Lesson 7 — Algebraic differential equations over T
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Differential polynomials over T

Differential polynomials as series. PET{Y} CIR{Y}[%]

supp P support of P

wPex dominant monomial of P
DP)eR{Y} dominant coefficient or “part” of P
£,<,=, ... extend to T{Y'}



Standard decomposition /a0

Standard decomposition. PT{Y} of order r.
P = A Yi= Yoy (YO

i=C(io,..., i) eINT+1
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Standard decomposition. PT{Y} of order r.
P = A Yi= Yoy (YO

i=(o,..., i,)eIN+1

Degree and valuation.
deg P := max {|i[: P; #0}
valP := min {l|i|: P; #0}



Standard decomposition /a0

Standard decomposition. PT{Y} of order r.
P = A Yi= YY) (YO

i=(o,..., i,)eIN+1

Degree and valuation.
deg P := max {|i[: P; #0}
val P := min {|i|: P;#0}

Decomposition in homogeneous parts. P€T{Y} of degree d

P = Pj+---+P,, Pk::ZPiYi, li|:=ig+ - - +1,.
li|=k



Additive conjugation

PeT{Y}, T
P,,(y) = P(y+¢)



Additive conjugation

PeT{Y}, T
P,,(y) = P(y+¢)

If P has order 7, then for any i = (iy,...,i,) EIN"*},

1. P
P,,: = PY(g) = Y YOy (¢)

— Z(é)qof—ipj = Z ‘(]Z:g)...(gi)goiO((p’)il...((P(r))irpj_
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Additive conjugation

PeT{Y}, T
P,,(y) = P(y+¢)

If P has order 7, then for any i = (iy,...,i,) EIN"*},

1. P
P+(p,i = P( )(q0) — aYiO . (a Y(T’))ir (q))

— Z(Z‘)(Pj_ipj = Z '(]Z:g)...(5:)§0i0(¢’)i1...((P(r))irpj.

jzi JoZo, - jr21r
If p=c+ewithceRand e<1, then
P,, =P
D(P+go) = D(P);




Decomposition by orders /a0

Decomposition by orders. P of order r and degree 4.
P = Z Pl Y[“’], ylwl.— yw) | yl@)

Here we assume that P, =P if T=(wyq), ..., W) for some permutation o.
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Weight and weighted valuation.
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wv P := min {|w|: P, #0}.



Decomposition by orders /a0

Decomposition by orders. P of order r and degree 4.
P = Z Pl Y[“’], ylwl.— yw) | yl@)

Here we assume that P, =P if T=(wyq), ..., W) for some permutation o.

Weight and weighted valuation.
wtP := max {|w|: Py, #0}
wv P := min {|w|: P, #0}.

Decomposition into isobaric parts. P of weight w

P = P[w]+°"+P[0], P[k] = Z P[W]Y[w].
lw|=k



Multiplicative conjugation

PeT{Y}, pcT?
P.,(y) = Plpy)



Multiplicative conjugation

PeT{Y}, pcT?
P.,(y) = Plpy)

For any w, we have

T —w
Prg a1 = Z (w)€0[7 'Pray.
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Multiplicative conjugation

PeT{Y}, pcT?
P.,(y) = Plpy)

For any w, we have

T —w
Prg a1 = Z (w)?h 'Pray.

T>wWw

(Pxyp)
If ¢ > x, then >(D) < ¢

If @ > x and P is homogeneous of degree d, then

D(qu))
o0 ~ 7




Upward shifting

P1(y1) = Py



Upward shifting 7130

Pt(y1) = P(yn

For any w, we have
PT[w] — Z Sr,we_lrle[T]T/

T>Ww

Stw = St,w St € Z, f(lng)(j) = Z S;’]-jf(j)(logX).
X

0<i<;

where



Upward shifting

P1(y1) = Py

For any w, we have

where e
Stw = Stiw - Suw € Z, flogx)V = Z %f(f)(logx).
0<i<j
We have Zg)? <X el
If P is isobaric of weight w, then e‘?"g;zl))) n < e




Getting rid ot logarithms

Proposition
If PET{Y} has level I, then Pt has level at least min (I+1,1).




