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Abstract

In this paper, we present a characteristic set method for mixed differential and difference poly-
nomial systems. We introduce the concepts of coherent, regular, proper irreducible, and strongly
irreducible ascending chains and study their properties. We give an algorithm which can be used
to decompose the zero set for a finitely generated differential and difference polynomial set into
the union of the zero sets of regular and consistent ascending chains. As a consequence, we solve
the perfect ideal membership problem for differential and difference polynomials.
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1. Introduction

The characteristic set method is a tool for studying systems of polynomial or algebraic
differential equations (11; 13). Recent results on the characteristic set method, which are
used in this paper, can be found in (1; 2; 3; 10; 20; 22). The idea of the method is
to privilege systems which have been put in a special “triangular form”, also called an
ascending chain or simply a chain. The zero-set of any finitely generated polynomial or
differentially algebraic system of equations may be decomposed into the union of the
zero-sets of chains. One can also use the method to solve a system of equations, to
determine the dimension, the degree, and the order of a finitely generated system of
polynomials or differential polynomials, to solve the radical ideal membership problem,
to prove the Notherian property of differential equation systems, to prove theorems from
elementary and differential geometries, and to solve problems from engineering fields
such as computer vision, computer aided design, computer graphics, and robotics. For
surveys, please consult (17; 21).

The notion of characteristic set for difference polynomial systems was proposed by
Ritt and Raudenbush (14; 15). The general theory of difference algebra was established
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by Cohn (4). Due to differences between the differential case and the difference case,
algorithms and properties for difference chains were studied only very recently (7; 9).

A natural problem is to consider systems of mixed differential and difference polyno-
mials, called DD-polynomials. In (18), it was outlined how to generalize the characteristic
set method to this setting. However, the author overlooked an additional difficulty in the
proof of Rosenfeld’s Lemma. Although all theoretical properties of differential algebra
(dimension polynomials, finite generation of ideals, etc.; see also (12)) do generalize to
the DD-setting, the algorithmic counterparts have to be redeveloped.

In this paper, we will present a characteristic set method for ordinary mixed DD-
polynomial systems. The following results are established in this paper.

(1) Based on the concept of characteristic sets, we prove that DD-polynomial systems
are Noetherian in the sense that for an infinite set P of DD-polynomials, there
exists a finite set Q of DD-polynomials such that P and Q have the same solutions.

(2) We introduce the concepts of coherent and regular chains and prove that a chain
is coherent and regular if and only if it is the characteristic set for its saturation
ideal. This result gives a simple method to determine whether a DD-polynomial
belongs to the saturation ideal of a chain.

(3) We define proper irreducible chains and prove that a proper irreducible chain is
regular and its saturation ideal is reflexive. This gives a constructive criterion for a
chain to be regular. We further introduce the concept of strongly irreducible chains
and prove that an ideal is prime and reflexive if and only if its characteristic set is
strongly irreducible and coherent.

(4) Based on the above results, we propose an algorithm which can be used to decom-
pose the zero set for a finitely generated DD-polynomial set into the union of zero
sets of proper irreducible, and thus regular and reflexive, chains.

(5) We prove that a coherent and proper irreducible chain always has zeros. As a
consequence, we give an algorithm to solve the perfect ideal membership problem
for DD-polynomials.

As a consequence, we could say that a major portion of the existing results on character-
istic set methods for algebraic and differential polynomial systems are now been extended
to the differential-difference case.

Among the five results mentioned above, the Noetherian property is different from that
in (12), because our assumption on the differential-difference structure is more general.
The other results are the main contributions of this paper.

Comparing to the factorization free decomposition algorithms for differential polyno-
mial systems (2; 3; 10), our work has two major distinctions. First, Rosenfeld’s Lemma
is not valid in this case and we cannot check properties of a coherent chain from its
algebraic counterpart. Secondly, in the differential case, one only needs to consider the
initial and separant of a differential polynomial when constructing the saturation ideal;
in our case, we need to consider all possible transforms of the initial of a difference poly-
nomial. This makes it impossible to check whether a chain is regular as directly as in
the differential case. As a partial remedy, we introduce the concept of proper irreducible
chains. Another missing result is that we cannot decompose the perfect ideal generated
by a set of DD-polynomials into the intersection of prime ideals. In order to do that,
we need to know how to check whether a chain is strongly irreducible which is an open
problem.
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Comparing to the decomposition algorithms for difference polynomial systems (7; 9),
the major difference lies in the results on proper irreducible chains. The definition for
a proper irreducible chain in (7) cannot be extended to the differential-difference case
directly. In order to give an appropriate definition, we first work out a new definition
for difference polynomials (8) and then extend this definition to the mixed case. The
proofs for the facts that a proper irreducible chain is regular (Theorem 5.8) and the
validity of the algorithm to check whether a chain is proper irreducible (Lemma 6.3) are
essentially different from those in (7; 8). In our definition of proper irreducible chains
in the differential-difference case, we need to check the membership for the saturation
ideal of a differential chain and we generally do not know how to compute a basis for
this ideal. In order to avoid this difficult question, new techniques are developed. Perfect
ideal membership problem is solved for the first time in the differential-difference case.

The paper is organized as follows. In Section 2, we introduce notations. In Section 3,
we prove the Noetherian property for DD-polynomial systems. In Section 4, we prove
the properties for regular chains. In Section 5, we prove the properties for proper and
strongly irreducible chains. In Section 6, we give the zero decomposition algorithm.

2. DD-ring and DD-polynomials

2.1. DD-operators

Let K be a computable field containing the field Q(x) of rational functions in an
indeterminate x. A differential operator ∂ defined on K is a map ∂ : K → K satisfying

∂(f + g) = ∂(f) + ∂(g)

∂(fg) = ∂(f) · g + ∂(g) · f

for any f, g ∈ K. A difference operator δ defined on K is a map δ : K → K satisfying

δ(f + g) = δ(f) + δ(g)

δ(fg) = δ(f)δ(g)

δ(f) = 0 ⇐⇒ f = 0

for any f, g ∈ K. We also call δ(f) the translation of f . Iterated translations δk(f) are
called transforms. If all elements of K are functions in x, then the ordinary differentiation
w.r.t. x is a differential operator. The shift operator δ(x) = x + 1 and the q-difference
operator δ(x) = qx are examples of difference operators.

A key fact to deal with the hybrid differential-difference case is to make an assumption
on how the differential and the difference operators interact. In this paper, we assume
the existence of a non-zero element h ∈ K, such that the operators δ and ∂ commute
according to the following rule:

∂δ = h · δ∂. (1)
It is easy to check that for a positive integer s, we have

∂δs = hsδ
s
∂,

hs =
∏s−1

i=0 δ
i(h).

(2)
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A product of the form
k∏

i=0

δi(h)ni is called an h-product. More generally, we have

∂
rδs = Λr,r(hs)δs

∂
r + · · ·+ Λr,1(hs)δs

∂, (3)

where the Λr,i are differential polynomials which are recursively determined by

Λ0,0(F ) = 1

Λr,i(F ) = FΛr−1,i−1(F ) + Λ′r−1,i(F )

In particular, Λr,r(F ) = F r for all r.

Example 2.1. If h = 1, then (1) implies that the two operators are commutative, which
is the case assumed in (12). A typical example is the shift operator S with (Sf)(x) =
f(x+1). More generally, the commutation rule (1) is motivated by treating the difference
operator as the right-composition with a non-trivial function. Indeed, if

δ(f(x)) = f(φ(x))

for any function f(x) and a fixed function φ(x), then

∂δ(f(x)) = ∂(f(φ(x))) =
∂φ(x)
∂x

δ

(
∂f(x)
∂x

)
=
∂φ(x)
∂x

δ∂(f(x)),

whence (1) is satisfied for h = ∂φ(x)/∂x. In particular, the q-difference operator Q :
f(x) 7→ f(qx) fits in our setting, even though Q does not commute with ∂.

A field K with two operators δ and ∂ satisfying (1) is called a DD-field. A DD-field
K is called reflexive if for any a ∈ K there exists a b ∈ K such that δb = a. We denote
b = δ−1a and call b the inversion of a. In this paper, we assume that K is a reflexive
DD-field.

We denote Ω0 = {1},Ω1 = {δ, ∂}. For each r ∈ N, we define Ωr+1 = Ωr ∪ δΩr ∪ ∂Ωr

inductively. These sets are subsets of Ω, with Ω =
⋃

r∈N Ωr. It is clear that

Ω = {δn0∂
m0 · · · δnt ∂

mt}

where ni and mi are non-negative integers and where we understand that δ0 = ∂
0 = IdK.

We denote by K[Ω] the ring of DD-operators, which is the free associative (and generally
non-commutative) algebra generated by K, δ and ∂, subject to the commutation rule (1).

Remark 2.2. Each element Φ ∈ K[Ω] can also be regarded as an operator ΦK on K.
We will denote the set of such operators by K[Ω]K. In general, the mapping Φ 7→ ΦK
is not injective. For instance, if δK = Id and ∂K = 0, then K[Ω]K ∼= K. Similarly, if
K = C(x), ∂K = d/dx and δK : f(x) 7→ f(qx) with q = exp(2πi/n), then K[Ω]K ∼=
K[∂]⊕· · ·⊕K[∂]δn−1. We have not pursued so far the question of finding more interesting
examples of this kind.

Given ω ∈ Ω, we define its total order to be the smallest r = ord(ω) with ω ∈ Ωr. Let

Θ = {δα
∂
β |α, β ∈ N},

Θ<[i,j] = {δk
∂
l|k ≤ i, l ≤ j, k + l < i+ j}.

4



Notice that Θ is a proper subset of Ω. A shuffle of a word with letters in {δ, ∂} is obtained
by repeated transposition of these letters.

Lemma 2.3. For any shuffle ω = δn1∂
m1 · · · δnt ∂

mt ∈ Ω of δn
∂
m, we have

ω = hωδ
m

∂
n +Rω,

where n = n1 + · · ·+ nt, m = m1 + · · ·+mt, hω is an h-product and Rω ∈ K[Θ<[n,m]].

Proof: We prove the Lemma by induction over n +m. If n +m = 0, then we may take
hω = 1 and Rω = 0, so assume n +m > 1. Assume first that ω = δω̂. By the induction
hypothesis, we have

ω̂ = hω̂δ
m−1

∂
n +Rω̂,

where hω̂ is an h-product and Rω̂ ∈ K[Θ<[n−1,m]]. It follows that

ω = (δhω̂)δm
∂
n + δRω̂,

where hω = δhω̂ is an h-product and, using the induction hypothesis, Rω = δRω̂ ∈
K[Θ<[n,m]]. Similarly, if ω = ∂ω̂, then we may write

ω̂ = hω̂δ
m

∂
n−1 +Rω̂

and application of ∂ yields

ω = hω̂hmδ
m

∂
n + h′ω̂δ

m
∂
n−1 + ∂Rω̂,

where hω = hω̂hm is an h-product and Rω = h′ω̂δ
m

∂
n−1 + ∂Rω̂ ∈ K[Θ<[n,m]]. 2

Proposition 2.4. We have K[Ω] = K[Θ] and Θ is a basis of the K-vector space K[Ω].

