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ProofProofProof... Follows from the following embedding lemma. □
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ℒ ≔ {0,1,+,−, ⋅, ∂,⩽,≼}.

An H-field K is HHH---closedclosedclosed if it is ω-free, newtonian, and Liouville closed.
DefinitionDefinitionDefinitionDefinitionDefinition

The ℒ-theory Tnl of H-closed H-fields is model complete.
It is the model companion of the ℒ-theory of H-fields.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Follows from the following embedding lemma. □

Let E be an ω-free H-subfield of an H-closed H-field K and let 𝜑:E→F be an embedding
of E into a |K|+-saturated H-closed H-field F. Then 𝜑 extends to an embedding 𝜑:K→F.

LemmaLemmaLemmaLemmaLemma
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Ι(K) ≔ {y′ :y∈K≺1}

Let K be anω-free real closed H-field. Then Ι(K) is not qf-definable in the ℒK-structure K.
PropositionPropositionPropositionPropositionProposition
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ProofProofProof... Take ℓ>0 in an elementary extension K∗ of K with 1≺ ℓ≺K≻.
Consider the immediate extensions K //λ //and K //λ+γ //of K with γ≔ ℓ†, λ≔−γ†.
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Let f≔ (1/ℓ)†=−γ∉Ι(K∗) and g≔ (1/ℓ)′=−γ/ℓ∈Ι(K∗) with f †=−λ, g†=−(λ+γ).
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𝜄 ≔ {0,1,+,−, ⋅, ∂,⩽,≼, 𝜄,Λ,Ω}
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ℒΛΩ
𝜄 ≔ {0,1,+,−, ⋅, ∂,⩽,≼, 𝜄,Λ,Ω}

with the semantics
𝜄(a) ≔ a−1 if a≠0, 𝜄(0) ≔ 0
Λ(a) ⇔ (∃y≺1) a = −y††

Ω(a) ⇔ (∃y≠0) 4y′′+ay = 0.
This yields a theory TΛΩ

nl,𝜄 that extends Tnl.
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ℒΛΩ
𝜄 ≔ {0,1,+,−, ⋅, ∂,⩽,≼, 𝜄,Λ,Ω}

with the semantics
𝜄(a) ≔ a−1 if a≠0, 𝜄(0) ≔ 0
Λ(a) ⇔ (∃y≺1) a = −y††

Ω(a) ⇔ (∃y≠0) 4y′′+ay = 0.
This yields a theory TΛΩ

nl,𝜄 that extends Tnl.

The theory TΛΩ
nl,𝜄 eliminates quantifiers.

TheoremTheoremTheoremTheoremTheorem

NoteNoteNote... For model complete theories, obstruction to qf-elimination is a language issue.
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ProofProofProof... Follows from the following embedding result. □
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ProofProofProof... Follows from the following embedding result. □

ΛΛΛΩΩΩ---fieldfieldfield ≔ H-field K with additional (𝜄,Λ,Ω)-structure.

Let K and L be ω-free newtonian ΛΩ-fields such that L is |K|+-saturated. Let E be
a substructure of K and let 𝜑: E→ L be an embedding. Then 𝜑 can be extended to
an embedding 𝜑̂:E→L.

TheoremTheoremTheoremTheoremTheorem
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The theory TΛΩ
nl,𝜄 eliminates quantifiers.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Follows from the following embedding result. □

ΛΛΛΩΩΩ---fieldfieldfield ≔ H-field K with additional (𝜄,Λ,Ω)-structure.

Let K and L be ω-free newtonian ΛΩ-fields such that L is |K|+-saturated. Let E be
a substructure of K and let 𝜑: E→ L be an embedding. Then 𝜑 can be extended to
an embedding 𝜑̂:E→L.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof ideasideasideas... Extension lemmas for various individual cases.
The relations Λ, Ω act as switchmen, dictating the direction to take at a fork. □
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nl,𝜄 ≔ TΛΩ
nl,𝜄 + large derivation
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nl,𝜄 + small derivation

Tlarge
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The completions of Tnl are the two ℒ-theories Tsmall
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nl .
The theories Tsmall
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nl,𝜄 ⟹ completeness of Tsmall
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nl , and Tnl can effectively be enumerated. □

NoteNoteNote... Q(x)nl is a primeprimeprime modelmodelmodel of Tsmall
nl (i.e. it embeds into any other model).
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Let K be an H-closed H-field. Then the differential intermediate value property (DIVP)
holds in K: for any P∈K{Y} and f , g∈K with f < g and P( f )P(g)<0, there exists an
h∈K with f <h< g and P(h)=0.

