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The Mathemagix project aims at the development of a “computer analysis” system,
in which numerical computations can be done in a mathematically sound manner.
A major challenge for such systems is to conceive algorithms which are both efficient,
reliable and available at any working precision. In this paper, we survey several
classical and newly developed methods for designing such algorithms. We mainly
concentrate on the automatic and efficient computation of high quality error bounds.
This is done using ball arithmetic, which is also known under the name midpoint-
radius interval arithmetic.
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1. Introduction

1.1. Motivation

Computer algebra systems are widely used today in order to perform mathematically
correct computations with objects of algebraic or combinatorial nature. It is tempting to
develop a similar system for analysis.

Typical problems of this nature are the numerical resolution of a system of equations
or the integration of a dynamical system with known initial conditions. In a “computer
analysis” system, it should be possible to solve such problems in an exact way. In particular,
it should be possible to compute arbitrarily close approximations for all numbers occurring
in the input and the output. Computable analysis [Wei00, BB85, Abe80, Tur36] provides
a suitable logical framework for computing with this kind of “computable numbers”.

Assume that we require an approximation ỹ ∈ Q of a number y = f(x) ∈ R with
|ỹ − y |6 ε, where ε ∈Q>= {a ∈Q: a > 0} is provided by the user. A typical strategy in
order to compute such an approximation is to evaluate yp≈ f(x) numerically at a fixed bit
precision p, while computing a rigorous upper bound δp for the error |yp− f(x)|. As soon
as δp 6 ε, then we are done. Otherwise, we keep repeating the same procedure at higher
and higher precisions. Interval analysis constitutes a classical theory for the computation

∗. This work has been supported by the ANR-09-JCJC-0098-01 MaGiX project, as well as a Digiteo 2009-

36HD grant and Région Ile-de-France.

1

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65G20&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65G20&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65G20&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=03F60&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=03F60&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=03F60&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65F99&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65F99&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65F99&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=37-04&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=37-04&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=37-04&submit=Search


of such rigorous upper bounds [Moo66, AH83, Neu90, JKDW01, Kul08, MKC09, Rum10].
The website [Kreb] provides a wealth of information about the interval analysis community.

The preceding discussion imposes some minimal requirements on the system we are
striving for: it should contain at least three layers for multiple precision arithmetic, interval
analysis and computable analysis. It is natural to add another layer, or at least an interface,
for classical numerical analysis. Taken on its own, each of these layers is well understood.
However, it is also well known that multiple precision operations are at least one order of
magnitude slower than hardware operations on single or double precision numbers. More
generally, the naive combination of known techniques leads to highly inefficient algorithms,
as we will see in section 5 on the hand of a problem as simple as matrix multiplication.

In order to design a reasonably efficient system for computer analysis, we therefore need
to rethink many of the algorithms from the individual layers in a more integrated way.
Moreover, in a reasonably complete system, this rethinking should be performed in a very
systematic way for the most basic mathematical objects: besides operations on numbers,
we need efficient, numerically stable and reliable algorithms for standard operations on
matrices, polynomials, series and analytic functions.

In this paper, we will focus on the single layer of interval analysis (with the short
exception of section 5). The first part of the paper provides a survey of well known tech-
niques, but from our perspective of usefulness for the design of a computer analysis system.
In particular, it turns out that ball enclosures are usually more convenient than interval
enclosures in our context. This is partly due to the fact that multiple precision enclosures
are usually very narrow. In the second part of the paper, we provide a more detailed study
of basic operations on non scalar objects, such as matrices and polynomials. To the best
of our knowledge, several of the algorithms in the second part are new.

Although ball arithmetic is often referred to as “midpoint-radius interval analysis”, we
prefer our naming for three main reasons. First, since we will be using balls all around, it
is nice to have a short name. Secondly, complex balls are not intervals. More generally,
there is a considerable latitude concerning the choice of a center type and a radius type.
Finally, balls are standard in mathematics, where they correspond to classical δ-ε calculus.

1.2. Existing software

There are several specialized systems and libraries which contain work into the direction of
system for computer analysis. A fairly complete list of software for interval computations
is maintained at [Krea]. For instance, Taylor models have been used with success for the
validated long term integration of dynamical systems [Ber98, MB96, MB04]. A fairly com-
plete Matlab interval arithmetic library for linear algebra and polynomial computations
is Intlab [Rum99b, Rum99a]. Another historical interval library, which continues to be
developed is [ea67].

There exist several libraries for multiple precision arithmetic with correct or at least well
specified rounding [HLRZ00, Hai95], as well as a library for multiple precision interval arith-
metic [Rev01], and libraries for computable real numbers [M0, Lam07, BCC+06]. There
are also libraries for very specific problems. For instance, the MPSolve library [BF00]
allows for the certified computation of the roots of multiple precision polynomials. Simi-
larly, PHCpack [Ver99] andBertini [BHSW06] are systems for polynomial system solving
via numerical homotopy methods.

Unfortunately, the mere agglomeration of existing software is insufficient for building
an efficient general purpose system for computer analysis. Besides licensing issues and
technical interfacing problems, one of the main reasons is that the reliable computation
community has a traditional focus on limited precision computations. Even though this
situation is evolving, we have already mentioned the fact that the mere replacement of
machine arithmetic by arbitrary precision arithmetic induces a huge performance penalty.
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Software in which this efficiency problem is addressed (libraries for computable real num-
bers, MPSolve, etc.) usually focusses on numbers or a very specific problem.

Mmx] use "analyziz"

Mmx] bit_precision := 128;

Mmx] z == series (ball 0.0, ball 1.0);

Mmx] B == exp (exp z - 1)

1.0000000000000000000000000000000000000 + 1.00000000000000000000000000000000\
0000 z + 1.000000000000000000000000000000000000 z2 + 0.8333333333333333333333333333\
3333333 z3 + 0.625000000000000000000000000000000000 z4 + 0.433333333333333333333333\
33333333333 z5 + 0.28194444444444444444444444444444444 z6 + 0.174007936507936507936\
507936507936508 z7 + 0.102678571428571428571428571428571429 z8 + 0.0582754629629629\
62962962962962962963 z9+O(z10)

Mmx] B[10000] * 10000!

1.5921722925574210311304813561932e27664
7.954 sec

Figure 1. A sample Mathemagix session for the reliable computation of the Bell number B1000.

These considerations have motivated the development of Mathemagix [vdHLM+02],
a new system for computer analysis, which is distributed under a free licence and does
not depending on proprietary software such as Matlab. On the one hand, Mathemagix

provides a wide variety of numerical types, such as machine doubles, multiple precision
numbers, complex numbers, tangent numbers, intervals, balls, computable numbers, but
also integers, rationals, algebraic numbers, modular integers, etc. On the other hand, we
implemented standard mathematical containers, such as matrices, polynomials and power
series. We systematically attempt to make these implementations as efficient as possible for
the various kinds of numerical types. For instance, the algorithm for matrix multiplication
will be very different for, say, rational matrices and complex ball matrices.

The Mathemagix system has been designed in four layers, with multiple precision
arithmetic and classical numeric methods at the bottom, and the certification of numerical
results and computable analysis at the top. Although we briefly discuss this general archi-
tecture in section 5, this paper is mainly devoted to the automatic computation of error
bounds via ball arithmetic. We will outline both the mathematical and implementation
techniques which are used in order to make this certification layer as efficient as possible.
With the exception of some ideas in section 7.5, all algorithms in this paper have been
implemented in our system.

Although we will focus on ball arithmetic, it should be noticed that high efficiency of
the bottom layers is crucial in order to achieve high performance. Actually, one important
design principle is to delay certification methods to the very end, so that the bulk of the
execution time is spent on the actual numerical computations and not on their certification.
Now there are many books on numerical analysis at limited precision [PTVF07, SB02].
The systematic development of multiple precision algorithms which are both efficient and
numerically stable is still a major challenge. Since switching from machine precision to
multiple precision involves a huge overhead, another challenge is to rely as much as possible
on algorithms which first compute an approximation at low precision and then adjust the
result at high precision. Inside Mathemagix, we are helped by the fact that most current
packages are C++ template libraries, which can be instantiated for numbers at single,
double, quadruple and multiple precision (see [BHL00, BHL01] for a double-double and
quadruple-double precision library).
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In figure 1, we have illustrated the new algorithms available in Mathemagix on
a simple example from combinatorics: the reliable approximation of Bell numbers Bn

in limited precision (128 bits in our case). Although one might use an asymptotic for-
mula for this particularly well known example, we have preferred to compute Bn from
the exponential generating series B(z) =

∑
n∈N

Bn zn / n! = ee
z−1. Indeed, this very

general technique can also be applied in many other cases and has applications to the
random generation of combinatorial objects [FZVC94]. In figure 1, each floating point
number in the output is certified to be correct modulo an error of the order of its last digit.

1.3. Overview

Ball arithmetic, also known as midpoint-radius interval arithmetic, provides a systematic
tool for the automatic computation of error bounds. In section 3, we provide a short
introduction to this topic and describe its relation to computable analysis. In particular, we
recall how to compute with approximate real and complex numbers. Although ball arith-
metic is really a variant of interval arithmetic, we will give several arguments in section 4
why we actually prefer balls over intervals for most of our applications. Sections 2, 3 and 4
mainly provide a survey of well known results in the reliable computing community. Only
our perspective might be slightly less classical. Some of the considerations in section 3.5
also seem to be less well known.

In sections 6 and 7, we turn our attention to more complicated mathematical objects,
such as matrices, polynomials, power series and analytic functions. Although some of the
techniques are still well known (such as Hansen’s method for the inversion of matrices),
many of the algorithms presented in these sections seem to be new or expand on earlier
work by the same author [vdH07b]. Usually, there is a trade-off between efficiency and the
quality of the obtained error bounds. One may often start with a very efficient algorithm
which only computes rough bounds, or bounds which are only good in favourable well-
conditioned cases. If the obtained bounds are not good enough, then we may switch to
a more expensive and higher quality algorithm.

The main algorithmic challenge in the area of ball arithmetic is to reduce the overhead
of the bound computations as much as possible with respect to the principal numeric
computation. In favourable cases, this overhead indeed becomes negligible. For instance,
for high working precisions p, the centers of real and complex balls are stored with the
full precision, but we only need a small precision for the radii. Consequently, the cost
of elementary operations (+, −, ·, exp, etc.) on balls is dominated by the cost of the
corresponding operations on their centers. Similarly, crude error bounds for products of
large matrices can be obtained quickly with respect to the actual product computation,
by using norm bounds for the rows and columns of the multiplicands; see (22).

Another algorithmic challenge is to use fast algorithms for the actual numerical com-
putations on the centers of the balls. In particular, it is important to use existing high
performance libraries, such as Blas, Linpack, etc., whenever this is possible [Rum99a].
Similarly, we should systematically rely on asymptotically efficient algorithms for basic
arithmetic, such as fast integer and polynomial multiplication [KO63, CT65, SS71]. There
are several techniques to achieve this goal:

1. The representations of objects should be chosen with care. For instance, should we
rather work with ball matrices or matricial balls (see sections 6.4 and 7.1)?

2. If the result of our computation satisfies an equation, then we may first solve the
equation numerically and only perform the error analysis at the end. In the case
of matrix inversion, this method is known as Hansen’s method; see section 6.2. It
should also be noticed that Newton type iterations which are used in this kind of
methods are also useful for doubling the accuracy in multiple precision contexts.
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3. When considering a computation as a tree or as a dag, then the error tends to
increase with the depth of the tree. If possible, algorithms should be designed so
as to keep this depth small. Examples will be given in sections 6.4 and 7.5. Notice
that this kind of algorithms are usually also more suitable for parallelization.

When combining the above approaches to the series of problems considered in this paper,
we are usually able to achieve a constant overhead for sharp error bound computations. In
favourable cases, the overhead becomes negligible. For particularly ill conditioned prob-
lems, we need a logarithmic overhead. It remains an open question whether we have been
lucky or whether this is a general pattern.

In this paper, we will be easygoing on what is meant by “sharp error bound”. Regarding
algorithms as functions f : Rk → Rl; x 7→ y = f(x), an error δx ∈ Rk in the input
automatically gives rise to an error δy ≈ Jf(x) δx in the output. When performing our
computations with bit precision p, we have to consider that the input error δx is as least of
the order of 2−p |x| ∈ (R>)k (where |x|i= |xi| for all i). Now given an error bound |δx|6 εx
for the input, an error bound |δy |6 εy is considered to be sharp if εy≈max|δx|6εx |Jf(x) δx|.
More generally, condition numbers provide a similar device for measuring the quality of
error bounds. A detailed investigation of the quality of the algorithms presented in this
paper remains to be carried out. Notice also that the computation of optimal error bounds
is usually NP-hard [KLRK97].

