Lesson 4 — Newton polygon method
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Support types

Definition

A support type for a monomial monoid 9 is a subset ¥ (9) C P (9N) such that
T1. Every G € ¥ (ON) is well-based.

T2. If me M, then {m} € L(MN).

T13. If 6 (M) and TC G, then T F(MN).

T4. If 6,T€ £ (M), then GUT € L (MN).

T5. If 6,T€ (M), then ST:={mn:meS,neT} € FL(M).

T6. If S€ (M) and £ <1, then G*:={my---m,:my,..., m,ES} € L(N).




Support types

Definition

A support type for a monomial monoid O is a subset ¥ (90) C P (M) such that
T1. Every G € ¥ (ON) is well-based.

T2. If me M, then {m} € L(MN).

T13. If 6 (M) and TC G, then T F(MN).

T4. If 5,T€ (M), then SUT € L (MN).

T5. If 6,T€ (M), then ST:={mn:meS,neT} € FL(M).

T6. If S€ (M) and £ <1, then G*:={my---m,:my,..., m,ES} € L(N).

Let . be a map that associates a support type ' (9N) for M to any monomial monoid IN.
We say that . is a support type if:

ST. For every strictly increasing morphism @:91 — 9 and S € £ (IN),
we have p(S) € £ (N).
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P -based series 8y

& :support type,  R:coefficient ring, 91 : monomial ring

A series f € R[[90t]] is P -based if supp f € F(IN).
We denote by R[[91]] » the set of all such series.

Definition
A well-based family (f;)icon € R[[IN]] » is P-based if | J,_, supp fi€ F(M).
Then ), < Ji€ERI[OMN]]». This defines “the natural” strong summation on R[[IN]] .

Proposition

a) R[[PN]]» is a ring.
b) If R is a field and O a totally ordered group, then R[[IN]] » is a field.
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Well-based supports.
FON) = {6GCMN:6G is well-based }.
Countable supports.

F(EN) = {GCMM: G is countable, G is well-based }.
Finitely generated supports.
FON) = {6 CF*:F is finite, © is well-based }.
[(x) = 14274374 ... = 14 I8P eI ... & RI[eR],.
Intersections. Let ¥ and & be support types.
(FNIHM) = FEHNT (MN).
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Grid-based series

We say that S C 9N is grid-based if there exist finite sets § C 9 and € CIN~' with
S C §¢i

Note. By Dickson's lemma, ¢* and therefore G are well-based.

Note. If 91 is a totally ordered group, then § can be taken to be a singleton.



Grid-based series S

We say that S C 9N is grid-based if there exist finite sets § C 9 and € CIN~' with
S C §¢i

The map G: 9N — {G CIN: G is grid-based } is a support type.
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Grid-based series S

We say that S C 9N is grid-based if there exist finite sets § C 9 and € CIN~' with
S C §¢i

Proposition
The map G: 9N — {G CIN: G is grid-based } is a support type.

Lemma

If G Cm~'is grid-based, then there is a finite € C N~ with & C ¢* (whence G* C ).
Proof. Let $C 9t and & C Mt ~<! be finite with G C§ &*.

Given f € §, the set (f &*) N9~ is a final segment of § &* for ',

Let $;C 7 ~! be a finite set of generators. Note that (f&*) N~ C NG




Grid-based series S

We say that & C N is grid-based if there exist finite sets § C 9N and € CIN~! with
S C §¢.

Proposition
The map G: 9N — {G CIN: G is grid-based } is a support type.

Llemma

If & CON~!is grid-based, then there is a finite ¢ C N~ with & C ¢* (whence G* C ¢*),
Proof. Let $C 9t and & C Mt <! be finite with G C§ &*.

Given f €, the set (&) N M~ is a final segment of &~ for ',

Let $;C 2 ~! be a finite set of generators. Note that (f&*) N9~ CH; B

Now it suffices to take €:= & U ;. H;. O
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Grid-based series — continued

Proposition

The map &M — {S CM: S is grid-based } is a support type.

