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Exp-log fields

Definition
Consider an ordered field K with a partial function exp: K — K such that
El. exp0=1.

E2. expy=exp (y —x)exp x for all x,y € dom exp.
1
(=1
We call exp an exponential function. Such a function is necessarily injective and its

partial inverse is called a logarithmic function.

E3. expx>1+x+---+ x"~! for all x€dom x and n€ N.

If dom exp =K and im exp = K>, then K is called an exp-log field.
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Definition
Consider an ordered field K with a partial function exp: K — K such that

El. exp0=1.
E2. expy=exp (y —x)exp x for all x,y € dom exp.

1
(=1
We call exp an exponential function. Such a function is necessarily injective and its
partial inverse is called a logarithmic function.

E3. expx>1+x+---+ x"~! for all x€dom x and n€ N.

If dom exp =K and im exp = K>, then K is called an exp-log field.

Proposition
R is an exp-log field.
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R real numbers, but could be any exp-log field
X formal indeterminate with x > 1

logiyx  formal iterated logarithm (log o ko log)(x)
£ formal group of logarithmic monomials of the form
[ = x*(logx)" ---(log,x)", Ko, ..., 0ER,
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L the field R[[£]]» for some support type .

Partial logarithmic function. Let f €IL>°. Then
f = ocr(1+9),
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R real numbers, but could be any exp-log field
X formal indeterminate with x > 1

logiyx  formal iterated logarithm (log o ko log)(x)
£ formal group of logarithmic monomials of the form
[ = x*(logx)" ---(log,x)", Ko, ..., 0ER,
with [>1iff [ #1 and «; >0, where i is minimal with «;=0
L the field R[[£]]» for some support type .

Partial logarithmic function. Let f €IL>°. Then

f = 0fo(1+5),
or=x"---(log, )", ¢c,€R>, 6€ L



Logarithmic transseries 525

R real numbers, but could be any exp-log field
X formal indeterminate with x > 1

logiyx  formal iterated logarithm (log o ko log)(x)
£ formal group of logarithmic monomials of the form
[ = x*(logx)" ---(log,x)", Ko, ..., 0ER,
with [>1iff [ #1 and «; >0, where i is minimal with «;=0
L the field R[[£]]» for some support type .

Partial logarithmic function. Let f €IL>°. Then
f = ocr(1+9),
or=x"---(log, )", ¢c,€R>, 6€ L
log f := aplogx+---+a,log, 1 x+logcs+1og (1+2)00.
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Field of transseries

R real numbers, but could be any exp-log field
T totally ordered monomial group
T the field R[[T]]»

Definition

Consider a logarithmic function log: T>° - T extending the one on R>", such that
T1. dom log =T>°.

T2. logmeT,:={feT:supp f>1} forallmeZ.

T3. log(1+¢)=log(1+2z)oe forall e T

Then we say that T =R[[T]]# is a field of S -based transseries.
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Given a field of transseries T =IR[[]] », consider:

Lexp = exp Ty
e’e’ o o<y
Texp = R[[Texpll
Note that €., 2 T=explog ¥, since log TCT,. We extend log using;:
log: T3 — T

exp exp

e ¢ (1+9)+— @+logc+log(l+z)od.
Texp R0 T} he e o

T, R T<1
exp



Exponential extensions

Given a field of transseries T =IR[[]] », consider:
Lexp = exp Ty
e’e’ o o<y
Texp = R[[zexp]]f
Note that €., 2 T=explog ¥, since log TCT,. We extend log using;:

log: Top = Texp
e ¢ (1+9)+— @+logc+log(l+z)od.
gexp R>0 T;qlo i ? N ),

r<l
Texp

Proposition
The exponential extension Te.p, of T is again a field of transseries.
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exp
_ xlogx—x+=logx , V2T xlogx—x—=+1 27 xlogx—x—=1
T['(x) = [2 1T ™98 208 + e & zogx_i__\/z%exogx rmlogY 4 L. g [LeXp,>

r
€ ) S 2exp,exp
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Examples e

xlogx € £
x* = exlogx = £exp
Yre¥x¥ = exlogx—x+leogx e £

exp
logx—x+x1 V27T xlogx—x—21 V2T xlogx—x—21
T(x) = \/ﬁexogx x+zlogx | - ptlogr—x—zlogx | e plogx—x—zlogx =~ [Lexp,>

r
e'™ e 2exp,exp

1 2 6 24 120 -1
1+;+?+F+F+F+“. e R[[x7']] C L.