2. Notations and classical facts

2.1. Floating point numbers and the IEEE 754 norm

We will denote by
D=Z 2Z= {m 2e:m, e∈Z}

the set of dyadic numbers. Given fixed bit precisions p ∈ N and q ∈ N for the unsigned
mantissa and signed exponent, we also denote by Dp,q the corresponding set of floating
point numbers. Numbers in Dp,q can be stored in p+ q+1 bit space (the extra bit being
used for the sign) and correspond to “ordinary numbers” in the IEEE 754 norm [ANS08,
Mul06]. For double precision numbers, we have p= 51 and q= 12. For multiple precision
numbers, we usually take q to be the size of a machine word, say q = 64, and denote
Dp=Dp,64.

The IEEE 754 norm also defines several special numbers. The most important ones are
the infinities ±∞ and “not a number” NaN, which corresponds to the result of an invalid
operation, such as −2

√
. We will denote

Dp,q
∗ = Dp,q∪{−∞,+∞,NaN}.

Less important details concern the specification of signed zeros ±0 and several possible
types of NaNs. For more details, we refer to [ANS08].

The other main feature of the IEEE 754 is that it specifies how to round results
of operations which cannot be performed exactly. There are four basic rounding modes
↑ (upwards), ↓ (downwards), l (nearest) and 0 (towards zero). Assume that we have
an operation f : U →R with U ⊆Rk. Given x ∈ U ∩Dp,q

k and y = f(x), we define f ↑(x)
to be the smallest number ỹ in Dp,q

∗ , such that ỹ > y. More generally, we will use the
notation (f(x)+ y)↑= f ↑(x)+↑y to indicate that all operations are performed by rounding
upwards. The other rounding modes are specified in a similar way. One major advantage
of IEEE 754 arithmetic is that it completely specifies how basic operations are done,
making numerical programs behave exactly in the same way on different architectures.
Most current microprocessors implement the IEEE 754 norm for single and double precision
numbers. A conforming multiple precision implementation also exists [HLRZ00].
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2.2. Classical complexity results

Using Schönhage-Strassen multiplication [SS71], it is classical that the product of two
p-bit integers can be computed in time I(n) =O(n log n log log n). A recent algorithm by
Fürer [Für07] further improves this bound to I(n)=O(n logn 2O(log∗n)), where log∗ denotes
the iterator of the logarithm (we have log∗ n= log∗ log n+ 1). Other algorithms, such as
the division of two 6n-bit integers, have a similar complexity O(I(n)). Given k prime
numbers p1< ···<pk and a number 06 q<p1 ··· pk, the computation of qmod pi for i=1, ...,
k can be done in time O(I(n) log n) using binary splitting [GG02, Theorem 10.25], where
n= log (p1 ··· pk). It is also possible to reconstruct q from the remainders qmod pi in time
O(I(n) logn).

Let K be an effective ring, in the sense that we have algorithms for performing the ring
operations in K. If K admits 2p-th roots of unity for 2p > n, then it is classical [CT65]
that the product of two polynomials P , Q ∈ K[z] with deg P Q < n can be computed
using O(n logn) ring operations in K, using the fast Fourier transform. For general rings,
this product can be computed using M(n) =O(n log n log log n) operations [CK91], using
a variant of Schönhage-Strassen multiplication.

A formal power series f = f0 + f1 z + f2 z
2 + ··· ∈ K[[z]] is said to be computable,

if there exists an algorithm which takes n ∈ N on input and which computes fn ∈ K.
We denote by K[[z]]com the set of computable power series. Many simple operations on
formal power series, such as multiplication, division, exponentiation, etc., as well as the
resolution of algebraic differential equations can be done modulo O(zn) using a similar time
complexity O(M(n)) as polynomial multiplication [BK78, BCO+06, vdH10]. Alternative
relaxed multiplication algorithms of time complexity R(n)=O(M(n)) are given in [vdH02,
vdH07a]. In this case, the coefficients (f g)n are computed gradually and (f g)n is output
as soon as f0, ..., fn and g0, ..., gn are known. This strategy is often most efficient for the
resolution of implicit equations.

LetKm×n denote the set of m×n matrices with entries in K. Given two n×n matrices
M,N ∈Kn×n, the naive algorithm for computing M N requires O(nω) ring operations
with ω=3. The exponent ω has been reduced by Strassen [Str69] to ω= log7/ log2. Using
more sophisticated techniques, ω can be further reduced to ω < 2.376 [Pan84, CW87].
However, current machine implementations of matrix multiplication are far from reaching
this asymptotic complexity.

2.3. Notations

Intervals and balls. Given x< y in a totally ordered set R, we will denote by [x, y] the
closed interval

[x, y] = {z ∈R:x6 z6 y}. (1)

Assume now that R is a totally ordered field and consider a normed vector space V over R.
Given c∈V and r ∈R>= {r ∈R: r> 0}, we will denote by

B(c, r) = {x∈V : ‖x− c‖6 r} (2)

the closed ball with center c and radius r. Notice that we will never work with open balls in
what follows. We denote the set of all balls of the form (2) by B(V ,R). GivenX ∈B(V ,R),
we will denote by Xc and Xr the center resp. radius of x.

6 Ball arithmetic



Linear algebra. We will use the standard Euclidean norm

‖x‖ =
|x1|2+ ···+ |xn|2

n

√

as the default norm on Rn and Cn. Occasionally, we will also consider the max-norm

‖x‖∞ = max {|x1|, ..., |xn|}.

For matrices M ∈Rm×n or M ∈Cm×n, the default operator norm is defined by

‖M ‖ = max
‖x‖=1

‖Mx‖. (3)

Occasionally, we will also consider the max-norm

‖M ‖∞ = max
i,j

|Mi,j |,

which satisfies

‖M ‖∞ 6 ‖M ‖ 6 n ‖M ‖∞.

Polynomials and series. Given a polynomial P ∈R[x] or P ∈C[x], we define its max-
norm by

‖P ‖∞ = max |Pi|.

For power series f ∈R[[z]] or f ∈C[[z]] which converge on the compact disk B(0, r), we
define the norm

‖f ‖r = max
|z |6r

|f(z)|. (4)

After rescaling f(z) 7→ f(r z), we will usually work with the norm ‖·‖= ‖·‖1, which should
not be confused with the L1 norm on the coefficients of f .

Generalized radii. In some cases, it is useful to generalize the concept of a ball and allow
for radii in partially ordered rings. For instance, given two vectors Xc∈Rn and Xr∈ (R>)n,
we define X =B(Xc, Xr) by

X = {x∈Rn|∀16 i6n, |xi− (Xc)i|6 (Xr)i}.

We denote by B(Rn, Rn) the set of all such “balls”. The sets B(Rm×n, Rm×n), B(R[x],
R[x]), B(R[[x]],R[[x]]), etc. are defined in a similar componentwise way. Given x∈Rn, it
will also be convenient to denote by |x| the vector with |x|i= |xi|. For matricesM ∈Rm×n,
polynomials P ∈R[x] and power series f ∈R[[x]], we define |M |, |P | and |f | similarly.

3. Balls and computable real numbers

3.1. Ball arithmetic

Let V be a normed vector space over R and recall that B(V,R) stands for the set of all
balls with centers in V and radii in R. Given an operation ϕ: Vk → V, the operation is
said to lift to an operation

f◦:B(V,R)k→B(V,R),
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if we have

{f(x1, ..., xk): x1∈X1, ..., xk ∈Xk} ⊆ f◦(X1, ..., Xk),

for all X1, ..., Xk ∈ B(V,R). For instance, both the addition +:V2 →V and subtraction
−:V2→V admits lifts

B(x, r)+◦B(y, s) = B(x+ y, r+ s) (5)

B(x, r)−◦B(y, s) = B(x− y, r+ s). (6)

Similarly, if V is a normed algebra, then the multiplication lifts to

B(x, r) ·◦B(y, s) = B(x y, (|x|+ r) s+ r |y |) (7)

The lifts +◦, −◦, ·◦, etc. are also said to be the ball arithmetic counterparts of addition,
subtractions, multiplication, etc.

Although ball arithmetic is really a variant of interval arithmetic, the use of ball enclo-
sures has several advantages, which will be discussed in section 4. Both ball arithmetic and
interval arithmetic provide a systematic way for the computation of error bounds when the
input of a numerical operation is known only approximately. The bounds are usually not
sharp. For instance, consider the mathematical function f :x∈R 7→x−x which evaluates
to zero everywhere, even if x is only approximately known. Taking x=B(2,0.001), we have
x−◦ x= B(0, 0.002) =/ B(0, 0). This phenomenon is known as overestimation. In general,
ball algorithms have to be designed carefully so as to limit overestimation.

In the above definitions, R can be replaced by a subfield R ⊆ R, V by an R-vector
space V ⊆V, and the domain of f by an open subset of Vk. If V and R are effective in
the sense that we have algorithms for the additions, subtractions and multiplications in V
and R, then basic ball arithmetic in B(V ,R) is again effective. If we are working with
finite precision floating point numbers in Dp,q rather than a genuine effective subfield R,
we will now show how to adapt the formulas (5), (6) and (7) in order to take into account
rounding errors; it may also be necessary to allow for an infinite radius in this case.

3.2. Finite precision ball arithmetic

Let us detail what needs to be changed when using IEEE conform finite precision arith-
metic, say V =R=Dp,q. We will denote

B = B(D,D)

Bp,q = B(Dp,q,Dp,q)

B[i]p,q = B(Dp,q[i],Dp,q).

When working with multiple precision numbers, it usually suffices to use low precision
numbers for the radius type. Recalling that Dp=Dp,64, we will therefore denote

Bp = B(Dp,D64)

B[i]p = B(Dp[i],D64).

We will write ǫ = ǫp = 2−p for the machine accuracy and η = ηp,q = 22−2q for the
smallest normal positive number in Dp,q (we might also take η = 22−2q−p to be the
smallest strictly positive subnormal number, but this choice deteriorates performance on
architectures where computations with subnormal numbers are penalized).
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Given an operation f :Rk→R as in section 3.1, together with balls Xi=B(xi, ri), it is
natural to compute the center y of

B(y, s) = f◦(X1, ...,Xs)

by rounding to the nearest:

y = f l(x1, ..., xk). (8)

One interesting point is that the committed error

δ = |y− f(x1, ..., xk)|

does not really depend on the operation f itself: we have the universal upper bound

δ 6 ∆(y)

∆(y) := (|y |+↑ η) ·↑ǫ. (9)

It would be useful if this adjustment function ∆ were present in the hardware.

For the computation of the radius s, it now suffices to use the sum of ∆(y) and the
theoretical bound formulas for the infinite precision case. For instance,

B(x, r)+◦B(y, s) = B∆(x+l y, r+↑ s) (10)

B(x, r)−◦B(y, s) = B∆(x−l y, r+↑ s) (11)

B(x, r) ·◦B(y, s) = B∆(x ·l y, [(|x|+ r) s+ r |y |]↑), (12)

where B∆ stands for the “adjusted constructor”

B∆(y, s) = B(y, s+↑∆(y)).

The approach readily generalizes to other “normed vector spaces” V over Dp,q, as soon
as one has a suitable rounded arithmetic in V and a suitable adjustment function ∆
attached to it.

Notice that ∆(y) =∞, if y=∞ or y is the largest representable real number in Dp,q.
Consequently, the finite precision ball computations naturally take place in domains of the
form Bp,q

∗ =B(Dp,q
∗ ,Dp,q

∗ ) rather than Bp,q. Of course, balls with infinite radius carry no
useful information about the result. In order to ease the reading, we will assume the absence
of overflows in what follows, and concentrate on computations with ordinary numbers
in Bp,q. We will only consider infinities if they are used in an essential way during the
computation.

