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Differential fields

Definition

A differential field is a field K with a derivation o: K — K such that, for all a,b R,
D1. 9(a+b)=0a+9db.

D2, o(ab)=(da)b+a(9b).

We often write a’ := da. The set C=Cy:={c€ K:dc =0} is a field: the field of constants.
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D2. o(ab)=(da)b+a(adb).

We often write a’ := da. The set C=Cy:={c€ K:dc =0} is a field: the field of constants.

Note. The set Der(K) of derivations on a field K forms a K-vector space.

Reparameterization, change of derivation, compositional conjugation.
Let K be a differential ring and ¢ € K**.
Then &:=¢ !0 is again a derivation on K.

We write K? for the differential field K but with 6 as the derivation.
Example. T with 6:=x 9 is isomorphic to T o exp with 9.
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H-fields

Definition

An H-field is an ordered valued field K with a derivation such that
Hl. y>Cx=vy >0, foryeKk.

H2. Og=Cg+ ok

Note. For f, g€ K with g1, these axioms imply f<g¢= f'<g¢g and fg¢= f'<g¢.

We say that the derivation on K is small if e<1=¢"<1 for any e <1. |

Note. The set Der_(K) of small derivations on K forms a @ g-module.
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Hardy fields.
e Any Hardy field KO R is an H-field.
e More generally: any Hardy field with b€ KS' = lim b e K.

Transseries.
e The field T of grid-based transseries is an H-field.
e The field IE of exponential grid-based transseries is an H-field.
e Given a “d-compatible” support type .¥,
the field T» of .#-based transseries of finite logarithmic depth is an H-field.

o Let T} :=1L"P:=IR[[£]] and T}*":= R[[ILY"]].
1
xlog xlog, x---"

Then T}*" is an H-field. It contains «y:=

Note. For each of the above examples, the derivation is small.
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Theorem

The real closure of any H-field K is again an H-field. If Oy is small, then so is Ogx.

Proof. Given an H-field K, we already know that K™ is a real closed valued field.
Let P=P;Y'+---+PyeK[Y], y€ K™ with P(y)=0,and 0P:=(0P;) Y+ --- + 9P,
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Then P(y) =0 for some P:=D + E with D € C[Y]?" and Ee K[ Y.

Since D(y) <1 and D splits over C™ = Cg~, we have y ~ c for some ¢ € Cg-.

Preservation of smallness. Exercise. 0
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Proposition
There is a unique map *:T7° — T with v(a)" =v(a®) for all a € K*.
We also define o' :== +a" for all a € T7°.

Proposition
Exactly one of the following situations occurs:
1. (7" has a largest element (we say that K is grounded).
2. T=(*") (we say that K has asymptotic integration).
3. T=T*)"U{Bu (") with T < B< (T (we say that K has a gap)

1. Example: [E, the exponential transseries, max (IZ") = v(x~}).
2. Example: T, since any transseries can even be integrated.

3. Example: T}*, with B:=v(7), y:= xlogxllgzx___ . Wehave ¢’ <y< ¢ forany ¢,5< 1.




Gaps — continued 7126

Consider a formal solution L, of
L.(logx) = L.(x)—1.



Gaps — continued 7126

Consider a formal solution L, of
L.(logx) = L.(x)—1.
We have L, >1,but L, <log;x for all /& IN.



Gaps — continued 7126

Consider a formal solution L, of
L.(logx) = L.(x)—1.
We have L, >1, but L, <log;x for all /& N. Hence,

L, & TP, for any ordinal a.



Gaps — continued 7126

Consider a formal solution L, of
L.(logx) = L.(x)—1.
We have L, >1, but L, <log;x for all /& N. Hence,

L, & TP, for any ordinal a.