X2 x4+14+x 2

ex—l — e
2 “lyx24...
— ¥ +x el e~ +x° 4+
oo (14l L)
= e-e l+-+5z+=+
2 24 v 3e x24x— 13e  x24x—
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Grid-based transseries 0

U £exp, Mexp

neN

U ]Lexp, " exp

neN

1N

£exp

1N
1N
1N
A
I

Qexp,exp

£
IR[[2]] =: ]L g ]Lexp g IL'exp,exp g

I
=
i
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£ C £exp C 'gexp,exp c ... C%T:= U £exp,.".x.,exp
neN

RIL] = L C ]Lexp C ILJexp,exp C..-CT:= U ]Lexp,.”.x.,exp
neN

Proposition

In the grid-based setting, we have
T = R[Z].
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T = R[Z].

Proof. Given f €T, let G:=supp f.
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Grid-based transseries 0

£ C £exp C 'gexp,exp c ... C%T:= U £exp,.".x.,exp
neN

RIL] = L C ]Lexp C ILJexp,exp C..-CT:= U ]Lexp,.”.x.,exp
neN

Proposition

In the grid-based setting, we have
T = R[Z].

Proof. Given f €T, let G:=supp f.
Then G Cm{eq, ..., e} formeT, eq,..., e, TN
ForneIN withm, ey, ..., e € Lexp, 7 exp, We have f € Ly exp- O
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Well-based transseries

T =KL To = R[[%o]]

Log1 = CE"oc,exp Tor1 == R[[Za41]] = ']I‘oc,exp

o= % L =RITI 2 T
<A a<A

Proposition
For a < B, we have T, G Tj.




Well-based transseries 5125

o = L Ty = R[[Z]]

Log1 = CZuc,exp Tor1 == R[[Za41]] = Toc,exp

o= % L =RITI 2 T
a<A a<A

Proposition
For a < B, we have T, G Tj.

There is no non-trivial well-based field of transseries that is closed under exponentiation.
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-olo
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Upward and downward shifting o125

Logarithmic transseries

-olo
x® ... (log, x)" N (logx)*--- (log,11 )" € %

roeX
x .. (log, x)" LN e x" ... (log,_1x)" € %4

.ol .0
Strong linearity: T iR Ty and T N T,



Upward and downward shifting o125

Logarithmic transseries

-olo
x® ... (log, x)" N (logx)*--- (log,11 )" € %
x .. (log, x)" RN e x" ... (log,_1x)" € %4

.ol .0
Strong linearity: T iR Ty and T N T,

Inductive step
For ¢6Tw,>/ e¢€{z&c+1l §0°10gETIL>' QOGXPETIB,>/ 'B: {

a+1 ifa<w
« otherwise



Upward and downward shifting o125
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Logarithmic transseries

-olo
x® ... (log, x)" N (logx)*--- (log,11 )" € %
x .. (log, x)" RN e x" ... (log,_1x)" € %4

.ol .0
Strong linearity: T iR Ty and T N T,

Inductive step
For ¢6Tw,>/ e¢€{z&c+1l ¢010g€T“r>’ gOOeXpET'B’>’ 'B: {

a+1 ifa<w
« otherwise
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Upward and downward shifting o125

Logarithmic transseries

-olo
x® ... (log, x)" N (logx)*--- (log,11 )" € %
x .. (log, x)" N e x" ... (log,_1x)" € %4

.olo -oex
Strong linearity: T iR Ty and T N T,
Inductive step
ForpeT,,, e’€%,., ¢@ologeT,,, ¢@oexpeTy,, B= {

a+1 ifa<w
« otherwise

e’olog := et = ¢
e?oexp = " € Ty

.ol oeX
Strong linearity: T, 5, T, and T, 4 - IV

Alternative notation: ¢1 := poexp, ¢l := gpolog



Non-closure under exponentiation 10/2

foi= JA— ) efls

0<p<a



Non-closure under exponentiation 10/2

foi= JA— ) efls

0<p<a

fi = Jx



Non-closure under exponentiation 10/2

foi= JA— ) efls

0<p<a
fi = Jx
fo = Jx —eV1o8*



Non-closure under exponentiation 10/2

foi= JA— ) efls

0<p<a
fi = Jx
fo = Jx —eV1o8*

T _ oVlogax
f3 _ ﬁ_e\/ogx_e\/logx e
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fa O —

