Joris van der Hoeven

CNRS, École polytechnique, France

Trigger

Generating function of the partition numbers

$$p(z) := \prod_{k \geqslant 1} \frac{1}{1 - z^k}$$

Trigger

Generating function of the partition numbers

$$p(z) := \prod_{k \geqslant 1} \frac{1}{1 - z^k}$$

Theorem (Mian-Chowla, 1944)

p is differentially algebraic over $\mathbb{C}(z)$.

Trigger

Generating function of the partition numbers

$$p(z) := \prod_{k \ge 1} \frac{1}{1 - z^k}$$

Theorem (Mian-Chowla, 1944)

p is differentially algebraic over $\mathbb{C}(z)$.

Question (Bostan-Jiménez-Pastor, 2020)

Does p lie in the Picard-Vessiot closure of $\mathbb{C}(z)$?

$$f(z) = \log(e^z + 1) + e^{2z} - ze^z$$

$$f(z) = \log(e^z + 1) + e^{2z} - ze^z$$

What does this mean?

$$f(z) = \log(e^z + 1) + e^{2z} - ze^z$$

Differential algebra perspective

$$\mathbb{K}_0 := \mathbb{C}(z)$$

$$\mathbb{K}_1 := \mathbb{K}_0 \{E\} / \{E' - E\}$$

$$\mathbb{K}_2 := \mathbb{K}_1 \{L\} / \{L' - \frac{E}{E+1}\} \ni L + E^2 - zE =: f$$

$$f(z) = \log(e^z + 1) + e^{2z} - ze^z$$

Differential algebra perspective

$$\mathbb{K}_0 := \mathbb{C}(z)$$

$$\mathbb{K}_1 := \mathbb{K}_0 \{E\} / \{E' - E\}$$

$$\mathbb{K}_2 := \mathbb{K}_1 \{L\} / \{L' - \frac{E}{E+1}\} \implies L + E^2 - zE =: f$$

Limitation

$$\operatorname{tp}^{\mathbb{K}_0}(2E) = \operatorname{tp}^{\mathbb{K}_0}(E)$$

In other words: $E =: e^z$ is only defined up to a non-zero constant

$$f(z) = \log(e^z + 1) + e^{2z} - ze^z$$

Local differential algebra perspective

$$E'(z) = E(z)$$
 $E(0) = 1$ $e^z \equiv E(z)$
 $L'(z) = \frac{E}{E+1}$ $L(0) = \log 2$ $\log(e^z + 1) \equiv L(z)$
 $f \equiv L + E^2 - zE$

$$f(z) = \log(e^z + 1) + e^{2z} - ze^z$$

Local differential algebra perspective

$$E'(z) = E(z)$$
 $E(0) = 1$ $e^z \equiv E(z)$
 $L'(z) = \frac{E}{E+1}$ $L(0) = \log 2$ $\log(e^z + 1) \equiv L(z)$
 $f \equiv L + E^2 - zE$

Limitation

Only defines f locally near z = 0, no insight into global behavior.

$$f(z) = \log(e^z + 1) + e^{2z} - ze^z$$

Complex analytic perspective

f can be continued analytically

→ our take: local differential perspective + analytic continuation

$$f(z) = \log(e^z + 1) + e^{2z} - ze^z$$

Complex analytic perspective

f can be continued analytically

→ our take: local differential perspective + analytic continuation

Subtleties

- f becomes multivalued: $\log(e^z + 1)$ or $\log(e^z + 1) + 2\pi i$?
- What is the meaning of "composition"?
- What can we say about "the Riemann surface of definition"?

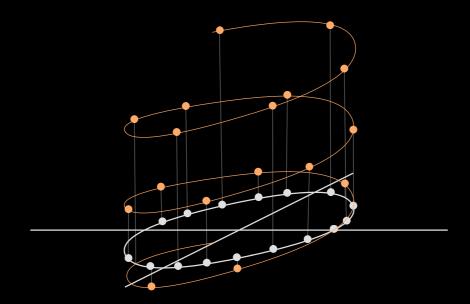
What about singularities?