However,
Li(log x)

X

= Le(x),



Gaps — continued 7126

Consider a formal solution L, of
L.(logx) = L.(x)—1.
We have L, >1, but L, <log;x for all /& N. Hence,

L, & TP, for any ordinal a.
However,
Li(1 )
1089 _ 11w,
x
SO
1

LL(x) = = 4 C TP*\ T3

xlog xlogox - -



Gaps — continued 7126

Consider a formal solution L, of
L,(Jogx) = L.(x)—1.
We have L, >1, but L, <log;x for all /&€ IN. Hence,

L, &€ T¥*,  forany ordinal a.
However, |
L ,
Q89 _ 1),
X
SO
1

Lo(x) = = v C TP\ Ty™

xlog xlog,x - -
Furthermore, T;"* has asymptotic integration (whence no gap), but

1 1 1
= - T — — o o wb
A= x+x10gx+xlogxlog2x+ & L™
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LCemma

Let L:=K(y) with y' = {'. There is a unique ordering on L with y >0 for which L D K is
an extension of H-fields. We have C; =C, I} =T @ Zv(y), T<°< Z>%uv(y), T7°)f < o(yh).

Moreover, if F D K is another H-field extension and a € F~° satisfies a’ = (', then there
exists a unique embedding of H-fields ¢: L — F with ¢(y) =a.

Example. K= with {=x. Then y' = f*z%, soyelogx+C, eg. y=logx.
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llemma
Let L:=K(y) with y' = {". There is a unique ordering on L with y >0 for which L D K is an
extension of H-fields. We have C,=C, I, =T ® Zou(y), T<°< Z>%0v(y) <0, T7°)' <o(yh).

Moreover, if F D K is another H-field extension and a € F~° satisfies a’ = (', then there
exists a unique embedding of H-fields ¢: L — F with ¢(y) =a.

Proof. We may assume wlog that 0 =8, whence ' =1 and v(a") <0 for all 2 € K*'.
Since y'={"'<1, we have Zov(y)NT =0, so B:=v(y) lies in a cut over I'.

By Lemma TR-VAL from Lesson 8, L has a unique valuation with I} =I'® Z 8 and

o(y) = B. Moreover, k; = kg, and for any valued field extension F D K and a € F**
with v(a) in the same cut as f over K, there exists a unique valued field embedding
¢:L — F with ¢(y) =a.

To do. Verity that v comes from an ordering that satisfies H1 and H2.
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Given f€K(y)”’, we have f ~uy">0 for u€ K*” and n€N.



Adjoining new logarithms — continued proof

Given f €K(y)*’, there exist u € K*’ and n € Z with v( f) =v(u) + n 8, whence f ~uy".
We must have f >0 < u >0 and one verifies that this makes L an ordered field.
H2. If v(f)=0, thenn=0and v(u)=0,soueC+0o and f€C+0o;.

H1. Verify first that f >C= ' >0 for f €K*y”.

Also verify that f<g= f'< ¢’ for f,g€ K*y” with g#1.

Now consider P,Q e K[Y] with P/O>0and P > Q.

For certain i, j, we then have P(y) ~ P;y', Q(y) ~ Q;v/, P(y) ~ (Piy)’, Q)" ~ Qi)'
Now (P/Q)' >0=P1y)'>QW)' < (Piy) > (Qy) = ((P;/Qpy' ) >0.

Embedding property. We already have the valued field embedding ¢ with ¢(y)=a.
Since y' =a’ = (", this embedding preserves 0.

Given f€K(y)”’, we have f ~uy">0 for u€ K*” and n€N.
@ preserves valuation = ¢ preserves ~ = @(y) ~ua" > 0. O
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LCemma

Let L:=K(y), where y' = ¢ € K\ 9K. Then there exists a unique ordering on L with y #1,
for which L D K is an extension of H-fields. This extension is immediate.

Moreover, if F D K is another H-field extension and a € F satisfies a’ = g, then there exists
a unique embedding of H-fields ¢: L — F with ¢(y) =a.

Proof. We construct a pc-sequence (y,) that approximates y:
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® Yy.1:=Y,+0, where §' ~g—y,.
e 1y, := a pseudo-limit of (y,),<, if it exists.
(y,) is divergent of transcendental type (since K is real closed).



Adjoining immediate integrals

Let K be a real closed H-field with I':=Ik and let C:=Ck.
Assume that K has asymptotic integration.

LCemma

Let L:=K(y), where y' = ¢ € K\ 9K. Then there exists a unique ordering on L with y #1,
for which L D K is an extension of H-fields. This extension is immediate.

Moreover, if F D K is another H-field extension and a € F satisfies a’ = g, then there exists
a unique embedding of H-fields ¢: L — F with ¢(y) =a.