= VX = E

fi 0<p< o
14
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_ el
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Non-closure under exponentiation

JT— Z o feolog

0<p<a
VX
JX— e,/logx

Jr— eJlogx . e\/logx—e

Jr— eJlogx . e\/logx—e

ylogox

ylogox

e o o

[—logx_e,llog2x_e,llog2x—e u10g3x_ .
—e
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\/7_ Z efﬂolog = sz,>

0<p<a
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JX— e,/logx
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Jr— eJlogx . e\/logx—e

ylogox
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e o o
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E- Y et e T, = oM e T,

0<p<a
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Non-closure under exponentiation

fo = JX— Z e/ € T,, = el e 37,

0<p<a
fh = Jx
fo = Jx —eV1o8*

fa) _ ﬁ_e\/logx_e\/logx—e

fw+1 _ ﬁ_e\/logx_e\/logx—e

p<a = fu<fp

ylogox
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Non-closure under exponentiation

fo = JX— Z e/ € T,, = el e 37,

0<p<a
fh = Jx
fo = Jx —eV1o8*

fw _ ﬁ_e\/logx_e\/logx—e

fw+1 _ ﬁ_e\/logx_e\/logx—e

B<a = fu<fp
supp fo = «

ylogox

ylogox

e o o

[—logx_e,llog2x_e,llog2x—e u10g3x_ .
—e
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Proposition

Let ¥ be the type of countable supports.
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Well-based transseries — continued 1129

Proposition

Let ¥ be the type of countable supports.
There exists a non-trivial field of #-based transseries that is closed under exponentiation.

Logarithmic depth
[E := smallest subset of T that contains x* and that is closed under ) and exp.
Logarithmic depth 1d(f) of f €T := smallest n €N such that f € E clog, or infinity.
1d (ee3x+2x 53 e¥) - 0
1d (x%) = 1
ld (x+log x+loglogx+--:) = co.

Proposition

The field of well-based transseries of finite logarithmic depth is an exp-log field.
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Alternative construction (Ecalle, Dahn-Géring)

Exponential transseries.
[E := smallest subset of T with [E D x* that is closed under ) and exp.

¢y = xR Eo = R[&l
¢, = xIRexp Er 1 E, = R[E] k=1,2,...
¢ = EUEU--- E = R[JE]

= [EqUIEE{U---

Logarithmic closure.
T =1FE U IEolog U ]Eo]()g2 U ---

Level.

The level of f €T is the largest | € Z with f € Ecexp;.
Here exp;x =log_;x if [ <0.

12/29



Flatness 15/29

Flatness relations. For f,¢eT#,
f <X ¢ = loglf| < loglgl

f X g = loglfl < loglgl
f = g = loglfl = loglgl.
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Flatness 13/29

Flatness relations. For f,¢eT#,
f < g = loglfl < loglgl
f X g = loglfl < loglgl
f = g = loglfl = loglgl.

Recursive expansions. Let by, ...,b, €T with b; < --- <b,. Then
P:xtxoxxy — T
X s Pl p
extends by strong linearity into an embedding
P:R[[x'x - xxn]]ly — T.

We define R[[by;...;b,]]»:=im @.
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T =IR[[x]], the field of grid-based transseries.



Transbases

T =IR[[x]], the field of grid-based transseries.
Definition

A transbasis is a finite tuple B = (bq,...,b,) € T" such that
TB1. b,...,b,>1and b; <K --- Kb,

TB2. b, =exp; x for some | € Z.
TB3. logb,eR[[by;...; b, 1], fori=2,...,n.




Transbases

T =IR[[x]], the field of grid-based transseries.
Definition

A transbasis is a finite tuple B = (bq,...,b,) € T" such that
TB1. b,...,b,>1and b; <K --- Kb,

TB2. b, =exp; x for some | € Z.
TB3. logb,eR[[by;...; b, 1], fori=2,...,n.

» [is called the level of 8.



Transbases

T =IR[[x]], the field of grid-based transseries.

A transbasis is a finite tuple B = (bq,...,b,) € T" such that
TB1. b,...,b,>1and b1 <K --- Kb,
TB2. by =exp; x for some l € Z.

TB3. logb,eR[[by;...; b, 1], fori=2,...,n.

» [ is called the level of 5.
» B is a transbasis for each element of R[BX]:=R[[by;...;6,].