TheoremTheoremTheoremTheoremTheorem
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ProofProofProof... We may arrange the derivative on K to be small via ∂→𝜙∂.
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The grid-based transseries T form a model of Tsmall
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holds in K: for any P∈K{Y} and f , g∈K with f < g and P( f )P(g)<0, there exists an
h∈K with f <h< g and P(h)=0.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof... We may arrange the derivative on K to be small via ∂→𝜙∂.
The grid-based transseries T form a model of Tsmall
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Since Tsmall

nl is complete, K satisfies the same theory as T.
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Let K be an H-closed H-field. Then the differential intermediate value property (DIVP)
holds in K: for any P∈K{Y} and f , g∈K with f < g and P( f )P(g)<0, there exists an
h∈K with f <h< g and P(h)=0.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof... We may arrange the derivative on K to be small via ∂→𝜙∂.
The grid-based transseries T form a model of Tsmall

nl .
Since Tsmall

nl is complete, K satisfies the same theory as T.
The intermediate value property holds in T. □

Any 𝒮-based field of transseries of finite logarithmic depth satisfies DIVP.
CorollaryCorollaryCorollaryCorollaryCorollary
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Let K be an H-closed H-field. Then the differential intermediate value property (DIVP)
holds in K: for any P∈K{Y} and f , g∈K with f < g and P( f )P(g)<0, there exists an
h∈K with f <h< g and P(h)=0.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof... We may arrange the derivative on K to be small via ∂→𝜙∂.
The grid-based transseries T form a model of Tsmall

nl .
Since Tsmall

nl is complete, K satisfies the same theory as T.
The intermediate value property holds in T. □

Any 𝒮-based field of transseries of finite logarithmic depth satisfies DIVP.
CorollaryCorollaryCorollaryCorollaryCorollary

Let K be a Liouville closed H-field. Then K is H-closed if and only if it satisfies DIVP.
TheoremTheoremTheoremTheoremTheorem
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There is a Hardy field that is isomorphic as an H-field to the prime modelQ(x)nl of Tsmall
nl .

TheoremTheoremTheoremTheoremTheorem (((((vdHvdHvdHvdHvdH)))))
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There is a Hardy field that is isomorphic as an H-field to the prime modelQ(x)nl of Tsmall
nl .

TheoremTheoremTheoremTheoremTheorem (((((vdHvdHvdHvdHvdH)))))

NoteNoteNote... Wenaturally haveQ(x)nl⊆T. AHardy field that is at the same time regarded
as a subfield of T was called a transserialtransserialtransserial HardyHardyHardy fieldfieldfield.
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There is a Hardy field that is isomorphic as an H-field to the prime modelQ(x)nl of Tsmall
nl .

TheoremTheoremTheoremTheoremTheorem (((((vdHvdHvdHvdHvdH)))))

NoteNoteNote... Wenaturally haveQ(x)nl⊆T. AHardy field that is at the same time regarded
as a subfield of T was called a transserialtransserialtransserial HardyHardyHardy fieldfieldfield.

Any maximal Hardy field is H-closed.
TheoremTheoremTheoremTheoremTheorem (((((ADHADHADHADHADH)))))
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There is a Hardy field that is isomorphic as an H-field to the prime modelQ(x)nl of Tsmall
nl .

TheoremTheoremTheoremTheoremTheorem (((((vdHvdHvdHvdHvdH)))))

NoteNoteNote... Wenaturally haveQ(x)nl⊆T. AHardy field that is at the same time regarded
as a subfield of T was called a transserialtransserialtransserial HardyHardyHardy fieldfieldfield.