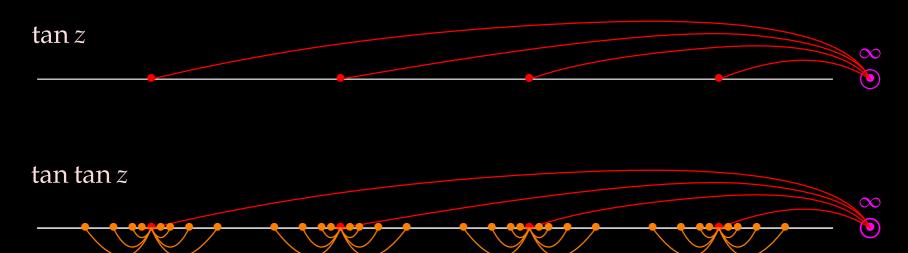
Question: can expressions like f give rise to natural boundaries?

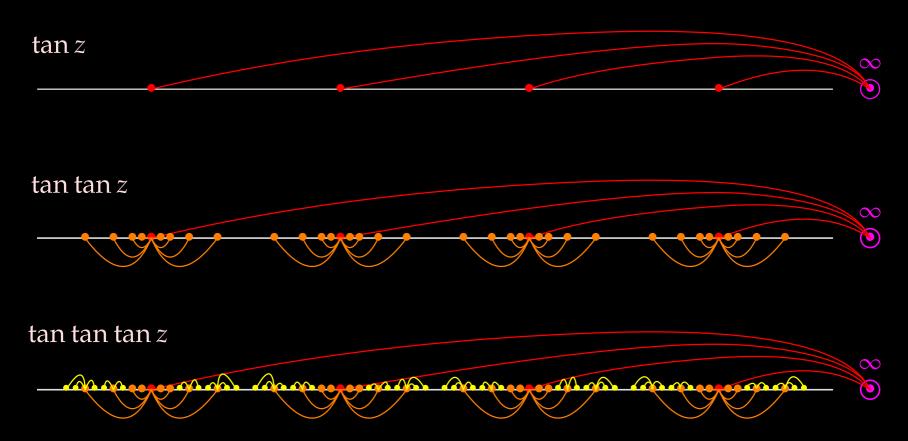
What about singularities?

Question: can expressions like f give rise to natural boundaries?

In projection:
$$f(z) := \frac{1}{e^{2\pi \log z} - 1}$$







 $\mathbb{L} \supseteq \mathbb{K}$: differential fields.

 $\mathbb{L} \supseteq \mathbb{K}$: differential fields.

 $y \in \mathbb{L}$ is **D-finite** over $\mathbb{K} \stackrel{\text{def}}{\Longleftrightarrow} L_r y^{(r)} + \dots + L_0 y = 0$ for some $L_0, \dots, L_r \in \mathbb{K}$

 \mathbb{L} is a **D-finite extension** of $\mathbb{K} \stackrel{\text{def}}{\Longleftrightarrow} \mathbb{L}$ quotient field of D-finite els over \mathbb{K}

D-finite towers

 $\mathbb{L} \supseteq \mathbb{K}$: differential fields.

 $y \in \mathbb{L}$ is **D-finite** over $\mathbb{K} \stackrel{\text{def}}{\Longleftrightarrow} L_r y^{(r)} + \dots + L_0 y = 0$ for some $L_0, \dots, L_r \in \mathbb{K}$ \mathbb{L} is a **D-finite extension** of $\mathbb{K} \stackrel{\text{def}}{\Longleftrightarrow} \mathbb{L}$ quotient field of D-finite els over \mathbb{K}