Remark. For any other support type .¥, we have ¥ (91) D & (91), for all 1.

We denote R[] := R[[9]]«.
Elements of R[[2)1]] are called grid-based series.
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Proposition

The map &M — {S CM: S is grid-based } is a support type.

Remark. For any other support type .¥, we have ¥ (91) D & (91), for all 1.

We denote R[] := R[[9]]«.
Elements of R[[2)1]] are called grid-based series.
& -based families are called grid-based families. Etc.
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For any f € R[[901]], there exist power series fl,..., fl e R[[zy,...,z]], monomials f4,...,{; €M
and ey, ..., e, €M~ with

f=> (ficler...,efs

1<i<I

Proposition
Assume that 90U is a totally ordered group.
For any f € R[[9)t]], there exists a Laurent series f ER((zy,...,z)) and ¢eq,..., e, €M~ with

v

f:fo(el,...,ek). (*)

Here (gzﬁ1 e zfc") o(ey,...,ex):=(go(eq,..., k) el ei"for any g €R[[zy,...,z¢]], iy,..., ik EZ.




Cartesian representations 7/27

For any f € R[[901]], there exist power series fl,..., fl e R[[zy,...,z]], monomials f4,...,{; €M
and ey, ..., e, €M~ with

f=> (ficler...,efs

1<i<I

Proposition
Assume that 90U is a totally ordered group.
For any f € R[[9)t]], there exists a Laurent series f ER((zy,...,z)) and ¢eq,..., e, €M~ with

f=Folen..., e (%)
We call () a Cartesian representation of f.




Digression — local communities

Let £ be a collection of subsets %, C R[[zy,...,z¢]] for k€N, such that

Ll.z,e &y fori=1,... k.

L2, % is an R-subalgebra of R[[z, ..., z]].

L3. For any f € B, with z,| f, we have z7' f € %;.

L4. Givenf € Byand g1, ...,k E B, we have f o(g1,...,8x) € £

L5. Given f € By with f(0,...,0)=0and (0 f/9z,4+1)(0,...,0)=1,
the unique ¢ € R[[z1, ...,z ]] with f o (z4,...,z, @) =01is in ;.
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Digression — local communities

Let £ be a collection of subsets %, C R[[zy,...,z¢]] for k€N, such that

Ll.z,e &y fori=1,...,k

L2, Fy is an R-subalgebra of R[[z1, ..., z]]-

L3. For any f € B with z,| f, we have z7* f € %;.

L4.Givenf€ Brand g,..., 8 € B, we have fo (g1, ..., € B

L5. Given f € By, with f(0,...,0)=0and (d f/9z,41)(0,...,0)=1,
the unique ¢ € R[[z1, ...,z ]] with f o (z4,...,z,, @) =01is in £

Examples.
o £i=K{{zy,...,2z¢}}, convergent power series, KC C.
o Bi=K[[zy,...,z]1"8, algebraic power series, K any field.
o Bi=K[[zy,...,2z]]9%8, d-algebraic power series, K any field with char K=0.



Digression — local communities 5/27

9t totally ordered monomial group
% local community



Digression — local communities

9t totally ordered monomial group
% local community

We define R[[90t]] ¢ to be the set of f € R[] with

f — f0(81,...,ek),

for some f € Bizt---zf and ¢y, ..., e, €M™




Digression — local communities 5/27

9t totally ordered monomial group
% local community

We define R[[90t]] ¢ to be the set of f € R[] with

v

f — fo(el,...,ek),
forsomefegékzlz---zkzand e1,..., e ML

If K is a field, then so is K[[0]] ¢ is a field. Moreover, if 901 has Q-powers, then

a) If K is algebraically closed and of characteristic zero, then so is K[[2D1]] «.
b) If K is real closed, then so is K[[9)1]] «.
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Asymptotic algebraic equations

K algebraically closed field

I' divisible totally ordered abelian group: (VyeD) (VneIN>°) (Fnel) na=1y

z'  corresponding monomial group, z* <z’ < a > B.