Any maximal Hardy field is H-closed.
TheoremTheoremTheoremTheoremTheorem (((((ADHADHADHADHADH)))))

R(x)nl, T, and all maximal Hardy fields are elementary equivalent.
CorollaryCorollaryCorollaryCorollaryCorollary
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We know that maximal Hardy fields are Liouville closed.
One may check that they are ω-free.
It remains to show that they are newtonian.

IdeaIdeaIdea::: minimalminimalminimal complexitycomplexitycomplexity argumentargumentargument
Consider an ω-free Liouville closed Hardy field K that is not newtonian.
Pick a divergent pc-sequence (y𝜌) of differentially algebraic type.
Pick it of minimal complexity:

Given P∈K{Y}≠0 of order r and degree d with P(y𝜌)↝0,
the triple (r, degY(r) P,d) is minimal for the lexicographical ordering.

Claim: K //y //is again a Hardy field for some root y of P with y𝜌↝y.
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IdeaIdeaIdea::: furtherfurtherfurther normalizationnormalizationnormalization ofofof quasiquasiquasi---linearlinearlinear equationsequationsequations

e−2exy′′y3+e−exy2−y′′′+exy′′−y′+exy−2023e−ex = 0, y ≺ 1

y′′′−exy′′+y′−exy = e−2exy′′y3+e−exy2−2023e−ex, y ≺ 1

(∂−ex) (∂2+1) y = e−2exy′′y3+e−exy2−2023e−ex, y ≺ 1

(∂−ex) (∂+i) (∂− i) y = e−2exy′′y3+e−exy2−2023e−ex, y ≺ 1
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IdeaIdeaIdea::: analyticanalyticanalytic fixedfixedfixed---pointpointpoint argumentargumentargument

(∂−ex) (∂+i) (∂− i) y = e−2exy′′y3+e−exy2−2023e−ex, y ≺ 1

y = (∂− i)−1 (∂+i)−1 (∂−ex)−1 (e−2exy′′y3+e−exy2−2023e−ex)

(∂−Φ†)−1 f = eΦ(x)�
□

x
e−Φ(t) f (t)dt.

SubtletySubtletySubtlety

e−Φ(t) ≪ 1 ↝ �
∞

x

e−Φ(t) ≫ 1 ↝ �
x0

x

Done correctly, the process preserves realness and asymptotic properties.. .
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Let K be a maximal Hardy field.
Consider countable subsets L⊆K and R⊆K with L<R.
Then there exists some y∈K with L<y<R.

TheoremTheoremTheoremTheoremTheorem ..... ..... ..... (((((ADHADHADHADHADH)))))

Given any countable subset L⊆K (like L={x, ex, eex, . . .}), we have y>L for some y∈K.
KnownKnownKnownKnownKnown CorollaryCorollaryCorollaryCorollaryCorollary (((((BoshernitzanBoshernitzanBoshernitzanBoshernitzanBoshernitzan)))))

All maximal Hardy fields are back-and-forth equivalent.
Under the continuum hypothesis, they are all isomorphic.

CorollaryCorollaryCorollaryCorollaryCorollary



ResummationResummationResummation ofofof divergentdivergentdivergent powerpowerpower seriesseriesseries 131313///232323

f̃ (z) = �
n=1

∞

(−1)n−1 (n−1)!zn



ResummationResummationResummation ofofof divergentdivergentdivergent powerpowerpower seriesseriesseries 131313///232323

f̃ (z) = �
n=1

∞

(−1)n−1 (n−1)!zn

f̂ (𝜁) = �
n=1

∞

(−1)n−1𝜁 n−1 = 1
1+𝜁

Formal Borel ℬ̃



ResummationResummationResummation ofofof divergentdivergentdivergent powerpowerpower seriesseriesseries 131313///232323

f̃ (z) = �
n=1

∞

(−1)n−1 (n−1)!zn

f̂ (𝜁) = �
n=1

∞

(−1)n−1𝜁 n−1 = 1
1+𝜁

f (z) = �
0

∞ e−𝜁/z

1+𝜁 d𝜁

Analytic Laplace ℒFormal Borel ℬ̃



ResummationResummationResummation ofofof divergentdivergentdivergent powerpowerpower seriesseriesseries 131313///232323