 \mathbb{L} is a \mathbf{D}^{∞} -finite extension of $\mathbb{K} \stackrel{\text{def}}{\Longleftrightarrow} \exists$ D-finite tower $\mathbb{K} = \mathbb{K}_0 \subseteq \cdots \subseteq \mathbb{K}_k = \mathbb{L}$ $y \in \mathbb{L}$ is \mathbf{D}^{∞} -finite over $\mathbb{K} \stackrel{\text{def}}{\Longleftrightarrow} \exists$ D $^{\infty}$ -finite extension $\check{\mathbb{L}} \subseteq \mathbb{L}$ of \mathbb{K} with $y \in \check{\mathbb{L}}$

D-finite towers

 $\mathbb{L} \supseteq \mathbb{K}$: differential fields.

$$y \in \mathbb{L}$$
 is **D-finite** over $\mathbb{K} \iff L_r y^{(r)} + \dots + L_0 y = 0$ for some $L_0, \dots, L_r \in \mathbb{K}$
 \mathbb{L} is a **D-finite extension** of $\mathbb{K} \iff \mathbb{L}$ quotient field of D-finite els over \mathbb{K}

 \mathbb{L} is a \mathbf{D}^{∞} -finite extension of $\mathbb{K} \overset{\text{def}}{\Longleftrightarrow} \exists \text{ D-finite tower } \mathbb{K} = \mathbb{K}_0 \subseteq \cdots \subseteq \mathbb{K}_k = \mathbb{L}$ $y \in \mathbb{L}$ is \mathbf{D}^{∞} -finite over $\mathbb{K} \overset{\text{def}}{\Longleftrightarrow} \exists \text{ D}^{\infty}$ -finite extension $\check{\mathbb{L}} \subseteq \mathbb{L}$ of \mathbb{K} with $y \in \check{\mathbb{L}}$

Picard–Vessiot closure: largest D^{∞} -finite extension \mathbb{K}^{pv} of \mathbb{K} with same constants

 $\mathbb{L} \supseteq \mathbb{K}$: differential fields.

$$y \in \mathbb{L}$$
 is **D-finite** over $\mathbb{K} \iff L_r y^{(r)} + \dots + L_0 y = 0$ for some $L_0, \dots, L_r \in \mathbb{K}$

 \mathbb{L} is a **D-finite extension** of $\mathbb{K} \overset{\text{def}}{\Longleftrightarrow} \mathbb{L}$ quotient field of D-finite els over \mathbb{K}

$$\mathbb{L}$$
 is a \mathbf{D}^{∞} -finite extension of $\mathbb{K} \stackrel{\mathrm{def}}{\Longleftrightarrow} \exists \mathrm{D}$ -finite tower $\mathbb{K} = \mathbb{K}_0 \subseteq \cdots \subseteq \mathbb{K}_k = \mathbb{L}$ $y \in \mathbb{L}$ is \mathbf{D}^{∞} -finite over $\mathbb{K} \stackrel{\mathrm{def}}{\Longleftrightarrow} \exists \mathrm{D}^{\infty}$ -finite extension $\check{\mathbb{L}} \subseteq \mathbb{L}$ of \mathbb{K} with $y \in \check{\mathbb{L}}$

Picard–Vessiot closure: largest D^{∞} -finite extension \mathbb{K}^{pv} of \mathbb{K} with same constants

Theorem (Jiménez-Pastor-Pillwein-Singer, 2020)

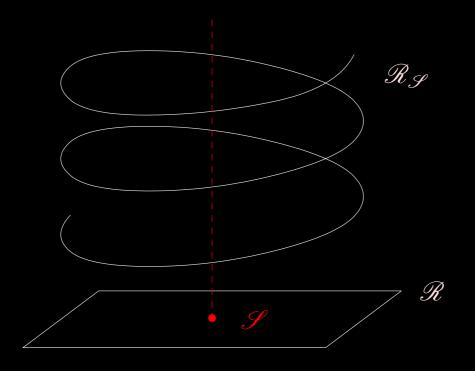
Assume f(t) is D^{∞} -finite over $\mathbb{C}(t)$ and $\xi(z)$ is D^{∞} -finite over $\mathbb{C}(z)$. Then $(f \circ \xi)(z)$ is D^{∞} -finite over $\mathbb{C}(z)$.