Our goal
Given PeK[[z']][Y]\ K[[z']] and 7y €T, compute the solutions in K[[z']] of

Py) =0, (y<z".
We may replace K[[z'] by K[[z'] ¢ or K[[z']] .
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Starting monomials 1127

ded+---+P0 = 0, (y<z7). (%)

Consider some iy € K[[z"]]*" with y < z".

Let i be an index for which Py’ is <-maximal.

If Piy/ < Py’ for all j#i, then Pyy“+ -+ - + Py~ P;y' #0.
If y satisfies (), it follows that there exists a j #7 with

Py’ =< Py ¥ Pyf,  forallk.

Setting z™:=0p, for k=0,...,d, and z":=0,, this means that there exist i # j with
v > 7, mi+iv = mi+jv < m+kv, for all k.

We call z" a starting monomial for the equation (x).
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Starting monomials z" = ?

z
1—-=z

=0

49
3¢
2¢
1
deg,
0 47
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=0

2.3, .2 3. %
S5z°y"+y +3z°y T2
Starting monomials z" = ?

3+v — V= _2

o Py=Py = z=z
But then P,y* =z"*"=2z"*>z=P,
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2.3, .2 3., <
S5z°y"+y +3z°y 1_Z_O 5/1\1"
Starting monomials z" = ? 14
o Poxply == Z:Z3+V = v=-2
Not OK, since P,y* > P, 3¢ ¢

0+2v

L POXPZyz — ZzZ=Z —— 1/:1/2
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2.3, .2 3., <
S5z°y"+y +3z°y 1_Z_O 5/1\1"
Starting monomials z" = ? 14
o Poxply == Z:Z3+V = v=-2
Not OK, since P,y* > P, 3¢ ¢

opoxpzyz — z=z0t2v =>

. 1
OK, since Pyy=z"""=2""<z=P,
1
P3y3 xz2+31/:ZB /2 <Z xPO
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522y3+y2+323y—1iz =0 5/1\1"
Starting monomials z" = ? 14
o Py=Piy = z=2"" = v=-2
Not OK, since P,y* > P, 3¢ ¢
o Py=Py* = z=z"*% => 2l
OK, since Py, Psy* < Py
o Py=P3y° = z=z*"" = v=-1
Not OK, since P,y* > P, deg,
0 1 2 3 . ?
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=0

2.3, .2 3. %
5z°Y"+y " +3z7y T2
Starting monomials z" = ?

'Poxpll/ == Z:ZB—H/ = v=-2

Not OK, since P,y* > P,

QP()szyz - Z:ZO+2V =>

OK,SincePly,P3y2<Po
oPoxP3y3 = z=z"" = y=-1

Not OK, since P,y* > P,

o Pyt=Pyy = 0=

OK, since Py, Pyy > P> y?




Newton polygons

52°y° +y*+32°y —

Starting monomials z" = ?
o V=1

o VU=—2

z
1—-=z

=0

49
3¢
2¢
1
deg,
0 47
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2.3, .2 3. %
5z°y"+y +3z°y T2
Consider the starting monomial z .
If y ~cz ", then
52°y° < z
y* ~ ¢’z
3z°y < z
zZ

1—-z
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=0

2.3, .2 3. %
5z°y"+y +3z°y T2
Consider the starting monomial z .
If y ~cz ", then

52°y° < z
y* ~ ¢’z
3z°y < z
zZ

1—-z

5z°y° +y*+3z°y — : iz = (c*=1)z+o0(z)
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52°y° +y*+32°y — =0

z
1-z
If y ~cz ", then

522y3+y2+3z3y—% = (c>’=1)z+0(2).