Getting rid ot logarithms

Proposition
If PET{Y} has level I, then Pt has level at least min (I+1,1).

Proposition

IfPe RBR]{Y} for a transbasis of level | <0 and exp;x,exp;_1X,...,XE R[BY],
then Pt € R[B1XN{Y}, where B1 has level [+ 1 and exp;_1 x, ..., x € R[B1X].




Getting rid ot logarithms

Proposition
If PET{Y} has level I, then Pt has level at least min (I+1,1).

Proposition

IfPe RBR]{Y} for a transbasis of level | <0 and exp;x,exp;_1X,...,XE R[BY],
then Pt € R[B1XN{Y}, where B1 has level [+ 1 and exp;_1 x, ..., x € R[B1X].

Proposition

IfPeR[e*=0b;...;b,01{Y}, then Pt € R[[e*;b17;...;b,1TI{Y}.
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y' = yy'
y'o=yy
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y =1y
y' = yy'
y'o=yy

1')2

+ yy'l'y'l"l'

y® e Zlyyty",.. v



y =y
y' = yy'
y'o=yy

P+yyty™
y(k) e Z[y’ y'l" y'H" L ’y(k)].
Logarithmic decomposition.
P = Z P(i)y(i)/ y(i) — yio (y'l')h L (y(r))ir



y =y
= yy'
vy’ =y

P+yyty™
y(k) e Z[y’ y'l', y'H', L ’y(k)].
Logarithmic decomposition.
P = Z P(i)y(i)/ y(i) — yio (y'l')h L (y(r))ir

Proposition

Let i be largest for <jex on IN"*! with P;y#0. Then for y — oo, we have P(y) ~ Py #0.




y =1y
= yy'
vy’ =y

N2 4yytytt
y© e Zy,y'y™,. .y
Logarithmic decomposition.

P = Z P(i)y(i)/ y(i) — yiO(y'l')h L (y(r))ir

Proposition
Let i be largest for <jex on IN"*! with P;y#0. Then for y — oo, we have P(y) ~ Py #0.

Proof. For large v, we have y >y >y > .. .. O
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Algebraic starting monomials.
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e P +yy — ()P +e Ty +e = 0 D logT

Algebraic starting monomials.
TS e—Zx
° Y= x2 e ¥

° yxexee




Differential Newton polygons 10730

ey +yy -V +e ™y +e = 0 T log=

Algebraic starting monomials.

° yxe—Zx
° yxx2e—x

° yxexee

Differential starting monomials.
° Y= e)‘x, A>—1
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Necessary condition for the existence of arootyeT of PeT{Y} withy=17?
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Tentative answer
D(P)(c) =0 has a non-zero solution c € R.

Problem
P=xY' 4+ )P+x!
D(P) = (Y'Y
Any c€R#%is a root of D(P), but P cannot have roots y € T{Y} with y=1.
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P(y):() N\ yxl = PT(yT):O N\ yTxl



When is 1 a starting monomial ?

Necessary condition for the existence of arootyeT of PeT{Y} withy=17?

Tentative answer
D(P)(c) =0 has a non-zero solution c € R.

Problem
P=xY' 4+ )P+x!
D(P) = (Y'Y
Any c€R#%is a root of D(P), but P cannot have roots y € T{Y} with y=1.

Reason
Py)=0 A y=1 &= Pr(yH=0 A yt=1
Pt = e Y 4e (Y)Y +e™
DP1) = 1.