Discrete ramifications

 \mathcal{R} : simply connected Riemann surfaces

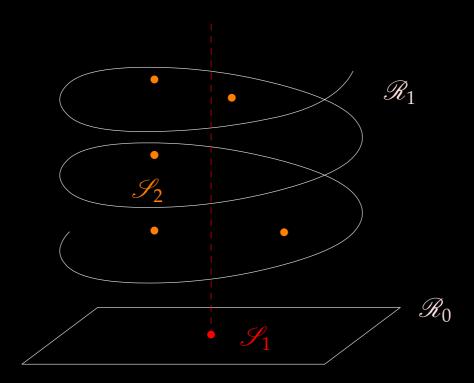
 \mathscr{S} : discrete subset of \mathscr{R}

Discrete ramification: covering space $(\mathcal{R}_{\mathcal{S}}, \pi_{\mathcal{S}})$ of $\mathcal{R} \setminus \mathcal{S}$

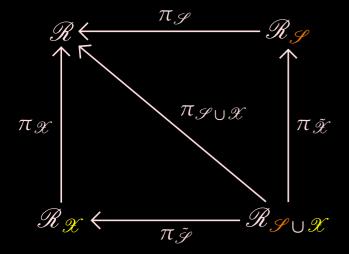


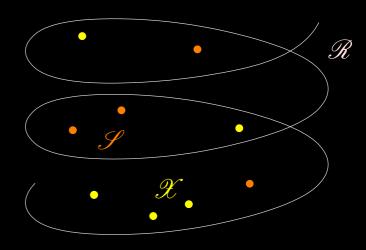
Recursive discrete ramifications

$$\mathcal{R}_0 \stackrel{\pi_{\mathcal{S}_1}}{\longleftarrow} (\mathcal{R}_0)_{\mathcal{S}_1} = \mathcal{R}_1 \stackrel{\pi_{\mathcal{S}_2}}{\longleftarrow} (\mathcal{R}_1)_{\mathcal{S}_2} = \mathcal{R}_2 \stackrel{\pi_{\mathcal{S}_3}}{\longleftarrow} \cdots \stackrel{\pi_{\mathcal{S}_\ell}}{\longleftarrow} \mathcal{R}_\ell$$



Joins





Recursive joins

Given sequences of discrete ramifications

$$\mathcal{R}_{0,0} \leftarrow \mathcal{R}_{1,0} \leftarrow \cdots \leftarrow \mathcal{R}_{h,0}$$

 $\mathcal{R}_{0,0} \leftarrow \mathcal{R}_{0,1} \leftarrow \cdots \leftarrow \mathcal{R}_{0,h'}$

we may form their join:

$$\mathcal{R}_{0,0} \leftarrow \mathcal{R}_{0,1} \leftarrow \cdots \leftarrow \mathcal{R}_{0,h'}$$

$$\uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathcal{R}_{1,0} \leftarrow \mathcal{R}_{1,1} \leftarrow \cdots \leftarrow \mathcal{R}_{1,h'}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathcal{R}_{h,0} \leftarrow \mathcal{R}_{h,1} \leftarrow \cdots \leftarrow \mathcal{R}_{h,h'}$$

Hence: recursive discrete ramifications above fixed \mathscr{R} form an inductive family

 \mathcal{R} : Riemann surface

 $\mathscr{A}(\mathscr{R})$: analytic functions on \mathscr{R}

Riemann surface

 $\mathscr{A}(\mathscr{R})$: analytic functions on \mathscr{R}

If $\mathscr{R} \xleftarrow{\pi} \mathscr{R}'$ is a recursive ramification, then $\mathscr{A}(\mathscr{R}) \hookrightarrow \mathscr{A}(\mathscr{R}')$