Similarly, if we want ball arithmetic to be a natural extension of the IEEE 754 norm,
then we need an equivalent of NaN. One approach consists of introducing a NaB (not
a ball) object, which could be represented by B(NaN, NaN). A ball function f◦ returns
NaB if f returns NaN for one selection of members of the input balls. For instance,
sqrt◦(B(1, 3))=NaB. An alternative approach consists of the attachment of an additional
flag to each ball object, which signals a possible invalid outcome. Following this convention,
sqrt◦(B(1, 3)) yields B(1, 1)NaN.
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3.3. Implementation details

Using the formulas from the previous section, it is relatively straightforward to implement
ball arithmetic as a C++ template library, as we have done in the Mathemagix system.
However, in the case of multiple precision arithmetic this is far from optimal. Let us discuss
several possible optimizations:

1. Multiple precision libraries such as Mpfr [HLRZ00] suffer from a huge overhead
when it comes to moderate (e.g. quadruple) precision computations. Since the radii
are always stored in low precision, it is recommended to inline all computations on
the radii. In the case of multiplication, this divides the number of function calls
by four.

2. When computing with complex numbers z ∈ Dp[i], one may again save several
function calls. Moreover, it is possible to regard z as an element of Z[i] 2Z rather
than (Z 2Z)[i], i.e. use a single exponent for both the real and imaginary parts of z.
This optimization reduces the time spent on exponent computations and mantissa
normalizations.

3. Consider a ball B(c, r) ∈ Bp and recall that c ∈ Dp, r ∈ D64. If |c| < 2p−64 r,
then the ⌊log2 r + p − log2 |c| − 64⌋ least significant binary digits of c are of
little interest. Hence, we may replace c by its closest approximation in Dp′, with
p′= ⌈log2 |c|+ 64− log2 r⌉, and reduce the working precision to p′. Modulo slightly
more work, it is also possible to share the exponents of the center and the radius.

4. If we don’t need large exponents for our multiple precision numbers, then it is
possible to use machine doubles D51,12 as our radius type and further reduce the
overhead of bound computations.

When combining the above optimizations, it can be hoped that multiple precision ball
arithmetic can be implemented almost as efficiently as standard multiple precision arith-
metic. However, this requires a significantly higher implementation effort.

Remark 1. It should be noticed that each of the optimizations described above implies
some loss of accuracy. For instance, if z is close to the real axis in the second optimization,
then the accuracy of the imaginary part will deteriorate significantly with respect to the
usual representation. This kind of examples where quality is traded against efficiency are
encountered frequently in the area of reliable computing and we will see more of them in
sections 6 and 7. Whether we are willing to accept a lower quality for higher efficiency
usually depends on our specific subarea or problem. For instance, our second optimization
is usually acceptable in a complex number library, since errors for complex numbers are
usually bounded in norm. Furthermore, if the computed result is too inaccurate, then it
is always possible to repeat the computation using a more expensive algorithm.

3.4. Computable numbers

Given x∈R, x̃∈D and ε∈D>= {ε∈D: ε> 0}, we say that x̃ is an ε-approximation of x
if |x̃−x|6 ε. A real number x∈R is said to be computable [Tur36, Grz57, Wei00] if there
exists an approximation algorithm which takes an absolute tolerance ε∈D> on input and
which returns an ε-approximation of x. We denote by Rcom the set of computable real
numbers. We may regard Rcom as a data type, whose instances are represented by approx-
imation algorithms (this is also known as the Markov representation [Wei00, Section 9.6]).

10 Ball arithmetic



In practice, it is more convenient to work with so called ball approximation algorithms:
a real number is computable if and only if it admits a ball approximation algorithm, which
takes a working precision p ∈ N on input and returns a ball approximation B(cp, rp)∈B

with x ∈ B(cp, rp) and limp→∞ rp= 0. Indeed, assume that we have a ball approximation
algorithm. In order to obtain an ε-approximation, it suffices to compute ball approxima-
tions at precisions p= 32, 64, 128, ... which double at every step, until rp6 ε. Conversely,
given an approximation algorithm x̌:D>→D of x∈Rcom, we obtain a ball approximation
algorithm p 7→B(cp, rp) by taking rp=2−p and cp= x̌(rp).

Given x, y ∈Rcom with ball approximation algorithms x̌, y̌:N 7→B, we may compute
ball approximation algorithms for x+ y, x− y, x y simply by taking

(x+ y)(p) = x̌(p)+◦ y̌(p)

(x− y)(p) = x̌(p)−◦ y̌(p)

(x y)(p) = x̌(p) ·◦ y̌(p).

More generally, assuming a good library for ball arithmetic, it is usually easy to write
a wrapper library with the corresponding operations on computable numbers.

From the efficiency point of view, it is also convenient to work with ball approximations.
Usually, the radius rp satisfies

log2 rp = −p+ o(1),

or at least

log2 rp = −c p+ o(1),

for some c ∈Q>. In that case, doubling the working precision p until a sufficiently good
approximation is found is quite efficient. An even better strategy is to double the “expected
running time” at every step [vdH06, KR06]. Yet another approach will be described in
section 3.6 below.

The concept of computable real numbers readily generalizes to more general normed
vector spaces. Let V be a normed vector space and let Vdig be an effective subset of digital
points in V, i.e. the elements of Vdig admit a computer representation. For instance, if
V=R, then we take Vdig=D. Similarly, if V=Rm×n is the set of real m× n matrices,
with one of the matrix norms from section 2.3, then it is natural to takeVdig=(Rdig)m×n=
Dm×n. A point x ∈V is said to be computable, if it admits an approximation algorithm

which takes ε ∈ D> on input, and returns an ε-approximation x̃ ∈ Vdig of x (satisfying
‖x̃− x‖6 ε, as above).

3.5. Asymmetric computability

A real number x is said to be left computable if there exists an algorithm for computing
an increasing sequence x̌: N 7→ D; n 7→ x̌n with limn→∞ x̌n = x (and x̌ is called a
left approximation algorithm). Similarly, x is said to be right computable if −x is left
computable. A real number is computable if and only if it is both left and right computable.
Left computable but non computable numbers occur frequently in practice and correspond
to “computable lower bounds” (see also [Wei00, vdH07b]).
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We will denote by Rlcom and Rrcom the data types of left and right computable real
numbers. It is convenient to specify and implement algorithms in computable analysis in
terms of these data types, whenever appropriate [vdH07b]. For instance, we have com-
putable functions

+:Rlcom×Rlcom → Rlcom

−:Rlcom×Rrcom → Rlcom

···
More generally, given a subset S ⊆R, we say that x ∈ S is left computable in S if there
exists a left approximation algorithm x̌:N→ S for x. We will denote by Slcom and Srcom

the data types of left and computable numbers in S, and define Scom=Slcom∩Srcom.
Identifying the type of boolean numbers T with {0, 1}, we have Tlcom=Trcom=T as

sets, but not as data types. For instance, it is well known that equality is non computable
for computable real numbers [Tur36]. Nevertheless, equality is “ultimately computable” in
the sense that there exists a computable function

=:Rcom×Rcom → Trcom.

Indeed, given x, y ∈Rcom with ball approximation algorithms x̌ and y̌, we may take

(x= y)n =

{
1 if (x̌0∩ y̌0∩ ··· ∩ x̌n∩ y̌n)=/ ∅

0 otherwise

Similarly, the ordering relation 6 is ultimately computable.
This asymmetric point of view on equality testing also suggest a semantics for the

relations =, 6, etc. on balls. For instance, given balls x, y ∈B, it is natural to take

x= y ! x∩ y=/ ∅

x=/ y ! x∩ y=∅

x6 y ! ∃a∈x, b∈ y, a6 b
···

These definitions are interesting if balls are really used as successive approximations of
a real number. An alternative application of ball arithmetic is for modeling non-determin-
istic computations: the ball models a set of possible values and we are interested in the set
of possible outcomes of an algorithm. In that case, the natural return type of a relation on
balls becomes a “boolean ball”. In the area of interval analysis, this second interpretation
is more common [ANS09].

Remark 2. We notice that the notions of computability and asymmetric computability
do not say anything about the speed of convergence. In particular, it is usually impossible
to give useful complexity bounds for algorithms which are based on these mere concepts.
In the case of asymmetric computability, there even do not exist any recursive complexity
bounds, in general.

3.6. Lipschitz ball arithmetic

Given a computable function f :Rcom→Rcom, x ∈Rcom and ε ∈D>, let us return to the
problem of efficiently computing an approximation ỹ ∈D of y= f(x) with |ỹ− y |<ε. In
section 3.4, we suggested to compute ball approximations of y at precisions which double
at every step, until a sufficiently precise approximation is found. This computation involves
an implementation f◦:B→B of f on the level of balls, which satisfies

{f(X): x∈X} ⊆ f◦(X), (13)
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for every ballX ∈B. In practice, f is often differentiable, with f ′(x)=/ 0. In that case, given
a ball approximation X of x, the computed ball approximation Y = f◦(X) of y typically
has a radius

Yr ∼ |f ′(x)|Xr, (14)

for Xr→ 0. This should make it possible to directly predict a sufficient precision at which
Yr6 ε. The problem is that (14) needs to be replaced by a more reliable relation. This can
be done on the level of ball arithmetic itself, by replacing the usual condition (13) by

B(f(Xc),MXr) ⊆ f◦(X) (15)

M = sup
x∈X

|f ′(x)|.

Similarly, the multiplication of balls is carried out using

B(x, r) ·◦B(y, s) = B(x y, (|x|+ r) s+ (|y |+ s) r). (16)

instead of (7). A variant of this kind of “Lipschitz ball arithmetic” has been implemented
in [M0]. Although a constant factor is gained for high precision computations at regular
points x, the efficiency deteriorates near singularities (i.e. the computation of 0

√
).

4. Balls versus intervals

In the area of reliable computation, interval arithmetic has for long been privileged with
respect to ball arithmetic. Indeed, balls are often regarded as a more or less exotic variant
of intervals, based on an alternative midpoint-radius representation. Historically, interval
arithmetic is also preferred in computer science because it is easy to implement if floating
point operations are performed with correct rounding. Since most modern microprocessors
implement the IEEE 754 norm, this point of view is well supported by hardware.

Not less historically, the situation in mathematics is inverse: whereas intervals are the
standard in computer science, balls are the standard in mathematics, since they correspond
to the traditional ε-δ-calculus. Even in the area of interval analysis, one usually resorts
(at least implicitly) to balls for more complex computations, such as the inversion of a
matrix [HS67, Moo66]. Indeed, balls are more convenient when computing error bounds
using perturbation techniques. Also, we have a great deal of flexibility concerning the
choice of a norm. For instance, a vectorial ball is not necessarily a Cartesian product of
one dimensional balls.

In this section, we will give a more detailed account on the respective advantages and
disadvantages of interval and ball arithmetic.

4.1. Standardization

One advantage of interval arithmetic is that the IEEE 754 norm suggests a natural and
standard implementation. Indeed, let f be a real function which is increasing on some
interval I. Then the natural interval lift f 7−7− of f is given by

f 7−7−([l, h]) = [f ↓(l), f ↑(h)].
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This implementation has the property that f 7−7−([l, h]) is the smallest interval with end-
points in Dp,q ∪{±∞}, which satisfies

{f(x): x∈ [l, h]} ⊆ f 7−7−([l, h]).

For not necessarily increasing functions f this property can still be used as a requirement
for the “standard” implementation of f 7−7−. For instance, this leads to the following imple-
mentation of the cosine function on intervals:

cos 7−7−([l, h]) =





[cos↓ l, cos↑h] if ⌊l/2 p⌋= ⌊h/2 p⌋ ∈ 2Z− 1

[cos↓h, cos↑ l] if ⌊l/2 p⌋= ⌊h/2 p⌋ ∈ 2Z

[min (cos↓ l, cos↓h), 1] if ⌊l/2 p⌋= ⌊h/2 p⌋−1∈ 2Z− 1

[−1,max (cos↑ l, cos↑h)] if ⌊l/2 p⌋= ⌊h/2 p⌋−1∈ 2Z
[−1, 1] if ⌊l/2 p⌋< ⌊h/2 p⌋−1

Such a standard implementation of interval arithmetic has the convenient property that
programs will execute in the same way on any platform which conforms to the IEEE 754
standard.

By analogy with the above approach for standardized interval arithmetic, we may
standardize the ball implementation f◦ of f by taking

f◦(B(c, r)) = B(f l(c), s),

where the radius s is smallest in Dp,q∪{+∞} with

{f(x):x∈B(c, r)} ⊆ B(f l(c), s).