Differential Newton polynomials

Example continued

P = x 2V (Yl ! D®P) = (')



Differential Newton polynomials

Example continued

P = x2YS (YR 4! DP) = (')
Pt =e YV 4e (Y)Y +e™ D(Pt) =1



Differential Newton polynomials
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Differential Newton polynomials

Example continued

P = x 2V (Yl ! DP) = (Y')
Pt =e YV 4e (Y)Y +e™ D(Pt) =1
P11 = e Y qpe (Y Y e D(P11) =1

P11 = e—Zeexy5_|_e—3eex—3ex—BX(Y/)3+e—eex D(P111) = 1



Differential Newton polynomials

Example continued

P = x Y (YRt D(P) = (Y'Y
Pt = e P Y 4e (Y)Y 4e® D) =1
P11 = e Y +e (Y Y +e® DPP11) =1

P11t = e—zeexy5_|_e—3ee*—3ex—3x(yl)3+e—eex D(P111) = 1

Theorem DNP

Given P T{Y}, there exists [y N and N(P) e R[Y] (YN with
D(Pt;) = N(P), for all [ > 1.
We call N(P) the differential Newton polynomial of P.




Dominant parts and upward shifting
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Dominant parts and upward shifting
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Assume that P e (Eoexp){Y}. Then

D(P1) = DD(P)1).




Dominant parts and upward shifting

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

Assume that P e (Eoexp){Y}. Then

D(P1) = DD(P)1).

Proof. Without loss of generality, we may assume that P =1.



Dominant parts and upward shifting

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

Assume that P e (Eoexp){Y}. Then

D(P1) = DD(P)1).

Proof. Without loss of generality, we may assume that P =1.
P = D(P)+O(e™") (Pe(Ecexp){Y})



Dominant parts and upward shifting

PT[w] — Z Sr,we_lrle[T]T (*)

T>wWw

Assume that P e (Eoexp){Y}. Then

D(P1) = DD(P)1).

Proof. Without loss of generality, we may assume that P =1.
P = D(P)+O(e™") (Pe(Ecexp){Y})
Pt = D(P)1+0@™") (by (+))



Dominant parts and upward shifting

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

Assume that P e (Eoexp){Y}. Then

D(P1) = DD(P)1).

Proof. Without loss of generality, we may assume that P =1.
P D(P)+O(e™¥) (Pe(Ecexp){Y})
Pt = D(P)t+0(e™") (by ()
Pt X et (by (%))



Dominant parts and upward shifting

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

Assume that P e (Eoexp){Y}. Then

D(P1) = DD(P)1).

Proof. Without loss of generality, we may assume that P =1.

P = D(P)+O(e~F) (PE(Eoexp){Y})
Pt = D(P)1+0@ ") (by ()
Pt X e (by (x))

P1—-D(P)1 < P1 O



Weight and upward shifting

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

a) If PeR{Y}, then wt Pt =wv P.
b) If wv Pt =wv P, then Pt =e~“V"*P and D(P1)=P.




Weight and upward shifting

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

a) If PeR{Y}, then wt Pt =wv P.
b) If wv Pt =wv P, then Pt =e~“V"*P and D(P1)=P.

Proof. From (*), we deduce,

PT - e—(va)x



Weight and upward shifting

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

a) If PeR{Y}, then wt Pt =wv P.
b) If wv Pt =wv P, then Pt =e~“V"*P and D(P1)=P.

Proof. From (*), we deduce,

Pt
D(P1)

It
™

ST,wP[T]T Y[w].

I
]

|T|l=wVvP, T2>w



Weight and upward shifting

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

a) If PeR{Y}, then wt Pt =wv P.
b) If wv Pt =wv P, then Pt =e~“V"*P and D(P1)=P.

Proof. From (x), we deduce,

Pt
D(P1)

—(wvP)x

Z ST,wP[T]TY[w].

|T|l=wVvP, T2>w

If wv Pt =wv P, then the last formula becomes
D(P1) = Z ST,wP[T]TY[w] = P. O

|T|l=wVvP, T=w

It

e



Existence of differential Newton polynoemials

PT[w] — Z Sr,we_lrle[T]T (*)

T>wWw

Given P €T {Y}, there exists [y IN and isobaric N(P) € R{Y'} with

D(P1;) = N(P), forall [ > 1.




Existence of differential Newton polynoemials

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

Given P €T {Y}, there exists [y IN and isobaric N(P) € R{Y'} with
D(P1;)) = N(P), forall [ > 1.