Starting terms 13/27

52°y° +y*+32°y — =0

z
1-z
If y ~cz ", then
5z°y° +y*+3z°y — % = (c>’=1)z+0(2).
If the right-hand side vanishes, then
c>—1 =0,

whence
c=1 VvV c=-1.
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=0

2.3, .2 3. Z
S5z°y"+y +3z°y T2
If y ~cz ", then

522y3+y2+3z3y—% = (c>?=1)z+0(2).
If the right-hand side vanishes, then

c>’—1 =0,
whence
c=1vVv c=-1.

We call z”2 and —z starting terms for the equation.
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z
522y3+y2+323y—1_z =0 Ir
If y ~cz ", then 11
2.3, .2 3., % 2
5z°y’+y~+3z°y T = (cc=1)z+o0(2). | T
If the right-hand side vanishes, then : .

c2—1 = 0.
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z
522y3+y2+323y—1_z =0 tr
If y ~cz ", then 11
2.3, .2 3 2 _ (2
5z°y’+y~+3z Yy=7—3 = (cc=1)z+o0(2). 1,3
If the right-hand side vanishes, then

c2—1 = 0.

N(c)=c?—1 is the Newton polynomial for 7",
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z
522y3+y2+323y—1_z =0 tr
If y~cz % then c#0 and 11
2.3, .2 3 Z 3, 2y, —4 —4
5z°y’+y° +3z Y73 = 5o+ )z +o0(z77). 1,3
If the right-hand side vanishes, then

5¢3+c¢% = 0.
2

N(c)=5¢’+ ¢ is the Newton polynomial for z 2.




Starting terms 13/27

522y3+y2+323y—1iz =0 tr
If y~cz % then c#0 and 11
522y3+y2+3z3y—% = (5c3+cH)z*+o(z™). 1 3
If the right-hand side vanishes, then [

5¢°+c¢* = 0.
N(c)=5¢’+ ¢ is the Newton polynomial for z 2.
—1/527% is a starting term for the equation.
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2.3, .2 3 -
Z Z — =0
522y +y* +32%y — 7 TF
The starting terms for the equation are: 1
s

* |1 3
o —7 h
o —l5z7?
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2.3, .2 3., <
5z°y"+y +3z°y 1_Z_O tr
Assume i~z and peform the change of variables $!
— ~h 17
y =z2+y 13




Refinements 1

z
522y3+y2+3z3y—1_z =0 /1\1"
Assume 1/ ~ z > and consider -1
y =zh+j =<z, 1 .3
® (

Refinement := change of variable
+
asymptotic constraint




Refinements 1427

2.3, .2 3 Z
5z°y°+y +3zy—1_z_0 I
The refinement -1
8

y = Zl/z_|_g (g<Zl/2).
yields

522g3
+(1+15227) 72
+(2z" 4182
—22 3483 =0, (f<zP).
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2.3, .2 3 Z
5z°y°+y +3zy—1_2_0 I
The refinement -1
8

y = Zl/z_|_g (g<Zl/2).
yields

522:93
+(1+152%7) 7
+(2z"7+182z*")

—22 34823 —... =0, (f<zP).
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52°y° +y*+32°y —

z
1—z — 0 I
The refinement

y = z"+§  ([J<zh).

yields
522 g3
+(14+15277)
+(2z"7+182z*")
—22 34823 —... =0, (f<zP).
Only new starting monomial: i =z ",
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52y  +y*+32°y —

z
1—z — 0 I
The refinement

y = z"+§  ([J<zh).

yields
522 g3
+(14+15277)
+(2z"7+182z*")
—22 34823 —... =0, (f<zP).
Only new starting monomial: i =z ",

Only new starting monomial: §f = 15z,
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52°y° +y*+32°y — - iz =0
Continued refinement process
y = 2247 (i <z")
j = 1/223/2+]/ (g<z/z)

yields asymptotic expansion

1 3
y ~ Z/2_|_1/ZZ/2_|_..-.
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52°y° +y*+32°y — - iz =0
Continued refinement process
y = 2247 (i <z")
j = 1/223/2+]/ (g<z/z)

yields asymptotic solution

y — Zl/z+1/zz3/2+"‘ ?