Proof: In view of the above Lemma, we have Ω ⊆ K[Θ], whence K[Ω] ⊆ K[Θ], by linearity.
In order to show that Θ is a free family, let us incarnate Θ as K-linearly independent
operators on a DD-superfield K̂ ⊇ K (see also Remark 2.2). This can be done by taking
K̂ to be the fraction field of K〈Y 〉 of the ring of DD-polynomials to be constructed
below. By construction, the elements in ΘY are algebraically independent in this field,
so Φ ∈ Θ 7→ ΦK̂ must be injective. This is only possible if the elements in Θ are K-linearly
independent. 2

Remark 2.5. Using the commutation rule (1) the other way around, one may also
rewrite each ω ∈ δN

∂
N as a K-linear combination of elements in Ξ = {∂

iδj |i, j ∈ N}. In a
similar way as above, it can be shown that K[Ω] = K[Ξ] and that Ξ is a basis of K[Ω].

2.2. DD-polynomials

Let Y = {y1, . . . , yn} be a finite number of indeterminates (which may intuitively be
considered as functions of x). We denote

ΩY = {ωyi|ω ∈ Ω, yi ∈ Y}
ΘY = {δd

∂
syi|d, s ∈ N, yi ∈ Y}.

For convenience, we also denote

yi,d,s = δd
∂
s(yi).
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The set
R = K{Y} = K[ΩY]

is called the DD-ring of DD-polynomials over K in Y. The difference operator δ on R is
the unique ring homomorphism which extends the difference operator on K and sends
ωyi to (δω)yi for each ω ∈ Θ and i ∈ {1, . . . , n}. The derivation ∂ on R is the unique
derivation which extends the derivation on K and sends δd

∂
syi to hdδ

d
∂
syi for all d, s

and i. By construction, we have

Proposition 2.6. K{Y} = K[ΘY] and ΘY is a transcendence basis of K{Y } over K.

Remark 2.7. The Proposition implies that we may view DD-polynomials in K{Y} either
as DD-polynomials in a finite number of variables Y or as ordinary polynomials in an
infinite number of variables ΘY. In addition, we may regard them as pure differential
polynomials in an infinite number of variables δNY. In this case, yc,s,0 are considered as
differential indeterminates and yc,s,t as the t-th derivatives of yc,s,0.

A DD-ideal, or simply an ideal, is a subset I of R, which is an algebraic ideal in R
and is closed under ∂ and δ. An ideal I is called reflexive if δP ∈ I implies P ∈ I, for
all P ∈ R. Let P be a set of elements of R. The ideal generated by P is denoted by [P].
Obviously, [P] is the set of all linear combinations of transforms of successive derivatives
of the DD-polynomials in P. Given P ∈ R, let

∆P = {P i0 · · · (δrP )ir |i0, . . . , ir ∈ N}.

An ideal I is called perfect if ∆P ∩ I 6= ∅ implies P ∈ I for all P ∈ R. The perfect ideal
generated by P is denoted as {P}. A perfect ideal is always reflexive. An ideal I is called
a prime ideal if for DD-polynomials P and Q, PQ ∈ I implies P ∈ I or Q ∈ I.

For a set of DD-polynomials P, we write (P) for the ordinary or algebraic ideal gener-
ated by P, and [P]∂ for the differential ideal generated by P.

2.3. Admissible orderings

Consider a total ordering ≤ on ΘY. For a DD-polynomial P ∈ K[ΘY ], we define VP

to be the set of all elements of ΘY occurring in P . If P is a subset of K[ΘY ], then we
set VP =

⋃
P∈P VP . If VP 6= ∅, then VP has a maximal element for ≤, which is denoted

by vP or v(P ). We call it the leader of P .
The ordering ≤ is said to be admissible if

A1 : v(θy) < v(δθy), for any θy ∈ ΘY ;

v(θy) < v(∂θy), for any θy ∈ ΘY ;

A2 : v(δθy) ≤ v(δθ′y′), for any θy ≤ θ′y′ in ΘY ;

v(∂θy) ≤ v(∂θ′y′), for any θy ≤ θ′y′ in ΘY.

Admissible orderings exist: one example is the ordering ≤l defined by:

δd1∂
s1yc1 ≤l δ

d2∂
s2yc2 ⇐⇒ (c1, d1, s1) ≤lex (c2, d2, s2),

where ≤lex stands for the pure lexicographical ordering. Another popular ordering is the
total order based ordering:

δd1∂
s1yi <o δ

d2∂
s2yj ⇐⇒ (d1 + s1, d1, s1, i) <lex (d2 + s2, d2, s2, j).
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In this paper, we will always assume that ≤ is admissible. We will also assume that
y1 < · · · < yn, which can always be made to hold after a permutation of indexes.

An extended variable is an element of ΘY raised to some strictly positive power. The
set of such variables will be denoted by (ΘY)∗, and we use letters with star exponents
v∗ to denote extended variables. We extend the admissible ordering ≤ on variables to
extended variables by vd ≤ (v′)e, if and only if either v < v′, or v = v′ and d ≤ e. The
extended leader of a non ground DD-polynomial P is denoted by v∗P = v

deg(P,vP )
P . The

admissible ordering ≤ can be extended to DD-polynomials. For DD-polynomials P and
Q, we will write P ≤ Q if v∗P ≤ v∗Q. If v∗P = v∗Q, then we will write P ∼ Q.

Lemma 2.8. Let Pi ∈ K[ΘY]. Then any descending sequence P1 > P2 > P3 > · · · is
finite.

Proof: The sequence (Pi)i∈N induces a sequence (ai, bi, ci, di)i∈N with v∗(Pi) = (δbi ∂
ciyai)

di .
Similarly, the ordering ≤ on (ΘY)∗ induces a total ordering ≤′ on {1, . . . , n}×N3, which
extends the canonical partial product ordering. Now for any ai, the sequence (bi, ci, di)i∈N
is strictly decreasing for ≤′, whence its finiteness, by Dickson’s Lemma. 2

2.4. Pseudo-remainders

We consider the DD-ring K[ΘY], where Y = {y1, . . . , yn}. Let Yc = {y1, . . . , yc}. For
a DD-polynomial P ∈ K[ΘY], we define the class of P to be the smallest c = cls(P ) such
that P ∈ K[ΘYc]. If P ∈ K, then we set cls(P ) = 0. If the leader of P is θyc = yc,i,j ,
then we define ord(P ) = i+ j, ordδ(P, yc) = i, ord∂(P, yc) = j.

If the leader of P ∈ R \K is yc,d,s, then P has the following canonical representation:

P = Pty
t
c,d,s + Pt−1y

t−1
c,d,s + · · ·+ P0, (4)

where vPi
< vP (i = 0, . . . , t). IP = Pt is called the initial of P . ldeg(P ) = t is called the

leading degree of P . Applying ∂ and δ to P , we have

Lemma 2.9. Let P be of form (4). Then

δP = (δPt)yt
c,d+1,s + (δPt−1)yt−1

c,d+1,s + · · ·+ δP0

∂P = SP yc,d,s+1 +R,

where

SP =
d−1∏
i=0

δi(h)
∂P

∂yc,d,s

is called the separant of P and R is a DD-polynomial with lower leading variable than
yc,d,s+1.

Proof: The first equation is obvious. The second one is a consequence of (2). 2

If the leader of P ∈ R\K is yc,d,s, then we say that Q is reduced w.r.t. P if and only if
(1) yc,d+k,s+l does not occur in Q for k ≥ 0, l > 0 and (2) deg(Q, yc,d+k,s) < deg(P, yc,d,s)
for k ≥ 0. If P ∈ K \ {0}, then 0 is the only DD-polynomial which is reduced w.r.t. P .

We define a partial ordering � on Θ by

θ = δα
∂
β � δα′

∂
β′ = θ′ ⇐⇒ α ≤ α′ ∧ β ≤ β′.
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Algorithm 1 — rprem(Q,P )

Input: DD-polynomials P,Q ∈ R with P 6= 0.

Output: The pseudo-remainder of Q w.r.t. P .

If P ∈ K then return 0.
Set R := Q.
While ∃ω∗ ∈ V ∗R, v∗P � ω∗ do

Choose the highest ω∗ under ≤.
Set R := aprem(R, (ω/vP )P ). /*/

Return R

/*/ aprem(P,Q) stands for the algebraic pseudo-remainder of P w.r.t. Q in variable vQ.

If θ � θ′, then we define
θ′/θ = δα′−α

∂
β′−β

and notice that (θ′/θ)θ is a shuffle of θ′.
We define a partial ordering � on extended variables by v∗ = (θyi)d � (θ′yi)e = (v′)∗,

if and only if θ � θ′ and either d ≤ e, or θ′/θ is not a pure difference operator. We remark
that � is still a well-quasi-ordering.

Consider DD-polynomials P,Q ∈ R with P 6= 0. Then the algorithm rprem computes
the pseudo-remainder of Q w.r.t. P . It is easily checked that rprem(Q,P ) is reduced
w.r.t. P .

Lemma 2.10. Define

HP = IPSP

HP = ∆IP
∆SP

= {IS|I ∈ ∆IP
, S ∈ ∆HP

}.

and let R = rprem(Q,P ). Then there exists an H ∈ HP such that vH < vQ and

HQ = R mod [P ],

where we recall that [P ] stands for the DD-ideal generated by P .

Proof: For every step of the loop of the above procedure, the order of I(ω/vP )P is less
than the order of v(Q), so this is a direct consequence of the above procedure and
Lemma 2.9. 2

2.5. Zero sets

Let P ⊂ K{Y} be a finite system of DD-polynomials and let K̂ be a DD-superfield of
K. A zero of P in K̂ is a tuple (ŷ1, . . . , ŷn) ∈ K̂n with P (ŷ1, . . . , ŷn) = 0 for all P ∈ P. We
use Zero(P) to denote the set of all zeros of P. Let D be a polynomial. We use Zero(P/D)
to denote the set of zeros of P which do not annul D.

If (ŷ1, . . . , ŷn) is a zero of P, the DD-morphism ρ : K{Y} → K̂ over K with ρ(yi) = ŷi

for each i is called a model of P. There is a close relationship between the existence of
models and the non-triviality of the perfect DD-ideal {P}:
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Proposition 2.11. The system P admits a model if and only if 1 6∈ {P}.

Proof: Assume that P admits a model ρ : K{Y} → K̂. Then P ⊆ ker ρ and {P} ⊆ {ker ρ}.
Moreover, the DD-ideal ker ρ is perfect: given P ∈ K{Y} with P i0 · · · (δkP )ik ∈ ker ρ, we
have ρ(P )i0 · · · (δkρ(P))ik = 0. Since K̂ is a DD-field, it follows that δjρ(P) = 0, whence
ρ(P) = 0 and P ∈ ker ρ. Having proved that ker ρ is perfect, it follows that {P} ⊆ ker ρ.
We conclude that 1 6∈ {P}, since 1 6∈ ker ρ.