R: Riemann surface

 $\mathscr{A}(\mathscr{R})$: analytic functions on \mathscr{R}

If $\mathscr{R} \xleftarrow{\pi} \mathscr{R}'$ is a recursive ramification, then $\mathscr{A}(\mathscr{R}) \hookrightarrow \overline{\mathscr{A}(\mathscr{R}')}$

Definition

 $\mathscr{D}(\mathscr{R})$ inductive limit of $\mathscr{A}(\mathscr{R}')$ with $\mathscr{R} \xleftarrow{\pi} \mathscr{R}'$ recursive ramification.

Dendromorphic function on $\mathscr{R} := element \ of \ \mathscr{D}(\mathscr{R})$.

R: Riemann surface

 $\mathscr{A}(\mathscr{R})$: analytic functions on \mathscr{R}

If $\mathscr{R} \stackrel{\pi}{\longleftarrow} \mathscr{R}'$ is a recursive ramification, then $\mathscr{A}(\mathscr{R}) \hookrightarrow \mathscr{A}(\mathscr{R}')$

Definition

 $\mathscr{D}(\mathscr{R})$ inductive limit of $\mathscr{A}(\mathscr{R}')$ with $\mathscr{R} \xleftarrow{\pi} \mathscr{R}'$ recursive ramification.

Dendromorphic function on $\mathcal{R} := element \ of \ \mathcal{D}(\mathcal{R})$.

Representation: $f \in \mathscr{A}(\mathscr{R}')$ with $\mathscr{R} \xleftarrow{\pi} \mathscr{R}'$ recursive ramification.

R: Riemann surface

$$\mathscr{A}(\mathscr{R})$$
: analytic functions on \mathscr{R}

If
$$\mathscr{R} \stackrel{\pi}{\longleftarrow} \mathscr{R}'$$
 is a recursive ramification, then $\mathscr{A}(\mathscr{R}) \hookrightarrow \mathscr{A}(\mathscr{R}')$

Definition

 $\mathscr{D}(\mathscr{R})$ inductive limit of $\mathscr{A}(\mathscr{R}')$ with $\mathscr{R} \xleftarrow{\pi} \mathscr{R}'$ recursive ramification.

Dendromorphic function on $\mathscr{R} := element \ of \ \mathscr{D}(\mathscr{R})$.

Representation: $f \in \mathscr{A}(\mathscr{R}')$ with $\mathscr{R} \xleftarrow{\pi} \mathscr{R}'$ recursive ramification.

Equality: $f_1 \in \mathcal{A}(\mathcal{R}_1), f_2 \in \mathcal{A}(\mathcal{R}_2)$

 \mathscr{R}' join of \mathscr{R}_1 and \mathscr{R}_2 with $\iota_k: \mathscr{A}(\mathscr{R}_k) \hookrightarrow \mathscr{A}(\mathscr{R}'), k=1,2$

Then $f_1 = \underbrace{\mathcal{D}(\mathcal{R})} f_2 \iff \iota_1(f_1) = \iota_2(f_2)$

Picard-Vessiot closure

Theorem

 $\mathscr{D}(\mathscr{R})$ is a Picard–Vessiot closed field.

Picard-Vessiot closure

Theorem

 $\mathscr{D}(\mathscr{R})$ is a Picard–Vessiot closed field.

Field structure. Let $f \in \mathcal{A}(\mathcal{R}')$ with $\mathcal{R} \xleftarrow{\pi} \mathcal{R}'$ recursive ramification.

Then $\mathcal{S} := \{z \in \mathcal{R}' : f(z) = 0\}$ is a discrete subset of \mathcal{R}'

Now $f^{-1} \in \mathcal{R}'_{\mathscr{S}}$ and $\mathcal{R} \stackrel{\pi}{\longleftarrow} \mathcal{R}' \stackrel{\pi_{\mathscr{S}}}{\longleftarrow} \mathcal{R}'_{\mathscr{S}}$ is a recursive ramification.