Unfortunately, the computation of such an optimal s is not always straightforward. In par-
ticular, the formulas (10), (11) and (12) do not necessarily realize this tightest bound. In
practice, it might therefore be better to achieve standardization by fixing once and for all
the formulas by which ball operations are performed. Of course, more experience with ball
arithmetic is required before this can happen.

4.2. Practical efficiency

The respective efficiencies of interval and ball arithmetic depend on the precision at which
we are computing. For high precisions and most applications, ball arithmetic has the
advantage that we can still perform computations on the radius at single precision. By
contrast, interval arithmetic requires full precision for operations on both end-points. This
makes ball arithmetic twice as efficient at high precisions.

When working at machine precision, the efficiencies of both approaches essentially
depend on the hardware. A priori , interval arithmetic is better supported by current
computers, since most of them respect the IEEE 754 norm [ANS08], whereas the function∆
from (9) usually has to be implemented by hand. However, changing the rounding mode
is often highly expensive (over hundred cycles). Therefore, additional gymnastics may be
required in order to always work with respect to a fixed rounding mode. For instance, if ↑
is our current rounding mode, then we may take [vG02, Lam08]

x+↓ y = −((−x)+↑ (−y)),
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since the operation x 7→−x is always exact (i.e. does not depend on the rounding mode).
As a consequence, interval arithmetic becomes slightly more expensive. By contrast, when
releasing the condition that centers of balls are computed using rounding to the nearest,
we may replace (8) by

y = f ↑(x1, ..., xk) (17)

and (9) by

∆(y) := (|y |+↑ η) ·↑(2 ǫ).

Hence, ball arithmetic already allows us to work with respect to a fixed rounding mode.
Of course, using (17) instead of (8) does require to rethink the way ball arithmetic should
be standardized.

An alternative technique for avoiding changes in rounding mode exists when performing
operations on compound types, such as vectors or matrices. For instance, when adding
two vectors, we may first add all lower bounds while rounding downwards and next add
the upper bounds while rounding upwards. Unfortunately, this strategy becomes more
problematic in the case of multiplication, because different rounding modes may be needed
depending on the signs of the multiplicands. As a consequence, matrix operations tend
to require many conditional parts of code when using interval arithmetic, with increased
probability of breaking the processor pipeline. On the contrary, ball arithmetic highly
benefits from parallel architecture and it is easy to implement ball arithmetic for matrices
on top of existing libraries: see [Rum99a] and section 6 below.

4.3. Quality

Besides the efficiency of ball and interval arithmetic for basic operations, it is also impor-
tant to investigate the quality of the resulting bounds. Indeed, there are usually differences
between the sets which are representable by balls and by intervals. For instance, when using
the extended IEEE 754 arithmetic with infinities, then it is possible to represent [1,∞] as
an interval, but not as a ball.

These differences get more important when dealing with complex numbers or compound
types, such as matrices. For instance, when using interval arithmetic for reliable compu-
tations with complex numbers, it is natural to enclose complex numbers by rectangles
X +Y i, where X and Y are intervals. For instance, the complex number z=1+ i may be
enclosed by

z ∈ [1− ε, 1+ ε] + [1− ε, 1+ ε] i,

for some small number ε. When using ball arithmetic, we would rather enclose z by

z ∈ B(1+ i, ε).

Now consider the computation of u = z2. The computed rectangular and ball enclosures
are given by

u ∈ [−2 ε, 2 ε] + [2− 2 ε, 2+2 ε] i + o(ε)

u ∈ B(2, 2
√

ε)+ o(ε).

Consequently, ball arithmetic yields a much better bound, which is due to the fact that
multiplication by 1+ i turns the rectangular enclosure by 45 degrees, leading to an overes-
timation by a factor 2

√
when re-enclosing the result by a horizontal rectangle (see figure 2).
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Figure 2. Illustration of the computation of z2 using interval and ball arithmetic, for z=1+ i.

The above computation of B(1+ i, ε)2 is one of the simplest instances of the wrapping
effect [Moo66]. This example highlights another advantage of ball arithmetic: we have
a certain amount of flexibility regarding the choice of the radius type. By choosing a simple
radius type, we do not only reduce the wrapping effect, but also improve the efficiency:
when computing with complex balls in B[i], we only need to bound one radius instead of
two for every basic operation. More precisely, we replace (8) and (9) by

y = f l(x1, ..., xk)

= (Re f)l(x1, ..., xk)+ (Im f)l(x1, ..., xk) i

∆(y) := (abs↑(y)+↑ η) ·↑ ( 2
√

ǫ). (18)

Of course, in some very specific situations, interval representations might still be preferred.
For instance, consider the rectangle Z = [a, b] + [−ε, ε] i. Then any ball enclosure of Z is
necessarily very rough. However, when developing a general purpose library for reliable
complex numbers, this situation is very exotic (see also remark 1): as soon as we will be
multiplying truly complex numbers with non trivial real and imaginary parts, the potential
benefit of interval enclosures will be lost as a consequence of the wrapping effect.

The choice of a real radius type completely eliminates the wrapping effect in the case
of complex balls, due to the fact that |u z |= |u| |z | for any u, z ∈C. In analogy with the
complex case, we may prefer to compute the square of the matrix

M =

(
0 1
1 0

)
(19)

in B(D2×2,D) rather than B(D,D)2×2, while using the operator norm (3) for matrices.
Unfortunately, for general 2× 2 matrices, some overestimation may occur, due to the fact
that we only have ‖MN ‖6 ‖M ‖ ‖N ‖ for M,N ∈R2×2. Similarly, is not uncommon that
the entries of the matrices are of different orders of magnitude, in which case a single bound
on the norm leads to a deterioration of the accuracy. Finally, generalized norms may be
harder to compute, even though a rough bound often suffices (e.g. replacing abs↑(y) by
|Re y |+↑ |Im y | in (18)).

In the area of reliable integration of dynamical systems, various techniques have been
developed [Moo66, Loh88, GS88, Neu93, MB96] in order to reduce the wrapping effect
induced by matrix computations. Many of these techniques rely on the use of suitable enclo-
sures: linear transformations of higher dimensional rectangles, non linear transformations
under Taylor models, ellipsoids, zonotopes, etc. Another, more algorithmic, technique for
reducing the wrapping effect will be discussed in sections 6.4 and 7.5 below.
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4.4. Benefits and cost of correct rounding

Implementations of interval arithmetic often rely on floating point arithmetic with correct
rounding. One may question how good correct rounding actually is in order to achieve
reliability. One major benefit is that it provides a simple and elegant way to specify what
a mathematical function precisely does at limited precision. In particular, it allows numer-
ical programs to execute exactly in the same way on many different hardware architectures.

On the other hand, correct rounding does have a certain cost. Although the cost
is limited for field operations and elementary functions [Mul06], the cost increases for
more complex special functions, especially if one seeks for numerical methods with a con-
stant operation count. For arbitrary computable functions on Rcom, correct rounding even
becomes impossible. Another disadvantage is that correct rounding is lost as soon we
perform more than one operation: in general, g↑ ◦ f ↑ and (g ◦ f)↑ do not coincide.

In the case of ball arithmetic, we only require an upper bound for the error, not
necessarily the best possible representable one. In principle, this is just as reliable and
usually more economic. In a similar way, when computing with intervals, we may require
faithful rounding instead of correct rounding. That is, we require guaranteed lower and
upper bounds for the interval, but not necessarily the best possible ones. Of course, faithful
rounding is not unique, so we will lose the benefit of standardization (see section 4.1).

Now in an ideal safe world, the development of numerical codes goes hand in hand with
the systematic development of routines which compute the corresponding error bounds.
In such a world, correct rounding becomes superfluous, since correctness is no longer
ensured at the micro-level of hardware available functions, but rather at the top-level, via
mathematical proof.

4.5. Development of new reliable algorithms

When conceiving a new reliable algorithm, it is often necessary to carry out a lot of tedious
bound computations by hand. In the process of software development, not only execution
time, but also development time can therefore be a major concern. Depending on the
algorithm or application area, as well as personal taste, error bounds may be easier to
obtain when using either interval arithmetic or ball arithmetic.

If we are essentially performing computations with real functions on regions where
they are monotonic, then interval enclosures are often preferred, since they are both easy
to obtain, efficient and tight. Another typical area where interval arithmetic is more con-
venient is the resolution of a system of equations using dichotomy. Indeed, it is easier to
cut an n-dimensional block [a1, b1]× ··· × [an, bn] into 2n smaller blocks than to perform a
similar operation on balls.

For many other applications, ball representations are more convenient. Indeed, error
bounds are usually obtained by perturbation methods. For any mathematical proof where
error bounds are explicitly computed in this way, it is generally easy to derive a certified
algorithm based on ball arithmetic. We will see several illustrations of this principle in the
sections below.

Whenever possible, it is also useful to develop algorithms in such a way that the
underlying arithmetic (e.g. interval or ball representation) can be chosen by the user. For
instance, in the C++ libraries of the Mathemagix system, many reliable algorithms are
templated by a type which can be either be taken to be an interval type or a ball type.
Usually, the important feature of the template type is the ability to compute centers, radii,
upper or lower bounds, etc., rather than a specific way of doing so.
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5. The numerical hierarchy

Computable analysis provides a good high-level framework for the automatic and certified
resolution of analytic problems. The user states the problem in a formal language and
specifies a required absolute or relative precision. The program should return a numerical
result which is certified to meet the requirement on the precision. A simple example is to
compute an ε-approximation for p, for a given ε∈D>.

The Mathemagix system [vdHLM+02] aims the implementation of efficient algo-
rithms for the certified resolution of numerical problems. Our ultimate goal is that these
algorithms become as efficient as more classical numerical methods, which are usually
non certified and only operate at limited precision. A naive approach is to systematically
work with computable real numbers. Although this approach is convenient for theoretical
purposes in the area of computable analysis, the computation with functions instead of
ordinary floating point numbers is highly inefficient.

In order to address this efficiency problem, the Mathemagix libraries for basic arith-
metic on analytic objects (real numbers, matrices, polynomials, etc.) are subdivided into
four layers of the so called numerical hierarchy (see figure 3). We will illustrate this decom-
position on the problem of multiplying two n×n computable real matrices. The numerical
hierarchy turns out to be a convenient framework for more complex problems as well, such
as the analytic continuation of the solution to a dynamical system. As a matter of fact,
the framework incites the developer to restate the original problem at the different levels,
which is generally a good starting point for designing an efficient solution.

Analytic problem

Robust problem

formal algorithm

Numerical problem

interval or ball arithmetic

numerical method
Approximate solution

Certified solution

Analytic solution

fast arithmetic
Arithmetic problem Exact solution

Arithmetical level

Numerical level

Reliable level

Mathematical level

Figure 3. The numerical hierarchy.

Mathematical level. On the mathematical top level, we are given two computable real
n × n matrices A, B ∈ (Rcom)n×n and an absolute error ε ∈D>. The aim is to compute
ε-approximations for all entries of the product C =AB.

The simplest approach to this problem is to use a generic formal matrix multiplica-
tion algorithm, using the fact that Rcom is an effective ring. However, as stressed above,
instances of Rcom are really functions, so that ring operations in Rcom are quite expensive.
Instead, when working at precision p, we may first compute ball approximations for all the
entries of A and B, after which we form two approximation matrices Ã, B̃ ∈Bn×n. The
multiplication problem then reduces to the problem of multiplying two matrices in Bn×n.
This approach has the advantage that O(n3) operations on “functions” inRcom are replaced
by a single multiplication in Bn×n.

18 Ball arithmetic



Reliable level. The aim of this layer is to implement efficient algorithms on balls.
Whereas the actual numerical computation is delegated to the numerical level below,
the reliable level should be able to perform the corresponding error analysis automatically.

When operating on non-scalar objects, such as matrices of balls, it is often efficient to
rewrite the objects first. For instance, when working in fixed point arithmetic (i.e. all entries
of A and B admit similar orders of magnitude), a matrix in Bn×n may also be considered
as a matricial ball in B(Dn×n,D) for the matrix norm ‖·‖∞. We multiply two such balls
using the formula

B(x, r) ·◦B(y, s) = B(x y, [n ((‖x‖∞+ r) s+ r ‖y‖∞)]↑),

which is a corrected version of (7), taking into account that the matrix norm ‖·‖∞ only
satisfies ‖x y‖∞6 n ‖x‖∞ ‖y‖∞. Whereas the naive multiplication in Bn×n involves 4 n3

multiplications in D, the new method reduces this number to n3+2n2: one “expensive”
multiplication in Dn×n and two scalar multiplications of matrices by numbers. This type
of tricks will be discussed in more detail in section 6.4 below.