Proof. We construct a pc-sequence (y,) that approximates y:
o 1:=0.
® ,11:=Y,+0, where 6’ ~g—y,.
e 1y, := a pseudo-limit of (y,),<, if it exists.
(y,) is divergent of transcendental type (since K is real closed).
Conclude by Lemma TR-IMM + “routine verifications”. O
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femma

Let e {1,—1}.

Let L:=K(y) with y" =-y. There is a unique ordering on L with ey > C for which LD K
is an extension of H-fields. We have C, =C, T, =T @ Zv(y), I << Zuv(y), T7°) < o(yh.

Moreover, if F D K is another H-field extension and a € F satisfies ea®>C and a’ =y, then
there exists a unique embedding of H-fields ¢:L — F with ¢(y) =a.
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A fork in the road

Let K be a real closed H-field with I':=Ix and let C:=Ck.
Assume that v € K> with (I'"")" < v(y) < (Y.

Let e {1,—1}.

Let L:=K(y) with y" =-y. There is a unique ordering on L with ey > C for which LD K
is an extension of H-fields. We have C, =C, T, =T @ Zv(y), I << Zuv(y), T7°) < o(yh.

Moreover, if F D K is another H-field extension and a € F satisfies ea®>C and a’ =y, then
there exists a unique embedding of H-fields ¢:L — F with ¢(y) =a.

1
xlog xlog, x - -

Example. K=T}"?, :=
€ =1. In the “natural” extension of K with ynae = [y, we have 1, > 1.
e =—1. Then —y < 1 satisfies (—ynat) =7/ Yaar-

This “explains” why we may also impose [y < 1.
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Assume that K has asymptotic integration.

llemma
Let L:=K(y), wherey'=¢" € K\ (K?)" for e < 1. Then there exists a unique ordering on L
with y # 1, for which L D K is an extension of H-fields. This extension is immediate.

Moreover, if F D K is another H-field extension and a € F satisfies a’ = ¢’, then there exists
a unique embedding of H-fields ¢: L — F with ¢(y) =a.




Adjoining immediate exponentials

Let K be a real closed H-field with I':=I% and let C:=Ck.
Assume that K has asymptotic integration.

LCemma

Let L:=K(y), wherey'=¢" € K\ (K?)" for e < 1. Then there exists a unique ordering on L
with y # 1, for which L D K is an extension of H-fields. This extension is immediate.

Moreover, if F D K is another H-field extension and a € F satisfies a’ = ¢’, then there exists
a unique embedding of H-fields ¢: L — F with ¢(y) =a.

Proof. Similar as for immediate integration. This time (y,) is as follows:
® 1= 1.
e Y,11:=Y,(1+0), where §' ~ &' —yj.
e Y, := a pseudo-limit of (y,),, if it exists. O
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Adjoining non-immediate exponential integrals

Let K be an H-field and let I':=1I%, C:=Ckx.
For f,g€K*’, we have
f<g = fl+ok < ¢"+or
Hence,
I = (K*/~, frge= f-g¢€ o
But there may be elements of K/~ that are not in (K*%)"/ ~.

llemma

Assume that T is divisible. Let s € K*° be such that s —a" > o for all a € K*°. Consider
the differential field L. := K(y) with y* =s.

There exists a unique ordering on L for which L 2O K is an extension of H-fields with y > 0.
We have k; =k, I =1 @ Zv(y), and 9, is small whenever dg is small.

Moreover, if F D K is another H-field extension and a € F~" satisfies a’ =s, then there exists
a unique embedding of H-fields ¢:L — F with ¢(y) =a.
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Let K be an H-field and let I':=1I%, C:=Ckx.

For I={1} orI={1,2}, there exist Liouville closed H-fields L; D K, i € I with the property
that for any Liouville closed H-field F D K, there exists a unique i € I for which L; embeds
into F over K, and this embedding is unique. If K contains “no A element”, then [ = {1}.
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Liouville closure 1526

Let K be an H-field and let I':=1I%, C:=Ckx.

For I={1} or [={1,2}, there exist Liouville closed H-fields L; O K, i € I with the property
that for any Liouville closed H-field F D K, there exists a unique i € I for which L; embeds
into F over K, and this embedding is unique. If K contains “no A\ element”, then I = {1}.