Transbases

T =IR[[x]], the field of grid-based transseries.

A transbasis is a finite tuple B = (bq,...,b,) € T" such that
TB1. by,...,0,>1and b; <K --- Kb,
TB2. by =exp; x for some l € Z.

TB3. log b,eR[[by;...;b, 1], fori=2,...,n.

» [ is called the level of 5.
» B is a transbasis for each element of R[BX]:=R[[by;...;6,].

. . 3/2 3/2 1/2 =1/2 ...
(x,eY*,e*¥*)  is a transbasis for eV XUEHE/2)x e

(x,e@tDVT) g a transbasis for e "
(log x,x,e*,x%) is a transbasis of level —1 for I'(x)

=e
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Theorem

Let B =(by,...,b,) be a transbasis of level | and f € T a transseries of level 1.
Then there exists a transbasis B of level min (I,1") for f that extends B.

Proof in a special case. Assume that f =e® and that ‘B is a transbasis for g.
Let ke {0,...,n} be minimal such that there exist A;,1,...,4, €R with

g = Aydog b, + - +Ap1log bry 46, 0 < log b1
If X1, then
f = ebii--by € RIBE.
Otherwise, let i <k be such that log b; < <log b 1.
f — ed<ed> [’Qﬁ A= IR[[%]R]]

(blr l/ e|5>| bl+1/ n)°
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Theorem

Let B =(by,...,b,) be a transbasis of level | and f € T a transseries of level 1.
Then there exists a transbasis B of level min (I,1") for f that extends B.

Proof in general. Add exp; x,...,exp,_; x below b to arrange that [ =1",
Induction on & with f €E,cexp;x.
Nothing to do if 7 =0.

with go,...,grEE)_joexp;x.
Induction hypothesis + special case ~ ‘B transbasis for e?’, ..., e

Hence ‘5 is a transbasis for each monomial in supp f.
And thus for f itself. O
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91 — totally ordered monomial group. We focus on the grid-based setting.

Definition
A strong derivation on R[] is a map o: R[] — R[[DN]] such that
D1. 9c=0 forallceR.

D2. o(fg)=(9f)g+ fog forall f,g € R[[IDN]].

D3. 9 is strongly R-linear.

Proposition
Let 0: 00 — IR[[2M]] be a mapping such that d(mn)=(dm)n+mon for all m,ne M.
Then 0 is a grid-based mapping that extends uniquely into a strong derivation on IR[[2)1]].

Notation. f'=0f and f'= of if d is clear from the context.

f
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Proposition

Let 0:91 — R[M]] be a mapping such that d(mn)=(dm)n+moan for all m,neMNN.
Then 9 is a grid-based mapping that extends uniquely into a strong derivation on R[[D)T]].

Proof. Let & C91 be grid-based and let ¢, ..., ¢, <1 and | be in 91 with
S g {ell’ -°/ek}*f'
Then for any m:=¢7'--- ¢} f €S, we have

.l.

m ayel+ e +agef+f

supp &' C suppefu--- Usupp e; Usupp f'.

Hence (m),ce is grid-based.
Indeed, supp &' C Gsupp G' is grid-based.
Given v € G, the (m,n) € G x supp &' with v =mn form a finite antichain.
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Proposition

Let 9: 00t — R[[DN]] be a mapping such that d(mn)=(@m)n+mon for all m,ne .
Then 9 is a grid-based mapping that extends uniquely into a strong derivation on IR[[D)T]].

Proof. Let & C91 be grid-based and let ¢;, ..., ¢, <1 and | be in 91 with
S C {e,..., e}

Then for any m:=¢7'--- ¢} f €S, we have

m' = apel+ - tagef+17

supp &' C suppefu--- Usupp et Usupp f'.
Hence (m),ce is grid-based.
Uniqueness: (f,¢)~ (f¢) and (f,¢)— f' ¢+ f¢' strongly bilinear, same on 9>. O
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Exp-log derivations

Definition
Assume that exp is a partial exponential function on IR[[2D1]].

An exp-log derivation on IR[[))]] is a derivation O that satisfies
ED. dexp f=(0 f)exp f, for all f € dom exp.

Proposition

Let 9: 0 — R[ON]] be a strong derivation with 0 logm=m" for all m € M.
Then 9 is a strong exp-log derivation on IR[[2]].