Proof. The previous two lemmas yield
wtD(P) =2 wvD(P) = wtD(P?1) = wvD(P?T) = wtDP11) = ---.

In other words, wv D(P1)) stabilizes for sufficiently large [ > .



Existence of differential Newton polynoemials

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

Given P €T {Y}, there exists [y IN and isobaric N(P) € R{Y'} with
D(P1) = N(P), forall [ > 1.

Proof. The previous two lemmas yield
wtD(P) =2 wvD(P) = wtD(P?1) = wvD(P?T) = wtDP11) = ---.
In other words, wv D(P1)) stabilizes for sufficiently large [ > .

When that happens, we have D(P1,,1) =D(D(P1,)1)=D(P1)) for all [ >,
again by the previous two lemmas



Existence of differential Newton polynoemials

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

Given P €T {Y}, there exists [y IN and isobaric N(P) € R{Y'} with
D(P1) = N(P), for all [ > 1.

Proof. The previous two lemmas yield
wtD(P) =2 wvD(P) = wtD(P?1) = wvD(P?T) = wtDP11) = ---.
In other words, wv D(P1)) stabilizes for sufficiently large [ > .

When that happens, we have D(P1,,1) =D(D(P1,)1)=D(P1)) for all [ >,
again by the previous two lemmas, and D(P1)) is isobaric. O



Special form of differential Newton polynomials wx

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

LLemma
If PeR{ Y} is isobaric of weight w with D(P1) =P, then P€ R[Y](Y")N.
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T>wWw

LLemma
If PeR{ Y} is isobaric of weight w with D(P1) =P, then P€ R[Y](Y")N.

Proof. Let P* = ZiE]N P(i,w,O,...,O) Yi (Yl)w
Assume for contradiction that A:=P — P* #0.
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T>wWw

LLemma
If PeR{ Y} is isobaric of weight w with D(P1) =P, then P€ R[Y](Y")N.

Proof. Let P* = ZiE]N P(i,w,O,...,O) Yi (Yl)w
Assume for contradiction that A:= P —P* #0.
Since ip=1i; =0 for all i with A; #0, we have A(x)=0.




Special form of differential Newton polynomials wx

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

LLemma
If PeR{ Y} is isobaric of weight w with D(P1) =P, then P€ R[Y](Y")N.

Proof. Let P* = ZiE]N P(i,w,O,...,O) Yi (Yl)w
Assume for contradiction that A:= P —P* #0.
Since ip=1i; =0 for all i with A; #0, we have A(x)=0.

Now A is isobaric of weight w and D(A?1) =A.
From (x), it follows that AT =e™“"A.



Special form of differential Newton polynomials wx

Pllg) = Y Srwe ™ Pyt (%)

T>wWw

LLemma
If PeR{ Y} is isobaric of weight w with D(P1) =P, then P€ R[Y](Y")N.

Proof. Let P* = ZiE]N P(i,ZU,O,---,O) Yi (Yl)w
Assume for contradiction that A:= P —P* #0.
Since ip=1i; =0 for all i with A; #0, we have A(x)=0.

Now A is isobaric of weight w and D(A?1) =A.
From (x), it follows that AT =e™“"A.

Consequently A(x) =A(e") = A(e®)=---=0, which is impossible. O



Differential Newton polynomials — continued v

Theorem (DNP)

Given P T{Y}, there exists [y N and N(P) e R[Y] (YN with
D(P1;) = N(P), for all 1 > 1.
We call N(P) the differential Newton polynomial of P.
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Theorem (DNP)

Given P T{Y}, there exists [y N and N(P) e R[Y] (YN with
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deg<m P := deg N(Pym)
deg P := val N(Pyp)
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Theorem (DNP)
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Given P T{Y}, there exists [y N and N(P) e R[Y] (YN with
D(P1;) = N(P), for all 1 > 1.
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m is a starting monomial for P(y) =0 if N(P,,)(c) =0 for some c € C#.
m is an algebraic starting monomial if N(P,,,) is not homogeneous.



