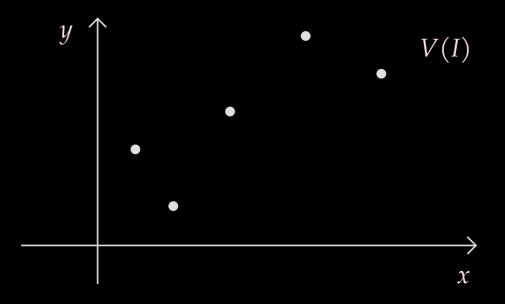
Yet another differential shape lemma

Joris van der Hoeven

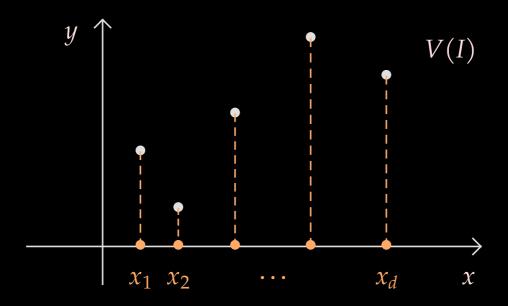
Joint work with Gleb Pogudin *CNRS, École polytechnique, France*

k: field of characteristic zero

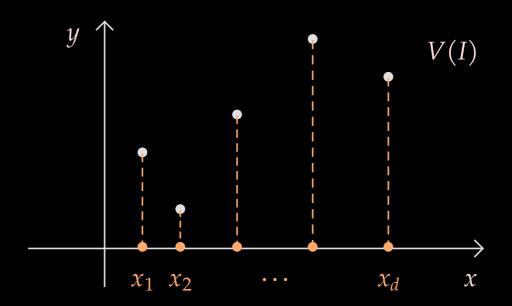
k: field of characteristic zero



k: field of characteristic zero

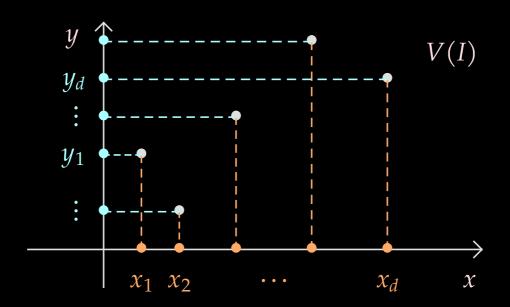


k: field of characteristic zero



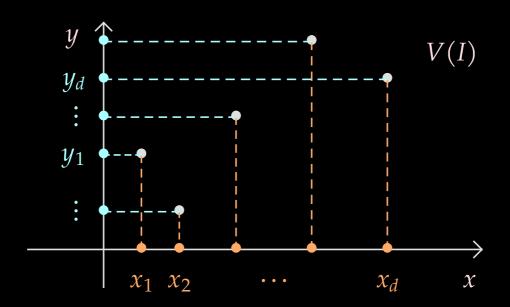
$$P(x) = (x - x_1) (x - x_2) \cdots (x - x_d) \in I$$

k: field of characteristic zero



$$P(x) = (x - x_1) (x - x_2) \cdots (x - x_d) \in I$$

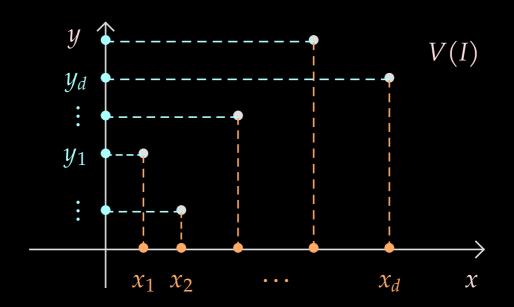
k: field of characteristic zero



$$P(x) = (x - x_1) (x - x_2) \cdots (x - x_d) \in I$$

 $y - Q(x) \in I$, where $y_1 = Q(x_1), \dots, y_d = Q(x_d)$ and $\deg Q < d$

k: field of characteristic zero

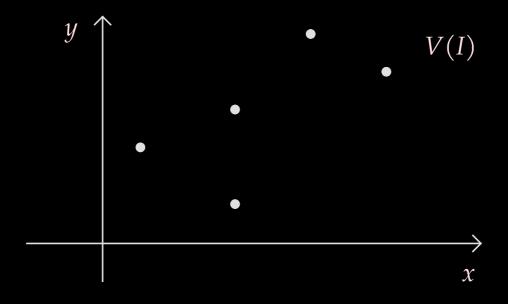


$$I = (P(x), y - Q(x))$$

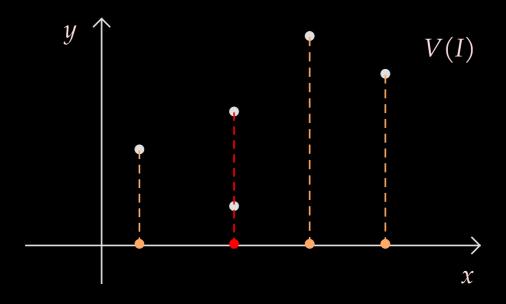
$$P(x) = (x - x_1)(x - x_2) \cdots (x - x_d), \quad y_1 = Q(x_1), \dots, y_d = Q(x_d)$$