Proof. Let f =cm(1+¢), cER?, meM, e e R[M]~.
(log(1+¢)) = (e=the*+1e’+--) = e'(l—e+e’+--2) = (1+o).
(log f)' = (logc+logm+log(l+¢)) = m'+(1+e)f = f.
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Proposition
There exists a unique strong exp-log derivation on T with 0x =1.

Proof. By induction on /1, we show that there exists a unique such derivation on Tj,.

On £, we must have

o(x™---(log, x)*) = (ﬂ+ R = )x“o---(logrx)””.

x xlog x xlogx---log, x

This map 0: £ — IL satisfies the conditions of the previous two propositions.

Assume 0: T), - T},. On T, =exp T}, ., we must have de? =(d¢)e?,
de?e?) = 9e?" = Qe +oyY)e?? = (de”)e? +e?(de?).

This map 0:%),, 1 — T}, satisfies the conditions of our two propositions. O
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The derivation on T is asymptotic and positive in the following sense:

f<g*1=f <¢
0< f>1=f >0

Proof. Assume that f,g€R[[by;...;b,]| for transbasis B = (b, ..., b,).
Proof this and f >1= f’ > b} by induction on 7.
Easy exercise if n=1.
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Proposition

The derivation on T is asymptotic and positive in the following sense:

f<g*1=f <¢
0< f>1=f >0

Proof. Assume that f,g€R[[by;...;b,]| for transbasis B = (b, ..., b,).

Proof this and f >1= f’ > b} by induction on 7.

Assume 1> 1.
by <« by <K - Kby
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Asymptotic properties of the derivation

Proposition

The derivation on T is asymptotic and positive in the following sense:

f<g*1=f <¢
0< f>1=f >0

Proof. Assume that f,g€R[[by;...;b,]| for transbasis B = (b, ..., b,).

Proof this and f >1= f’ > b} by induction on 7.

Assume n > 1.
b, K b, < - K b,
1 < logh, < --- < logb,
b] < (logby)’ < --- < (logh,)
bl < b} < --- < b}
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0<f>1=f >0
f>1=f > b,
Proof by induction on n. Assume thatn>1.
We have b} < --- < bl
Letm=b%--- b2 < bl . b =nk1.
a,=p,=0= m’<n' by induction hypothesis.
a,=B,#0=m'=mb} <nbl=n'.
t, < B = m' €R[by;...;b,_1]6% <R[by;...;b,_1] b 50",

Hence m’ <n’ in all cases.
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0< f>1=f >0
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Asymptotic properties of the derivation

Proof. Assume that f,g€R[[b;;...;b,]| for transbasis 6 = (b, ..., b,). To prove:
f<g#l=f<¢g
0<f>1=f >0

f>1= f > bl

Proof by induction on n. Assume thatn>1.

We have bi<--- < bl

Ifm=b%--b< bl .. pP'=n=1, thenm’<n’.

» If f<g%*1, then f'<g" ~c,0q.

» If g>1and g>0, then g’ ~c,0,(log d,)" >0, since 0 <log v, > 1.

» If ¢>1, then g’ ~c, 0, (log d,)' >0, b7 > b7, since log 0, > 1.

We conclude by induction.
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Smallness of the derivation 23/29
Proposition
The derivation on T is small in the sense that e<1=¢' <1 forall e€T.

Proof. If e <1, then ¢< 10; -

for some n €N, whence
1 / -1
¢ < (lognx) ~ xlogx---log, 1 x(log,x)*" H

Proposition
IfyeT, then (y')* <y or (v')*<y°.

! 1/

Proof. If y< 1, then y< (y')*=y' <2y'y"" <y’, since y',y" < 1. Hence (y')*<Xy.
If y>1, then (v')*/y*=((1/y))*<1/y, whence (—y")* < v°. O




Smallness of the derivation 23129

Proposition
The derivation on T is small in the sense that e<1=¢' <1 forall e€T.

1
log, x

for some n €N, whence

1 )/ _ -1 -
log, x ~ xlogx---log, 1 x(log,x)*"

Proof. If ¢ <1, then e <

€ < (
Proposition
IfyeT, then (y')* <y or (v')*<y°.
Proof. If y< 1, then y< (y')*=y' <2y'y"" <y’, since y',y" < 1. Hence (y')*<Xy.
If y>1, then (v')*/y*=((1/y))*<1/y, whence (—y")* < v°. O

Given y €T and r € N, we have y” < y* for some c € Q>°. |
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Integration 24/29

Proposition

There exists a unique strong map [T —T with ([ f) = fand ([ f)1=0 forall f€T.
We call it the distinguished integration on T.

