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p is differentially algebraic over ℂ(z).
Theorem (Mian–Chowla, 1944)

Does p lie in the Picard-Vessiot closure of ℂ(z)?
Question (Bostan–Jiménez-Pastor, 2020)
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Limitation

tp𝕂0(2E) = tp𝕂0(E)

In other words: E ≔ez is only defined up to a non-zero constant
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f (z) = log(ez+1)+e2z−zez

Local differential algebra perspective

E′(z) = E(z) E(0) = 1 ez ≡ E(z)
L′(z) = E

E+1 L(0) = log 2 log(ez+1) ≡ L(z)
f ≡ L+E2 −zE

Limitation

Only defines f locally near z=0, no insight into global behavior.
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f (z) = log(ez+1)+e2z−zez

Complex analytic perspective

f can be continued analytically

⟶ our take: local differential perspective + analytic continuation

Subtleties

• f becomes multivalued: log(ez+1) or log(ez+1)+2πi ?

• What is the meaning of “composition” ?

• What can we say about “the Riemann surface of definition” ?
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Question: can expressions like f give rise to natural boundaries?

In projection: f (z) ≔ 1
e2𝜋logz−1
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def

∃ D-finite tower 𝕂=𝕂0 ⊆ ⋅⋅ ⋅ ⊆𝕂k=𝕃
y∈𝕃 is D∞-finite over 𝕂 ⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔

def
∃ D∞-finite extension 𝕃̌⊆𝕃 of 𝕂 with y∈𝕃̌

Picard–Vessiot closure: largest D∞-finite extension핂pv of핂 with same constants

Assume f (t) is D∞-finite over ℂ(t) and 𝜉(z) is D∞-finite over ℂ(z).
Then ( f ∘𝜉)(z) is D∞-finite over ℂ(z).

Theorem (Jiménez-Pastor–Pillwein–Singer, 2020)
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R: simply connected Riemann surfaces
S : discrete subset of R

Discrete ramification: covering space (RS ,𝜋S) of R ∖S

R
S

RS
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R0 ←←←←←←←←←←←←←←←←←←←←←←←←← ←
𝜋S1 (R0)S1 = R1 ←←←←←←←←←←←←←←←←←←←←←←←←← ←

𝜋S2 (R1)S2 = R2 ←←←←←←←←←←←←←←←←←←←←←←←←← ←
𝜋S3 ⋅ ⋅ ⋅ ←←←←←←←←←←←←←←←←←←←←←←←←

𝜋Sℓ
Rℓ

R0
S1

R1

S2
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R

RX

𝜋X

RS
𝜋S

RS ∪X𝜋S̃

𝜋X̃
𝜋S ∪X

S

X

R
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Given sequences of discrete ramifications

R0,0 ⟵ R1,0 ⟵ ⋅⋅⋅ ⟵ Rh,0
R0,0 ⟵ R0,1 ⟵ ⋅⋅⋅ ⟵ R0,h′

we may form their join:

R0,0 ⟵ R0,1 ⟵ ⋅⋅⋅ ⟵ R0,h′

⟶ ↖ ⟶ ↖ ↖ ⟶
R1,0 ⟵ R1,1 ⟵ ⋅⋅⋅ ⟵ R1,h′

⟶ ↖ ⟶ ↖ ↖ ⟶
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
⟶ ↖ ⟶ ↖ ↖ ⟶

Rh,0 ⟵ Rh,1 ⟵ ⋅⋅⋅ ⟵ Rh,h′

Hence: recursive discrete ramifications above fixed R form an inductive family
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D(R) inductive limit of A (R′) with R ←←←←←←←←←
𝜋

R′ recursive ramification.
Dendromorphic function on R ≔ element of D(R).

Definition

Representation: f ∈A (R′) with R ←←←←←←←←←
𝜋

R′ recursive ramification.

Equality: f1 ∈A (R1), f2 ∈A (R2)
R′ join of R1 and R2 with 𝜄k:A (Rk)↪←→ A (R′), k=1,2
Then f1 ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐

D(R)
f2 ⟺ 𝜄1( f1)=𝜄2( f2)
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D(R) is a Picard–Vessiot closed field.

Theorem

Field structure. Let f ∈A (R′) with R ←←←←←←←←←
𝜋

R′ recursive ramification.

Then S ≔{z∈R′ : f (z)=0} is a discrete subset of R′

Now f −1 ∈RS′ and R ←←←←←←←←←
𝜋
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D(R) is a Picard–Vessiot closed field.

Theorem

Field structure. Let f ∈A (R′) with R ←←←←←←←←←
𝜋

R′ recursive ramification.

Then S ≔{z∈R′ : f (z)=0} is a discrete subset of R′

Now f −1 ∈RS′ and R ←←←←←←←←←
𝜋

R′ ←←←←←←←←←←←←←←←←←←←←←←←←
𝜋S

RS′ is a recursive ramification.

PV closed. Let L0, . . . ,Lr∈A (R′) with R ←←←←←←←←←
𝜋

R′ recursive ramification.

Then S ≔{z∈R′ :Lr(z)=0} is a discrete subset of R′
Now A (RS′ ) contains a fundamental system of solutions of

Lry(r)+ ⋅⋅ ⋅ +L0y = 0
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Let f be an analytic function with a natural boundary.
Then f does not lie in ℂ(z)pv.

Corollary

p(z) does not lie in ℂ(z)pv.

Corollary
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f and g defined on Riemann surfaces R and R′.
Distinguished points 𝛼R ∈R and 𝛽R′ ∈R′ above 𝛼,𝛽∈ℂ and f (𝛼R)=𝛽.
Then g∘ f is locally defined near 𝛼R by listing f̂ (𝛼R)=𝛽R′.

D(ℂ) is closed under composition.

Proposition

The composition of two boundaryless functions

Proposition



Functional inversion 16/17

The functional inverse of ℘(z) is D∞-finite, but not ℘(z) itself.

Proposition



Functional inversion 16/17

The functional inverse of ℘(z) is D∞-finite, but not ℘(z) itself.

Proposition

Proof. Rosenlicht: ℂ{z,℘(z)} has no valuation that is compatible with ∂.
VdH: but ℂ(z)pv does, since it embeds in the complex transseries. □



Functional inversion 16/17

The functional inverse of ℘(z) is D∞-finite, but not ℘(z) itself.

Proposition

Proof. Rosenlicht: ℂ{z,℘(z)} has no valuation that is compatible with ∂.
VdH: but ℂ(z)pv does, since it embeds in the complex transseries. □

The functional inverse of p(z) is boundaryless, but p(z) is not.

Proposition



Functional inversion 16/17

The functional inverse of ℘(z) is D∞-finite, but not ℘(z) itself.

Proposition

Proof. Rosenlicht: ℂ{z,℘(z)} has no valuation that is compatible with ∂.
VdH: but ℂ(z)pv does, since it embeds in the complex transseries. □

The functional inverse of p(z) is boundaryless, but p(z) is not.

Proposition

Is there a dendromorphic function whose functional inverse is not.

Question
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