k: field of characteristic zero

k: field of characteristic zero



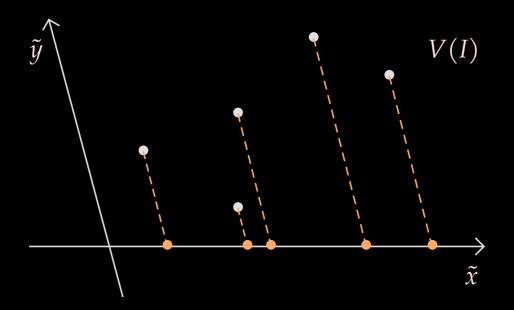
k: field of characteristic zero



k: field of characteristic zero



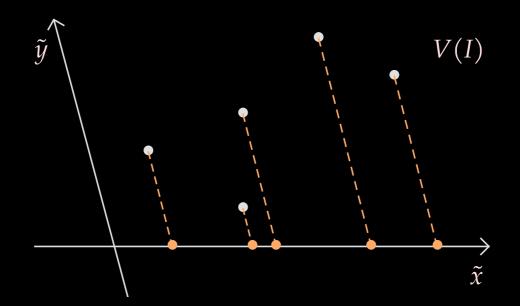
k: field of characteristic zero



$$\tilde{x} = x + cy, \quad \tilde{y} = y$$

k: field of characteristic zero

 $I \subseteq \mathbb{k}[x,y]$: radical zero-dimensional ideal

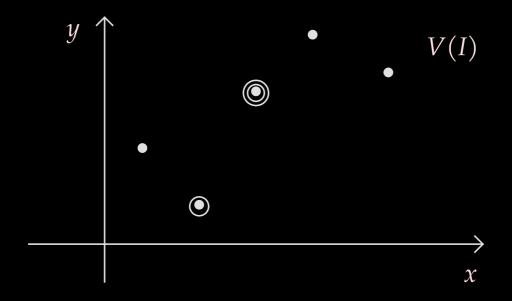


$$\tilde{x} = x + cy, \quad \tilde{y} = y$$

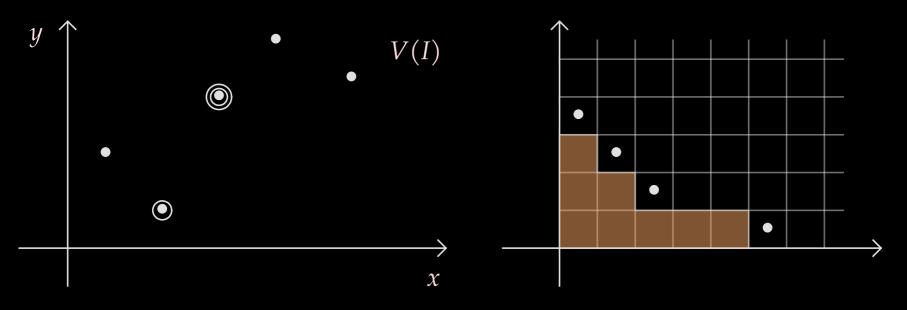
Classical shape lemma → Gianni-Mora 1989

