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Does p lie in the Picard-Vessiot closure of C(z)?
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Differential algebra perspective

Ko = C(z)
K, := Ko{E}/{E'—E}
K, = Ki{L}/{L'~+5} 3 L+E?—zE = f

Limitation
tp™(2E) = tp I(E)

In other words: E=:e* is only defined up to a non-zero constant
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Computing with special functions

f(z) = log(e*+1) +e* —ze*
Local differential algebra perspective

E'(z) = E(z) E(0) =1 e’ = E(z)
L'(z) = — L(0) = log?2 log(e*+1) = L(z)
f = L+E*—zE
Limitation

Only defines f locally near z=0, no insight into global behavior.
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f(z) = log(e*+1) +e* —ze*

Complex analytic perspective

f can be continued analytically

— our take: local differential perspective + analytic continuation

Subtleties
e f becomes multivalued: log(e*+1) orlog(e*+1)+27i?
e What is the meaning of “composition” ?

e What can we say about “the Riemann surface of definition” ?



Question: can expressions like f give rise to natural boundaries?



What about singularities ? a7

Question: can expressions like f give rise to natural boundaries?

1

In projection:  f(z) :=

2mlogz 1
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D-finite towers o

L D K: differential fields.

def
y €L is D-finite over K — Ly +.-. +Loy=0 for some Ly,...,L,e K

def
L is a D-finite extension of K e L quotient field of D-finite els over K

def
L is a D”-finite extension of K <=e> 3 D-finite tower K =KyC---CK;=L

def v v
y €L is D*-finite over K — 3 D™-finite extension L CL of KwithyelL

Picard-Vessiot closure: largest D*-finite extension KP' of K with same constants

Theorem (Jiménez-Pastor-Pillwein-Singer, 2020)

Assume f (t) is D™-finite over C(t) and {(z) is D*finite over C(z).
Then (fo¢)(z) is D™-finite over C(z).



Discrete ramifications o~

Z: simply connected Riemann surfaces
"+ discrete subset of #

Discrete ramification: covering space (Z., m.») of Z\ .
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Recursive joins 1017

Given sequences of discrete ramifications

Koo «— H19 «— - — Eno
Koo «— Ho1 «— - — Ko

we may form their join:

Hop — Ho1 — — Jon
o~ T~ =~ ]
P — H1 — — Jp

[ N

Hence: recursive discrete ramifications above fixed &% form an inductive family
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Z%: Riemann surface
o/ (X): analytic functions on #

If % —— %' is a recursive ramification, then A(R) — A (R

Definition

D(X) inductive limit of o (Z") with % E R recursive ramification.

Dendromorphic function on % := element of 9 (X%).
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Dendromorphic functions

Z%: Riemann surface
o/ (X): analytic functions on #

If % —— %' is a recursive ramification, then A(R) — A (R

Definition

D(X) inductive limit of o (Z") with % E R recursive ramification.

Dendromorphic function on % := element of 9 (X%).

Representation: f € o/ (#") with # & R’ recursive ramification.
Equality: f1 & ﬂ(%ﬁ, f2 e %(%2)

X' join of %1 and %, with 1./ (%) — A (#'),k=1,2

Then f; fo = u(fh)=n(f)

D(%)
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D(X) is a Picard-Vessiot closed field. \

Field structure. Let f€ </ (#') with #Z %' recursive ramification.
Then .7 :={z€Z%": f(z) =0} is a discrete subset of %’

_ & i . . P
Now f'e %'y and Z «— %' «—— X'y is a recursive ramification.




Picard—Vessiot closure i

Theorem
D(X) is a Picard-Vessiot closed field.

Field structure. Let f€ .o/ (Z") with R — R' recursive ramification,
Then .7 :={z€Z%": f(z) =0} is a discrete subset of Z’

_ u 5 . . P
Now '€ %'y and # — R' —— R’y is a recursive ramification.

PV closed. LetLy,..., L€ (Z") with Z# R’ recursive ramification.
Then . :={ze%#':L,(z) =0} is a discrete subset of %’

Now o7 (#'») contains a fundamental system of solutions of

Ly 4. 4+Loy = 0
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Let f be an analytic function with a natural boundary.
Then f does not lie in C(z)F".




Let f be an analytic function with a natural boundary.
Then f does not lie in C(z)F".

‘ p(z) does not lie in C(z)F". \
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f and g defined on Riemann surfaces % and %'
Distinguished points a4 € #Z and B € %' above a, b€ C and f(a %) =p.
Then go f is locally defined near a4 by lifting j?(oc%) =L

‘ 2(C) is closed under composition. \

The composition of two boundaryless functions
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Functional inversion S

Proposition

The functional inverse of ®(z) is D*-finite, but not ©(z) itself.

Proof. Rosenlicht: C{z,(z)} has no valuation that is compatible with 0.

VdH: but C(z)PY does, since it embeds in the complex transseries. O
Proposition

The functional inverse of p(z) is boundaryless, but p(z) is not.

Question

Is there a dendromorphic function whose functional inverse is not.



Thank you!
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