Differential Newton polynomials — continued v

Theorem (DNP)

Given P T{Y}, there exists [y N and N(P) e R[Y] (YN with
D(P1;) = N(P), for all 1 > 1.
We call N(P) the differential Newton polynomial of P.

Newton degree. For PeT{ Y17? and m €T, we define

deg<m P := deg N(Pym)
deg P := val N(Pyp)

m is a starting monomial for P(y) =0 if N(P,,)(c) =0 for some c € C#.
m is an algebraic starting monomial if N(P,,,) is not homogeneous.

m is a differential starting monomial if N(P,,) e R[Y](Y")" for some v > 0.



Properties of Newton degree

Proposition
For any P € T{Y}?°, we have N(P1) = N(P).

Proof. By construction. O
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Properties of Newton degree

Proposition
For any P € T{Y}?°, we have N(P1) = N(P).

Proposition

For PeT{Y}? and m<n in T, we have

deg P < deg<m P < deg., P < deg<,P.

Proof. By considering P,, instead of P, we may also arrange that m<n=1.
By what precedes, we also arrange that N(P) = D(P), N(Py) = D(Pyy), and m > x.

Recall that 0(Q,.,) /(m'0(Q)) < m for Q€ T{Y} homogeneous of degree i.



Properties of Newton degree

Proposition
For any P T{Y}?°, we have N(P1) = N(P).

Proposition

For PeT{Y}? and m<n in T, we have

deg P < deg<nm P < deg.,P < deg<,P.

Proof. By considering P, instead of P, we may also arrange that m<n=1.
By what precedes, we also arrange that N(P) = D(P), N(Py,) = D(Pyy), and m > x.

Recall that 0(Q,.,,) /(m'0(Q)) < m for Q€ T{Y} homogeneous of degree i.
For all i >d:=deg . P, it follows that

me,d = ¢mdpd > ¢mipi = me,i/
for some ¢, < m. Hence, deg N(P,,,) =deg D(P,,,) <d. O



The non-linear equalizer lemma

Let PET{Y} and i <j with P;#0, P;#0. Then there exists a unique ¢ €< for which
N(P; v + P; «.) is not homogeneous. We call ¢ the (i, j)-equalizer for P.




The non-linear equalizer lemma 19/30

Let PET{Y} and i <j with P;#0, P;#0. Then there exists a unique ¢ €< for which
N(P; v + P; «.) is not homogeneous. We call ¢ the (i, j)-equalizer for P.

Consider an equation P(y) =0,y < v of Newton degree d:=deg_, P, with P_;#0.
Then its principal equalizer is the unique equalizer ¢p , := ¢ with deg N(P,,) =d.



The non-linear equalizer lemma 19/30

Let PET{Y} and i <j with P;#0, P;#0. Then there exists a unique ¢ €< for which
N(P; v + P; «.) is not homogeneous. We call ¢ the (i, j)-equalizer for P.

Proof. We first arrange that P € R[B*]{ Y} for a transbasis B of level 1.
Without loss of generality, we may assume that P =P;+ P;.



The non-linear equalizer lemma 19/30

Let Pe€T{Y} and i <j with P;#0, P;#0. Then there exists a unique ¢ €T for which
N(Pj xc + Pj «.) is not homogeneous. We call ¢ the (i, j)-equalizer for P.

Proof. We first arrange that P € R[B*]{ Y} for a transbasis B of level 1.
Without loss of generality, we may assume that P =P;+ P;.
In a similar way as in the linear case one proves that

e mE BN 0(Py .y is increasing for any k.

e There exists a unique ¢(P):=¢ & B R such that D(P,.) is not homogeneous.



The non-linear equalizer lemma

Let Pe€T{Y} and i <j with P;#0, P;#0. Then there exists a unique ¢ €T for which
N(P; x. + P; «.) is not homogeneous. We call ¢ the (i, j)-equalizer for P.