k: field of characteristic zero

k: field of characteristic zero

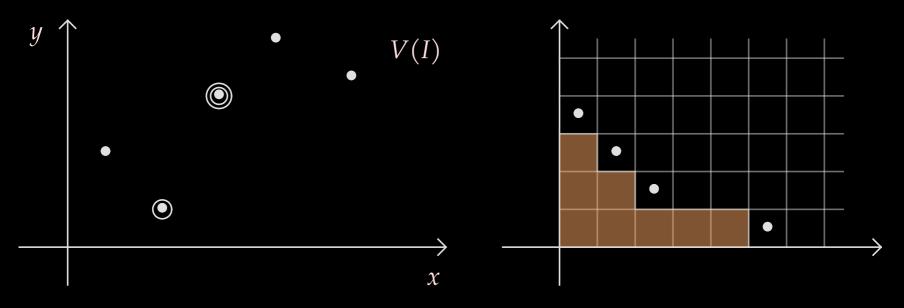


k: field of characteristic zero



k: field of characteristic zero

 $I \subseteq \mathbb{k}[x,y]$: radical zero-dimensional ideal



Shape of lexicographical Gröbner basis → Lazard 1985

Linear partial differential equations

$$\mathbb{k}[x,y]$$

$$\cong$$

$$\mathbb{k}[D_x, D_y]$$

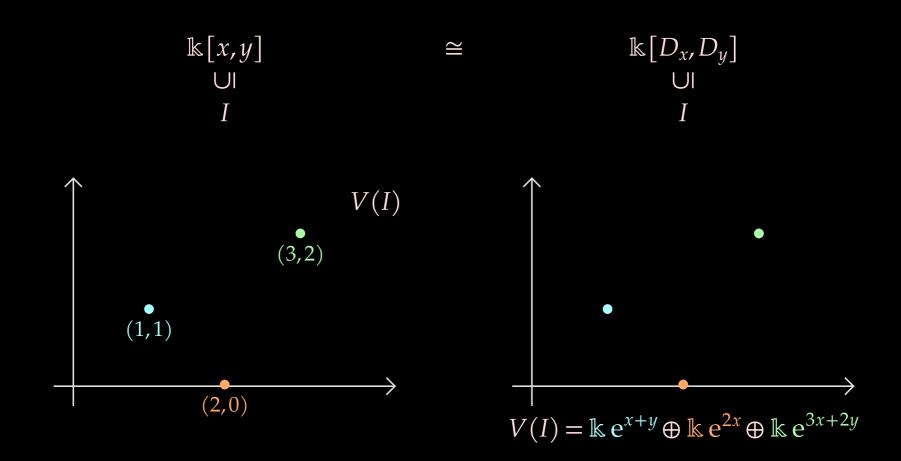
Linear partial differential equations

$$\mathbb{k}[x,y] \cong \mathbb{k}[D_x,D_y]$$

$$\cup I$$

$$I$$

Linear partial differential equations



Lemma

Let $I \in \mathbb{k}[x,y]$ be a radical zero-dimensional ideal. Then there exist $c \in \mathbb{k}$ and $P,Q \in \mathbb{k}[\tilde{x},\tilde{y}]$, where $\tilde{x} = x + cy$, $\tilde{y} = y$, such that P is monic, $\deg Q < \deg P$, and $I = (P,\tilde{y} - Q)$.

Lemma

Let $I \in \mathbb{k}[x,y]$ be a radical zero-dimensional ideal. Then there exist $c \in \mathbb{k}$ and $P,Q \in \mathbb{k}[\tilde{x},\tilde{y}]$, where $\tilde{x} = x + cy$, $\tilde{y} = y$, such that P is monic, $\deg Q < \deg P$, and $I = (P,\tilde{y} - Q)$.

Corollary

Let $I \in \mathbb{k}[D_x, D_y]$ be a radical zero-dimensional ideal. Then there exist $c \in \mathbb{k}$ and $P, Q \in \mathbb{k}[D_{\tilde{x}}, D_{\tilde{y}}]$, where $\tilde{x} = x$, $\tilde{y} = y - cx$, such that P is monic, $\deg Q < \deg P$, and $I = (P, D_{\tilde{y}} - Q)$.

Lemma

Let $I \in \mathbb{k}[x,y]$ be a radical zero-dimensional ideal. Then there exist $c \in \mathbb{k}$ and $P,Q \in \mathbb{k}[\tilde{x},\tilde{y}]$, where $\tilde{x} = x + cy$, $\tilde{y} = y$, such that P is monic, $\deg Q < \deg P$, and $I = (P,\tilde{y} - Q)$.

Corollary

Let $I \in \mathbb{k}[D_x, D_y]$ be a radical zero-dimensional ideal. Then there exist $c \in \mathbb{k}$ and $P, Q \in \mathbb{k}[D_{\tilde{x}}, D_{\tilde{y}}]$, where $\tilde{x} = x$, $\tilde{y} = y - cx$, such that P is monic, $\deg Q < \deg P$, and $I = (P, D_{\tilde{y}} - Q)$.

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -c & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \qquad \begin{pmatrix} D_{\tilde{x}} \\ D_{\tilde{y}} \end{pmatrix} = \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} D_{x} \\ D_{y} \end{pmatrix}$$

Lemma

Let $I \in \mathbb{k}[x,y]$ be a radical zero-dimensional ideal. Then there exist $c \in \mathbb{k}$ and $P,Q \in \mathbb{k}[\tilde{x},\tilde{y}]$, where $\tilde{x} = x + cy$, $\tilde{y} = y$, such that P is monic, $\deg Q < \deg P$, and $I = (P,\tilde{y} - Q)$.

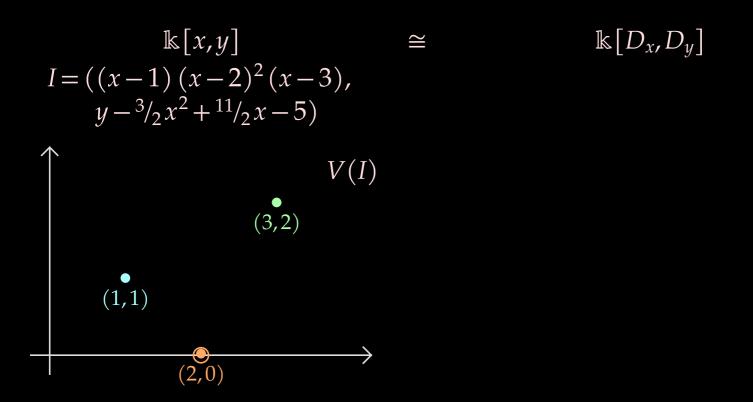
Corollary

Let $I \in \mathbb{k}[D_x, D_y]$ be a radical zero-dimensional ideal. Then there exist $c \in \mathbb{k}$ and $P, Q \in \mathbb{k}[D_{\tilde{x}}, D_{\tilde{y}}]$, where $\tilde{x} = x$, $\tilde{y} = y - cx$, such that P is monic, $\deg Q < \deg P$, and $I = (P, D_{\tilde{y}} - Q)$.

