
Yet another differential shape lemma

Joris van der Hoeven
Joint work with Gleb Pogudin
CNRS, École polytechnique, France

Online Kolchin seminar November 7, 2025



Classical shape lemma, general position 2/18

𝕜: field of characteristic zero

I⊆𝕜[x,y]: radical zero-dimensional ideal



Classical shape lemma, general position 2/18

𝕜: field of characteristic zero

I⊆𝕜[x,y]: radical zero-dimensional ideal

x

y
V(I)



Classical shape lemma, general position 2/18

𝕜: field of characteristic zero

I⊆𝕜[x,y]: radical zero-dimensional ideal

x

y
V(I)

x1 xdx2 ⋅ ⋅ ⋅



Classical shape lemma, general position 2/18

𝕜: field of characteristic zero

I⊆𝕜[x,y]: radical zero-dimensional ideal

x

y
V(I)

x1 xdx2 ⋅ ⋅ ⋅

P(x)=(x−x1)(x−x2) ⋅ ⋅ ⋅ (x−xd)∈ I



Classical shape lemma, general position 2/18

𝕜: field of characteristic zero

I⊆𝕜[x,y]: radical zero-dimensional ideal

x

y
V(I)

x1 xdx2 ⋅ ⋅ ⋅

y1

yd

⋅⋅⋅

⋅⋅⋅

P(x)=(x−x1)(x−x2) ⋅ ⋅ ⋅ (x−xd)∈ I



Classical shape lemma, general position 2/18

𝕜: field of characteristic zero

I⊆𝕜[x,y]: radical zero-dimensional ideal

x

y
V(I)

x1 xdx2 ⋅ ⋅ ⋅

y1

yd

⋅⋅⋅

⋅⋅⋅

P(x)=(x−x1)(x−x2) ⋅ ⋅ ⋅ (x−xd)∈ I
y−Q(x)∈ I, where y1 =Q(x1), . . . ,yd=Q(xd) and degQ<d



Classical shape lemma, general position 2/18

𝕜: field of characteristic zero

I⊆𝕜[x,y]: radical zero-dimensional ideal

x

y
V(I)

x1 xdx2 ⋅ ⋅ ⋅

y1

yd

⋅⋅⋅

⋅⋅⋅

I=(P(x),y−Q(x))
P(x)=(x−x1)(x−x2) ⋅ ⋅ ⋅ (x−xd), y1 =Q(x1), . . . ,yd=Q(xd)
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𝕜: field of characteristic zero

I⊆𝕜[x,y]: radical zero-dimensional ideal

x̃

V(I)ỹ

x̃=x+ cy, ỹ=y
Classical shape lemma ⟶ Gianni–Mora 1989
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𝕜: field of characteristic zero

I⊆𝕜[x,y]: radical zero-dimensional ideal
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Shape of lexicographical Gröbner basis ⟶ Lazard 1985
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Let I∈ 𝕜[x, y] be a radical zero-dimensional ideal. Then there exist c∈ 𝕜 and
P,Q∈ 𝕜[x̃, ỹ], where x̃= x+ c y, ỹ= y, such that P is monic, deg Q< deg P,
and I=(P, ỹ−Q).

Lemma

Let I∈𝕜[Dx,Dy] be a radical zero-dimensional ideal. Then there exist c∈𝕜 and
P,Q∈𝕜[Dx̃,Dỹ], where x̃=x, ỹ=y− cx, such that P is monic, degQ<deg P,
and I=(P,Dỹ−Q).

Corollary

((((((( x̃
ỹ ))))))) = ((((((( 1 0

−c 1 )))))))((((((( x
y ))))))), ((((((( Dx̃
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Question: what about lest-ideals of 𝕜(x,y)[Dx,Dy] instead of 𝕜[Dx,Dy] ?
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solution space has a 𝕜-basis of 𝕜(x,y)-linearly independent elements.

Definition

Let I∈ 𝕜(x, y)[Dx,Dy] be a zero-dimensional D-radical ideal. Then there exist
c∈𝕜 and P,Q∈𝕜(x̃, ỹ)[Dx̃,Dỹ], where x̃=x, ỹ=y− c x, such that P is monic,
degQ<deg P, and I=(P,Dỹ−Q).

Theorem (Kauers–Koutchan–Verron, 2025)
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Let 𝕂≔𝕜(x,y) and let I⊆𝕂[Dx,Dy] be a lest ideal.

• The differential ideal {LF :L∈ I}⊆𝕂{F}=𝕂[F,Dx F, . . .] is always radical.

• Why introduce the artificial problem of D-radical ideals ?

• Solutions sets of 𝕜[Dx,Dy] are more “fine-grained” than those of 𝕜[x,y]

Double point Linear PDE counterpart

I1 =(x2,y) V(I1)={(0,0)}
I2 =(x,y2) V(I2)={(0,0)}

I1 =(Dx
2,Dy) V(I1)=𝕜⊕𝕜x

I2 =(Dx,Dy
2) V(I2)=𝕜⊕𝕜y
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F ≔ �
𝛼,𝛽∈𝕜

𝕜[x,y]e𝛼x+𝛽y

I ≔ set of ideals of 𝕜[Dx,Dy]
Z ≔ {{ f ∈F :∀L∈ I,Lf =0} : I∈I }

The following maps are mutual inverses:

I ∈ I ⟼ ZL ≔ { f ∈F :∀L∈ I,Lf =0} ∈ Z

Z ∈ Z ⟼ IZ ≔ {L∈𝕜[Dx,Dy] :∀ f ∈Z,Lf =0} ∈ I

Theorem (folklore, vdH 2007)
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𝕂=𝕜(x,y)
Dx,Dy derivations on 𝕂 with (((((( Dx

Dy )))))) ( x y )=(((((( 1 0
0 1 ))))))

I⊆𝕂[Dx,Dy] zero-dimensional lest ideal

In other words, 𝔸≔𝕂[Dx,Dy]/I has finite dimension over 𝕂

There exists a polynomial q(y)∈Q[y] with 𝔸=𝕂[D̄], where D≔qDx+Dy.