Essentially, the new method is based on the isomorphism

B(D,D)n×n
=∼ B(Dn×n,D).

A similar isomorphism exists on the mathematical level:

(Rcom)n×n
=∼ (Rn×n)com

As a variant, we directly may use the latter isomorphism at the top level, after which ball
approximations of elements of (Rn×n)com are already in B(Dn×n,D).

Numerical level. Being able to perform an automatic error analysis, the actual numer-
ical computations are done at the numerical level. In our example, we should implement
an efficient algorithm to multiply two matrices in Dn×n. In single or double precision, we
may usually rely on highly efficient numerical libraries (Blas, Lapack, etc.). In higher pre-
cisions, new implementations are often necessary: even though there are efficient libraries
for multiple precision floating point numbers, these libraries usually give rise to a huge
overhead. For instance, when usingMpfr [HLRZ00] at double precision, the overhead with
respect to machine doubles is usually comprised between 10 and 100.

When working with matrices with multiple precision floating point entries, this over-
head can be greatly reduced by putting the entries under a common exponent using the
isomorphism

Dn×n= (Z 2Z)n×n
=∼ Zn×n 2Z.

This reduces the matrix multiplication problem for floating point numbers to a purely
arithmetic problem. Of course, this method becomes numerically unstable when the expo-
nents differ wildly; in that case, row preconditioning of the first multiplicand and column
preconditioning of the second multiplicand usually helps.

We notice that a matrix multiplication algorithm has been proposed in [OOO11], which
is essentially based on a similar principle, but with difference that floating point numbers
are cut into smaller floating point numbers instead of integers. This approach can be more
efficient when an efficient BLAS library is available and if the precision is not too high.

Arithmetic level. After the above succession of reductions, we generally end up with an
arithmetic problem such as the multiplication of two n×n matrices in Zn×n. The efficient
resolution of this problem for all possible n and integer bit lengths p is again non-trivial.
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Indeed, libraries such as Gmp [Gra91] do implement Schönhage-Strassen’s algo-
rithm [SS71] algorithm for integer multiplication. However, the corresponding naive
algorithm for the multiplication of matrices has a time complexity O(I(p) n3), which is
far from optimal for large values of n.

Indeed, for large n, it is better to use multi-modular methods. For instance, choosing
sufficiently many small primes q1, ..., qk < 232 (or 264) with q1 ··· qk > 2 n 4p, the
multiplication of the two integer matrices can be reduced to k multiplications of matrices
in (Z/ qiZ)n×n. Recall that a 2 p-bit number can be reduced modulo all the qi and
reconstructed from these reductions in time O(I(p) log p). The improved matrix multipli-
cation algorithm therefore admits a time complexity O(p n3+ n2 I(p) log p) and has been
implemented in Linbox [DGG+02b, DGG+02a],Mathemagix and several other systems.
FFT-based methods achieve similar practical time complexities O(p n3+ n2 I(p)) when n
and p are of the same order of magnitude.

6. Reliable linear algebra

In this section, we will start the study of ball arithmetic for non numeric types, such as
matrices. We will examine the complexity of common operations, such as matrix multipli-
cation, linear system solving, and the computation of eigenvectors. Ideally, the certified
variants of these operations are only slightly more expensive than the non certified versions.
As we will see, this objective can sometimes be met indeed. In general however, there is
a trade-off between the efficiency of the certification and its quality, i.e. the sharpness of
the obtained bound. As we will see, the overhead of bound computations also tends to
diminish for increasing bit precisions p.

6.1. Matrix multiplication

Let us first consider the multiplication of two n×n double precision matrices

M,N ∈B51,12
n×n .

Naive strategy. The simplest multiplication strategy is to computeMN using the naive
symbolic formula

(MN )i,k =
∑

j=1

n

Mi,jNj ,k. (20)

Although this strategy is efficient for very small n, it has the disadvantage that we cannot
profit from high performance Blas libraries which might be available on the computer.

Revisited naive strategy. Reconsidering M and N as balls with matricial radii

M,N ∈B(D51,12
n×n ,D51,12

n×n ),

we may compute MN using

MN = B([McNc]
l, [|Mc|Nr+Mr (|Nc|+Nr)+n ǫ |Mc| |Nc|]↑), (21)

where |M | is given by |M |i,j= |Mi,j |. A similar approach was first proposed in [Rum99a].
Notice that the additional term n ǫ |Mc| ·↑|Nc| replaces ∆(M N ). This extra product is
really required: the computation of (McNc)i,j may involve cancellations, which prevent a
bound for the rounding errors to be read off from the end-result. The formula (21) does
assume that the underlying Blas library computes Mc Nc using the naive formula (20)
and correct rounding, with the possibility to compute the sums in any suitable order. Less
naive schemes, such as Strassen multiplication [Str69], may give rise to additional rounding
errors.

20 Ball arithmetic



Fast strategy. The above naive strategies admit the disadvantage that they require four
non certified n×n matrix products in D51,12

n×n . If M and N are well-conditioned, then the
following formula may be used instead:

MN = B(McNc, R) (22)

Ri,k = [‖(Mi,·)c‖ ‖(N·,k)r‖+ ‖(Mi,·)r‖ ‖(N·,k)c‖+n ǫ ‖(Mi,·)c‖ ‖(Ni,·)c‖]↑, (23)

whereMi,· and N·,k stand for the i-th row of M and the k-th column of N . Since the O(n)
norms can be computed using only O(n2) operations, the cost of the bound computation
is asymptotically negligible with respect to the O(n3) cost of the multiplication McNc.

Hybrid strategy. For large n × n matrices, chances increase that M or N gets badly
conditioned, in which case the quality of the error bound (23) decreases. Nevertheless,
we may use a compromise between the naive and the fast strategies: fix a not too small
constant K, such as K ≈ 16, and rewrite M and N as ⌈ n

K
⌉ × ⌈ n

K
⌉ matrices whose entries

are K ×K matrices. Now multiply M and N using the revisited naive strategy, but use
the fast strategy on each of the K ×K block coefficients. Being able to choose K, the user
has an explicit control over the trade-off between the efficiency of matrix multiplication
and the quality of the computed bounds.

As an additional, but important observation, we notice that the user often has the
means to perform an “a posteri quality check”. Starting with a fast but low quality bound
computation, we may then check whether the computed bound is suitable. If not, then we
recompute a better bound using a more expensive algorithm.

High precision multiplication. Assume now that we are using multiple precision arith-
metic, sayM,N ∈Bp

n×n. ComputingMN using (21) requires one expensive multiplication

in Dp
n×n and three cheap multiplications in D64

n×n. For large p, the bound computation
therefore induces no noticeable overhead.

6.2. Matrix inversion

Assume that we want to invert an n× n ball matrix M ∈Bp
n×n. This a typical situation

where the naive application of a symbolic algorithm (such as gaussian elimination or LR-
decomposition) may lead to overestimation. An efficient and high quality method for the
inversion of M is called Hansen’s method [HS67, Moo66]. The main idea is to first compute
the inverse of Mc using a standard numerical algorithm. Only at the end, we estimate
the error using a perturbative analysis. The same technique can be used for many other
problems.

More precisely, we start by computing an approximation Nc∈Dp
n×n of (Mc)−1. Putting

N =B(Nc, 0), we next compute the product MN using ball arithmetic. This should yield
a matrix of the form 1−E, where E is small. If E is indeed small, say ‖E‖6 2−p/2, then

‖(1−E)−1− 1−E‖ 6
‖E‖2

1−‖E‖ . (24)

Denoting by Ωn the n×n matrix whose entries are all B(0, 1), we may thus take

(1−E)−1 := 1+E+
‖E‖2

1−‖E‖ Ωn.

Having inverted 1 − E, we may finally take M−1 = N (1 − E)−1. Notice that the
computation of ‖E‖ can be quite expensive. It is therefore recommended to replace the
check ‖E‖6 2−p/2 by a cheaper check, such as n ‖E‖∞6 2−p/2.
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Unfortunately, the matrix E is not always small, even if M is nicely invertible. For
instance, starting with a matrix M of the form

M = Jn,K =




1 K

1 ······ K

1


,

with K large, we have

M−1 =




1 −K K2 ··· (−K)n−1

1 −K ··· ···
1 ··· K2

··· −K
1



.

Computing (Mc)
−1 using bit precision p, this typically leads to

‖E‖ ≈ Kn−1 2−p.

In such cases, we rather reduce the problem of inverting 1−E to the problem of inverting
1−E2, using the formula

(1−E)−1 = (1+E) (1−E2)−1. (25)

More precisely, applying this trick recursively, we compute E2, E4, E8, ... until ‖E2k‖
becomes small (say ‖E2k‖6 2−p/2) and use the formula

(1−E)−1 = (1+E) (1+E2) ··· (1+E2k−1

) (1−E2k)−1 (26)

(1−E2k)−1 := 1+E2k+
‖E2k‖2

1−‖E2k‖
Ωn.

We may always stop the algorithm for 2k>n, since (Jn,K − 1)n=0. We may also stop the

algorithm whenever ‖E2k‖> 1 and ‖E2k‖> ‖E2k−1‖, since M usually fails to be invertible
in that case.

In general, the above algorithm requires O(log m) ball n × n matrix multiplications,
where m is the size of the largest block of the kind JK,m in the Jordan decomposition
of M . The improved quality therefore requires an additional O(log n) overhead in the
worst case. Nevertheless, for a fixed matrix M and p→∞, the norm ‖E‖ will eventually
become sufficiently small (i.e. 2−p/2) for (24) to apply. Again, the complexity thus tends
to improve for high precisions. An interesting question is whether we can avoid the ball
matrix multiplication MN altogether, if p gets really large. Theoretically, this can be
achieved by using a symbolic algorithm such as Gaussian elimination or LR-decomposition
using ball arithmetic. Indeed, even though the overestimation is important, it does not
depend on the precision p. Therefore, we have (M−1)r=O(2−p) and the cost of the bound
computations becomes negligible for large p.

6.3. Eigenproblems

Let us now consider the problem of computing the eigenvectors of a ball matrixM ∈Bp
n×n,

assuming for simplicity that the corresponding eigenvalues are non zero and pairwise dis-
tinct. We adopt a similar strategy as in the case of matrix inversion. Using a standard
numerical method, we first compute a diagonal matrix Λ∈Dp

n×n and an invertible trans-
formation matrix T ∈Dp

n×n, such that

T−1McT ≈ Λ. (27)
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The main challenge is to find reliable error bounds for this computation. Again, we will
use the technique of small perturbations. The equation (27) being a bit more subtle than
McNc≈ 1, this requires more work than in the case of matrix inversion. In fact, we start
by giving a numerical method for the iterative improvement of an approximate solution.
A variant of the same method will then provide the required bounds. Again, this idea can
often be used for other problems. The results of this section are work in common with B.

Mourrain and Ph. Trebuchet; in [vdHMT], an even more general method is given,
which also deals with the case of multiple eigenvalues.

Given M̃ close to Mc, we have to find T̃ close to T and Λ̃ close to Λ, such that

T̃−1 M̃ T̃ = Λ̃. (28)

Putting

T̃ = T (1+E)

Λ̃ = Λ (1+∆)

N = T−1 M̃ T

H = N −Λ,

this yields the equation

(1+E)−1N (1+E) = Λ (1+∆).

Expansion with respect to E yields

1
1+E

N (1+E) = N (1+E)− E

1+E
N (1+E)

= N +NE −EN +
E2

1+E
N − E

1+E
NE

= N + [Λ, E] + [H,E] +
E2

1+E
N − E

1+E
NE (29)

= N + [Λ, E] +O([H,E]) +O(E2).

Forgetting about the non-linear terms, the equation

[E,Λ]+Λ∆ = H

admits a unique solution

Ei,j =





Hi,j

Λj,j −Λi,i
if j=/ i

0 otherwise

∆i,j =





Hi,i

Λi,i
if i= j

0 otherwise

Setting

κ= κ(Λ) = max
{
max

{
1

|Λj ,j −Λi,i|
: 16 i < j 6n

}
,max

{
1

Λi,i
: 16 i6n

}}
,

it follows that

max {‖E‖, ‖∆‖} 6 κ n
√ ‖H‖. (30)
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Setting T ′ = T (1 + E), Λ′ = Λ (1 + ∆) and H ′ = (T ′)−1 M̃ T ′ − Λ′, the relation (29) also
implies

H ′ = [H,E] +
E2

1+E
(Λ+H)− E

1+E
(Λ+H)E.