Conversely, if 1 6∈ {P}, then a similar argument as in the proof of Lemma 3.14 yields
the existence of a perfect prime DD-ideal p ⊇ {P}. Consider the natural DD-morphism
ρ of K into the fraction field K̂ of the DD-ring R̂ = R/p. By construction, ρ(P) = 0, so ρ
is a model for P. 2

Remark 2.12. More generally, one may consider a system of DD-equations P ⊆ K{Y}
together with one DD-inequation Q ∈ K{Y}. In that case, a model of P = 0, Q 6= 0 is a
DD-morphism ρ : K{Y} → K̂ over K with ρ(P) = 0 and ρ(Q) 6= 0. In a similar way as
above, one proves that P = 0, Q 6= 0 admits a model if and only if Q 6∈ {P}. Furthermore,
Q 6∈ {P} if and only if 1 6∈ {P} : HQ.

Remark 2.13. Assuming that K is a field of meromorphic functions and that δ is the
right composition with an analytic function φ, an interesting question is to find models
ρ : K{Y} → K̂ of P in DD-fields K̂ with a more analytic flavour. A typical candidate for
K̂ would be the DD-field of ultimate sequences (fn)n≥n0 of analytic germs at points zn

with zn+1 = φ(zn), by taking (δf)n−1 = fn ◦ φ.

3. Characteristic sets of DD-polynomial ideals

3.1. Auto-reduced sets

A subset A ⊆ K{Y}\K is said to be auto-reduced, if each P ∈ A is reduced w.r.t. each
DD-polynomial in A\{P}. An auto-reduced set A = {A1, . . . , Ar} with vA1 < · · · < vAr

is called an ascending chain or simply a chain.
Given yi,d,s to be the leading variable of a polynomial in A, we define its DD-index to

be (d, s). The structure of a chain could be easily understood from the DD-indices of its
elements.

Proposition 3.1. Let A be a chain. The set of indices for the polynomials in A with a
fixed class i will be denoted by INDi. If we arrange INDi = {(a1, b1), . . . , (as, bs)} such
that a1 ≤ a2 ≤ · · · ≤ as. Then we have
• a1 < a2 < · · · < as and b1 ≥ b2 ≥ · · · ≥ bs.
• If bj = bj+1, then d(aj ,bj) < d(aj+1,bj+1), where d(aj ,bj) is the leading degree of the

polynomial with index (aj , bj).

Proof: Let A1 and A2 be the corresponding DD-polynomials of (a1, b1) and (a2, b2). We
show that a1 = a2 cannot happen. Otherwise, consider b1 and b2. If b1 = b2, then A1

and A2 have the same leader, which is impossible. If b1 < b2, then A2 is not reduced
w.r.t. A1, which is also impossible. Similarly, b1 > b2 cannot happen. This proves that
a1 < a2. Similarly, we can prove that ai < ai+1. If bj = bj+1, since the corresponding DD-
polynomials of (aj , bj), (aj+1, bj+1) are auto-reduced, we have d(aj ,bj) < d(aj+1,bj+1). 2

We use the following example to illustrate the above result.
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Fig. 1. The indices of chain A from (5)
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Fig. 2. The indices of chain AP

Example 3.2. Consider the following chain for the ordering ≤l from Section 2.2.

A = {A1, A2, A3, A4}

A1 = y2
1,2,3

A2 = y2
1,3,2 + y1,1,1

A3 = y2
1,5,0 + y1,4,1

A4 = y1,7,0 + y1,4,0.

(5)

The DD-indices for the DD-polynomials in A are given in Figure 1.

Lemma 3.3. Any auto-reduced set is finite.

Proof: Assume the contrary and consider an infinite auto-reduced set {P1, P2, . . .}. The
sequence P1, P2, . . . induces a sequence (ai, bi, ci, di)i∈N with v∗(Pi) = (δbi ∂

ciyai)
di and

modulo the extraction of a subsequence, we may assume without loss of generality that
ai = aj for all i, j. If Pi is reduced w.r.t. Pj , then we cannot have (bi, ci, di) � (bj , cj , dj)
for the partial product ordering on N3. It follows that (b1, c1, d1), (b2, c2, d2), . . . are pair-
wise distinct and incomparable for �. This contradicts Dickson’s Lemma. 2

Let A = {A1, . . . , Ap} and B = {B1, . . . , Bq} be chains. We define a partial ordering
≤ on chains by setting A ≤ B if there exists a j with Ai ∼ Bi for 1 ≤ i < j and either
Aj < Bj or j = q + 1 ≤ p. The ordering ≤ is also called a ranking .

Lemma 3.4. Any descending chain A1 > A2 > A3 > . . . is finite.

Proof: Assume the contrary. The first elements of the chains A1,A2, . . . satisfy A1,1 ≥
A2,1 ≥ · · · . By Lemma 2.8, there exists an index j1 with Ai,1 ∼ Aj1,1 for all i ≥ j1.
Similarly, there exists an index j2 > j1 with Ai,2 ∼ Aj2,2 for all i ≥ j2. By induction,
we get a sequence j1 < j2 < . . . with Ai,k ∼ Ajk,j for all k and i ≥ jk. But then
{Aj1,1, Aj2,2, . . .} is an infinite auto-reduced set, which contradicts Lemma 3.3. 2

Let P be a set of DD-polynomials and consider the set of chains of DD-polynomials
in P. Among all those chains, the above Lemma implies that there exists at least one
chain with lowest rank. Such a chain is called a characteristic set of P.

A DD-polynomial is said to be reduced w.r.t. a chain if it is reduced to every DD-
polynomial in the chain.
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Lemma 3.5. If A is a characteristic set of P and A′
a characteristic set of P ∪ {P}

for a DD-polynomial P , then we have A ≥ A′
. Moreover, if P is reduced w.r.t. A, then

A > A′
.

Proof: The first statement is obviously true, since the characteristic set of P is in P∪{P}.
As to the second statement, assume A = A1, . . . , Ap and P ∈ P, with cls(P ) = m, is
reduced w.r.t. A. If m > cls(Ap), then the chain A1, . . . , Ap, P is of rank lower than A.
If cls(Ak−1) < m ≤ cls(Ak) ≤ cls(Ap), then the chain A1, . . . , Ak−1, P is of rank lower
than A. Hence A > A′

. 2

Lemma 3.6. A chain A is a characteristic set of P if and only if P does not contain a
non-zero DD-polynomial which is reduced w.r.t. A.

Proof: By Lemma 3.5, we just need to prove the sufficiency. Assume B = B1, . . . , Bs is
the characteristic set of P, while A is not. We have B < A. If there exists a k ≤ min{s, p}
with Bk < Ak, then Bk is reduced w.r.t. A. Otherwise s > p and Bp+1 is reduced w.r.t.
A. Both of the cases contradict the hypothesis and show that A is the characteristic set
of P. 2

3.2. Extension of chains and pseudo-remainders

To compute the pseudo-remainder of Q w.r.t. P , we need to lift the difference and dif-
ferential orders of P by considering θP for certain θ ∈ Θ. In order to compute the pseudo-
remainder of a DD-polynomial w.r.t. a chain, we also need to select a DD-polynomial in
the chain and to lift its orders. But, the selection of the DD-polynomial is not unique.
More seriously, for some DD-polynomial A selected from the chain and the corresponding
DD-operator θ, θA might be linear in its leader, and for other DD-polynomials, the lifted
DD-polynomial might not be linear in its leader. In order to give a proper definition for
pseudo-remainders, we introduce the concept of extension for chains.

Let A be a chain. A variable yc,d,s is called a principal variable of A if there exists an
A ∈ A such that vA � yc,d,s. Otherwise, it is called a parametric variable of A. Denote the
set of principal variables and the parametric variables of A by MA and PA respectively.
It is clear that

MA ∪ PA = ΘY. (6)

For a DD-polynomial set P and 1 ≤ c ≤ n, let d(c)
P be the largest d such that yc,d,s

occurs in P, s(c)P the largest s such that yc,d,s occurs in P, and

VP = {yc,s,t ∈ MA|∃P ∈ P, a, b : deg(P, yc,a,b) > 0, 1 ≤ c ≤ n, s ≤ a, t ≤ b}.
LP = {yc,s,t|∃P ∈ P : vP = yc,s,t}.

So LP is the set of leading variables of P and VP is the set of principal variables such
that for any v = yc,s,t occurring in P, all principal variables u of A satisfying u � v are
in VP. Note that VP also depends on A.

For a chain A and a set of DD-polynomials P, we say that AP is an extension of A
w.r.t. P if it satisfies the following properties:
• AP is an algebraic triangular set under the ordering ≤ when all yc,n,m are considered

as independent variables.
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Algorithm 2 — Extension(A,P)

Input: A chain A and a set P of DD-polynomials.

Output: The extension AP of A w.r.t. P.

S0. Let L = LA, Q = A ∪ P, H = {y
c,d

(c)
Q ,s

(c)
Q
, c = 1, . . . , n}, V = VH \ L, and AP = A.

S1. If there exist ω, η and c with ωyc ∈ V , ηyc ∈ L and η � ω, then choose ω and c such
that ωyc is largest for ≤. If there are no such ω, η and c, then return AP.

S2. If for all the θyc ∈ L satisfying θ � ω, ω/θ is a difference operator, let η be the
largest of those θ under ≤, go to S4.

S3. If there exists a θyc ∈ L such that ω/θ is not a difference operator, let η be the one
with largest in ordδ. Go to S4.

S4. Let Ai ∈ A such that vAi = ηyc. Let Q = (ω/η)Ai, AP = AP ∪ {Q}, V = V ∪ (VQ \
LAP). Delete ωyc from V and goto S1. Since all the variables in VQ \LAP are less than
ωyc, this process will terminate.

• LAP = VP∪AP . Intuitively, this means that if a principal variable v′ of A occurs in
P ∪ AP, then any principal variable v satisfying v � v′ should be the leading variable
of some polynomial in AP. This property guarantees that all the principle variables
needed in computing a pseudo remainder of any polynomial in P w.r.t. A will appear
as leading variables of AP.

• A DD-polynomial P is reduced w.r.t. A if and only if P is reduced w.r.t. AP = A{P}
when all yc,n,m are considered as independent variables.
Given a DD-polynomial set P, the algorithm Extension shows how to compute the

extension of A w.r.t. P, which is clearly satisfying the above properties. In what follows,
we will consider this algorithm as a definition of the extension of A w.r.t. P.

Example 3.7. Continue from Example 3.2. For P = y2
1,7,4 + y1,3,2, we have d(1)

Q = 7,

s
(1)
Q = 4, and

AP = {A1, ∂A1, ∂
2A1, ∂

3A1,

A2, ∂A2, ∂
2A2, ∂

3A2, ∂
4A2, δA2, δ∂A2, δ∂

2A2, δ∂
3A2, δ∂

4A2,

A3, ∂A3, ∂
2A3, ∂

3A3, ∂
4A3, ∂

5A3, δA3, δ∂A3, δ∂
2A3, δ∂

3A3, δ∂
4A3,

A4, ∂A4, ∂
2A4, ∂

3A4, ∂
4A4}.