f̃ (z) = �
n=1

∞

(−1)n−1 (n−1)!zn

f̂ (𝜁) = �
n=1

∞

(−1)n−1𝜁 n−1 = 1
1+𝜁

f (z) = �
0

∞ e−𝜁/z

1+𝜁 d𝜁

Analytic Laplace ℒ

Resummation

Formal Borel ℬ̃



ResummationResummationResummation ofofof divergentdivergentdivergent powerpowerpower seriesseriesseries 131313///232323

f̃ (z) = �
n=1

∞

(−1)n−1 (n−1)!zn

f̂ (𝜁) = �
n=1

∞

(−1)n−1𝜁 n−1 = 1
1+𝜁

f (z) = �
0

∞ e−𝜁/z

1+𝜁 d𝜁

Analytic Laplace ℒ

Resummation

Formal Borel ℬ̃

More generally accelero-summation of transseries
Challenge make it work for any f ∈R(x)nl⊆T
Motivation compatability with composition ⟶ o-minimality



ResummationResummationResummation ofofof divergentdivergentdivergent powerpowerpower seriesseriesseries 131313///232323

f̃ (z) = �
n=1

∞

(−1)n−1 (n−1)!zn

f̂ (𝜁) = �
n=1

∞

(−1)n−1𝜁 n−1 = 1
1+𝜁

f (z) = �
0

∞ e−𝜁/z

1+𝜁 d𝜁

Analytic Laplace ℒ

Resummation

Formal Borel ℬ̃

More generally accelero-summation of transseries
Challenge make it work for any f ∈R(x)nl⊆T
Motivation compatability with composition ⟶ o-minimality



ResummationResummationResummation ofofof divergentdivergentdivergent powerpowerpower seriesseriesseries 131313///232323

f̃ (z) = �
n=1

∞

(−1)n−1 (n−1)!zn

f̂ (𝜁) = �
n=1

∞

(−1)n−1𝜁 n−1 = 1
1+𝜁

f (z) = �
0

∞ e−𝜁/z

1+𝜁 d𝜁

Analytic Laplace ℒ

Resummation

Formal Borel ℬ̃

More generally accelero-summation of transseries
Challenge make it work for any f ∈R(x)nl⊆T
Motivation compatability with composition ⟶ o-minimality



ResummationResummationResummation ofofof divergentdivergentdivergent powerpowerpower seriesseriesseries 131313///232323

f̃ (z) = �
n=1

∞

(−1)n−1 (n−1)!zn

f̂ (𝜁) = �
n=1

∞

(−1)n−1𝜁 n−1 = 1
1+𝜁

f (z) = �
0

∞ e−𝜁/z

1+𝜁 d𝜁

Analytic Laplace ℒ

Resummation

Formal Borel ℬ̃

More generally accelero-summation of transseries
Challenge make it work for any f ∈R(x)nl⊆T
Motivation compatability with composition ⟶ o-minimality



SurrealSurrealSurreal numbersnumbersnumbers 141414///232323

ConwayConwayConway'''sss recursiverecursiverecursive definitiondefinitiondefinition
• Given sets L,R⊆No with L<R, there exists a {L |R}∈No with L<{L |R}<R
• All numbers in No can be obtained in this way



SurrealSurrealSurreal numbersnumbersnumbers 141414///232323

ConwayConwayConway'''sss recursiverecursiverecursive definitiondefinitiondefinition
• Given sets L,R⊆No with L<R, there exists a {L |R}∈No with L<{L |R}<R
• All numbers in No can be obtained in this way

DefinitionDefinitionDefinition usingusingusing signsignsign sequencessequencessequences
• On: class of ordinal numbers
• A surreal number x is a sequence (x[𝛽])𝛽<𝛼∈{−,+}𝛼 for some ℓx≔𝛼∈On
• Lexicographical ordering on such sequences (modulo completion with zeros)



SurrealSurrealSurreal numbersnumbersnumbers 141414///232323

ConwayConwayConway'''sss recursiverecursiverecursive definitiondefinitiondefinition
• Given sets L,R⊆No with L<R, there exists a {L |R}∈No with L<{L |R}<R
• All numbers in No can be obtained in this way