Proof sketch. Track the introduction of A and v during the extension process.
e We may only introduce 7y through exponential integration of A.
e Extensions by [y are grounded and do not contain A.
e We cannot introduce A through integration:

)\'~(l-|- 1 1 .__)/_ 1 1 1 1 A

x = xlogx ° xlogxlog,x x?2  x%logx a xlog xlog, x S x2log? x Y x

e Similarly, A cannot be introduced through exponentiation or real closure. O
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1 1 1
o1 T LT = —
A = x"+(logx)" +(log,x)" + x+x10gx+xlogxlog2x

, 1 / _(1 ] )'I'
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The w-cut 16/26

1 1 1
o1 T LT = —
A = x"+(logx)" +(log,x)" + x+x10gx+xlogxlog2x

, 1 / _(1 ] )'I'
e 211“\1(Mogx---logix) B Z leogx(?]-icogix - _Z Z(logix)*(logjx)+

ic iEN j<i iEN j<i
N = Z Z (log;x)" (log;x)"
iEN jEN
1 1 1

w = 2N =A% = Z ((log; x)")?* = =+

ieN

x?log? x " x?log? xlog3 x T

Theorem (Ecalle, ADH)

For any PeR{Y} \ R, the first w terms of « P(\) + B coincide with \ or w, for certain
a,BER(x,logx, ..., log,x).




First order conditions e

property ofy  (Ve<1) & < vy < ¢
property of A (Ve<1) A+e™ < &'
property of v (Ve<1) w—2(™) + (™) < (¢")?

~-freeness (Vs) (Fe<1) s<e Vvsxze
A-freeness (Vs) (Fe<1) s+e™ > &t
w-freeness (Vs) (Fe<1) s—=2(e™M +(™)? > (e

w-freeness = A-freeness = ~y-freeness



Differential Newton polygon method

We need to generalize:
e Differential Newton polynomials.
e Equalizers.
e Resolution of quasi-linear differential equations.
e Unravelling.
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Compositional conjugation 19726

Consider 8 := ¢ !9 with ¢ € K>°.

Any P € K{Y} can be rewritten as a polynomial P? € K*{Y}=K[Y,3Y,5%Y,...]:
9 = ¢
9% = ¢*3°+¢'8
0° = ¢°5°+3¢pp' 57+ ¢ 8

We call P? the compositional conjugate of P by ¢.



Link with upward shifting 20/26

1
T Qb = ; 8 = gbé
T - 0 = Yo
= xlog x =Y

P — XYY”—(Y’)Z P — xY”—(YI)Z
n_ / N2 2v 2
Py — YY xYY _(Yzz P _ Yo'Y Y5Y_(61;)

e e X X

YY'—YY YY (Y Y62Y-YOY YBY  (8Y)
ee"+2x eex+x e2e"+2x x10g2 X xlog X x2 10g2 X

P11




Differential Newton polynomials

We say that ¢ is active if §:= ¢ ' 9 is small.
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Differential Newton polynomials 2126

We say that ¢ is active if §:= ¢ ' 9 is small.

A property for P € K{Y} holds eventually <
It holds for P?, for all sufficiently small active ¢

Fix a monomial group M CK?*® = dominant coefficients well-defined.

Theorem
Given P € K{Y}?°, there exists a unique N(P) € C{Y'} with D(P?)=N(P), eventually.

Theorem
If K is w-free, then N(P) e C[Y](Y")N, for all P K{Y}.

P — ZY,Y”,—3(Y”)2—(U(Y,)2
NP) = 2Y'Y"" =3(Y")?
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Applications of Newton polynomials 22/26

(Assuming that K is w-free)

P(y) = 0, y<v (%)
m < v starting monomial for (x) N(Py) & CYN
cm < v starting term for (x) N(Py)(c)=0
Newton degree of (*) deg ., P:=val N(Pyy)
m differential starting monomial N(Pyw)i#0, deg.yRp,im+>0

Usual properties of Newton degree p<v = deg.,P,,=deg., P
<o = deg., P<deg., P
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Theorem

Let P,Q € K{Y}?" be homogeneous of degrees i < j.
Then there exists a unique equalizer ¢ € 91 such that N((P + Q).) is not homogeneous.

