg_{\langle z^{\gamma}} P$ solutions in $K[[z^{\Gamma}]]$, when counting with multiplicities.

Final theorem

Let *K* be a field of characteristic zero.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]^{\neq 0}$ and $z^{\gamma} \in z^{\Gamma}$. If K is algebraically closed and Γ divisible, then

$$P(y) = 0 \qquad (y < z^{\gamma})$$

has exactly $\deg_{\langle z^{\gamma}} P$ solutions in $K[[z^{\Gamma}]]$, when counting with multiplicities.

Corollary

Let $P \in K[[z^{\Gamma}]][Y]^{\neq 0}$ and $z^{\gamma} \in z^{\Gamma}$. If K is algebraically closed and Γ divisible, then

$$P(y) = 0$$

has exactly deg P solutions in $K[[z^{\Gamma}]]$, when counting with multiplicities.

Final theorem

Let *K* be a field of characteristic zero.

Theorem

Let $P \in K[[z^{\Gamma}]][Y]^{\neq 0}$ and $z^{\gamma} \in z^{\Gamma}$. If K is algebraically closed and Γ divisible, then

$$P(y) = 0 \qquad (y < z^{\gamma})$$

has exactly $\deg_{\langle z^{\gamma}} P$ solutions in $K[[z^{\Gamma}]]$, when counting with multiplicities.

Corollary

Let $P \in K[[z^{\Gamma}]][Y]^{\neq 0}$ and $z^{\gamma} \in z^{\Gamma}$. If K is algebraically closed and Γ divisible, then

$$P(y) = 0$$

has exactly deg P solutions in $K[[z^{\Gamma}]]$, when counting with multiplicities.

▶ Generalizations to $K[[z^{\Gamma}]]_{\mathscr{S}}$ and $K[[z^{\Gamma}]]_{\mathscr{L}}$ instead of $K[[z^{\Gamma}]]$.