DefinitionDefinitionDefinition usingusingusing signsignsign sequencessequencessequences
• On: class of ordinal numbers
• A surreal number x is a sequence (x[𝛽])𝛽<𝛼∈{−,+}𝛼 for some ℓx≔𝛼∈On
• Lexicographical ordering on such sequences (modulo completion with zeros)

SimplicitySimplicitySimplicity relationrelationrelation
x ⊑ y ⟺ ℓx ⩽ ℓy ∧ (∀𝛽< ℓx, x[𝛽]=y[𝛽])



SurrealSurrealSurreal numbersnumbersnumbers 141414///232323

ConwayConwayConway'''sss recursiverecursiverecursive definitiondefinitiondefinition
• Given sets L,R⊆No with L<R, there exists a {L |R}∈No with L<{L |R}<R
• All numbers in No can be obtained in this way

DefinitionDefinitionDefinition usingusingusing signsignsign sequencessequencessequences
• On: class of ordinal numbers
• A surreal number x is a sequence (x[𝛽])𝛽<𝛼∈{−,+}𝛼 for some ℓx≔𝛼∈On
• Lexicographical ordering on such sequences (modulo completion with zeros)

SimplicitySimplicitySimplicity relationrelationrelation
x ⊑ y ⟺ ℓx ⩽ ℓy ∧ (∀𝛽< ℓx, x[𝛽]=y[𝛽])

EquivalenceEquivalenceEquivalence betweenbetweenbetween (((NoNoNo,,,⩽⩽⩽,,, {{{ ∣∣∣ }}}))) andandand (((NoNoNo,,,⩽⩽⩽,,,⊑⊑⊑)))
{L |R} ≔ min⊑ {a∈No :L<a<R}
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RingRingRing structurestructurestructure... For x={xL |xR} and y={yL |yR}, we define
0 ≔ { |}
1 ≔ {0 | }

−x ≔ {−xR |−xL}
x+y ≔ {xL+y,x+yL |xR+y,x+yR}
xy ≔ {x′y+xy′−x′y′,x′′y+xy′′−x′′y′′ |x′y+xy′′−x ′y′′,x′′y+xy′−x′′y′}

(x′∈xL, x′′∈xR, y′∈yL, y′′∈yR).

GonshorGonshorGonshor::: exponential and logarithm on No (resp. No>)
ConwayConwayConway'''sss ωωω---mapmapmap (generalizing Cantor's ordinal exponentiation)

𝜔x ≔ {0,ℝ>𝜔xL |ℝ>𝜔xR}

SurrealSurrealSurreal numbersnumbersnumbers asasas HahnHahnHahn seriesseriesseries
No ≅ ℝ[[Mo]], Mo ≔ 𝜔No
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0 ≔ { |}
1 ≔ {0 | }
2 ≔ {0, 1 | }

⋅⋅⋅
−1 ≔ { |0}
−2 ≔ { |−1, 0}

⋅⋅⋅
/1 2 ≔ {0 |1}
/1 4 ≔ {0 | /1 2, 1}
/3 8 ≔ {0, /1 4 | /1 2, 1}

⋅⋅⋅
/1 3 ≔ {0, /1 4, /5 16, . . . | . . . , /3 8, /1 2, 1}
π ≔ {0, 1, 2, 3, 3 /1 16, . . . | . . . , 3 /1 4, 3 /1 2, 4}

⋅⋅⋅
ℝ ⊆ No

0 ≔ { |}
1 ≔ {0 | }
2 ≔ {0, 1 | }

⋅⋅⋅
𝜔 ≔ {0, 1, 2, . . . | }

𝜔+1 ≔ {0, 1, 2, . . . ,𝜔 | }
⋅⋅⋅

𝜔2 ≔ {0, 1, 2, . . . ,𝜔,𝜔+1, . . . | }
⋅⋅⋅

𝜔2 ≔ {0, 1, 2, . . . ,𝜔, . . . ,𝜔2, . . . | }
⋅⋅⋅

On ⊆ No

𝜔−1 ≔ {0 | . . . , /1 4, /1 2, 1}
exp𝜔 ≔ {1,𝜔,𝜔2,𝜔3, . . . | }
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There exists a strong exp-log derivation ∂BM on No with ∂BM𝜔=1.
TheoremTheoremTheoremTheoremTheorem (((((BerarducciBerarducciBerarducciBerarducciBerarducci-----MantovaMantovaMantovaMantovaMantova)))))