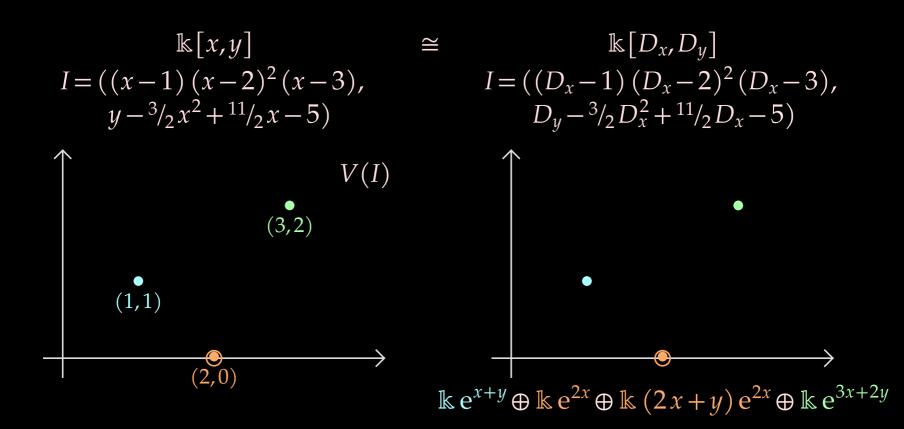
$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -c & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \qquad \begin{pmatrix} D_{\tilde{x}} \\ D_{\tilde{y}} \end{pmatrix} = \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} D_{x} \\ D_{y} \end{pmatrix}$$

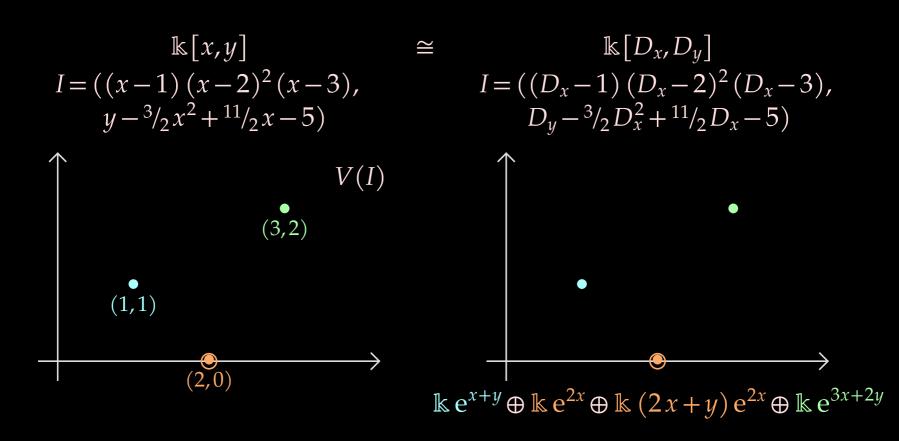
Question: what about left-ideals of $\mathbb{k}(x,y)[D_x,D_y]$ instead of $\mathbb{k}[D_x,D_y]$?

Differential counterpart of "radical ideal"



Differential counterpart of "radical ideal"





 $\{e^{x+y}, \overline{e^{2x}}, (2x+y)e^{2x}, e^{3x+2y}\}$ basis over \mathbb{k} but linearly dependent over $\mathbb{k}(x,y)$.

First differential shape lemma

Definition

We say that a zero-dimensional left ideal $I \subseteq \mathbb{k}(x,y)[D_x,D_y]$ is **D-radical** if its solution space has a \mathbb{k} -basis of $\mathbb{k}(x,y)$ -linearly independent elements.

First differential shape lemma

Definition

We say that a zero-dimensional left ideal $I \subseteq \mathbb{k}(x,y)[D_x,D_y]$ is **D-radical** if its solution space has a \mathbb{k} -basis of $\mathbb{k}(x,y)$ -linearly independent elements.

Theorem (Kauers-Koutchan-Verron, 2025)

Let $I \in \mathbb{k}(x,y)[D_x,D_y]$ be a zero-dimensional D-radical ideal. Then there exist $c \in \mathbb{k}$ and $P,Q \in \mathbb{k}(\tilde{x},\tilde{y})[D_{\tilde{x}},D_{\tilde{y}}]$, where $\tilde{x}=x, \tilde{y}=y-cx$, such that P is monic, $\deg Q < \deg P$, and $I = (P,D_{\tilde{y}}-Q)$.

• The differential ideal $\{LF: L \in I\} \subseteq \mathbb{K}\{F\} = \mathbb{K}[F, D_x F, \dots]$ is **always** radical.

- The differential ideal $\{LF: L \in I\} \subseteq \mathbb{K}\{F\} = \mathbb{K}[F, D_x F, \dots]$ is **always** radical.
- Why introduce the artificial problem of D-radical ideals?

- The differential ideal $\{LF: L \in I\} \subseteq \mathbb{K}\{F\} = \mathbb{K}[F, D_x F, \dots]$ is **always** radical.
- Why introduce the artificial problem of D-radical ideals?
- Solutions sets of $\mathbb{k}[D_x, D_y]$ are more "fine-grained" than those of $\mathbb{k}[x, y]$

- The differential ideal $\{LF: L \in I\} \subseteq \mathbb{K}\{F\} = \mathbb{K}[F, D_x F, \dots]$ is **always** radical.
- Why introduce the artificial problem of D-radical ideals?
- Solutions sets of $\mathbb{k}[D_x, D_y]$ are more "fine-grained" than those of $\mathbb{k}[x, y]$

Double point Linear PDE counterpart
$$I_{1} = (x^{2}, y) \quad V(I_{1}) = \{(0, 0)\} \qquad I_{1} = (D_{x}^{2}, D_{y}) \quad V(I_{1}) = \mathbb{k} \oplus \mathbb{k} x$$
$$I_{2} = (x, y^{2}) \quad V(I_{2}) = \{(0, 0)\} \qquad I_{2} = (D_{x}, D_{y}^{2}) \quad V(I_{2}) = \mathbb{k} \oplus \mathbb{k} y$$