Let ωy1 = y1,5,4. Then for each of A1, A2, and A3, its leader satisfies the condition in S1.
The condition in S2 is not satisfied. In S3, we choose the one with largest ordδ, which
is A3. As a consequence, we will add ∂

4A3 to AP. Notice that the DD-polynomial with
the largest ordδ will have the smallest ord∂ for its leading variable.

The DD-indices for the DD-polynomials in AP are given in Figure 2, where a solid dot
represents the index of a newly added DD-polynomial.

For a DD-polynomial P , let AP = A{P}. The pseudo-remainder of a DD-polynomial
P w.r.t. to a chain A is defined to be the algebraic pseudo-remainder of P w.r.t. to the
algebraic triangular set AP :

rprem(P,A) = aprem(P,AP ).
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Let A = A1, . . . , Ap be a chain. We define

∆A = ∆A1 · · ·∆Ap ,

HA =HA1 · · ·HAp
,

HA = HA1 · · ·HAp
.

Lemma 3.8. Let R = rprem(Q,A). Then R is reduced w.r.t. A and there exists an
H ∈ HA such that vH < vQ and

HQ≡R mod [A]

HQ≡R mod (AQ)

Proof: This is a direct consequence of the procedure to compute AQ and rprem. 2

The saturation ideal of A is defined to be

sat(A) = [A] : HA = {P ∈ K[ΘY] | ∃H ∈ HA : HP ∈ [A]}.

Notice that HA is closed under translation and multiplication. Hence sat(A) is a DD-
ideal. It is also clear that if rprem(P,A) = 0 then P ∈ sat(A). Conversely, P ∈ sat(A)
generally does not imply rprem(P,A) = 0 and the condition for this to be valid will be
given in Section 4

3.3. Noetherian property of perfect ideals

As an application, we may prove that all perfect ideals in K[ΘY] are finitely generated,
or equivalently, the solutions for any set of DD-polynomials are the same as a finite set
of DD-polynomials.

Given a DD-polynomial set P, we inductively define

P0 = P
Pn = {P |∆P ∩ [Pn−1] 6= ∅},

so that
{P} =

⋃
k∈N

Pk.

Lemma 3.9. Let P,Q ∈ K[ΘY]. Then (δr1∂
s1P )(δr2∂

s2Q) ∈ (PQ)2.

Proof: It is classical (see (13), Page 9) that (∂
s1P )(∂

s2Q) ∈ (PQ)1. Indeed, for any A,B ∈
K[ΘY] with AB ∈ [PQ], we have A2B′ = A(AB)′ − A′(AB) ∈ [PQ]. By induction over
n it follows that ABn ∈ [PQ] ⇒ (AB′)2

n ∈ [PQ]. Hence AB ∈ (PQ)1 ⇒ AB′ ∈ (PQ)1
and the result follows by induction over s1 and s2. We also have (δr1P )(δr2Q) ∈ (PQ)1:
assuming by symmetry that d = r2−r1 ≥ 0, we have (δr1P )(δr2Q) · · · (δr1+dP )(δr2+dQ) ∈
δr2(PQ)R ⊆ [PQ]. Applying the pure differential and the pure difference cases in turn,
we obtain the Lemma. 2

Lemma 3.10. Let P be any set of elements of K[ΘY] and P and Q any two elements of
K[ΘY]. If S is contained in (P ∪ P )n and T in (P ∪Q)n, n ≥ 1, then ST is contained in
(P ∪ PQ)n+2.
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Proof: We prove the Lemma by weak induction over n, i.e., if n > 1, then we assume the
Lemma proved up to order n− 1. Let S ∈ (P ∪ P )n and T ∈ (P ∪Q)n. Then there exist
Ŝ = Si0 · · · (δsS)is ∈ ∆S ∩ [(P ∪ P )n−1] and T̂ = T j0 · · · (δtT )jt ∈ ∆T ∩ [(P ∪ Q)n−1].
Increasing the ik and jk if necessary, we may assume without loss of generality that
(i0, . . . is) = (j0, . . . , jt). Now ŜT̂ is a linear combinations of terms of the form U =
(δr1∂

s1A)(δr2∂
s2B), with A ∈ (P∪P )n−1 and B ∈ (P∪Q)n−1. If n = 1, then Lemma 3.9

implies U ∈ [P] + (PQ)2 ⊆ (P ∪ PQ)2. If n > 1, then again U ∈ (P ∪ PQ)n+1, by the
induction hypothesis. We conclude that ŜT̂ = (ST )i0 · · · (δs(ST ))is ∈ [(P∪PQ)n+1] and
ST ∈ (P ∪ PQ)n+2. 2

Lemma 3.11. Let P be any set of elements of K[ΘY] and P and Q any two elements of
K[Y]. Then {P ∪ PQ} = {P ∪ P} ∩ {P ∪Q}.

Proof: We only need to show that, S being any element in the intersection, S is contained
in {P ∪ PQ}. Let n be such that S is contained in (P ∪ P )n and in (P ∪ Q)n. Then by
Lemma 3.10, S2 is in (P ∪ PQ)n+2. Thus S is also in (P ∪ PQ)n+2. 2

Lemma 3.12. Let P,Q be two sets of elements of K[ΘY]. Then {P} ∩ {Q} = {PQ}.

Proof: In a similar way as for Lemma 3.10, one proves by induction over n that Pn∩Qn ⊆
(PQ)n+2. The result follows by passing to the limit. 2

Lemma 3.13. Let P be a subset of K[ΘY] and P ∈ {P}. Then there exists a finite subset
Σ of P, such that P ∈ {Σ}.

Proof: Since {P} =
⋃

n∈N
Pn, we have P ∈ Pn for some n. Let us prove the Lemma by

induction on n. The case n = 0 is trivial. Assume that we have proved the Lemma up
to n − 1. We have P̂ ∈ [Pn−1], for some P̂ ∈ ∆P . Hence P̂ ∈ [Q1, . . . , Qq] for some
Q1, . . . , Qq ∈ Pn−1. For each 1 ≤ j ≤ q, there exists a finite subset Σj of P, such that
Qj ∈ {Σj}, by the induction hypothesis. For Σ = Σ1∪· · ·∪Σq, we then have P ∈ {Σ}. 2

Lemma 3.14. If there exists a non finitely generated perfect DD-ideal, then the set of
non finitely generated perfect DD-ideals admits a maximal element, and every such a
maximal element is prime.

Proof: The union of a totally ordered set of non finitely generated perfect DD-ideals is
again a non finitely generated perfect DD-ideal. The existence of a maximal element
follows therefore by Zorn’s Lemma. Now let m be any such maximal element. Clearly
m 6= K. Let P,Q ∈ K[ΘY] \ m. Then {m, P} and {m, Q} are finitely generated, say by
Σ, resp. T. By Lemmas 3.11 and 3.12, we have {m, PQ} = {Σ} ∩ {T} = {ΣT}, whence
PQ 6∈ m. This proves that m is prime. 2

Theorem 3.15. The DD-ring K[ΘY] is Noetherian in the sense that all perfect ideals
in K[ΘY] are finitely generated.

Proof: First we fix some admissible ordering on ΘY. Suppose that the conclusion of the
Theorem is false. By Lemma 3.14, there exists a maximal non finitely generated perfect
DD-ideal m, which is prime. Let C be a characteristic set for m.
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Let P be in m. We can write HP = R mod [C], where H ∈ HC and R is reduced
w.r.t. C. Now Lemma 3.6 implies R = 0, so HP ∈ [C] and HCP ∈ {C}. This proves that
HCm ⊆ {C}.

Since the initials and separants of C are reduced w.r.t. C, they are not in m. Since m is
prime, we have HC 6∈ m. So the perfect DD-ideal {HC ,m} strictly contains m. Therefore,
{HC ,m} is finitely generated by the maximality hypothesis. Applying Lemma 3.13, each
generator is in a perfect DD-ideal generated by a finite subset of m ∪ {HC}. Hence, we
can write {HC ,m} = {HC ,P}, for some P ⊆ m and P is a finite set. We conclude that m
is finitely generated, since m = m ∩ {HC ,m} = m ∩ {HC ,P} = {HCm,P} ⊆ {C,P}. 2

4. Coherent and regular chains

A key property for a chain A is whether it is the characteristic set of its saturation
ideal sat(A). In this Section, we will give a necessary and sufficient condition for this
property to hold.

4.1. Coherent chains

Consider two DD-polynomials A1, A2 ∈ R \ K. If cls(A1) 6= cls(A2), then we define
∆(A1, A2) = 0. If cls(A1) = cls(A2) = c, let vA1 = θ1yc, vA2 = θ2yc, and θ ∈ Θ the
smallest under≤ such that θ1 � θ, θ2 � θ. Ordering A1 and A2 such that deg((θ/θ1)A1) ≥
deg((θ/θ2)A2), we define the ∆-polynomial of A1 and A2 to be

∆(A1, A2) = apremθyc
((θ/θ1)A1, (θ/θ2)A2).

Given a chain A = A1, . . . , As, we denote by ∆(A) the set of non-zero ∆-polynomials
∆(A1, A2) for all A1, A2 ∈ A. A chain A is said to be coherent, if rprem(P,A) = 0 for
all P ∈ ∆(A). A linear combination C =

∑
θ∈Θ

QθθAi will be said to be canonical if θAi

in the expression are distinct elements in AP for a DD-polynomial P . In other words,
C ∈ (AP ).

Lemma 4.1. Let A be a coherent chain, A ∈ A, and θ ∈ Θ. Then there exist a DD-
polynomial P and an H ∈ HA such that vH < vθA and HθA has a canonical represen-
tation:

HθA =
∑

vB≤vA,B∈AP

QBB. (7)

Proof: Let c = cls(A). The DD-polynomials in A with class c are Ac,1, . . . , Ac,kc and
A = Ac,i.

If θA ∈ AθA, the Lemma is true. Otherwise, we will prove this by induction on the
ordering of vθA. Let Ac,k be largest w.r.t. ≤, such that ordδ(Ac,k) ≤ ordδ(θA). Then
the B with vB = vθA in (7) must be θ̄kAc,k for a θ̄k ∈ Θ. Consider the ∆-polynomial
R = ∆(Ac,i, Ac,k) of Ac,k and Ac,i. Then there exists t ∈ N, θi ∈ Θ, and θk ∈ Θ, such
that vθiAc,i

= vθkAc,k
and

Ht
1θiA = QθkAc,k +R

where H1 is either the initial or the separant of Ac,k and vR < vθiA. We have vH1 < vθiA.
Since A is a coherent chain, rprem(R,A) = aprem(R,AR) = 0. We have

H2R =
∑

A∈AR,vA≤vR

BAA,

15



where H2 ∈ HA such that vH2 < vR < vθiA. So we have

H2H
t
1θiA = H2QθkAc,k +

∑
A∈AR,vA<vθiA

BAA.