Theorem (vdH–Pogudin, 2025)

For certain P,U,V∈𝕂[D] with P monic and degU,degV<deg P, we have
I = (P(D), Dx−U(D), Dy−V(D)).

Corollary
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I = (Dx
2,Dy

2) ⊆ K[Dx,Dy].

D ≔ yDx+Dy

D2 = y2Dx
2 +Dy

2 +2yDxDy+Dx ≡ 2yDxDy+Dx

D3 ≡ (yDx+Dy)(2yDxDy+Dx) ≡ 3DxDy

D4 ≡ (yDx+Dy)3DxDy ≡ 0.

Dx ≡ D2 − 2
3 yD

3

Dy ≡ D−yD2 + 2
3 y

2D3

I = (D4, Dx+ 2
3 yD

3 −D2, Dy− 2
3 y

2D3 +yD2 −D)
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Take D=qDx+Dy with m≔dim𝕂 𝕂[D̄] maximal. We want 𝔸=𝕂[D̄].

Let D∗ ≔D+zDx for formal z≔z(y)

Consider

Ω(z) ≔ 1̄∧ D̄∗ ∧ ⋅⋅ ⋅ ∧ D̄∗
m = � ze0 ⋅ ⋅ ⋅ (z(m−1))em−1 be0, . . . ,em−1

∈

⋀m+1 A

m minimal ⟹ Ω(p(y))=0 for any polynomial p(y)∈ℚ[y]
⟹ Ω=0
⟹ be0, . . . ,em−1 =0 for all e0, . . . , em−1

We focus on the coefficient of z(m−1) in Ω(z).
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m = � ze0 ⋅ ⋅ ⋅ (z(m−1))em−1 be0, . . . ,em−1

By induction on r,
D∗

r = z(r−1)Dx+hr(z,z′, . . . ,z(r−2)).

0 = [z(m−1)] (1̄∧ D̄∗ ∧ ⋅⋅ ⋅ ∧ D̄∗
m−1 ∧ D̄∗

m)
= ([1] 1̄)∧([1] D̄∗)∧ ⋅⋅ ⋅ ∧([1] D̄∗

m−1)∧([z(m−1)] D̄∗
m)

= 1̄∧ D̄∧ ⋅⋅ ⋅ ∧ D̄m−1 ∧ D̄x
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m−1)∧([z(m−1)] D̄∗
m)

= 1̄∧ D̄∧ ⋅⋅ ⋅ ∧ D̄m−1 ∧ D̄x

Hence D̄x∈𝕂[D̄].
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Take D=qDx+Dy with m≔dim𝕂 𝕂[D̄] maximal. We want 𝔸=𝕂[D̄].
Let D∗ ≔D+zDx for formal z≔z(y)

Ω(z) ≔ 1̄∧ D̄∗ ∧ ⋅⋅ ⋅ ∧ D̄∗
m = � ze0 ⋅ ⋅ ⋅ (z(m−1))em−1 be0, . . . ,em−1

By induction on r,
D∗

r = z(r−1)Dx+hr(z,z′, . . . ,z(r−2)).

0 = [z(m−1)] (1̄∧ D̄∗ ∧ ⋅⋅ ⋅ ∧ D̄∗
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Now D and Dx commute, so 𝔸=𝕂[D̄x, D̄y]=𝕂[D̄].
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There exists a polynomial p∈Q[y] with the following property.

Consider an invertible polynomial change of variables x̃= x+ p(y), ỹ= y and
denote the partial derivatives with respect to x̃ and ỹ by Dx̃ and Dỹ, respectively.

Then 𝔸=𝕂[D̄ỹ].

Corollary

Proof. For p≔−∫q, we have

((((((( x̃
ỹ ))))))) = ((((((( x+p(y)

y ))))))) ⟹ ((((((( Dx̃
Dỹ ))))))) = ((((((( 1 0

q 1 )))))))((((((( Dx
Dy ))))))),

so D=Dỹ. □
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I = (Dx
2,Dy

2) ⊆ K[Dx,Dy].

D ≔ yDx+Dy

Dx ≡ D2 − 2
3 yD

3

Dy ≡ D−yD2 + 2
3 y

2D3

I = (D4, Dx+ 2
3 yD

3 −D2, Dy− 2
3 y

2D3 +yD2 −D)
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ỹ ))))))) = ((((((((((((( x− y2
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y ))))))))))))), I = (Dỹ

4, Dx̃+ 2
3 yDỹ

3 −Dỹ
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𝕂=𝕜(x1, . . . ,xn) with derivations Dx1, . . . ,Dxn

𝔸≔𝕂[Dx1, . . . ,Dxn]/I of finite dimension over 𝕂

There exist univariate polynomials q2, . . . ,qn∈Q[x1] with 𝔸=𝕂[D̄], where

D ≔ Dx1 +q2(x1)Dx2 + ⋅⋅ ⋅ +qn(x1)Dxn

Theorem

There exist polynomials p2, . . . ,pn∈Q[x1] with the following property.

Consider an invertible polynomial change of variables

x̃1 = x1, x̃2 = x2 +p2(x1), . . . , x̃n = xn+pn(x1).
Then 𝔸=𝕂[D̄x̃1].

Corollary
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