Picard-Vessiot closure

Theorem

 $\mathscr{D}(\mathscr{R})$ is a Picard–Vessiot closed field.

Field structure. Let $f \in \mathscr{A}(\mathscr{R}')$ with $\mathscr{R} \xleftarrow{\pi} \mathscr{R}'$ recursive ramification.

Then $\mathcal{S} := \{z \in \mathcal{R}' : f(z) = 0\}$ is a discrete subset of \mathcal{R}'

Now $f^{-1} \in \mathcal{R}'_{\mathscr{S}}$ and $\mathcal{R} \stackrel{\pi}{\longleftarrow} \mathcal{R}' \stackrel{\pi_{\mathscr{S}}}{\longleftarrow} \mathcal{R}'_{\mathscr{S}}$ is a recursive ramification.

PV closed. Let $L_0, \ldots, L_r \in \mathcal{A}(\mathcal{R}')$ with $\mathcal{R} \xleftarrow{\pi} \mathcal{R}'$ recursive ramification.

Then $\mathcal{S} := \{z \in \mathcal{R}' : L_r(z) = 0\}$ is a discrete subset of \mathcal{R}'

Now $\mathscr{A}(\mathscr{R}'_{\mathscr{S}})$ contains a fundamental system of solutions of

$$L_r y^{(r)} + \dots + L_0 y = 0$$

Boundaryless continuation

```
\mathscr{U}: open subset of \mathbb{C} f local analytic function at z_0 \in \mathscr{U}
```

```
\mathscr{U}: open subset of \mathbb{C} f local analytic function at z_0 \in \mathscr{U} f boundaryless above \mathscr{U}: \forall path \varphi: [0,1] \rightarrow \mathscr{U} with \varphi(0) = z_0, \forall \varepsilon > 0 \exists path \tilde{\varphi}: [0,1] \rightarrow \mathscr{U} with \tilde{\varphi}(0) = z_0 and \|\tilde{\varphi} - \varphi\| < \varepsilon f can be continued analytically along \tilde{\varphi}
```

 \mathcal{U} : open subset of \mathbb{C} f local analytic function at $z_0 \in \mathcal{U}$

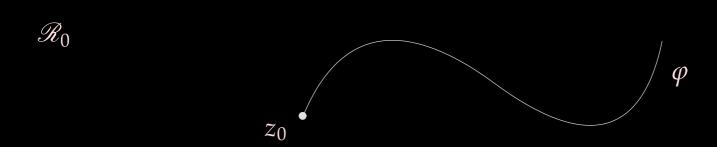
f boundaryless above $\mathscr{U}\colon \forall$ path $\varphi\colon [0,1]\to \mathscr{U}$ with $\varphi(0)=z_0, \ \forall \ \varepsilon>0$ $\exists \ \mathrm{path}\ \tilde{\varphi}\colon [0,1]\to \mathscr{U}$ with $\tilde{\varphi}(0)=z_0$ and $\|\tilde{\varphi}-\varphi\|<\varepsilon$ f can be continued analytically along $\tilde{\varphi}$

Theorem

 \mathscr{U} : open subset of \mathbb{C} f local analytic function at $z_0 \in \mathscr{U}$

f boundaryless above $\mathscr{U}\colon \forall$ path $\varphi\colon [0,1] \to \mathscr{U}$ with $\varphi(0) = z_0, \ \forall \ \varepsilon > 0$ $\exists \ \mathrm{path}\ \tilde{\varphi}\colon [0,1] \to \mathscr{U}$ with $\tilde{\varphi}(0) = z_0$ and $\|\tilde{\varphi} - \varphi\| < \varepsilon$ f can be continued analytically along $\tilde{\varphi}$