From the index diagram (Figure 2), we have θi � θ. Let θ̄ = θ/θi = δd
∂
s and θ̄k ∈ Θ

be a shuffle of θ̄θk. Perform θ̄ on the above equation, by Lemma 2.3, we have

gδd(H2H
t
1)θA = F θ̄kAc,k +

∑
B∈A,η∈Θ,vηB<vθA

CBηB,

where g ∈ K. Use the induction hypothesis, we have that each ηB has a canonical
representation. So there exist a DD-polynomial P ′ and an H3 ∈ HA with vH3 < vθA

such that
H3(

∑
B∈A,η∈Θ,vηB<vθA

CBηB) =
∑

vC<vθA,C∈A′
P

QCC.

Let H = H3gδ
d(H2H

t
1). Then vH < vθA,H ∈ HA and HθA has a canonical representa-

tion of form (7). 2

Lemma 4.2. Let A = A1, . . . , Al be a coherent chain. For any f =
∑
gi,jηjAi, there is

an H ∈ HA such that H · f has a canonical representation, and vH < max{vηjAi}.

Proof: This is a direct consequence of Lemma 4.1. 2

4.2. Regular algebraic triangular sets

We will recall some results about regularity of algebraic polynomials with respect to
an algebraic triangular set.

Let A = A1, . . . , Ap be a nontrivial triangular set in K[x1, . . . , xn] over a field K
of characteristic zero. Let yi be the leading variable of Ai, y = {y1, . . . , yp} and u =
{x1, . . . , xn} \ y. u is called the parameter set of A. We can denote K[x1, . . . , xn] as
K[u, y]. For a triangular set A = A1, . . . , Ap, let

IA = {Ii1
A1
· · · Iip

Ap
|i1, . . . , ip,∈ N} (8)

HA = {Ii1
A1
Sj1

A1
· · · Iip

Ap
S

jp

Ap
|i1, j1, . . . , ip, jp ∈ N}

The quotient ideal
asat(A) = (A) : IA

is called the algebraic saturation ideal.
For a polynomial P and a triangular set A = A1, A2, . . . , Ap in K[u, y] with u as the

parameter set, let
Pp = P, Pi−1 = Resl(Pi, Ai, yi), i = p, . . . , 1

and define Resl(P,A) = P0, where Resl(P,Q, y) is the resultant of P and Q w.r.t. y. We
assume that if y does not appear in P , Resl(P,Q, y) = P . It is clear that Resl(P,A) ∈
K[u].

A polynomial P is said to be regular w.r.t. a triangular set A if Resl(P,A) 6= 0.
A = A1, . . . , Ap is called regular if the initials of Ai are regular w.r.t. A. A is called
saturated if the initials and separants of Ai are regular w.r.t. A.
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Lemma 4.3. (1) Let A be a triangular set. Then A is a characteristic set of asat(A) =
(A) : IA if and only if A is regular.

Lemma 4.4. (3) A polynomial g is not regular w.r.t. a regular triangular set A if and
only if there is a non-zero f in K[u, y] such that fg ∈ (A) and g is reduced w.r.t. A.

Lemma 4.5. (1; 3) Let A be a regular triangular set. Then a polynomial P is regular
w.r.t. A if and only if (P,A) ∩K[u] 6= {0}.

Lemma 4.6. (3; 10) Let A be a saturated triangular set. Then (A) : IA = (A) : HA is
a radical ideal.

4.3. Regular chains

Let A be a chain and P a DD-polynomial. P is said to be regular w.r.t. A if it is
regular w.r.t. AP when P and AP are treated as algebraic polynomials. We say that A
is regular if any DD-polynomial in HA is regular w.r.t. A.

Lemma 4.7. If a chain A is a characteristic set of sat(A), then for any DD-polynomial
P , AP is a regular algebraic triangular set.

Proof: By Lemma 4.3, we only need to prove that B = AP is the characteristic set of
(B) : IB. Let W be the set of all the θyj such that θyj is of lower or equal ordering than a
θ̄yj occurring in B. Then B ⊆ K[W ]. If B is not a characteristic set of (B) : IB, then there
exists a non-zero Q ∈ (B) : IB ∩K[W ] which is reduced w.r.t. B. Q does not contain any
θyi of higher ordering than those in W . As a consequence, Q is also reduced w.r.t. A.
Since Q ∈ (B) : IB ⊆ sat(A) and A is the characteristic set of sat(A) (by Lemma 3.6),
we get the contradiction Q = 0. 2

Lemma 4.8. Let A be a coherent and regular chain, and R a DD-polynomial reduced
w.r.t. A. If R ∈ sat(A), then R = 0, or equivalently, A is the characteristic set of sat(A).

Proof: Let A = A1, A2, . . . , Al. Since R ∈ sat(A), there is an H1 ∈ HA such that
H1 · R ≡ 0 mod [A]. Since A is regular, H1 is difference regular w.r.t. A, that is, there
exists a DD-polynomial H̄1 and a non-zero N ∈ K[V ] such that

H̄1 ·H1 = N +
∑

vB≤vH1 ,B∈AH1

QBB

where V is the set of parameters of AH1 as an algebraic triangular set. Hence,

NR ≡ H̄1 ·H1 ·R ≡ 0 mod [A].

Or equivalently,
N ·R =

∑
gi,jθi,jAj . (9)

Since A is a coherent chain, by Lemma 4.2, there is an H2 ∈ HA such that H2 · N · R
has a canonical representation, where vH2 < max{vθi,jAj

} in equation (9). That is

H2 ·N ·R =
∑
ij

ḡi,jρi,jAj , (10)
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where vρi,jAj are pairwise different. If max{vρi,jAj} in (10) is lower than max{vθi,jAj}
in (9), we have already reduced the highest ordering of vθi,jAj

in (9). Otherwise, assume
vρaAb

= max{vρi,jAj} and ρaAb = Ib ·vdb

ρaAb
+Rb. Substituting vdb

ρaAb
by −Rb

Ib
in (10) leaves

the left-hand side unchanged since vH2 < vρaAb
, N is free of vρaAb

and deg(R, vρaAb
) <

deg(ρaAb, vρaAb
). In the right-hand side, ρaAb becomes zero, i.e. max{vρi,jAj

} decreases.
Clearing denominators of the substituted formula of (10), we obtain a new equation:

It
b ·H2 ·N ·R =

∑
fijτi,jAj . (11)

Notice that in the right-hand side of (11), the highest ordering of τi,jAj and It
b ·H2 are

less than vρaAb
and It

b ·H2 is regular w.r.t. A. Then after multiplying a DD-polynomial,
the right-hand side of (11) can be represented as a linear combination of τi,jAj all of
which is strictly lower than vρaAb

. Repeating the above process, we can obtain a non-zero
N̄ ∈ K[V ], such that

N̄ ·R = 0.
Then R = 0. By Lemma 3.6, A is the characteristic set of sat(A). 2

The above Lemma is a modified differential-difference version of Rosenfeld’s Lemma (16).
Notice that both the condition and the conclusion are stronger in our version. The
following example shows that Rosenfeld’s Lemma (16) cannot directly be extended to
difference-differential case. Consequently, the approach proposed in (2) does not directly
generalize to the differential-difference setting.

Example 4.9. Let us consider the chainA = {y2
1,1,0−1, (y1,0,0−1)y2

2,0,0+1} in K{y1, y2}.
A is coherent and y1,1,0 + 1 is reduced w.r.t. A. y1,1,0 + 1 ∈ sat(A), because H =
I(y1,0,0−1)y2

2,0,0+1 = y1,0,0 − 1 and δ(H)(y1,1,0 + 1) = y2
1,1,0 − 1 ∈ [A]. On the other hand,

y1,1,0 + 1 /∈ asat(A).

The following Theorem is one of the main results in this paper.

Theorem 4.10. A chain A is the characteristic set of sat(A) if and only if A is coherent
and regular.

Proof: If A is coherent and regular, then by Lemma 4.8, A is a characteristic set of
sat(A). Conversely, let A = A1, A2, . . . , Al be a characteristic set of the saturation ideal
sat(A) and Ii = IAi

, Si = SAi
. For any 1 ≤ i < j ≤ l, let R = rprem(∆i,j ,A), so that

R ∈ sat(A) and R is reduced w.r.t. A. It follows that R = 0, since A is the characteristic
set of sat(A), whence A is coherent. In order to prove that A is regular, we need to
show that any P ∈ HA is regular w.r.t. A. Assume this is not true. By definition, P
is not regular w.r.t. the algebraic triangular set AP . By Lemma 4.7, AP is regular. By
Lemma 4.4, there is an F 6= 0 which is reduced w.r.t. AP (and hence A), such that
P · F ∈ (AP ) ⊆ [A]. Since P ∈ HA, F ∈ sat(A), F is reduced w.r.t. A and A is the
characteristic set of sat(A), we have F = 0, a contradiction. Hence, P is regular w.r.t. A
and A is regular. 2

As a Corollary, we have

Corollary 4.11. LetA be a coherent and regular chain. Then sat(A) = {P |rprem(P,A) =
0}.
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Theorem 4.10 is significant because it provides a theoretically easy way to check
whether a DD-polynomial is in sat(A). Unfortunately, and unlike the algebraic and dif-
ferential cases, it is difficult to ensure that A is regular. Indeed, even if the initials and
separants of A are regular w.r.t. A, it may still happen that sat(A) = [1]:

Example 4.12. Let A = {δy1, y1y2 +1}. The initial of y1y2 +1, I = y1, is regular w.r.t.
A, but δI · 1 ∈ [A] which implies 1 ∈ sat(A).

Theorem 4.13. If A is a coherent and regular chain, then

sat(A) =
⋃

P∈K{Y}

(AP ) : HAP
=

⋃
P∈K{Y}

(AP ) : IAP
.

Proof: It is easy to see that sat(A) = [A] : HA ⊃
⋃

P∈K{Y}
(AP ) : HAP

. Let f ∈ sat(A).

Since A is coherent and regular, A is the characteristic set of sat(A). Then rprem(P,A) =
0, or prem(f,AP ) = 0. We have P ∈ (AP ) : HAP

. Hence sat(A) ⊆
⋃

P∈K{Y}
(AP ) : HAP

.

Since A is regular, AP is saturated, by Lemma 4.6, (AP ) : IAP
= (AP ) : HAP

, so we
proved the Theorem. 2

5. Irreducible chains

We do not know of any direct method to check whether a given chain is regular,
since this requires an infinite number of regularity tests for all possible transforms of the
initials and separants. In this Section, we will give a constructive criterion for a chain to
be regular by introducing the concept of proper irreducible chains.

5.1. Irreducible algebraic and differential chains

To define the concept of proper irreducible chains, we need several properties of alge-
braic irreducible triangular sets. An algebraic triangular set B is called irreducible if B
is regular and there exist no polynomials P and Q which are reduced w.r.t. B and such
that PQ ∈ asat(B) (13; 19).