Proof. We first arrange that P& R[BR]{Y} for a transbasis B of level 1.
Without loss of generality, we may assume that P =P;+ P;.
In a similar way as in the linear case one proves that

e mE BN 0(Py .y is increasing for any k.
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In a similar way as in the linear case one proves that
e mE BN 0(Py .y is increasing for any k.
e There exists a unique ¢(P):=¢ & B R such that D(P,.) is not homogeneous.
As in the proof of Theorem DNP, one may show that
o wtD((P1))«p1,) strictly decreases as a function of / € N, until stabilization.
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Let PeT{Y} be homogeneous of degree d and of order r.
Then there exists a unique Riccati polynomial Rp € T{W} of order r— 1 with

P(y) = y'Rp(y").
Assume that Rp(w) =0. Then P(y) =0 for

1

— fw — (fw)> (fw)< _ fw>'y fwm .
y=e Zen e e e xlog xlog,x---"

In particular, 0, = el

» Determining starting monomials for P(y) =0 < Solving Rp modulo O(7y).

Proposition
m e T is a starting monomial for P(y) =0 if and only if deg_., Rp>0.
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Let QeT{Y} and m&<. We say that
Qy) =0, y<m
is quasi-linear if deg_.,, Q=1.

Any quasi-linear equation as above has a solution in T.

Moreover, there exists a unique solution such that vy, =0 for any other solution y;
this is called the distinguished solution.
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[lemma
Let B =(by,...,b,) be of level 1 and Qe R[BR{Y} of order r and degree d.

Assume that Q— Q< b,"Q; for some ne R>".
Then Q(y)=0, y <1 has a solution in R[x™ BX].
Proof. Let R:=Q_.1:=0—Q; and L eT[d] be such that Q; =LY. We want to solve
Ly = Ry, vy <1
We may arrange L=1and R<b,".

By Lesson 6, the set & :=supp, L™ is grid-based and & X v for some tv < b,,.
Let¥:={1}Usupp.dU---Usupp.d and W:=(supp R)({1}ULVU--- U D).

We have &< b7, so &:= &2 (&2)* is grid-based.

Now 0,L~"R(0),L~' R(L"' R(0)), ... converges to a solution with supp vy C &. O
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Let B =(by,...,b,) be of level 1 and Qe R[BRI{Y} with Q— Q; < Qs.
Then Q(y)=0, y <1 has a solution in R[(log;x)® --- x®BX] for some k€ N.

Proof. Without loss of generality, we may assume that O =1.

We prove the result by induction on n. For n =1 we are done by what precedes.
Let Q* €R[[by;...;b,_1]1{Y} be the dominant coefficient of Q as a series in b; .
Induction hypothesis ~ k€N, y* € R[(log_; x)™ - - - xN BE]<! with Q%(y#)=0.
For some small 7> 0, we then have Q.+ < b, and Q. o1 1< 0,7 Q.7 xo-
Now apply the previous lemma Q. ;-1 and (e, ..., exprx, b1l ..., b,15).

This yields u € R[[x;...;expx; b1k .. .; 0,1l with Qe wo-r1i(1) = 0.
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Let B =(by,...,b,) be of level 1 and Qe R[BRI{Y} with Q— Q1< Q:.
Then Q(y) =0, y <1 has a solution in R[(logyx)" - -- x"BX] for some k€ N.

Proof. Without loss of generality, we may assume that O =1.

We prove the result by induction on n. For n =1 we are done by what precedes.
Let Q* €R[[by;...;b,_1]{Y} be the dominant coefficient of Q as a series in b;, .
Induction hypothesis ~ k€N, y* € R[(log_; x)™ - - - xN BE]<! with Q%(y¥)=0.
For some small 7> 0, we then have Q. (< b, T and Quy o 21 <0, Qe .
Now apply the previous lemma Q.+ ;-1 and (e, ..., exprx, biT, ..., 0,10).

This yields u € R[[x;...;exprx; bi1k .. .; b,1:]~! with Q.y,xo7 (1) =0.

Then y:=y* + (uly) b, fulfills the requirements. O
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Iheorem
Any quasi-linear equation Q(y) =0,y <1 has a solution in T.