Multiplicative conjugations

P(y) = 522y3+y2+3z3y—1iz

Multiplicative conjugate by z

szl/Z(y) = P(Zl/zy)
— 5Z31/2y3+zy2+3z31/2y— 1iz
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z'" is a starting monomial for 1\ r
_E.2.3, .2 3, % _
P(y) = 5z°y°+y“+3z7y =5 = 0 [
< 1 is a starting monomial for o3 5
1
P _(y) = 52>y +zy* + 3270y — % = 0. 1
-1

deg,
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Starting terms revisited

K[[z'T[Y] C K[Y][[z']]
We define Dp € K[ Y] to be the dominant coefficient of P K[[z']][Y]7" as a series in z:
P = Dpop+0(0p).
Characterization of starting monomials

v

z" is a starting monomial for P(y) = 0 <  Dp_, is not homogeneous.

Newton polynomials
Np_,:=Dp_, is the Newton polynomial associated to z".

Characterization of starting terms

cz” is a starting term for P(y) = 0 < Np_(c) = 0. (c£0)
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Newton degree of (*)
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Example:
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deg_.-P = val(5Y°+Y?)
= deg Y* =2
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Py) =0 (y<z). (*)

Newton degree of (x) (if valy P< deg..» P)

deg..»P = valNp_,
= maxdeg Np_,
zV<z7

= max deg Np_,
starting monomial z"<z”

Example:
Py) =0 (y<z™.
deg_.-P = val(5Y°+Y?)
deg Y?
= deg(Y*+2Y) = 2
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Py) =0 (y<z). (*)

Newton degree of (x) (if valy P< deg..» P)

deg..»P = valNp_,
= maxdeg Np_,
zV<z7

= max deg Np_,
starting monomial z"<z”

Example:
Py) =0 (y<z™.
deg_.-P = val(5Y°+Y?)
deg Y?
= deg(Y*+2Y) = 2




Additive conjugation

Given PeK[[z']][Y] and ¢ € K[[z']], the additive conjugate of P by ¢ is
Poy(y) == Pp+y)

Let NeK[Y]"" and let ce K. Then

val N, = multiplicity of c as a root of N

Letcy,...,c€ K be the roots of N. Since K is algebraically closed, we have

deg N = valN,. +---+valN,,,
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Refinements revisited 7

Consider an equation P(y) =0, y<z” of Newton degree d:
d = deg,P.
Assume that valy P <d and let z" be the largest starting monomial. We have
d = degN, N := Np_,.
Letcy,...,c,€ K be the roots of N. Then
d = degN = valN,, +---+valN,,
For any « € K, we have P, s =P, «.» and Np, =Np ,,, whence

valN,, = valNp,_, , = degvPicy
Hence
d = deg<z” P+clz” +eeet deg <zV P+CgZV'



Refinements revisited — conclusion

Conservation of Newton degree
Consider an asymptotic algebraic equation

Py) =0 (y<z"),

with valy P < deg_.» P and let z" be the largest starting monomial. Let cy,...,c, be the
roots of N:=Np_,, so that each c; determines a refined equation

Pico(y) = 0 (7<2.
If K is algebraically closed, then
deg P = deg v Picpr+ - +deg ;v Picpr




Quasi-linear equations 2127

Definition .

The equation

Py) =0 (y<z")

is quasi-linear if deg_.»P=1.
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Consider a quasi-linear equation ,1\ -

Py)y =0 (y<z") (%)
Without loss of generality, we may arrange that

valN,,» = degN,,» = 1.
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Consider a quasi-linear equation

Ply) =0 (y<2z7)
Let

Y z'u
Q = Py
Then (x) is equivalent to
Q) =0 (u<T1)
We have deg_; Q=val No=deg No=1.