Lemma 5.1. (20) Let A be an irreducible algebraic triangular set. Then asat(A) is a
prime ideal and for any polynomial P , P is regular w.r.t. A if and only if P 6∈ asat(A).

The above Lemma was extended to the case of ordinary differential polynomials. Let
A be a differential triangular set(14; 20). The differential saturation ideal of A is defined
to be

dsat(A) = [A]∂ : H∞
A (12)

where [A]∂ is the differential ideal generated by A and HA is defined in (8) when A is
treated as an differential triangular set.

Lemma 5.2. (14; 19) Let A be a triangular set consisting of ordinary differential poly-
nomials. If A is irreducible when considered as an algebraic triangular set, then dsat(A)
is a prime differential ideal with A as its characteristic set.
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Let A be a chain and P ⊂ K{Y}. A DD-polynomial corresponding to the bottom index
in each column of the index figure (like Figure 3) of AP is of form δdA for an A ∈ A.
The set of these DD-polynomials is called the difference part of AP and is denoted by
ĀP. The following result is clear.

Lemma 5.3. ĀP is a differential triangular set when the DD-polynomials are treated as
differential polynomials (see Remark 2.7).

5.2. Proper irreducible chains

Let A be a chain. We assume the ranking to be an elimination ranking, and after a
proper renaming of the variables, we can put it under the following form:

A =


A1,1(U, y1), . . . , A1,k1(U, y1)

. . .

Ap,1(U, y1, . . . , yp), . . . , Ap,kp
(U, y1, . . . , yp)

(13)

where U = {u1, . . . , uq} and p+ q = n. For any i, we assume that cls(Ai,j) = cls(Ai,k).
Let A∗ = AδAA and Ā = Ā∗ the difference part of A∗ (definition in Section 5.1). Ā and

A∗ will play a central role in the rest of this paper. Let A be the chain in (5), then the in-
dex set of A∗ is given in Figure 3. The index set of Ā is {(2, 3), (3, 2), (4, 2), (5, 0), (6, 0), (7,
0), (8, 0)}.

i i
i i

yy yy
y

yy
yy

yy
yy

yy
yy yy

y

yy
yy

Fig. 3. The indices of triangular set A∗

A chain A is said to be proper irreducible if
• A∗ is an algebraic irreducible triangular set; and
• δP ∈ dsat(Ā) implies P ∈ dsat(Ā). Note that Ā is a differential triangular set.

Remark 5.4. The first condition in the above definition is equivalent to the fact that
Ā is a differential irreducible triangular set. Since Ā ⊂ A∗, and the leading variables are
distinct differential variables, Ā is a differential irreducible triangular set. On the other
hand, each DD-polynomial in A∗ \ Ā is obtained by differentiations of a DD-polynomial
in Ā. Thus, a DD-polynomial in A∗ \ Ā is linear in its leader and with the separant of
a DD-polynomial in Ā as its initial. Since Ā is differential irreducible, these initials are
regular w.r.t. Ā and hence A∗. As a consequence A∗ is an irreducible algebraic triangular
set.

Lemma 5.5. Let A be a coherent and proper irreducible chain of the form (13). If P is
a non-zero DD-polynomial in K[PA], then δP is regular w.r.t. A, where PA is defined in
(6).
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Proof: Notice that the indices of δP can be obtained by adding one to the δ-order of the
indices of P , or equivalently by moving the indices of P to the right-hand side by one in
the index Figure of A. For an illustration, please consult Figure 3. As a consequence, the
DD-polynomials A ∈ AδP such that vA appears in δP correspond to the leftmost indices
on each row in the index Figure of AδP . Let us denote these DD-polynomials by H.

To test whether δP is regular w.r.t.AδP , we only need to consider those DD-polynomials
in AδP which will be needed when eliminating the leading variables of H with resultant
computations. More precisely, these DD-polynomials C can be found recursively as fol-
lows:
• C = H, and
• if there exists an A ∈ AδP such that vA ∈ VC \ LC , then add A to C.
From the definition of regularity, it is clear that δP is regular w.r.t. AδP iff δP is regular
w.r.t. C. If A ∈ H, then either A ∈ Ā or A = ∂

sA0, A0 ∈ Ā. Let A = ∂
sA0, A0 ∈ Ā. Due

our choice of the ordering ≤l, we have d(c)
{∂sA0} ≤ d

(c)

Ā for any class c. Therefore, starting
from A, all the DD-polynomials constructed in the above procedure are also of the form
∂
sB0 for B0 ∈ Ā. Since all DD-polynomials in C \ Ā are linear in their leaders with their

initials in HĀ and Ā is irreducible, we know that C is an irreducible triangular set and
asat(C) ⊆ dsat(Ā).

Suppose that δP is not regular w.r.t. AδP . Then δP is not regular w.r.t. C. Since C
is irreducible, Lemma 5.1 implies δP ∈ asat(C) ⊆ dsat(Ā). By the definition of proper
irreducible chains, P ∈ dsat(Ā). By Lemma 5.2, dprem(P, Ā) = 0. On the other hand,
since P ∈ K[PA], we have dprem(P, Ā) = P = 0; a contradiction. 2

The following example shows that, if we replace dsat by asat in the definition of proper
irreducible chains, then the above Lemma becomes false.

Example 5.6. Let A1 = y1,2,0 − y0,0,0, A2 = y2,2,0 − y0,0,2, and A = A1, A2. It is easy
to see that Ā is an algebraic irreducible triangular set. Let Q = y2,0,0 − y1,0,2 ∈ K[PA].
We have δ2Q = A2 − ∂

2A1 ∈ sat(A), but Q 6∈ sat(A).

The following is a key Lemma for proper irreducible chains.

Lemma 5.7. Let A be a coherent and proper irreducible chain of form (13). If P is
regular w.r.t. A, then δP is regular w.r.t. A.

Proof: We prove the Lemma by induction on the order of P . If P ∈ K[PA], then we are
done by Lemma 5.5. Assuming that the conclusion holds for any DD-polynomial Q with
vQ <l vP , we will prove the Lemma for P .

We first prove the following result.

If H ∈ HA and vH <l vδP , then H is regular w.r.t. A. (14)

Let I be the set of the initials and separants of the DD-polynomials in Ā. By Lemma 5.1,
any element in I is regular w.r.t. A∗ and hence regular w.r.t. A. Let Ii = δiI for i ≥ 0. If
H ∈ I1 and vH <l vδP , then H = δL, L ∈ I, and vL <l vP . By the induction hypothesis,
H is regular w.r.t. A. Repeating the above procedure, we can prove that if H ∈ Ii and
vH <l vδP , then H is regular w.r.t. A. Since HA is the set of products of elements in all
Ii, each H ∈ HA satisfying vH <l vδP is regular w.r.t. A.

Let B = {A ∈ AδP | vA ≤ vδP }. By (14), B is a regular algebraic triangular set.
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Since P is regular w.r.t. A, there exist a DD-polynomial Q and a non-zero DD-
polynomial G ∈ K[PA] such that Q · P ≡ Gmod (AP ). This can be expressed by the
following equation:

Q · P = G+
∑

A∈AP ,vA≤vP

BAA. (15)

Since G is obtained from P by eliminating some variables using DD-polynomials in AP ,
we have vG ≤ vP and s

(c)
{G} ≤ s

(c)
AP
, d

(c)
{G} ≤ d

(c)
AP

, for each class c. Hence VδG ⊆ LAP
⊆

LAδP
. By Lemma 5.5, δG is regular w.r.t. AδG. From vG ≤ vP and VδG ⊆ LAδP

, it
follows that δG is regular w.r.t. B.

Applying δ on (15), we have

δQ · δP = δG+
∑

δA∈δAP ,vδA≤vδP

δBAδA. (16)

For any δA in the above equation, there are two cases. (1) δA ∈ AδP . (2)δA 6∈ AδP .
Since A is coherent, Lemma 4.1 yields an H ∈ HA, vH <l vδA ≤ vδP such that HδA
has a canonical representation. Hence, there exists an H ∈ HA, vH <l vδP and a DD-
polynomial R such that

HδQ · δP = HδG +
∑

A∈AR,vA≤vδP

CAA.

Since vH <l vδP ,H is regular w.r.t.A, by (14). Since δG is regular w.r.t. B and vδG ≤ vδP ,
there exist DD-polynomials P1 ∈ K[PA], Q1, T such that P1 6= 0 and

Q1HδG = P1 +
∑

A∈AT ,vA≤vδP

DAA.

So there exists a DD-polynomial R1 with

Q1HδQ · δP = P1 +
∑

A∈AR1 ,vA≤vδP

EAA. (17)

We decompose the sum in equation (17) into two parts:

Q1HδQ · δP = P1 +
∑

A∈AδP ,vA≤vδP

EAA+
∑

B 6∈AδP ,B∈AR1 ,vB≤vδP

EBB. (18)

In the rightmost sum in this equation, let B1 = IB1v
k1
B1
− U1 be largest for the ordering

≤l, where IB1 ∈ HA is the initial of B1. Since all the B in this sum are in AR1 , B1 is
determined uniquely. Replacing vk1

B1
by U1/IB1 , we have

Q′1δP = It1
B1
P1 +

∑
A∈AδP ,vA≤vδP

E′AA+
∑

A 6∈AδP ,A∈AR1 ,vB<lvB1

E′BB, (19)

where vIB1
<l vB1 ≤l vδP , t1 ∈ N, and IB1 is regular w.r.t. A. Since VδP ⊆ LAδP

, P1 ∈
K[PA] and for A ∈ AδP , VA ⊆ LAδP

, for any B 6= B1 in the third part of equation (17),
vB <l vB1 , they do not change under the above substitution.

Since IB1 is regular w.r.t.A, similar to the above procedure, there exist DD-polynomials
Q2, P2 ∈ K[PA], R2, such that P2 6= 0 and

Q2δP = P2 +
∑

A∈AδP ,vA≤vδP

FAA+
∑

B 6∈AδP ,B∈AR2 ,vB<lvB1≤vδP

FBB. (20)
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The leader of each B in the above equation is less than vB1 . Repeating the procedure
for (20), by Lemma 3.4, after a finite number of steps, the rightmost sum in equation (20)
will be eliminated. As a consequence, there is an H and a non-zero R ∈ K[PA] such that

HδP = R +
∑

A∈AδP ,vA≤vδP

QAA = R +
∑

A∈AB

QAA.

Since B is a regular algebraic triangular set, by Lemma 4.5, δP is regular w.r.t. B ⊆ AδP .
That is δP is regular w.r.t. A. 2

The following result gives a constructive criterion to check whether a chain is regular.

Theorem 5.8. A coherent and proper irreducible chain is regular.

Proof: Let Ā = A1, . . . , Am, Ij = IAj , and Sj = SAj . Since Ā is an irreducible differential
triangular set, Lemma 5.1 implies that Ij and Sj are regular w.r.t. Ā and hence regular
w.r.t. A. By Lemma 5.7, all δiIj , δ

iSj are regular w.r.t. A. As a consequence, the products
of δiIj , δ

iSj are regular w.r.t. A and A is regular. 2

The condition in the above Theorem can be lessened. This gives the following result
which will be used below in the procedure to check whether a given chain is regular. For
details, please refer to Lemma 6.3.