Under the additional condition ‖E‖6 1

2
, it follows that

‖H ′‖ 6 3 ‖H‖ ‖E‖+4 ‖E‖2 ‖Λ‖. (31)

For sufficiently small H, we claim that iteration of the mapping Φ: (T , Λ) 7→ (T ′, Λ′)
converges to a solution of (28).

Let us denote (T (k),Λ(k))=Φk(T ,Λ), H(k)=(T (k))−1 M̃ T (k)−Λ(k) and let (E(k),∆(k))

be such that T (k+1)= T (k) (1+E(k)) and Λ(k+1)=Λ(k) (1+∆(k)). Assume that

‖H‖ 6
1

80nκ2 ‖Λ‖ (32)

and let us prove by induction over k that

‖H(k)‖ 6 2−k ‖H ‖ (33)

‖Λ(k)‖ 6 2 ‖Λ‖ (34)

max {‖E(k)‖, ‖∆(k)‖} 6 2 n
√

κ ‖H(k)‖ (35)

6
1

40 n
√

κ ‖Λ‖ 2k

This is clear for k=0, so assume that k > 0. In a similar way as (31), we have

‖H(k)‖ 6 3 ‖H(k−1)‖ ‖E(k−1)‖+4 ‖E(k−1)‖2 ‖Λ(k−1)‖. (36)

Using the induction hypotheses and κ ‖Λ‖> 1, it follows that

‖H(k)‖ 6 (3+ 16 n
√

κ ‖Λ‖) ‖E(k−1)‖ ‖H(k−1)‖
6

1

2
‖H(k−1)‖,

which proves (33). Now let Σ(k) be such that

Λ(k) = Λ(1+∆(0)) ··· (1+∆(k−1))

= Λ (1+Σ(k)).

From (35), it follows that

‖Σ(k)‖ 6
1

4κ ‖Λ‖ .

On the one hand, this implies (34). On the other hand, it follows that

κ(Λ(k)) 6 2κ,

whence (30) generalizes to (35). This completes the induction and the linear convergence of
‖H(k)‖ to zero. In fact, the combination of (35) and (36) show that we even have quadratic
convergence.

Let us now return to the original bound computation problem. We start with the
computation of H=T−1MT −Λ using ball arithmetic. If the condition (32) is met (using
the most pessimistic rounding), the preceding discussion shows that for every M̃ ∈M (in
the sense that M̃i,j ∈Mi,j for all i, j), the equation (28) admits a solution of the form

T̃ = T (1+ Υ̃)= T (1+E(0)) (1+E(1)) ···
Λ̃ = Λ (1+ Σ̃)=Λ (1+∆(0)) (1+∆(1)) ···,
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with

max {‖E(k)‖, ‖∆(k)‖} 6 21−k n
√

κ ‖H ‖,

for all k. It follows that

max {‖Υ̃‖, ‖Σ̃‖} 6 η := 6 n
√

κ ‖H‖.

We conclude that

T̃ ∈ T (1+ ηΩn)

Λ̃ ∈ B(1, η) Λ.

We may thus return (T (1+ ηΩn),B(1, η) Λ) as the solution to the original eigenproblem
associated to the ball matrix M .

The reliable bound computation essentially reduces to the computation of three matrix
products and one matrix inversion. At low precisions, the numerical computation of the
eigenvectors is far more expensive in practice, so the overhead of the bound computation
is essentially negligible. At higher precisions p, the iteration (T , Λ) 7→ Φ(T ,Λ) actually
provides an efficient way to double the precision of a numerical solution to the eigenproblem
at precision p/2. In particular, even if the condition (32) is not met initially, then it usually
can be enforced after a few iterations and modulo a slight increase of the precision. For fixed
M and p→∞, it also follows that the numerical eigenproblem essentially reduces to a few
matrix products. The certification of the end-result requires a few more products, which
induces a constant overhead. By performing a more refined error analysis, it is probably
possible to make the cost certification negligible, although we did not investigate this issue
in detail.

6.4. Matricial balls versus ball matrices

In section 4.3, we have already seen that matricial balls in B(Dn×n,D) often provide higher
quality error bounds than ball matrices in B(D,D)n×n or essentially equivalent variants
in B(Dn×n, Dn×n). However, ball arithmetic in B(Dn×n,D) relies on the possibility to
quickly compute a sharp upper bound for the operator norm ‖M ‖ of a matrix M ∈Dn×n.
Unfortunately, we do not know of any really efficient algorithm for doing this.

One expensive approach is to compute a reliable singular value decomposition of M ,
since ‖M ‖ coincides with the largest singular value. Unfortunately, this usually boils
down to the resolution of the eigenproblem associated to M∗ M , with a few possible
improvements (for instance, the dependency of the singular values on the coefficients of M
is less violent than in the case of a general eigenproblem).

Since we only need the largest singular value, a faster approach is to reduce the com-
putation of ‖M ‖ to the computation of ‖M∗M ‖, using the formula

‖M ‖ = ‖M∗M ‖
√

.

Applying this formula k times and using a naive bound at the end, we obtain

‖M ‖ 6 n ‖(M∗M)2
k−1‖∞2k

√
.

This bound has an accuracy of ≈k −O(log2 n) bits. Since M∗M is symmetric, the k − 1
repeated squarings of M∗ M only correspond to about k

2
matrix multiplications. Notice

also that it is wise to renormalize matrices before squaring them, so as to avoid overflows
and underflows.
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The approach can be speeded up further by alternating steps of tridiagonalization and
squaring. Indeed, for a symmetric tridiagonal matrix D, the computation of D2 and its
tridiagonalization only take O(n) steps instead of O(n3) for a full matrix product. After
a few k=O(n2) steps of this kind, one obtains a good approximation µ of ‖D‖. One may
complete the algorithm by applying an algorithm with quadratic convergence for finding
the smallest eigenvalues of D − µ. In the lucky case when D has an isolated maximal
eigenvalue, a certification of this method will provide sharp upper bounds for ‖D‖ in
reasonable time.

Even after the above improvements, the computation of sharp upper bounds for ‖M ‖
remains quite more expensive than ordinary matrix multiplication. For this reason, it is
probably wise to avoid ball arithmetic in B(Dn×n,D) except if there are good reasons to
expect that the improved quality is really useful for the application in mind.

Moreover, when using ball arithmetic in B(Dn×n,Dn×n), it is often possible to improve
algorithms in ways to reduce overestimation. When interpreting a complete computation as
a dag, this can be achieved by minimizing the depth of the dag, i.e. by using an algorithm
which is better suited for parallelization. Let us illustrate this idea for the computation of
the k-th power Mk of a matrix M . When using Horner’s method (multiply the identity
matrix k times by M), we typically observe an overestimation of O(k) bits (as for the
example (19)). If we use binary powering, based on the rule

Mk = M ⌊k/2⌋M ⌈k/2⌉, (37)

then the precision loss drops down to O(log k) bits. We will encounter a less obvious
application of the same idea in section 7.5 below.

7. Reliable power series arithmetic

7.1. Ball series versus serial balls

There are two typical applications of power series f ∈ R[[z]] or f ∈ C[[z]] with certified
error bounds. When f occurs as a generating function in a counting problem or random
object generator, then we are interested in the computation of the coefficients fn for
large n, together with reliable error bounds. A natural solution is to systematically work
with computable power series with ball coefficients in Bp[[z]]com. For many applications,
we notice that p is fixed, whereas n≫ p may become very large.

The second typical application is when f ∈C[[z]] is the local expansion of an analytic
function on a disk B(0, ρ) and we wish to evaluate f at a point z with |z |<ρ. The geometric
decrease of |fn zn| implies that we will need only n=O(p) coefficients of the series. In order
to bound the remaining error using Cauchy’s formula, we do not only need bounds for
the individual coefficients fn, but also for the norm ‖f ‖ρ defined in (4). Hence, it is more
natural to work with serial balls in B(Dp[i][[z]]

com,D64), while using the ‖·‖ρ norm. Modulo
a rescaling f(z) 7→ f(ρ z), it will be convenient to enforce ρ=1. In order to compute sharp
upper bounds ⌈⌈f ⌉⌉ for ‖f ‖= ‖f ‖1, it will also be convenient to have an algorithm which
computes bounds ⌈⌈fn;⌉⌉ for the tails

fn; = fn z
n+ fn+1 z

n+1+ ···.

Compared to the computation of the corresponding head

f;n = f0+ ···+ fn−1 z
n−1,

we will show in section 7.4 that the computation of such a tail bound is quite cheap.
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Again the question arises how to represent f;n in a reliable way. We may either store
a global upper bound for the error, so that f;n ∈ B(Dp[i][z],D64), or compute individual
bounds for the errors, so that f;n∈B[i]p[z]. If our aim is to evaluate f at a point z with
|z | ≈ 1, then both representations P ∈ B[i]p[z] and P̂ = B(Pc, ‖Pr‖∞) ∈ B(Dp[i][z], D64)

give rise to evaluations P (z), P̂ (z) ∈ B[i]p with equally precise error bounds. Since the
manipulation of global error bounds is more efficient, the corresponding representation
should therefore be preferred in this case. In the multivariate case, one has the additional
benefit that “small” coefficients fi zi (e.g. |fi|6 ǫp ‖f ‖) can simply be replaced by a global
error B(0, |fi|), thereby increasing the sparsity of f . On the other hand, individual error
bounds admit the advantage that rescaling f(z) 7→ f(λ z) is cheap. If we suddenly find out
that f is actually convergent on a larger disk and want to evaluate f at a point z with
|z |>1, then we will not have to recompute the necessary error bounds for f;n from scratch.

Serial ball representations similar to what has been described above are frequently
used in the area of Taylor models [MB96, MB04] for the validated long term integration
of dynamical systems. In the case of Taylor models, there is an additional twist: given
a dynamical system of dimension d, we not only compute a series expansion with respect
to the time t, but also with respect to small perturbations ε1, ..., εd of the initial conditions.
In particular, we systematically work with power series in several variables. Although such
computations are more expensive, the extra information may be used in order to increase
the sharpness of the computed bounds. A possible alternative is to compute the expansions
in ε1, ..., εd only up to the first order and to use binary splitting for the multiplication of
the resulting Jacobian matrices on the integration path. This approach will be detailed in
section 7.5.

7.2. Reliable multiplication of series and polynomials

In order to study the reliable multiplication of series f and g, let us start with the case
when f , g ∈B(Dp[[z]]

com,D64), using the sup-norm on the unit disk. We may take

h = f g = B(fc gc̃, [‖fc‖ ‖gr‖+ ‖fr‖ (‖gc‖+ ‖gr‖)+ δ]↑),

where hc= fc gc̃ stands for a δ-approximation of fc gc. Since hc is really a numeric algorithm
for the computation of its coefficients, the difficulty resides in the fact that δ has to be
chosen once and for all, in such a way that the bound ‖hc− fc gc‖ will be respected at the
limit. A reasonable choice is δ= ǫp ‖fc‖ ‖gc‖. We next distribute this error over the infinity
of coefficients: picking some α < 1, each coefficient (hc)n is taken to be an [(1− α) αn δ]-
approximation of fc gc. Of course, these computation may require a larger working precision
than p. Nevertheless, f and g are actually convergent on a slightly larger disk B(0, ρ).
Picking α=1/ρ, the required increase of the working precision remains modest.