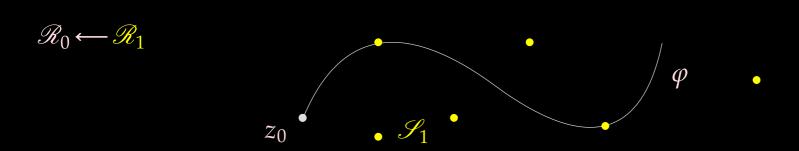
Theorem



 \mathscr{U} : open subset of \mathbb{C} f local analytic function at $z_0 \in \mathscr{U}$

f boundaryless above $\mathscr{U}\colon \forall$ path $\varphi\colon [0,1] \to \mathscr{U}$ with $\varphi(0) = z_0, \ \forall \ \varepsilon > 0$ $\exists \ \mathrm{path}\ \tilde{\varphi}\colon [0,1] \to \mathscr{U}$ with $\tilde{\varphi}(0) = z_0$ and $\|\tilde{\varphi} - \varphi\| < \varepsilon$ f can be continued analytically along $\tilde{\varphi}$

Theorem



 \mathscr{U} : open subset of \mathbb{C} f local analytic function at $z_0 \in \mathscr{U}$

f boundaryless above $\mathscr{U}\colon \forall$ path $\varphi\colon [0,1]\to \mathscr{U}$ with $\varphi(0)=z_0, \ \forall \ \varepsilon>0$ $\exists \ \mathrm{path}\ \tilde{\varphi}\colon [0,1]\to \mathscr{U}$ with $\tilde{\varphi}(0)=z_0$ and $\|\tilde{\varphi}-\varphi\|<\varepsilon$ f can be continued analytically along $\tilde{\varphi}$

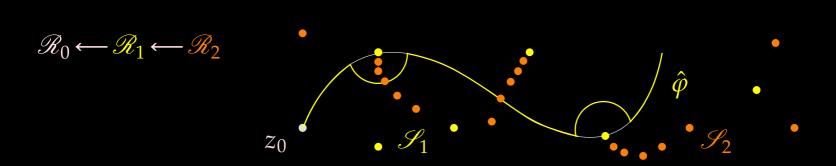
Theorem

$$\mathscr{R}_0 \leftarrow \mathscr{R}_1$$
 $\hat{\varphi}$ z_0 \mathscr{S}_1

 \mathscr{U} : open subset of \mathbb{C} f local analytic function at $z_0 \in \mathscr{U}$

f boundaryless above $\mathscr{U}\colon \forall$ path $\varphi\colon [0,1]\to \mathscr{U}$ with $\varphi(0)=z_0, \ \forall \ \varepsilon>0$ $\exists \ \mathrm{path}\ \tilde{\varphi}\colon [0,1]\to \mathscr{U}$ with $\tilde{\varphi}(0)=z_0$ and $\|\tilde{\varphi}-\varphi\|<\varepsilon$ f can be continued analytically along $\tilde{\varphi}$

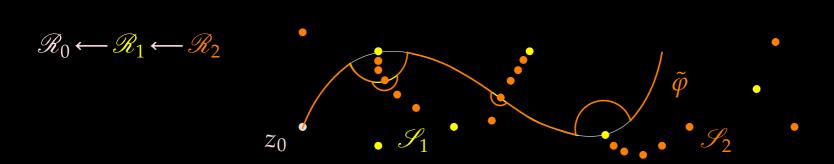
Theorem



 \mathscr{U} : open subset of \mathbb{C} f local analytic function at $z_0 \in \mathscr{U}$

f boundaryless above $\mathscr{U}\colon \forall$ path $\varphi\colon [0,1]\to \mathscr{U}$ with $\varphi(0)=z_0, \ \forall \ \varepsilon>0$ $\exists \ \mathrm{path}\ \tilde{\varphi}\colon [0,1]\to \mathscr{U}$ with $\tilde{\varphi}(0)=z_0$ and $\|\tilde{\varphi}-\varphi\|<\varepsilon$ f can be continued analytically along $\tilde{\varphi}$

Theorem



Consequences

Corollary

Let f be an analytic function with a natural boundary. Then f does not lie in $\mathbb{C}(z)^{\mathrm{pv}}$.