Linear differential Nullstellensatz

$$\mathcal{F} := \bigoplus_{\alpha,\beta \in \mathbb{k}} \mathbb{k}[x,y] e^{\alpha x + \beta y}$$

Linear differential Nullstellensatz

$$\mathscr{F} := \bigoplus_{\alpha,\beta \in \mathbb{k}} \mathbb{k}[x,y] e^{\alpha x + \beta y}$$

$$\mathscr{I} := \text{ set of ideals of } \mathbb{k}[D_x, D_y]$$

$$\mathcal{Z} := \{ \{ f \in \mathcal{F} : \forall L \in I, Lf = 0 \} : I \in \mathcal{I} \}$$

Linear differential Nullstellensatz

$$\mathscr{F} := \bigoplus_{\alpha,\beta \in \mathbb{k}} \mathbb{k}[x,y] e^{\alpha x + \beta y}$$

$$\mathscr{I} := \text{ set of ideals of } \mathbb{k}[D_x, D_y]$$

$$\mathscr{Z} := \{ \{ f \in \mathscr{F} : \forall L \in I, Lf = 0 \} : I \in \mathscr{I} \}$$

Theorem (folklore, vdH 2007)

The following maps are mutual inverses:

$$I \in \mathcal{I} \longmapsto Z_L := \{ f \in \mathcal{F} : \forall L \in I, Lf = 0 \} \in \mathcal{Z}$$

 $Z \in \mathcal{Z} \longmapsto I_Z := \{ L \in \mathbb{k} [D_x, D_y] : \forall f \in Z, Lf = 0 \} \in \mathcal{I}$

$$\mathbb{K} = \mathbb{k}(x, y)$$

$$D_x$$
, D_y derivations on \mathbb{K} with $\begin{pmatrix} D_x \\ D_y \end{pmatrix}$ $(x \ y) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

$$\mathbb{K} = \mathbb{k}(x, y)$$

$$D_x, D_y$$
 derivations on \mathbb{K} with $\begin{pmatrix} D_x \\ D_y \end{pmatrix} (x \ y) = \begin{pmatrix} 1 \ 0 \\ 0 \ 1 \end{pmatrix}$

$$I \subseteq \mathbb{K}[D_x, D_y]$$
 zero-dimensional left ideal

$$\mathbb{K} = \mathbb{k}(x, y)$$

$$D_x, D_y$$
 derivations on \mathbb{K} with $\begin{pmatrix} D_x \\ D_y \end{pmatrix} (x \ y) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

 $I \subseteq \mathbb{K}[D_x, D_y]$ zero-dimensional left ideal

In other words, $\mathbb{A} := \mathbb{K}[D_x, D_y]/I$ has finite dimension over \mathbb{K}

$$\mathbb{K} = \mathbb{k}(x, y)$$

$$D_x, D_y$$
 derivations on \mathbb{K} with $\begin{pmatrix} D_x \\ D_y \end{pmatrix} (x \ y) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

 $I \subseteq \mathbb{K}[D_x, D_y]$ zero-dimensional left ideal

In other words, $\mathbb{A} := \mathbb{K}[D_x, D_y]/I$ has finite dimension over \mathbb{K}

Theorem (vdH-Pogudin, 2025)

There exists a polynomial $q(y) \in \mathbb{Q}[y]$ with $\mathbb{A} = \mathbb{K}[\overline{D}]$, where $D := qD_x + D_y$.

$$\mathbb{K} = \mathbb{k}(x, y)$$

$$D_x, D_y$$
 derivations on \mathbb{K} with $\begin{pmatrix} D_x \\ D_y \end{pmatrix} (x \ y) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

 $I \subseteq \mathbb{K}[D_x, D_y]$ zero-dimensional left ideal

In other words, $\mathbb{A} := \mathbb{K}[D_x, D_y]/I$ has finite dimension over \mathbb{K}

Theorem (vdH-Pogudin, 2025)

There exists a polynomial $q(y) \in \mathbb{Q}[y]$ with $\mathbb{A} = \mathbb{K}[\bar{D}]$, where $D := qD_x + D_y$.

Corollary

For certain $P, U, V \in \mathbb{K}[D]$ with P monic and $\deg U, \deg V < \deg P$, we have $I = (P(D), D_x - U(D), D_y - V(D))$.