Let us now turn our attention to the multiplication of two computable series f , g ∈
Bp[[z]]

com with ball coefficients. Except for naive power series multiplication, based on the
formula (f g)n =

∑
i+j=n

fi gj, most other multiplication algorithms (whether relaxed or
not) use polynomial multiplication as a subalgorithm. We are thus left with the problem of
finding an efficient and high quality algorithm for multiplying two polynomials P ,Q∈Bp[z]
of degrees < n. In order to simplify the reading, we will assume that P0, Pn−1, Q0, Qn−1

are all non-zero.
As in the case of matrix multiplication, there are various approaches with different qual-

ities, efficiencies and aptitudes to profit from already available fast polynomial arithmetic
in Dp[z]. Again, the naive O(n2) approach provides almost optimal numerical stability and
qualities for the error bounds. However, this approach is both slow from an asymptotic
point of view and unable to rely on existant multiplication algorithms in Dp[z].
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If the coefficients of P and Q are all of the same order of magnitude, then we may
simply convert P and Q into polynomial balls in B(Dp[z],D64) for the norm ‖·‖∞ and use
the following crude formula for their multiplication:

PQ = B(PcQc
˜ , [n ‖Pc‖∞ ‖Qr‖∞+n ‖Pr‖∞ (‖Qc‖∞+ ‖Qr‖∞)+ δ]↑), (38)

where PcQc
˜ stands for a δ-approximation of PcQc. In other words, we may use any efficient

multiplication algorithm in Dp[z] for the approximation of PcQc, provided that we have a
means to compute a certified bound δ for the error.

In our application where P and Q correspond to ranges of coefficients in the series f
and g, we usually have Pi ≈ P0 ρf

−i and Qi ≈ Q0 ρg
−i for the convergence radii ρf and ρg

of P and Q. In order to use (38), it is therefore important to scale P (z) 7→ P (z / ρ) and
Q(z) 7→ Q(z / ρ) for a suitable ρ. If we are really interested in the evaluation of f g at
points z in a disk B(0, r), then we may directly take ρ= r. In we are rather interested in
the coefficients of f g, then ρ=min (ρf , ρg) is the natural choice. However, since ρf and ρg
are usually unknown, we first have to compute suitable approximations for them, based on
the available coefficients of P and Q. A good heuristic approach is to determine indices
i <n/26 j such that

∣∣∣∣∣∣∣∣
Pk

Pi

∣∣∣∣∣∣∣∣
j−i

6

∣∣∣∣∣∣∣∣
Pj

Pi

∣∣∣∣∣∣∣∣
k−i

,

for all k, and to take

ρf ≈
∣∣∣∣∣∣∣∣
Pi

Pi

∣∣∣∣∣∣∣∣
1

j−i

as the approximation for ρf . Recall that the numerical Newton polygon of NP is the convex
hull of all points (i, log |Pi|−λ)∈R2 with λ> 0. Consider the edge of NP whose projection
on the x-axis contains n/2. Then i and j are precisely the extremities of this projection,
so they can be computed in linear time.

For large precisions n = O(p), the scaling algorithm is both very efficient and almost
of an optimal quality. For small p and large n, there may be some precision loss which
depends on the nature of the smallest singularities of f and g. Nevertheless, for many
singularities, such as algebraic singularities, the precision loss is limited to O(log n) bits.
For a more detailed discussion, we refer to [vdH02, Section 6.2].

In other applications, where P and Q are not obtained from formal power series, it is
usually insufficient to scale using a single factor ρ. This is already the case when multiplying
P =1+ z and Q=1+ δ z for small δ≪ ǫp, since the error bound for (PQ)2= δ exceeds ǫp.
One possible remedy is to “precondition” P and Q according to their numerical Newton
polygons and use the fact that NPQ is close to the Minkowski sum NP +NQ.

More precisely, for each i, let (NP)i> 0 denote the number such that (i, log (NP)i) lies
on one of the edges of NP . Then (NP)i is of the same order of magnitude as Pi, except for
indices for which Pi is small “by accident”. Now consider the preconditioned relative error

νP = max
i

(Pi)r
(NP)i

and similarly for Q. Then

[(PQ)i]r 6 n (νP + νQ+ νP νQ) (NP +NQ)i, (39)

if PQ is computed using infinite precision ball arithmetic. Assuming a numerically stable
multiplication algorithm for the centers, as proposed in [vdH08], and incorporating the
corresponding bound for the additional errors into the right hand side of (39), we thus
obtain an efficient way to compute an upper bound for (PQ)r.
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Notice that the numerical Newton polygon NP has a close relation to the orders of
magnitudes of the roots of P . Even though the error bounds for some “accidentally small”
coefficients (PQ)i may be bad for the above method, the error bounds have a good quality
if we require them to remain valid for small perturbations of the roots of PQ.

7.3. Reliable series division and exponentiation

The algorithms from the previous section can in particular be used for the relaxed multi-
plication of two ball power series f , g∈Bp[[z]]com. In particular, using the implicit equation

g = 1+ z f g, (40)

this yields a way to compute g=(1− z f)−1. Unfortunately, the direct application of this
method leads to massive overestimation. For instance, the computed error bounds for the
inverses of

g =
1

1− 3 z − 2 z2

h =
1

1− 3 z+2 z2

coincide. Indeed, even when using a naive relaxed multiplication, the coefficients of g and h
are computed using the recurrences

gn = 3 gn−1+2 gn−2

hn = 3hn−1− 2hn−2,

but the error bound εn for gn and hn is computed using the same recurrence

εn = 3 εn−1+2 εn−2,

starting with ε0≈ ǫp. For n→∞, it follows that gn∼ λα−n and εn∼ λ ǫpα
−n for some λ,

where α≈0.281 is the smallest root of 1−3 α−2 α2. Hence the error bound for gn is sharp.
On the other hand, hn∼ µ βn for some µ, where β= 1

2
is the smallest root of 1−3 β+2 β2.

Hence, the error bound εn is n log2 (β /α) bits too pessimistic in the case of h. The remedy
is similar to what we did in the case of matrix inversion. We first introduce the series

ϕ =
1

1− z fc
∈ Dp[[z]]com

ψ =
[ϕ (z f − 1)]1;

z
∈ Bp[[z]]

com

and next compute g using

g =
ϕ

1− z ψ
,

where 1− z ψ is inverted using the formula (40). This approach has the advantage of being
compatible with relaxed power series expansion and it yields high quality error bounds.

Another typical operation on power series is exponentiation. Using relaxed multipli-
cation, we may compute the exponential g of an infinitesimal power series f ∈ zBp[[z]]

com

using the implicit equation

g = 1+

∫
f ′ g, (41)

Joris van der Hoeven 29



where
∫
stands for “distinguished integration” in the sense that (

∫
h)0=0 for all h. Again,

one might fear that this method leads to massive overestimation. As a matter of fact, it
usually does not. Indeed, assume for simplicity that fr = 0, so that f ∈ Dp[[z]]. Recall
that |f | denotes the power series with |f |n = |fn|. Roughly speaking, the error bound
for gn, when computed using the formula (41) will be the coefficient εn of the power series
ε= exp(ǫp |f |). Since |f | has the same radius of convergence as f , it directly follows that
the bit precision loss is sublinear o(n). Actually, the dominant singularity of |f | often
has the same nature as the dominant singularity of f . In that case, the computed error
bounds usually become very sharp. The observation generalizes to the resolution of linear
differential equations, by taking a square matrix of power series for f .

7.4. Automatic tail bounds

In the previous sections, we have seen various reliable algorithms for the computation of
the expansion f;n of a power series f ∈C[[z]] up till a given order n. Such expansions are
either regarded as ball polynomials in B[i]p[z] or as polynomial balls in B(Dp[i][z],D64).
Assuming that f is convergent on the closed unit disk B(0, 1), it remains to be shown how
to compute tail bounds ⌈⌈fn;⌉⌉. We will follow [vdH07b]. Given a ball polynomial P , then
we notice that reasonably sharp upper and lower bounds ⌈⌈P ⌉⌉ and ⌊⌊P ⌋⌋ for P can be
obtained efficiently by evaluating P at O(degP ) primitive roots of unity using fast Fourier
transforms [vdH07b, Section 6.2].

We will assume that the series f is either an explicit series, the result of an operation
on other power series or the solution of an implicit equation. Polynomials are the most
important examples of explicit series. Assuming that f is a polynomial of degree <d, we
may simply take

⌈⌈fn;⌉⌉ =

{
⌈⌈z−n fn;d⌉⌉ if n<d
0 otherwise

, (42)

where

fn;d = fn z
n+ ···+ fd−1 z

d−1.

For simple operations on power series, we may use the following bounds:

⌈⌈(f + g);n⌉⌉ = ⌈⌈f;n⌉⌉+ ⌈⌈g;n⌉⌉ (43)

⌈⌈(f − g);n⌉⌉ = ⌈⌈f;n⌉⌉+ ⌈⌈g;n⌉⌉ (44)

⌈⌈(f g);n⌉⌉ = ⌈⌈fn;⌉⌉ (⌈⌈g;n⌉⌉+ ⌈⌈gn;⌉⌉)+ ⌈⌈f;n⌉⌉ ⌈⌈gn;⌉⌉+ ⌈⌈(f;n g;n)n;⌉⌉ (45)

⌈⌈(
∫
f)n;⌉⌉ =

1

n+1
⌈⌈fn;⌉⌉, (46)

where

⌈⌈(f;n g;n)n;⌉⌉ 6
∑

k=0

n−1

|fk|
(
∑

l=n−k

n−1

|gl|
)

can be computed in time O(n). Due to possible overestimation, division has to be treated
with care. Given an infinitesimal power series ε and

f =
1

1− ε
,

so that

fn; =
1+ ε f;n− f;n

1− ε
,

30 Ball arithmetic



we take

⌈⌈fn;⌉⌉ =
⌈⌈(ε f;n)n;⌉⌉

⌊⌊1− ε;n+B(0, ⌈⌈εn;⌉⌉)⌋⌋
, (47)

where ⌈⌈(ε f;n)n;⌉⌉ is computed using (45).
Let Φ(f) be an expression which is constructed from f and polynomials, using the ring

operations and distinguished integration (we exclude division in order to keep the discus-
sion simple). Assume that each coefficient Φ(f)n only depends on the previous coefficients
f0, ..., fn−1 of f and not on fn, fn−1, .... Then the sequence 0,Φ(0),Φ2(0), ... tends to the
unique solution f of the implicit equation

f = Φ(f), (48)

Moreover, Φk(0)n= fn for any k >n. In (40) and (41), we have already seen two examples
of implicit equations of this kind.

The following technique may be used for the computation of tail bounds ⌈⌈fn;⌉⌉. Given
c∈D> and assuming that ⌈⌈fn;⌉⌉ 6 c, we may use the rules (42–47) in order to compute
a “conditional tail bound” ⌈⌈Φ(f)n;|c⌉⌉ for ‖Φ(f)n;‖. Mathematically speaking, this bound
has the property that for any power series g with g;n = f;n and ‖gn;‖ 6 c, we have

‖Φ(g)n;‖6 ⌈⌈Φ(g)n;|c⌉⌉. If ⌈⌈Φ(g)n;|c⌉⌉6 c, then it follows that ‖[Φ(k)(f;n)]n;‖6 c for all k.
Given any disk B(0, ρ) with ρ < 1, it follows that ‖Φ(k)(f;n) − f ‖ρ 6 2 c ρk / (1 − ρ) for
any k > n. Indeed, setting δ = Φ(k)(f;n) − f , we get from ‖δ‖ 6 2 c and δ = O(zk) that
‖δ‖ρ 6 |δk | ρk + |δk+1| ρk+1 + ··· 6 2 c ρk / (1 − ρ). In other words, Φ(k)(f;n) uniformly
converges to f on B(0, ρ). Therefore, ‖fn;‖ρ6 c for any ρ < 1. Modulo application of the
method on a disk of radius slightly larger than one and scaling back, this yields a way to
compute a certified tail bound ⌈⌈fn;⌉⌉.

Let us now consider the mapping ϕ: c 7→ ⌈⌈Φ(f)n;|c⌉⌉ and assume that Φ involves no
divisions. When computing ⌈⌈Φ(f)n;|c⌉⌉ using infinite precision and the rules (42–45),
we notice that ϕ is a real analytic function, whose power series expansion contains only
positive coefficients. Finding the smallest c with ϕ(c) 6 c thus reduces to finding the
smallest fixed point cfix of ϕ, if such a fixed point exists. We may use the secant method:

c0 := 0

c1 := ϕ(c0)

ck+2 := ck+
ϕ(ck)− ck

ck+1− ϕ(ck+1)+ ϕ(ck)− ck
(ck+1− ck)

If ck+1<ck for some k or if k exceeds a given threshold K, then the method fails and we
set ⌈⌈fn;⌉⌉=+∞. Otherwise, ck converges quadratically to cfix. As soon as |ck+1/ck−1|<ε,
for some given ε> 0, we check whether ϕ(c̃fix)6 c̃fix for c̃fix=2 ck+1− ck, in which case we
stop. The resulting c̃fix is an approximation of cfix with relative accuracy ε> 0.