Proof. Systematically adopt “eventual” vision.
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The equalizer theorem 23/25

K still w-free and with a monomial group 9t C K*.

Theorem

Let P,Q € K{Y}?" be homogeneous of degrees i < j.
Then there exists a unique equalizer ¢ € 91 such that N((P + Q).) is not homogeneous.

Proof. Systematically adopt “eventual” vision.
As in the transseries case, ¢ can be approximated well:
PraY =" (Y)Y =aY' (Y and Q~bY! ™/ (Y'Y =bY/ (Y1)
e~ eappmx(P, Q) := D(% (aJ“ . b+)i’—j’)1/(]'—i)
¢0:=1, ¢1:= Capprox(Pxey Qxeo)r €2:= Capprox(Prers Qxer)s - - -
eo/eSDer/e>Dey /e3> - (m>»nelogm>n)
However, this is not good enough for convergence in arbitrary H-fields...
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One remedy: use transfinite induction. Or...
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Assume thatd=d;=d;,, e=er=e41 =€, and d+e>0
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One remedy: use transfinite induction. Or...

Pxeo - Pxel - Pxez — Qxeo - Qxe1 - Qxez —
RP,+e6 - RP,+e’{ - RP,+e§ — RQ,+e6 - QP,+e’{ - RQ,+e§ -

Fork>1,letdi:=deg.._ Rp and er:=deg it Rp o
Wehaved, >d,>---ande; >e, > - - -

We are done whenever d;,=¢, =0

Assume thatd=d;=d;,, e=er=e41 =€, and d+e>0
Then Rp ;. ~q and Rg 4.t >, are “negligible” for [ >k +1

In particular/ RP,+QI+2,d ~ RP,+QI+1/d and RQ/+QI+2/d ~ RQI+QI+1ld



The equalizer theorem — continued proot 24/26

One remedy: use transfinite induction. Or...

Pxeo - Pxe1 - Pxez — Qxeo - Qxe1 - Qxez —
RP,+e6 - RP,+e’{ - RP,+e§ — RQ,+e6 - QP,+e’{ - RQ,+e§ -

Fork>1,letdi:=deg.._ Rp and er:=deg it Rp o
Wehaved, >d,>---ande; >e, > - - -

We are done whenever d;,=¢,=0

Assume thatd=d;=d; ., e=er=ei1=¢€rsr, and d+e>0
Then Rp ;. ~q and Rg 4.t >, are “negligible” for [ >k +1

In partiCUIar’ RP,+QI+2,d ~ RP,+QI+1/d and RQ/+QI+2/d ~ RQI+QI+1ld

Take Ch+2:= (D(RP,+e£+1)/D(RQ,+e£+1))1/(j_i) inStead Of Chy2:= eapprox(PxekH/ Qxek+1)
This ensures that dj,» <dj.1 Or €512 <€ii1. O
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Let K be an ungrounded w-free H-field with divisible I' and real closed C. Then there
exists a newtonian extension K" 2 K which embeds over K into any newtonian exten-
sion of K. This extension K" D K is immediate, differentially algebraic, and K" is w-free.
We call it the newtonization of K.




Quasi-linear equations

Definition
The H-field K is said to be newtonian if every quasi-linear equation has a solution.

1heorem

Let K be an ungrounded w-free H-field with divisible I' and real closed C. Then there
exists a newtonian extension K" 2 K which embeds over K into any newtonian exten-
sion of K. This extension K" 2 K is immediate, differentially algebraic, and K" is w-free.
We call it the newtonization of K.

Corollary.

Let K be an ungrounded w-free H-field with divisible I' and real closed C. Then there
exists a newtonian Liouville closed extension K™ D K which embeds over K into any new-
tonian Liouville closed extension of K. This extension K™ D K is differentially algebraic,
w-free, and we have Cyn=C. We call K™ the Newton-Liouville closure of K.
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K is asymptotically d-algebraically maximal <

There exists no proper immediate d-algebraic H-field extension of K



Unravelling o~

K'is w-free, with a divisible monomial group M CK 70 and small derivation.

Iheorem
Any asymptotic differential equation over K can be unravelled.

K is asymptotically d-algebraically maximal <
There exists no proper immediate d-algebraic H-field extension of K

If K is newtonian, then K is asymptotically d-algebraically maximal. |
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