No with ∂BM is H-closed. So is No(𝜅) for any uncountable 𝜅.
TheoremTheoremTheoremTheoremTheorem (((((ADHADHADHADHADH)))))

HoweverHoweverHowever...
• There is a big class of derivations that satisfy the above theorem.
• ∂BM is the “simplest” such derivation in a certain sense.
• But ∂BM is notnotnot the “right” derivation with respect to 𝜔 (see below.)
• Also: how to define a composition on No?
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DuboisDuboisDubois–––ReymondReymondReymond,,, HardyHardyHardy,,, KneserKneserKneser,,, ... ... ...
There exist “regular” functions that grow faster than x, ex, eex, . . .

E𝜔(x+1) = eE𝜔(x)

⟶ Écalle's “Grand Cantor”

vdHvdHvdH (((199719971997)))
No ordinary transseries like

f (x) = x√ +e logx� +e loglogx� +e ⋅ ⋅⋅

HyperseriesHyperseriesHyperseries::: generalization of transseries with
• Hyperexponentials and hyperlogarithm E𝛼, L𝛼 of ordinal strength (E1=exp)
• Nested hyperseries
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ProblemProblemProblem withwithwith ∂∂∂BMBMBM::: ∂BM E𝜔 E𝜔𝜔 = E𝜔′ E𝜔𝜔 ≠ E𝜔′ 𝜔 E𝜔′ E𝜔𝜔
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Start with logarithmic transseries at an arbitrary level l∈Z:
𝔗0 ≔ 𝔏∘expl z
T0 ≔ C[[𝔗0]]

Close off under exponentiation:
𝔗k+1 ≔ expTk,≻

Tk+1 ≔ C[[𝔗0]]

Take any ordering on Tk that
• is compatible with the R-vector space structure;
• is such that 𝔪≼𝔫⟺log𝔪⩽log 𝔫 for all 𝔪,𝔫∈𝔗k.

ExampleExampleExample... We may impose eiz≻1, ez2≺1, and eieiz≻1.
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PropositionPropositionPropositionPropositionProposition

HoweverHoweverHowever... The isomorphism 𝜑 does not preserve exp or ∂. For instance, it might
send eiz≻T1 to e−iz≻

T̃
1, but cannot send log(eiz)=iz to −iz or (eiz)†=i to −i.
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𝔗 ≔ 𝔗0∪𝔗1∪ ⋅ ⋅ ⋅
T ≔ T0∪T1∪ ⋅ ⋅ ⋅ = C[[𝔗]].

HoweverHoweverHowever... This only defines aaa field of complex transseries (depending on ⩽).

There exists a unique strong exp-log derivation ∂ on T with ∂z=1.
PropositionPropositionPropositionPropositionProposition

Given two fieldsT and T̃ of complex transseries, there exists a field isomorphism 𝜑:T→T̃
that preserves monomials and strong summation.

PropositionPropositionPropositionPropositionProposition

HoweverHoweverHowever... The isomorphism 𝜑 does not preserve exp or ∂. For instance, it might
send eiz≻T1 to e−iz≻

T̃
1, but cannot send log(eiz)=iz to −iz or (eiz)†=i to −i.

HoweverHoweverHowever... ∂ is asymptotic, but not ordered: if 0<eiz≻1, then (eiz)′′=−eiz.
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Let T be any field of complex transseries.

Any P∈T{Y}∖T has at least one solution in T.
TheoremTheoremTheoremTheoremTheorem

HoweverHoweverHowever... There are fields of complex transseries for which only solutions of

y3+ (y′)2+y = 0
are constant solutions y=0, i,−i with y3+y=0.

The field T is Picard-Vessiot closed: any L∈T[∂] splits into order one factors.
CorollaryCorollaryCorollaryCorollaryCorollary

QuestionQuestionQuestion::: what is the theory of fields of complex transseries?
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