Assuming that Ψ(f);n has been computed for every subexpression of Φ, we notice that
the computation of ⌈⌈Φ(f)n;|c⌉⌉ only requires O(n s) floating point operations, where s is
the size of Φ as an expression. More generally, the evaluation of ⌈⌈Φ(f)n;|ci⌉⌉ for k different
hypotheses c1, ..., ck only requires O(n s k) operations, since the heads Ψ(f);n do not need
to be recomputed. Our algorithm for the computation of c̃fix therefore requires at most
O(n sK) floating point operations. Taking K = o(R(n)/n), it follows that the cost of the
tail bound computation remains negligible with respect to the series expansion itself.

The approach generalizes to the case when f is a vector or matrix of power series,
modulo a more involved method for the fixed point computation [vdH07b, Section 6.3].
If f is indeed convergent on B(0,1), then it can also be shown that ϕ indeed admits a fixed
point if n is sufficiently large.
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7.5. Long term integration of dynamical systems

Let us now consider a dynamical system

f = f(0)+
∫
Φ(f), (49)

where f is a vector of d unknown complex power series, f(0)∈B[i]p
d, and Φ an expression

built up from the entries of f and polynomials in Dp[i][z] using the ring operations. Given
t∈D[i] \ {0}, denote by fz×t the scaled power series f(t z) and by fz+t the shifted power
series f(t+ z), assuming that f converges at t. Also denote by Φz×t and Φz+t the expres-
sions which are obtained when replacing each polynomial P in Φ by Pz×t resp. Pz+t. Then
fz×t and fz+t satisfy

fz×t = f(0)+ t
∫
Φz×t(fz×t) (50)

fz+t = f(t)+
∫
Φz+t(fz+t) (51)

Since (49) is a particular case of an implicit equation of the form (48), we have an algorithm
for the computation of tail bounds ⌈⌈fn;⌉⌉ ∈ (D64

> ∪ {∞})d for f on B(0, 1). Modulo
rescaling (50), we may also compute tail bounds ⌈⌈fn;⌉⌉ρ on more general disks B(0, ρ).

Assume that we want to integrate (49) along the real axis, as far as possible, and
performing all computations with an approximate precision of p bits. Our first task is to
find a suitable initial step size t and evaluate f at t. Since we require a relative precision
of approximately p bits, we roughly want to take t ≈ ρf / 2, where ρf is the radius of
convergence of f , and evaluate the power series f up to order n≈ p. We thus start by the
numerical computation of fn; and the estimation ρ̃f of ρf, based on the numerical Newton
polygon of fn;. Setting t := ρ̃f /2, we next compute a tail bound ⌈⌈fn;⌉⌉t. This bound is
considered to be of an acceptable quality if

⌈⌈fn;⌉⌉t 6 ǫp ⌈⌈f;n⌉⌉t.

In the contrary case, we keep setting t := t/2 and recomputing ⌈⌈fn;⌉⌉t, until we find a bound
of acceptable quality. It can be shown [vdH07b] that this process ultimately terminates,
when p is sufficiently large. We thus obtain an appropriate initial step size t which allows
us to compute a δ-approximation of f(t) with δ=2 ǫp ⌈⌈f;n⌉⌉t+↑ (f;n(t))r.

In principle, we may now perform the translation z 7→ t + z and repeat the analytic
continuation process using the equation (51). Unfortunately, this approach leads to massive
overestimation. Indeed, if the initial condition f(0) is given with relative precision η, then
the relative precisions of the computed coefficients fk are typically a non trivial factor
times larger than η, as well as the next “initial condition” f(t) at t. Usually, we therefore
lose O(1) bits of precision at every step.

One remedy is the following. Let ∆=∆0,t be the analytic continuation operator which
takes an initial condition c∈Cd on input and returns the evaluation f(t)∈Cd of the unique
solution to (49) with f(0)= c. Now instead of computing f;n using a ball initial condition
f(0)∈B[i]p

d, we rather use its center f(0)c as our initial condition and compute ∆(f(0)c)
using ball arithmetic. In order to obtain a reliable error bound for f(t), we also compute
the Jacobian J∆ of ∆ at f(0)c using ball arithmetic, and take

f(t) = ∆(f(0)c)+B(0, [J∆(f(0)c) f(0)r]↑).

The Jacobian can either be computed using the technique of automatic differentiation [BS83]
or using series with coefficients in a jet space of order one.
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With this approach ∆(f(0)c) is computed with an almost optimal p-bit accuracy,
and J∆(f(0)c) with an accuracy which is slightly worse than the accuracy of the initial
condition. In the lucky case when J∆(f(0)c) is almost diagonal, the accuracy of f(t)
will therefore be approximately the same as the accuracy of f(0). However, if J∆(f(0)c)
is not diagonal, such as in (19), then the multiplication J∆(f(0)c) f(0)r may lead to
overestimation. This case may already occur for simple linear differential equations such as(

f

g

)
=

(
1
0

)
+

∫ (
0 −1
1 0

)(
f

g

)
(52)

and the risk is again that we lose O(1) bits of precision at every step.
Let us describe a method for limiting the harm of this manifestation of the wrapping

effect. Consider the analytic continuations of f at successive points 0 = t0 < t1 < ··· < tk
and denote

Ji = J∆ti−1,ti
(f(ti−1)c), i=1, ..., k.

Instead of computing the error at ti due to perturbation of the initial condition f(0) using
the formula

[f(t)r]
per(0) = Jk (Jk−1 (...J1 f(0)r ...)),

we may rather use the formula

[f(t)r]
per(0) = (Jk Jk−1 ···J1) f(0)r,

where matrix chain products are computed using a variant of binary powering (37):

Jj ···Ji = (Jj ··· J⌊(i+j)/2⌋+1) (J⌊(i+j)/2⌋ ··· Ji).
In order to be complete, we also have to take into account the additional error δi, which
occurs during the computation of ∆ti−1,ti(f(ti−1)c). Setting δ0= f(0)r, we thus take

f(ti)r = δi+Ji δi−1+ ···+(Jk ··· J1) δ0. (53)

When using this algorithm, at least in the case of simple systems such as (52), the precision
loss at step k will be limited to O(log k) bits. Notice that we benefit from the fact that
the Jacobian matrices remain accurate as long as the initial conditions remain accurate.

Although we have reduced the wrapping effect, the asymptotic complexity of the above
algorithm is cubic or at least quadratic in k when evaluating (53) using a binary splitting
version of Horner’s method. Let us now describe the final method which requires only
O(k log k) matrix multiplications up till step k. For 06 i < j, we define

δi,j = δj−1+Jj−1 δj−2+ ···+(Jj−1 ··· Ji+1) δi.

Ji,j = Jj−1 ···Ji,
where J0=1. At stage i=2e1+ ···+2el with e1> ···>el, we assume that

δ[j] := δ[i;j] := δ2e1+···+2
ej−1,2e1+···+2

ej

J[j] := J[i;j] := J2e1+···+2
ej−1,2e1+···+2

ej

are stored in memory for all 16 j6 l. From these values, we may compute

f(ti−1)r = δ[l]+ J[l] (δ[l−1]+ ···J[3] (δ[2]+ J[2] δ[1])···)
using only O(l) = O(log i) matrix multiplications. Now assume that we go to the next
stage i+1. If m is maximal such that 2m divides i+1, then i+1=2e1+ ···+2el−m+2m.
Consequently, δ[i+1;j]= δ[i;j] and J[i+1;j]=J[i;j] for j < l ′ := l−m+1 and

δ[i+1;l′] = δi+ Ji (δ[i;l]+ ···J[i;l ′+2] (δ[i;l′+1]+J[i;l′+1] δ[i;l′])···)
J[i+1;l′] = Ji J[i;l] ··· J[i;l′].
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Hence, the updated lists δ[i+1;j] and J[i+1;j] can be computed using O(m)=O(log i) matrix
multiplications. Furthermore, we only need to store O(log i) auxiliary matrices at step i.

7.6. Discussion

There is a vast literature on validated integration of dynamical systems and reduction of the
wrapping effect [Moo65, Moo66, Nic85, Loh88, GS88, Neu93, K98, Loh01, Neu02, MB04].
We refer to [Loh01] for a nice review. Let us briefly discuss the different existing approaches.

The wrapping effect was noticed in the early days of interval arithmetic [Moo65] and
local coordinate transformations were proposed as a remedy. The idea is to work as much
as possible with respect to coordinates in which all errors are parallel to axes. Hence,
instead of considering blocks x∈Bp

d, we rather work with parallelepipeds x= c+TB(0, r),
with c∈Dp

d, T ∈Dp
d×d and r∈Dp

d. A natural choice for T after k steps is T =Jk ··· J1, but
more elaborate choices may be preferred [Loh88]. Other geometric shapes for the enclosures
have been advanced in the literature, such as ellipsoids [Neu93], which are also invariant
under linear transformations, and zonotopes [K98]. However, as long as we integrate (49)
using a straightforward iterative method, and even if we achieve a small average loss ε≪1
of the bit precision at a single step, the precision loss after k steps will be of the form k ε.

The idea of using dichotomic algorithms in order to reduce the wrapping effect was first
described in the case of linear differential equations [GS88]. The previous section shows
how to adapt that technique to non linear equations. We notice that the method may very
well be combined with other geometric shapes for the enclosures: this will help to reduce
the precision loss to (log k) ε instead of k ε in the above discussion.

Notice that there are two common misunderstandings about the dichotomic method.
Contrary to what we have shown above (see also [GS88] in the linear case), it is sometimes
believed that we need to keep all matrices J1, ..., Jk in memory and that we have to reeval-
uate products Jj ··· Ji over and over again. Secondly, one should not confuse elimination
and reduction of the wrapping effect: if M is the 2×2 rotation matrix by a 30◦ angle, then
none of its repeated squarings M2l will be the identity matrix, so every squaring (M2l)2

will involve a wrapping. Even though we have not eliminated the wrapping effect, we did
achieve to reduce the number of wrappings to l instead of 2l.

Taylor models are another approach for the validated long term integration of dynam-
ical systems [EKW84, EMOK91, MB96, MB04]. The idea is to rely on higher k-th order
expansions of the continuation operator ∆. This allows for real algebraic enclosures which
are determined by polynomials of degree k. Such enclosures are a priori more precise for
non linear problems. However, the method requires us to work in order k jet spaces in d
variables; the mere storage of such a jet involves

(

d+ k

d

)

coefficients. From a theoretical
point of view it is also not established that Taylor methods eliminate the wrapping effect by
themselves. Nevertheless, Taylor models can be combined with any of the above methods
and the non linear enclosures seem to be more adapted in certain cases. For a detailed
critical analysis, we refer to [Neu02].

Let us finally investigate how sharp good error bounds actually may be. If ρf(0) =
‖f(0)r‖/‖f(0)‖c denotes the relative precision of the initial condition at the start and
ρf(t)=‖f(t)r‖/‖f(t)‖c the relative precision of the final result, then it is classical that

ρf(t) > κ(J∆(f(0))) ρf(0),

κ(J∆(f(0))) = ‖J∆(f(0))‖ ‖J∆(f(0))−1‖,
where κ(J∆(f(0))) is the condition number of the matrix J∆(f(0)). We propose to define
the condition number κ(Φ, f(0), 0, t) for the integration problem (49) on [0, t] by

K= κ(Φ, f(0), 0, t) = max
06t16t26t

κ(J∆t1,t2
(f(t1))).
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Indeed, without using any particular mathematical properties of Φ or f , we somehow have
to go through the whole interval [0, t]. Of course, it may happen that Φ is indeed special.
For instance, if Φ=Mf for a matrix M with a special triangular or diagonal form, then
special arguments may be used to improve error bounds and more dedicated condition
numbers will have to be introduced.

However, in general, we suspect that a precision loss of logK cannot be avoided. If K
gets large, the only real way to achieve long term stability is to take p > 2 log K (say),
whence the interest of efficient multiple precision and high order ball algorithms. It seems
to us that the parallelepiped method should manage to keep the precision loss bounded
by logK, for p > 2 logK and ε≈ ǫp. The algorithm from section 7.5 (without coordinate
transformations) only achieves a log k logK in the worst case, although a logK bound is
probably obtained in many cases of interest. We plan to carry out a more detailed analysis
once we will have finished a first efficient multiple precision implementation.
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