Consequences

Corollary

Let f be an analytic function with a natural boundary. Then f does not lie in $\mathbb{C}(z)^{pv}$.

Corollary

p(z) does not lie in $\mathbb{C}(z)^{pv}$.

Composition

f and g defined on Riemann surfaces \mathscr{R} and \mathscr{R}' . Distinguished points $\alpha_{\mathscr{R}} \in \mathscr{R}$ and $\beta_{\mathscr{R}'} \in \mathscr{R}'$ above $\alpha, \beta \in \mathbb{C}$ and $f(\alpha_{\mathscr{R}}) = \beta$. Then $g \circ f$ is locally defined near $\alpha_{\mathscr{R}}$ by lifting $\hat{f}(\alpha_{\mathscr{R}}) = \beta_{\mathscr{R}'}$.

Composition

f and g defined on Riemann surfaces \mathscr{R} and \mathscr{R}' .

Distinguished points $\alpha_{\mathcal{R}} \in \mathcal{R}$ and $\beta_{\mathcal{R}'} \in \mathcal{R}'$ above $\alpha, \beta \in \mathbb{C}$ and $f(\alpha_{\mathcal{R}}) = \beta$.

Then $g \circ f$ is locally defined near $\alpha_{\mathscr{R}}$ by lifting $\hat{f}(\alpha_{\mathscr{R}}) = \beta_{\mathscr{R}'}$.

Proposition

 $\mathscr{D}(\mathbb{C})$ is closed under composition.

Composition

f and g defined on Riemann surfaces \mathscr{R} and \mathscr{R}' .

Distinguished points $\alpha_{\mathcal{R}} \in \mathcal{R}$ and $\beta_{\mathcal{R}'} \in \mathcal{R}'$ above $\alpha, \beta \in \mathbb{C}$ and $f(\alpha_{\mathcal{R}}) = \beta$.

Then $g \circ f$ is locally defined near $\alpha_{\mathscr{R}}$ by lifting $\hat{f}(\alpha_{\mathscr{R}}) = \beta_{\mathscr{R}'}$.

Proposition

 $\mathscr{D}(\mathbb{C})$ is closed under composition.

Proposition

The composition of two boundaryless functions

Proposition

The functional inverse of $\wp(z)$ is D^{∞} -finite, but not $\wp(z)$ itself.

Proposition

The functional inverse of $\wp(z)$ is D^{∞} -finite, but not $\wp(z)$ itself.

Proof. Rosenlicht: $\mathbb{C}\{z,\wp(z)\}$ has no valuation that is compatible with ∂ .

VdH: but $\mathbb{C}(z)^{pv}$ does, since it embeds in the complex transseries.

Proposition

The functional inverse of $\wp(z)$ is D^{∞} -finite, but not $\wp(z)$ itself.

Proof. Rosenlicht: $\mathbb{C}\{z,\wp(z)\}$ has no valuation that is compatible with ∂ .

VdH: but $\mathbb{C}(z)^{pv}$ does, since it embeds in the complex transseries.

Proposition

The functional inverse of p(z) is boundaryless, but p(z) is not.

Proposition

The functional inverse of $\wp(z)$ is D^{∞} -finite, but not $\wp(z)$ itself.

Proof. Rosenlicht: $\mathbb{C}\{z,\wp(z)\}$ has no valuation that is compatible with ∂ .

VdH: but $\mathbb{C}(z)^{pv}$ does, since it embeds in the complex transseries.

Proposition

The functional inverse of p(z) is boundaryless, but p(z) is not.

Question

Is there a dendromorphic function whose functional inverse is not.

Thank you!

http://www.TEXMACS.org