12/18

$$I = (D_x^2, D_y^2) \subseteq \mathbb{K}[D_x, D_y].$$

$$I = (D_x^2, D_y^2) \subseteq \mathbb{K}[D_x, D_y].$$

$$D := y D_x + D_y$$

$$I = (D_x^2, D_y^2) \subseteq \mathbb{K}[D_x, D_y].$$

$$D := yD_x + D_y$$

$$D^2 = y^2D_x^2 + D_y^2 + 2yD_xD_y + D_x$$

$$I = (D_x^2, D_y^2) \subseteq \mathbb{K}[D_x, D_y].$$

$$D := yD_x + D_y$$

$$D^2 = y^2D_x^2 + D_y^2 + 2yD_xD_y + D_x \equiv 2yD_xD_y + D_x$$

$$I = (D_x^2, D_y^2) \subseteq \mathbb{K}[D_x, D_y].$$

$$D := yD_x + D_y$$

$$D^2 = y^2D_x^2 + D_y^2 + 2yD_xD_y + D_x \equiv 2yD_xD_y + D_x$$

$$D^3 \equiv (yD_x + D_y)(2yD_xD_y + D_x)$$

$$I = (D_x^2, D_y^2) \subseteq \mathbb{K}[D_x, D_y].$$

$$D := yD_x + D_y$$

$$D^2 = y^2D_x^2 + D_y^2 + 2yD_xD_y + D_x \equiv 2yD_xD_y + D_x$$

$$D^3 \equiv (yD_x + D_y)(2yD_xD_y + D_x) \equiv 3D_xD_y$$

$$I = (D_x^2, D_y^2) \subseteq \mathbb{K}[D_x, D_y].$$

$$D := yD_{x} + D_{y}$$

$$D^{2} = y^{2}D_{x}^{2} + D_{y}^{2} + 2yD_{x}D_{y} + D_{x} \equiv 2yD_{x}D_{y} + D_{x}$$

$$D^{3} \equiv (yD_{x} + D_{y})(2yD_{x}D_{y} + D_{x}) \equiv 3D_{x}D_{y}$$

$$D^{4} \equiv (yD_{x} + D_{y})3D_{x}D_{y}$$

$$I = (D_x^2, D_y^2) \subseteq \mathbb{K}[D_x, D_y].$$

$$D := yD_x + D_y$$

$$D^2 = y^2D_x^2 + D_y^2 + 2yD_xD_y + D_x \equiv 2yD_xD_y + D_x$$

$$D^3 \equiv (yD_x + D_y)(2yD_xD_y + D_x) \equiv 3D_xD_y$$

$$D^4 \equiv (yD_x + D_y)3D_xD_y \equiv 0.$$

$$I = (D_x^2, D_y^2) \subseteq \mathbb{K}[D_x, D_y].$$

$$D := yD_x + D_y$$

$$D^2 = y^2D_x^2 + D_y^2 + 2yD_xD_y + D_x \equiv 2yD_xD_y + D_x$$

$$D^3 \equiv (yD_x + D_y)(2yD_xD_y + D_x) \equiv 3D_xD_y$$

$$D^4 \equiv (yD_x + D_y)3D_xD_y \equiv 0.$$

$$D_x \equiv D^2 - \frac{2}{3}yD^3$$

$$D_y \equiv D - yD^2 + \frac{2}{3}y^2D^3$$

$$I = (D_x^2, D_y^2) \subseteq \mathbb{K}[D_x, D_y].$$

$$D := yD_{x} + D_{y}$$

$$D^{2} = y^{2}D_{x}^{2} + D_{y}^{2} + 2yD_{x}D_{y} + D_{x} \equiv 2yD_{x}D_{y} + D_{x}$$

$$D^{3} \equiv (yD_{x} + D_{y})(2yD_{x}D_{y} + D_{x}) \equiv 3D_{x}D_{y}$$

$$D^{4} \equiv (yD_{x} + D_{y})3D_{x}D_{y} \equiv 0.$$

$$D_x \equiv D^2 - \frac{2}{3}yD^3$$

$$D_y \equiv D - yD^2 + \frac{2}{3}y^2D^3$$

$$I = (D^4, D_x + \frac{2}{3}yD^3 - D^2, D_y - \frac{2}{3}y^2D^3 + yD^2 - D)$$

Let
$$D_* := D + zD_x$$
 for formal $z := z(y)$ (i.e. $z^{(i)} = D_y^i z$, $D_x z^{(i)} = 0$)

Let $D_* := D + zD_x$ for formal z := z(y)

Let $D_* := D + zD_x$ for formal $z := \overline{z(y)}$

$$\Omega(z) := \bar{1} \wedge \bar{D}_* \wedge \cdots \wedge \bar{D}_*^m = \sum_{i=1}^m z^{e_0} \cdots (z^{(m-1)})^{e_{m-1}} b_{e_0, \dots, e_{m-1}}^{u}$$

Let $D_* := D + zD_x$ for formal z := z(y)

Consider

$$\Omega(z) := \bar{1} \wedge \bar{D}_* \wedge \dots \wedge \bar{D}_*^m = \sum_{i=1}^m z^{e_0} \dots (z^{(m-1)})^{e_{m-1}} b_{e_0, \dots, e_{m-1}}^{u}$$

$$m \text{ minimal} \implies \Omega(p(y)) = 0 \text{ for any polynomial } p(y) \in \mathbb{Q}[y]$$

$$\implies \Omega = 0$$

$$\implies b_{e_0, \dots, e_{m-1}} = 0 \text{ for all } e_0, \dots, e_{m-1}$$

Let $D_* := D + zD_x$ for formal z := z(y)

Consider

$$\Omega(z) := \bar{1} \wedge \bar{D}_* \wedge \dots \wedge \bar{D}_*^m = \sum_{i=1}^m z^{e_0} \dots (z^{(m-1)})^{e_{m-1}} b_{e_0, \dots, e_{m-1}}^{u}$$

$$m \text{ minimal} \implies \Omega(p(y)) = 0 \text{ for any polynomial } p(y) \in \mathbb{Q}[y]$$

$$\implies \Omega = 0$$

$$\implies b_{e_0, \dots, e_{m-1}} = 0 \text{ for all } e_0, \dots, e_{m-1}$$

We focus on the coefficient of $z^{(m-1)}$ in $\Omega(z)$.