Corollary 5.9. Let A be a chain satisfying the following conditions
• A∗ is an algebraic irreducible triangular set, and
• δP ∈ asat(A∗) implies P ∈ asat(A∗).
Then A is regular.

Proof: Let A∗ = A1, . . . , Am, Ij = I(Aj), and Sj = SAj . Then the ∂-orders for δiIj , δ
iSj

are less than or equal to d = maxA∈A∗ ord∂(A). Hence we only need to prove that
Lemma 5.7 is still valid for a chain A satisfying the conditions in this corollary and
under the extra hypothesis ord∂(P ) ≤ d. For this, it suffices to show that Lemma 5.5 is
still valid under these conditions. This is indeed the case, because ord∂(P ) ≤ d implies
C ⊂ A∗, and the rest of the proofs can be carried out similarly. 2

Theorem 5.10. Let A be a coherent and proper irreducible chain. Then sat(A) is
reflexive.

Proof: For any δP ∈ sat(A), if P 6∈ sat(A), then rprem(P,A) 6= 0 and δrprem(P,A) ∈
sat(A). So we can assume that δP ∈ sat(A) and P is reduced w.r.t. A. By Theorems 5.8
and 4.10, A is both regular and the characteristic set of sat(A). Since δP ∈ sat(A) we
have rprem(δP,A) = 0. So there exists an H ∈ IAδP

such that HδP ∈ (AδP ) and H is
regular w.r.t. AδP . Consequently, there exists a non-zero G ∈ K[PA] with

GδP =
∑

A∈AδP

BAA. (21)

Let C = AδP ∩ {δd
∂
sA | δdA ∈ A∗}. We have [C] ⊆ dsat(Ā). Since each DD-polynomial

A ∈ AδP \ C must be the transform of a DD-polynomial B which corresponds to the last
index of a row in the index diagram for C, the leading degree of A is the same as that of
B. As a consequence, δP is reduced w.r.t. AδP \ C. We decompose the right-hand side of
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the equation (21) into two parts:

GδP =
∑
A∈C

DAA+
∑

B∈AδP \C

DBB.

Let B = IBv
k
B − U , where IB ∈ HA is the initial of B. Replacing vk

B by U/IB , we have

HGδP =
∑
A∈C

CAA ∈ [C] ⊆ dsat(Ā),

where H ∈ HA and is regular w.r.t. A. Since G ∈ K[PA] and δP is reduced w.r.t. AδP \C,
GδP does not change under the above substitution. Let B ∈ AδP \ C with class c. For
any A ∈ C, by the construction of A∗, d(c)

{A} <l d
(c)
{B} and hence A will not change under

the above substitution. Since A∗ is irreducible, G ∈ K[PA], H is regular w.r.t. A, and
HGδP ∈ dsat(Ā), by Lemma 5.2, we have HG 6∈ dsat(Ā) and δP ∈ dsat(Ā). Since A is
proper irreducible, we have P ∈ dsat(Ā) ⊆ sat(A); a contradiction. 2

5.3. Consistency of proper irreducible chains

In order to solve the perfect ideal membership problem, we need to show that a
coherent and proper irreducible chain A is consistent, or equivalently, that sat(A) admits
a zero in a suitable DD-extension field. This is achieved by extending Cohn’s theory of
kernels to the DD-case.

Let K be a DD-field. We will denote by K(f1, . . . , fr)∂ the differential field extension
of K with elements f1, . . . , fr in some differential overfield of K. We will denote by
K{g1, . . . , gr} the DD-field extension of K with elements g1, . . . , gr in some DD-overfield
of K.

Let ai = (ai,1, . . . , ai,n), i = 0, . . . , r be n-tuples, where ai,j are elements from a differ-
ential extension field of K. Consider the differential field

R = K(a0, a1, . . . , ar)∂

together with a differential ring isomorphism

T : K(a0, . . . , ar−1)∂ → K(a1, . . . , ar)∂

which extends δ and such that Tai = ai+1, i = 0, . . . , r − 1. The differential ring R
endowed with such an operator T is called a DD-kernel of length r.

Definition 5.11. Let U = {u1, . . . , uq} be such that uj = ar,ij
for i1 < · · · < iq. If U

is a differential transcendence basis for ar over K(a0, a1, . . . , ar−1), then U is called a
DD-parametric set. We denote by dim(R) the differential dimension of K(a0, a1, . . . , ar)
over K(a0, a1, . . . , ar−1). Then a DD-parametric set contains precisely dim(R) elements.
Furthermore, we can define ∂ordUR to be the differential order of K(a0, . . . , ar)∂ over
K(a0, . . . , ar−1, U)∂ (13).

We need the following results, which can be found in (13), on pages 49 and 51.

Lemma 5.12. (13) Let Σ and Σ′ be nontrivial differential prime ideals of respective
dimensions q and q′, such that Σ′ is a proper divisor of Σ. Then q ≤ q′. If q = q′, then
every parametric set U for Σ′ is a parametric set for Σ and the order of Σ′ relative to U
is less than the order of Σ relative to U .
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Lemma 5.13. (13) Let Σ be a nontrivial differential prime ideal of dimension q. Let Σ′

be the differential ideal generated by Σ in an extension K′ of K. Then Σ′ is perfect and
each of its essential prime divisors Σj , j = 1, . . . , s, is of dimension q. If q > 0, then every
parametric set U for Σ is a parametric set for every Σj and the orders of the Σj relative
to U are all equal to the order of Σ relative to U . If q = 0, then every Σj has the same
order as Σ.

The following lemma is a key ingredient for proving the consistency of a proper irre-
ducible chain. Its proof is analogous to Cohn’s proof((4),page 150) in the pure difference
case.

Lemma 5.14. There is a prolongation R′ of R consisting of a differential overfield
K(a, . . . , ar, ar+1)∂ of K(a, . . . , ar)∂ and an extension T ′ of T to a differential isomorphism
of K(a, . . . , ar)∂ onto K(a1, . . . , ar+1)∂ with T ′ar = ar+1.

Proof: Let Π be the differential prime ideal with generic zero ar in the differential
polynomial ring K(a, . . . , ar−1)∂{X}, where X denotes (x1, . . . , xn). Let Π′ be obtained
from Π by replacing the coefficients of the polynomials of Π by their images under T .
Then Π′ is a prime differential ideal in K(a1, . . . , ar)∂{X} and generates an ideal Σ in
K(a, . . . , ar)∂{X}. Let Φ be an essential prime divisor of Σ. By Lemma 5.13, the differen-
tial dimension of Φ is equal to that of Π′. If U is the parametric set of Π′, then it must be
the parametric set of Φ, and the order of Φ w.r.t. U is equal to the order of Π′ w.r.t. U . We
choose ar+1 to be a generic zero of Φ. Let Π′′ = {P ∈ K(a1, . . . , ar)∂{X} | P (ar+1) = 0},
and denote by U the parametric set of Π′′. Then dim(Π′′) = |U | and the differential
order of Π′′ w.r.t. U is equal to the differential order of Φ w.r.t. U . So Π′,Π′′ admit the
same parametric set and the same order w.r.t. this parametric set. Since ar+1 is also
a zero of Π′, we have Π′ ⊂ Π′′. By Lemma 5.12, we know that Π′ = Π′′, and ar+1 is
also a generic zero of Π′. Consequently, there is an isomorphism T ′ of K(a, . . . , ar)∂ onto
K(a1, . . . , ar+1)∂ which is an extension of T . This proves the lemma. 2

Theorem 5.15. Let A be a coherent and proper irreducible chain. Then Zero(sat(A)) 6=
∅.

Proof: Let A be a proper irreducible chain of the form (13). Denote the difference part
of A∗ by

Ā = {B1,1, . . . , B1,c1 , . . . , Bp,1, . . . , Bp,cp
},

where lvar(Bi,j) = yi. Let oi = ordδ(Bi,ci , yi), i = 1, . . . , p, e = maxA∈A∗,1≤i≤q {ordδ(A, ui)},

U0 = {δjui | 1 ≤ i ≤ q, 0 ≤ j ≤ e}, U1 = δU0 = {δjui | 1 ≤ i ≤ q, 1 ≤ j ≤ e+ 1},

Y0 = {δjyi | 1 ≤ i ≤ p, 0 ≤ j ≤ oi − 1}, Y1 = δY0 = {δjyi | 1 ≤ i ≤ p, 1 ≤ j ≤ oi}.
Then V0 = U0 ∪ Y0 and V1 = δV0 = U1 ∪ Y1 have the same number of elements.

Since A is proper irreducible, Ā is an irreducible differential triangular set when δiuj

and δiyj are treated as independent differential variables. Hence, dsat(Ā) is a differential
prime ideal in K{V̂ }, where V̂ = U0 ∪ Y0 ∪ {δo1y1, . . . , δ

opyp}. Let η = (αi,j , βi,j) be
a generic zero of this differential prime ideal. Then every polynomial in Ā vanishes at
δjui = αi,j , δ

jyi = βi,j , but not their initials and separants.
We will construct a DD-kernel of length one. Let a0 and a1 be obtained from V0 and

V1 by replacing δjui and δjyi with the corresponding αi,j and βi,j . We take K(a0, a1)∂
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for our kernel. The difference operator δ introduces a map from K(a0)∂ to K(a1)∂ by
δ(αi,j) = αi,j+1 and δ(βi,j) = βi,j+1. We will prove that δ gives rise to an isomorphism
between K(a0)∂ and K(a1)∂. Let

B0 = Ā − {B1,c1 , . . . , Bp,cp
},B1 = {δA |A ∈ B0}.

From the definition of Ā, B0 6= ∅ and the δ-order of yk in Bi,j ∈ B0 does not exceed
ok−1. As a consequence, a0 is a generic zero of the differential prime ideal I0 = dsat(B0).
Let I = dsat(Ā).

Since δB0 = B1 and δa0 = a1, by the nature of the difference operator, B1 is an
irreducible differential triangular set in K{V1}, and a1 is a zero of the prime ideal I1 with
B1 as a characteristic set. We will prove that I1 = dsat(B1) = I ∩ K{V1}, which means
that a1 is generic.

In order to show that I1 = I ∩K{V1}, let ti = ordδ(Bi,1), U∗ = U0∪U1, Y
∗ = Y0∪Y1.

Since dsat(A) is reflexive, we can choose U1 and {yi,j |1 ≤ i ≤ p, 1 ≤ j ≤ ti} as the
parametric set of the differential ideal I ∩K{U1, Y1}. Moreover, the differential order of
I ∩ K{U1, Y1} w.r.t. this parametric set equals the differential order of I ∩ K{U0, Y0}
w.r.t. its parametric set U0 and {yi,j |1 ≤ i ≤ p, 0 ≤ j ≤ ti − 1}. Hence, the number of
parameters and the order w.r.t. these parameters are the same for I0 and I ∩K{U1, V1}.
Now the number of parameters and the order w.r.t. these parameters also coincide for I0
and I1. Since the prime ideals I1 and I ∩K{U1, V1} satisfy I1 ⊂ I ∩K{V1}, Lemma 5.12
implies that they have the same dimension and order, whence I1 = I ∩ K{V1}. Since
δ : I0 → I1 is an isomorphism between two prime ideals, δ : K(a0)∂ → K(a1)∂ is a
differential field isomorphism.