Quasi-linear equations 2127

Consider a quasi-linear equation

Ply) =0 (y<2z7)
Let

Y zTu
Q = Py
Then (x) is equivalent to
Q) =0 (u<T1)
We have deg_; Q=val No=deg No=1.




Quasi-linear equations 2127

Consider a quasi-linear equation T
Py) =0  (y<z") (%)

Let

y = z"u

Q = Py

R := Dél Q.
Then (x) is equivalent to

R(u) =0 (u<1)

We have deg_; R=val Ny=deg Nx=1 and oz =1.
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Consider a quasi-linear equation s

Py) =0  (y<z") (%)

r

Let
y = 2z"u
Q = sz”’
R := 0{31 Q.
Then (x) is equivalent to
R(u) =0 (u<1)
We have deg_; R=val Ny=deg Nx=1 and oz =1.

The polynomial R is in Hensel position.



Quasi-linear equations 2127

Consider a quasi-linear equation T
P(y) = 0 (y<z") (%)
Let
y ==2z"u
Q i= Py
R = 25
S = NziR.
Then (x) is equivalent to
S(u) = 0 (u<1)
We have val Ns=deg Ns=1, 0s=1, and Ng;=1.




Quasi-linear equations 2127

Consider a quasi-linear equation T
Py)y =0 (y<z") (%)
Let
y = z"u
Q = sz'y
R = 25'Q
S := NgiR ? o o
T = Y— S 3 2
Then (x) is equivalent to | d
1 €8y
u = T(u) (u<1) Py >

Wehave T<1. u=-3z+2zu’+0(z?)
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Fixed point theorem

Let P K[[z'1][Y] be such that P< 1. Then
y = Py) (<D

has a unique solution y € K[[z'].

Uniqueness proof. Clear from the following lemma.

Given ¢, e <1 in K[[z"]], we have

P(p+¢e)—P(p) < e

P(p+e)—P(p) = P'(p)e+5P"(p)e’+--- < e
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Theorem
Let P € K[[z']1[Y] be such that P < 1. Then y=P(y) has a unique solution in K[[z"]]~".

Existence proof. Let G :=(supp P)* = (supp PoU - - - Usupp Pyegp)”.
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We proceed by transfinite induction.

Assume that iy, — P(y/»,) <n for all n€ & with n >z m.
We claim that iy, ,:=)_ _ y.n satisfies y,n—P(ysm) <M.
Note that supp ¥+, €S and supp (Ysm —P(Y+m)) C 6.
Given ne G with n>m, we have ., — P(Ys) = V50— P(Y54) + 0(n) < n.
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Theorem
Let P € K[[z']1[Y] be such that P < 1. Then y=P(y) has a unique solution in K[[z"]]~".
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For each me &, let us construct yn €K and yywi=)_ o Yutt With yyp — Py 50) <m.
We proceed by transfinite induction.

Assume that iy, — P(y/»,) <n for all n€ & with n >z m.
Theny, =) . Ya.nsatisfies y,, —P(ysn) <m.

Take Y= P(y>m)m-
Then yon="VYsmn+Vyum, whence P(y-,) =P(y+) +0(m).
Hence yym — P(Ysm) =Ysm —PYom) + Ymm +o(m) <m.
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Existence proof. Let G :=(supp P)* = (supp PoU - - - Usupp Pyegp)”.

For each me G, let us construct yn €K and yywi=)_ o Yatt With yym — P(y50) <m.
We proceed by transfinite induction.

Assume that iy, — P(y/»,) <n for all n€ & with n >z m.

Theny, =) . Ya.nsatisfies y,, —P(ysn) <m.

Take 1y := P(Ysm)m-

Then v =Ysm+ynm, whence P(y5,) = P(s) + 0(m).

Hence Vo — P(Ysm) =Ysm —PYsm) + Ymm +o0(m) < m.