Moreover, there exists a unique solution such that vy, =0 for any other solution y;
this is called the distinguished solution.

Proof. Let % = {y€T<':Q(y) =0}. Previous lemma + upward shifting = % + (.
Existence. Lety, y€ Y, y#y,v:=0;_,and LY:=P_, ;.
Claim: v €9 :={0,:h€T,Lh=0}.
We have N(P.y «o) = N(Piy <1 x0) ER* +R7Y.
Solutions u < v of Py, ,,(1) =0 or P, < (1) =0 have the same dominant term.
Hence P, .,((§ —y)v) =0 and P, < «(6) =0 has a solution 6 ~ (7 —y) /v
Hence Lh=P,, «i(h)=0 has a solution 1 ~ i — .
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Theorem
Any quasi-linear equation Q(y) =0,y <1 has a solution in T.

Moreover, there exists a unique solution such that vy, =0 for any other solution y;
this is called the distinguished solution.

Proof. Let % = {y€T<':Q(y) =0}. Previous lemma + upward shifting = % + (.
Existence. Lety, y€ Y, y#y,v:=0;_,and LY:=P_, ;.

Thenve$H :={0,:heT,Lh=0}.

Let 9,:={0;_,:y €Y} CH with |9, |< 7.

Let 9;:={h€9,:y,#0} and H;:={h€H,:h > ;).

If y € 9y, let y € % with b:=0;_, =maxg 9y and iy, =0. Then ﬁggﬁﬁu {h}.
Repeating this k< r times, we find vy, 7,7, ...,y € % with Hym=0. O
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The unravelling theorem

Given a raveled equation (*) with val P <d, there exist ¢ < v and b < v such that
Po@ =0, § <50
is unraveled and of Newton degree d. We call (¢, v) an unraveler for (x).

Sketch of proof. Arrange that N(P)= (Y —¢)*'(Y') for ce R#, 1< v, and i < d. Let

ad—lp o ad—lp o
Q = aYd_i_la(Y,)i 1f1<d Q = a(Y—’)d_l lfl—d.

Let ¢ be a solution of Q(¢) =0, ¢ <1 for which v:=¢p, ; is minimal for <.
Although (¢, ) is not necessarily un unraveller, one may repeat the process.
This yields (¢, b), (¢, 5), ... withb/v > t:J/ p > ... = termination. O
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Given PeT{Y} and v €%, consider
Py) =0, y<wv. (*)
If deg_, P is odd, then (x) has a solution in T.

Proof. By induction on deg ., P.

If d=1, then (x) is quasi-linear, so it has a solution. So assume that d > 1.

If P.;=0, then y=0 is a solution.

Otherwise, we unravel (x) and let ¢:=¢p ,,.

Then N :=N(P,.) = Q(Y) (Y') for some i <d and Q(Y) is not a (d —i)-th power.

If i is even, then deg Q is odd. Let c €IR be a root of odd multiplicity j of Q.

deg_, P, =valg, P, =i+ j<d. We conclude using the induction hypothesis. O
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Theorem IVP' (intermediate value property)

Let PeT{Y} and f < gin T be such that P(f)P(g) <O.
Then there exists an h € T with f <h < g and P(h) =0.

Proof. Newton polygon method & maintain sign change during refinements. O

Other “9-compatible” support types &
Main results generalize to .#’-based transseries of finite logarithmic depth.
Let T » be the set of such transseries.
Any well-based transseries root of PET»{Y} is in T.
((x):=14+2""+3""4+--- isd-transcendental over T.
y(x):=e*+e'* + eV¥¥ 4 ... is d-transcendental over T(C):=T(,C,...).
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Remarkable first order properties Interesting challenges
» T isreal closed » support types .
» T is Liouville closed » axioms for strong summation
» Solvability of linear differential equations » distinguished solutions
, quasi-linear differential equations? » strong linearity of L™'
Order <2 factorization in T[] » (e.g.) composition on T
T satisfies the IVP

Existence + form of Newton polynomials

Existence of equalizers

vvyyYy V¢vY

Existence of unravellers
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