Proof. In Lesson 6, we will solve more general linear differential equations. O

Corollary

The differential field T is Liouville closed.

Note. The following transseries cannot be integrated in any well-based T,:

1

T xlog xlogox+ - -- - ©

—logx—logax—logsx—---

The field of well-based transseries of finite logarithmic depth is Liouville closed.
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Strong difference operator

91, <M — totally ordered monomial groups (usually 9t =91 or MM CN).

A strong difference operator is a map o: R[9N]] - R[N such that
Al. cc=cforallceR

A2, 0(fg)=(cf)(cg) forall f,g € R[]
A3. o is strongly R-linear.

Proposition

Let o: 0t — R[D1]] be a multiplicative and strictly increasing mapping. Then o is a grid-
based mapping that extends uniquely into a strong difference operator on R[]

Proof. If SC {e¢,..., et} "], then (cm),ee is grid-based:
exercise of termification and Higman's theorem.

Remainder shown at the end of Lesson 3. O
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Exp-log difference operator

Definition

Assume that we have partial exponential functions on R[] and R[]

An exp-log difference operator is a difference operator o: R[]] - R[] that satisfies
EA. o exp f =exp of, for all f € dom exp.

Proposition

Let o:91 — R[[N]] be a strong difference operator with o log m=1og cm for all m €.
Then o is a strong exp-log difference operator on R[[I1]].

Proof. Let f =cm(1+¢), cER?, meM, e e R[M].

oclog(1+¢) = o(e=the*+se’+---) = ce—h(cey +5(ce)’+--- = log(1+0¢)
clog f = c(logc+logm+log(l1+¢)) = logc+logom+log(l1+c0e) = logof.
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We say that a difference operator o: IR[9N]] = R[] is asymptotic resp. positive if

f<1=o0f <1
f>0= of >0.

Proposition

Let 0: 91— R[N be a strong difference operator with 0 < om>1 for all m€ M.
Then o is asymptotic and positive.

Proof. If f <1, then cm <1 for all mesupp f, whence of <1.
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Asymptotic and positive difference operators

Definition

We say that a difference operator o: IR[9N]] = R[] is asymptotic resp. positive if
f<1=o0f <1
f>0= of >0.

Proposition

Let 0: 91— R[N be a strong difference operator with 0 < om>1 for all m€ M.
Then o is asymptotic and positive.

Proof. If f <1, then cm <1 for all m&supp f, whence of <1.

It follows also that f<¢=f/g<1=0(f/9)<1=(0f)/(c9)<1=0f<0gQ.

If f>0, then f—7,< f implies of — 0 7¢< 0f, whence 7,s~ 0 7.

Now o 1r=0(cs0r) =(0cr) (00p) =cro0p>0. O
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Proposition

Given g€ T>R=IR>1>Y, there exists a unigue strong exp-log difference operator o on T
with ox = g. This operator is asymptotic and positive. For f €T, we define f o g:=0f.

Proof. By induction on /1, we show that there exists a unique such ¢ on T,

On L, we must have
c(x®---(log,x)") = g"---(log, )"
This map o: £ — T satisfies the conditions of the previous three propositions.
Assume 0:T;, - T. On T, =exp T}, ., we must have
a(e¢e¢) — geftV — 7@t _ Soetoy _ o090

This map 9: T, — T satisfies the conditions of our two propositions. O
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(feg) = g'(fog).
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Proposition
Forall f €T and ¢,h € TR, we have
fo(goh) — (fog)oh
(fo8) = &' (fo9)

Proposition
If f,6 €T are such that 6 < x and m"6< 1 for all m € supp f, then
fol48) = f+f 645 8+

Proposition

For any ¢ € T, there exists a unique g™ € T>R with g™ o ¢ = x.




Properties of composition

Proposition

Forall f €T and ¢,h € TR, we have
fo(goh) = (fog)oh
(fog)' =8 (foQ)
If f,6 €T are such that 6 < x and m"6< 1 for all m € supp f, then
fox+8) = f+f o45f"6%+ .

Proposition

For any ¢ € T, there exists a unique g™ € T>R with g™ o ¢ = x.

Proofs. See LNM 1888.
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