Take D = aD + D with $m = \dim_{\mathbb{R}} \mathbb{K}[\bar{D}]$ maximal. We

Take
$$D = qD_x + D_y$$
 with $m := \dim_{\mathbb{K}} \mathbb{K}[\bar{D}]$ maximal. We want $\mathbb{A} = \mathbb{K}[\bar{D}]$.
Let $D_* := D + zD_x$ for formal $z := z(y)$

$$:= D + zD_x$$
 for formal $z := z(y)$

$$\Omega(z) := \bar{1} \wedge \bar{D}_* \wedge \cdots \wedge \bar{D}_*^m = \sum_{i=1}^m z^{e_0} \cdots (z^{(m-1)})^{e_{m-1}} b_{e_0, \dots, e_{m-1}}$$

By induction on
$$r$$
,

$$D_*^r = z^{(r-1)} D_x + h_r(z, z', \dots, z^{(r-2)}).$$

Take
$$D = qD_x + D_y$$
 with $m := \dim_{\mathbb{K}} \mathbb{K}[\bar{D}]$ maximal. We want $\mathbb{A} = \mathbb{K}[\bar{D}]$.
Let $D_* := D + zD_x$ for formal $z := z(y)$

$$= \sum_{x} \sum_{y} |x| = \sum_{y} |x|$$

$$\Omega(z) := \bar{1} \wedge \bar{D}_* \wedge \cdots \wedge \bar{D}_*^m = \sum_{i} z^{e_0} \cdots (z^{(m-1)})^{e_{m-1}} b_{e_0, \dots, e_{m-1}}$$

By induction on
$$r$$
,

 $D_{*}^{r} = z^{(r-1)}D_{r} + h_{r}(z, z', \dots, z^{(r-2)}).$

$$0 = [z^{(m-1)}] (\bar{1} \wedge \bar{D}_* \wedge \cdots \wedge \bar{D}_*^{m-1} \wedge \bar{D}_*^m)$$

Let
$$D_* := D + zD_x$$
 for formal $z := z(y)$

$$\Omega(z) := \bar{1} \wedge \bar{D}_* \wedge \cdots \wedge \bar{D}_*^m = \sum_{i} z^{e_0} \cdots (z^{(m-1)})^{e_{m-1}} b_{e_0, \dots, e_{m-1}}$$

By induction on r,

$$D_*^r = z^{(r-1)} D_x + h_r(z, z', \dots, z^{(r-2)}).$$

$$0 = [z^{(m-1)}] (\bar{1} \wedge \bar{D}_* \wedge \dots \wedge \bar{D}_*^{m-1} \wedge \bar{D}_*^m)$$

= $([1]\bar{1}) \wedge ([1]\bar{D}_*) \wedge \dots \wedge ([1]\bar{D}_*^{m-1}) \wedge ([z^{(m-1)}]\bar{D}_*^m)$

Proof — continued

Take $D = q D_x + D_y$ with $m := \dim_{\mathbb{K}} \mathbb{K}[\bar{D}]$ maximal. We want $\mathbb{A} = \mathbb{K}[\bar{D}]$.

Let
$$D_* := D + zD_x$$
 for formal $z := z(y)$

$$\Omega(z) := \bar{1} \wedge \bar{D}_* \wedge \cdots \wedge \bar{D}_*^m = \sum_{i=1}^m z^{e_0} \cdots (z^{(m-1)})^{e_{m-1}} b_{e_0, \dots, e_{m-1}}$$

By induction on *r*,

$$D_*^r = z^{(r-1)}D_x + h_r(z,z',\ldots,z^{(r-2)}).$$

$$0 = [z^{(m-1)}] (\bar{1} \wedge \bar{D}_{*} \wedge \cdots \wedge \bar{D}_{*}^{m-1} \wedge \bar{D}_{*}^{m})$$

$$= ([1]\bar{1}) \wedge ([1]\bar{D}_{*}) \wedge \cdots \wedge ([1]\bar{D}_{*}^{m-1}) \wedge ([z^{(m-1)}]\bar{D}_{*}^{m})$$

$$= \bar{1} \wedge \bar{D} \wedge \cdots \wedge \bar{D}^{m-1} \wedge \bar{D}_{x}$$

Let
$$D_* := D + zD_x$$
 for formal $z := z(y)$

$$\Omega(z) := \bar{1} \wedge \bar{D}_* \wedge \cdots \wedge \bar{D}_*^m = \sum_{i=1}^m z^{e_0} \cdots (z^{(m-1)})^{e_{m-1}} b_{e_0, \dots, e_{m-1}}$$

By induction on r,

$$D_*^r = z^{(r-1)} D_x + h_r(z, z', \dots, z^{(r-2)}).$$

$$0 = [z^{(m-1)}] (\bar{1} \wedge \bar{D}_* \wedge \dots \wedge \bar{D}_*^{m-1} \wedge \bar{D}_*^m)$$

$$= ([1]\bar{1}) \wedge ([1]\bar{D}_*) \wedge \dots \wedge ([1]\bar{D}_*^{m-1}) \wedge ([z^{(m-1)}]\bar{D}_*^m)$$

$$= \bar{1} \wedge \bar{D} \wedge \dots \wedge \bar{D}^{m-1} \wedge \bar{D}_*$$

Hence $\bar{D}_x \in \mathbb{K}[\bar{D}]$.