Hence ysm — P(Ysm) = Y sm — P(Ypm))mm 4+ 0(M) = (Y, — P(Y > m)m) M+ 0(m) < m.
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Fixed point theorem — a generalization 25127

Existence proof. Let S =supp P and let G ' be the set of finite G-labeled trees.
We admit Kruskal's theorem: the set &' is well-based for some natural <.
For each T &', we recursively define a term 7 by

T = == TT = Pk/mmTTl"'TTk.

m
1IN
T, --- Ty
The map T~ 77 is increasing, so (71)res™ is well-based.

Now y =) ._.- Tr satisfies y = P(y) and y < 1. Indeed:

P(y) = Z Z Pk,mmyk = >1‘ >1, >1‘ Z Pk,mmTTl...TTk

kelN mes kelN me6 T,es’ T,esT




Almost multiple solutions

Consider the equation # .
[ ]
1 \2 _ 1000
(y—E) = Z .
[ ] [ ]
¢ o
® °
[ ] [ ]
d
1 2 |1 "8y
 — e el >
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Consider the equation 1\ .

1 \2 _ _1000
(y 1_Z) — 1000

There is a unique starting term y ~ 1.

|
| S
4 .

1 2 |1 degy
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1 \2
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® ®
There is a unique starting term y ~ 1. After
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we obtain 1,
(g_ 1iz)2 — Z1000 (g<1)
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Almost multiple solutions

Consider the equation ,1\ .
[ ]

1 \2 _ _1000
(y 1_Z) — 71000,

There is a unique starting term y ~ 1. After

y =147 @<, r e
we obtain 1,
(g_ 1iz)2 — Z1000 (g<1)
-2
There is a unique starting term i/ ~ z.
. degy




Almost multiple solutions 2327

Consider the equation ,1\ .
[ ]

1 \2 _ _1000
(y 1_Z) — 1000

There is a unique starting term y ~ 1. After

y =14y (<1,

we obtain

(g_liz)Z — Z1000 (g<1)

There is a unique starting term i ~ z. After

~

y = z+§ (§<z),

we obtain

(-r=) == @=<2



Unravelling o

Py) =0 (y<z") T
I [ ] [ ]
with unique d-fold starting term y ~ cz".
Then Np_,=a (Y —c)?, where d =deg .+ P. ¢ o o




Unravelling o

Py) =0  (y<z’) /I\
I [ ] [ ]
with unique d-fold starting term y ~ cz".
Then Np_,= (Y — c)?, where d = deg ..+ P. * ° °

Note: CharK:0=>NpXZV,d_1:—dc¢0=>Pd_1¢O. ® ° P




Unravelling S

P(]/) =0 (]/<Z,y) A

with unique d-fold starting term y ~ cz".

Note: char K=0= P;_; #0. ¢ °
@: the unique solution of the quasi-linear equation ! °
04l p °
Q) = s () (p<z) [
-2 o
~<L \2 deg,
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Py) =0  (y<z’)
with unique d-fold starting term y ~ cz".
Note: char K=0= P;_; #0.
@: the unique solution of the quasi-linear equation
o' 'p
9Yd-1
Consider the refinement

y=¢+y <z

Qlg) := (@) (p<z7)

Then
P.,() = P(@)+P'(@)j+--- =0  (§<z"),

whence P, 1=0
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Final theorem

Let K be a field of characteristic zero.

Let PEK[[z'1[Y]?? and z7 €z". If K is algebraically closed and T divisible, then
P(y) =0  (y<z")

has exactly deg .- P solutions in K[[z']], when counting with multiplicities.
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Let K be a field of characteristic zero.

Let PEK[[z'11[Y]?? and z7 €z". If K is algebraically closed and T divisible, then
Py) =0  (y<z)

has exactly deg .+ P solutions in K[[z']], when counting with multiplicities.

Corollary.
Let PEK[[z'11[Y]?° and z7 €z". If K is algebraically closed and T divisible, then

P(y) = 0

has exactly deg P solutions in K[[z']], when counting with multiplicities.

» Generalizations to K[[z"]]» and K[[z']] & instead of K[[z"]].
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