Take $D = qD_x + D_y$ with $m := \dim_{\mathbb{K}} \mathbb{K}[\bar{D}]$ maximal. We want $\mathbb{A} = \mathbb{K}[\bar{D}]$. Let $D_* := D + zD_x$ for formal z := z(y)

$$\Omega(z) := \bar{1} \wedge \bar{D}_* \wedge \cdots \wedge \bar{D}_*^m = \sum_{i=1}^m z^{e_0} \cdots (z^{(m-1)})^{e_{m-1}} b_{e_0,\dots,e_{m-1}}$$

By induction on r,

$$D_*^r = z^{(r-1)} D_x + h_r(z, z', \dots, z^{(r-2)}).$$

$$0 = \left[z^{(m-1)}\right] \left(\bar{1} \wedge \bar{D}_* \wedge \cdots \wedge \bar{D}_*^{m-1} \wedge \bar{D}_*^m\right)$$

$$= ([1]\bar{1}) \wedge ([1]\bar{D}_*) \wedge \cdots \wedge ([1]\bar{D}_*^{m-1}) \wedge ([z^{(m-1)}]\bar{D}_*^m)$$

$$= \bar{1} \wedge \bar{D} \wedge \cdots \wedge \bar{D}^{m-1} \wedge \bar{D}_x$$

$$= 1 \wedge$$

$$= \mathbb{K} [\bar{D}]$$

Hence $\bar{D}_x \in \mathbb{K}[\bar{D}]$.

Now D and D_x commute, so $\mathbb{A} = \mathbb{K}[\bar{D}_x, \bar{D}_y] = \mathbb{K}[\bar{D}]$.

Dual interpretation

Corollary

There exists a polynomial $p \in \mathbb{Q}[y]$ with the following property.

Consider an invertible polynomial change of variables $\tilde{x} = x + p(y)$, $\tilde{y} = y$ and denote the partial derivatives with respect to \tilde{x} and \tilde{y} by $D_{\tilde{x}}$ and $D_{\tilde{y}}$, respectively.

Then $\mathbb{A} = \mathbb{K}[\bar{D}_{\tilde{y}}].$

Proof. For $p := -\int q$, we have

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \begin{pmatrix} x + p(y) \\ y \end{pmatrix} \implies \begin{pmatrix} D_{\tilde{x}} \\ D_{\tilde{y}} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix} \begin{pmatrix} D_{x} \\ D_{y} \end{pmatrix},$$

so
$$D = D_{\tilde{y}}$$
.

Example — continued

$$I = (D_x^2, D_y^2) \subseteq \mathbb{K}[D_x, D_y].$$

$$D := yD_x + D_y$$

$$D_x \equiv D^2 - \frac{2}{3}yD^3$$

$$D_y \equiv D - yD^2 + \frac{2}{3}y^2D^3$$

$$I = (D^4, D_x + \frac{2}{3}yD^3 - D^2, D_y - \frac{2}{3}y^2D^3 + yD^2 - D)$$

Example — continued

$$I = (D_{x}^{2}, D_{y}^{2}) \subseteq \mathbb{K}[D_{x}, D_{y}].$$

$$D := yD_{x} + D_{y}$$

$$D_{x} \equiv D^{2} - \frac{2}{3}yD^{3}$$

$$D_{y} \equiv D - yD^{2} + \frac{2}{3}y^{2}D^{3}$$

$$I = \left(D^{4}, D_{x} + \frac{2}{3}yD^{3} - D^{2}, D_{y} - \frac{2}{3}y^{2}D^{3} + yD^{2} - D\right)$$

$$\left(\frac{\tilde{x}}{\tilde{y}}\right) = \left(\frac{x - \frac{y^{2}}{2}}{y}\right), \quad I = \left(D_{\tilde{y}}^{4}, D_{\tilde{x}} + \frac{2}{3}yD_{\tilde{y}}^{3} - D_{\tilde{y}}^{2}\right).$$

Higher dimensions

$$\mathbb{K} = \mathbb{k}(x_1, \dots, x_n)$$
 with derivations D_{x_1}, \dots, D_{x_n}

$$\mathbb{A} := \mathbb{K}[D_{x_1}, \dots, D_{x_n}]/I$$
 of finite dimension over \mathbb{K}

Theorem

There exist univariate polynomials $q_2, \ldots, q_n \in \mathbb{Q}[x_1]$ with $\mathbb{A} = \mathbb{K}[\bar{D}]$, where

$$D := D_{x_1} + q_2(x_1) D_{x_2} + \dots + q_n(x_1) D_{x_n}$$

Corollary

There exist polynomials $p_2, \ldots, p_n \in \mathbb{Q}[x_1]$ with the following property.

Consider an invertible polynomial change of variables

$$\tilde{x}_1 = x_1, \ \tilde{x}_2 = x_2 + p_2(x_1), \ \dots, \ \tilde{x}_n = x_n + p_n(x_1).$$

Then $\mathbb{A} = \mathbb{K}[\bar{D}_{\tilde{x}_1}]$.

Thank you!

http://www.T_EX_MACS.org