At this point, we have proved that K(a0, a1)∂ is a DD-kernel over K. By successive
applications of Lemma 5.14, we obtain a sequence of kernels Rh = K(a, . . . , ar+h)∂, h =
0, 1, . . ., and isomorphisms Th of K(a, . . . , ar+h−1)∂ onto K(a1, . . . , ar+h)∂ such that Rh+1

is a prolongation of Rh, and R0 = R. The union of all Rh, h = 0, 1, . . . defines a DD-field
K < a >= K(a, a1, . . .)∂, where the difference operator is defined by δai = ai+1. We
denote ψ to be the value induced by η in K < a >. We will show that ψ is a zero of
sat(A).

Let A ∈ A. From the construction of the kernel, A vanishes at ψ, contrary to its initial
and separant. Furthermore, δP (ψ) = 0 implies P (ψ) = 0 for any DD-polynomial P : using
the isomorphism δ : K(a, a1, . . . , ar) → K(a1, . . . , ar+1), we have (δP )(a1, . . . , ar+1) =
0 ⇒ P (a, a1, . . . , ar) = 0. Consequently, δd

∂
sA vanishes at ψ for all d and s, but not its

initial. We conclude that ψ ∈ Zero(sat(A)). 2

5.4. Strongly irreducible chains

We first show that a proper irreducible chain does not necessarily define a prime ideal.

Example 5.16. Consider A = {A1 = y2
1,0,0 + t, A2 = y2

2,0,0 + t + k } from (5) in
K{y1, y2} where K is Q(t) with the difference operator δt = t + 1 and k is a positive
integer. A∗ = {A1, δA1, A2, δA2}. If k > 1, then A is proper irreducible. But sat(A) is
not prime, because A2 − δk(A1) = (y2,0,0 − y1,k,0)(y2,0,0 + y1,k,0).

A proper irreducible chain A is said to be strongly irreducible if AP is an algebraic
irreducible triangular set for any DD-polynomial P . In this Section, we will prove that
any reflexive prime ideal can be described with strongly irreducible chains. The following
Theorem gives a description of prime ideals in terms of strongly irreducible chains.
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Theorem 5.17. Let A be a coherent and strongly irreducible chain. Then sat(A) is
a reflexive prime ideal. On the other side, if I is a reflexive prime ideal and A the
characteristic set for I, then I = sat(A) and A is a coherent and strongly irreducible
chain.

Proof: “=⇒” Since A is coherent and proper irreducible, Theorem 4.10 implies that A is
regular and A is the characteristic set of sat(A). For two DD-polynomials P and Q such
that PQ ∈ sat(A), Theorem 4.13 yields a DD-polynomial R with PQ ∈ asat(AR). Since
AR is an irreducible triangular set, Lemma 5.1 implies P ∈ asat(AR) or Q ∈ asat(AR).
Therefore, sat(A) is a prime ideal. By Theorem 5.10, sat(A) is reflexive. This shows that
sat(A) is a reflexive prime ideal.

“⇐=” Since A is the characteristic set of I, it is coherent, regular, and I ⊆ sat(A),
by Theorem 4.10. On the other hand, for P ∈ sat(A), there exists an H ∈ HA with
HP ∈ [A]. Since I is a reflexive prime ideal, the initials and separants of A, as well as
their transforms, are not in I. Hence P ∈ I and I = sat(A). For any DD-polynomial
P , AP is an irreducible triangular set. Otherwise there exist DD-polynomials G and
H, which are reduced w.r.t. AP , and such that GH ∈ asat(AP ) ⊆ sat(A). Hence G
and H are reduced w.r.t. A. As a consequence, G,H 6∈ I = sat(A) but GH ∈ I, which
contradicts to the fact that I is a prime ideal. If δP ∈ dsat(Ā), we have δP ∈ sat(A) = I,
whence P ∈ sat(A). Since A is coherent and regular, we have P ∈ asat(AP ). Since A
is irreducible, dsat(Ā) is a prime differential ideal. Without loss of generality, we may
assume that d(c)

{δP} ≤ d
(c)

Ā for all c, where d(c)
P is the largest d such that yc,d,s occurs in P.

As a consequence AP ⊆ dsat(Ā) and P ∈ asat(AP ) ⊆ dsat(Ā). 2

6. Zero decomposition algorithms

In this Section, we will present an algorithm which can be used to decompose the zero
set of a finite DD-polynomial system into the union of the zero sets of proper irreducible
chains. Such algorithms are called zero decomposition algorithms. We will also show how
to solve the perfect ideal membership problem.

6.1. Test of proper irreducibility

In this section, we will give an algorithm to check whether a chain is proper irreducible.
The following algorithm checks if a chain is regular.

Proposition 6.1. Algorithm Regular is correct.

Proof: If the algorithm returns true, we will show thatA is regular. SinceA∗ is irreducible,
by Corollary 5.9, we need only to show that δP ∈ asat(A∗) implies P ∈ asat(A∗).
If δP ∈ asat(A∗), from the variable order used by us, we have δP ∈ (G ∩ K[U1, Y1])
and whence P ∈ (G1) ⊂ (G). Thus, A is regular. If the algorithm returns false, for
g ∈ G1 \ (G), we have aprem(g,A∗) 6= 0 and it is reduced w.r.t. A. It is clear that the
right side of (22) is included in Zero(A). For η ∈ Zero(A), if Ii(η)Sj(η) = 0 we have
η ∈ Zero(A ∪ {Ii}) ∪ Zero(A ∪ {Sj}). Otherwise, from the definition of asat, for any
P ∈ P̄, δP (η) = 0 and hence P (η) = 0. We thus proved (22). 2

Algorithm DCS converts an irreducible differential triangular set under one variable
order to an irreducible differential triangular set under another variable order.
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Algorithm 3 Regular(A)

Input: A coherent chain A of the form (13) such that A∗ is irreducible.

Output: (true,∅) if A is regular.

(false,P̄) otherwise. P̄ consists of DD-polynomials reduced w.r.t. A such that

Zero(A) = Zero(A ∪ P̄) ∪ ∪iZero(A ∪ {Ii}) ∪ ∪jZero(A ∪ {Sj}) (22)

where Ii and Si are the initials and separants of the DD-polynomials in A.
G :=GBasis(asat(A∗)) /*/
G1 := E−1(G ∩K[U1, Y1]) where

U1, Y1 are the variables in G minus those uj,0,s, yk,0,t with ordδ zero.
If G1 ⊂ (G) then return (true,∅).
Else return (false,{aprem(g,A∗) | g ∈ G1 \ (G)}).

/*/ G := GBasis(asat(A∗)) computes the Groebner basis w.r.t. the eliminating or-
dering yc,0,i > yc,0,i−1 > · · · yc−1,0,t > · · · > y1,0,s > ud,0,l > · · · > u1,0,k > · · · . In
(6), it is proved that for any chain A ⊂ K[x1, . . . , xn], we have asat(A) = (A, zIA −
1) ∩ K[x1, . . . , xn], where z is a new variable. Based on this result, we can compute the
Groebner basis of asat(A∗).

Algorithm 4 — DCS(A)

Input: A is an irreducible differential triangular set in K{Y} with any variable order.

Output: A differential characteristic set B of dsat(A) under the variable ordering:
yc1,0,i > yc2,k,j for any k 6= 0.

Let H be the product of the initials and separants of A.
Compute a zero decomposition

Zero(A/H) = ∪m
i=1Zero(dsat(Ai)/H)

with the Variety Decomposition Theorem on page 308 of (19), whereAi are irreducible
differential chains.

For k from 1 to m do
if dprem(P,A) = 0 for all P ∈ Ak return Ak.

Proposition 6.2. The algorithm DCS is correct.

Proof: By the definition of dsat, we have

Zero(dsat(A)/H) = Zero(A/H) =
⋃
i

Zero(dsat(Ai)/H). (23)

SinceA is irreducible, by Lemma 5.2, dsat(A) is a differential prime ideal. Then dsat(A) ⊆
dsat(Ai) for any i. Due to (23), a generic zero of dsat(A) must be in some Zero(dsat(Ak)).
For this k, we have dprem(P,A) = 0 for all P ∈ Ak. We will show that dsat(A) =
dsat(Ak). For any P ∈ dsat(Ak), there exists an H1 ∈ HAk

such that H1P ∈ [Ak]. We
have H1 6∈ dsat(A), since otherwise H1 ∈ dsat(A) ⊆ dsat(Ak). Since dprem(P,A) = 0
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for all P ∈ Ak, there exists an H2 ∈ HA with H1H2P ∈ [A]. Since H1H2 6∈ dsat(A), we
have P ∈ dsat(A). So dsat(A) = dsat(Ak). 2

Now, we can give the algorithm to check whether a chain is proper irreducible.

Algorithm 5 — ProIrr(A)

Input: A coherent chain A of the form (13) such that A∗ is irreducible.

Output: (true,∅), if A is proper irreducible.

(false,P̄), otherwise. P̄ consists of DD-polynomials reduced w.r.t. A such that

Zero(A) = Zero(A ∪ P̄) ∪ ∪iZero(A ∪ {Ii}) ∪ ∪iZero(A ∪ {Si}) (24)
where Ii and Si are the initials and separants of the polynomials in A.

Let (test, P̄) = Regular(A∗).
If test = false, then return(false,P̄)
Else, let G := DCS(Ā)

G1 := G ∩K[U1, Y1] where
U1, Y1 are the variables in G, except for those ui,0,j , yi,0,k with zero ordδ.

G1 := δ−rG1, where r is the largest s, such that δ−sG1 is a DD-polynomial.
If dprem(g, Ā) = 0 for all g ∈ G1, then return (true,∅).
Else return (false,{dprem(g, Ā) 6= 0 | g ∈ G1}).

Proposition 6.3. The algorithm ProIrr is valid.

Proof: If ProIrr(A) returns (true,∅), then we will show that P ∈ dsat(Ā) for any δP ∈
dsat(Ā). Since dsat(Ā) = dsat(Ak), where Ak is obtained from DCS(Ā), we have δP ∈
dsat(Ak). Since Ak is an irreducible differential chain, dprem(δP,Ak) = 0. We denote
G1 = Ak ∩ K[U1, Y1], G0 = δ−1G1, where K[U1, Y1] is described in algorithm ProIrr.
Then dprem(δP,Ak) = dprem(δP,G1) = 0. So there exists an H ∈ HG1 with

HδP =
∑

i∈N,B∈G1

Qi,B∂
iB,

whereH,B,Qi,B ∈ K[U1, Y1]. Applying δ−1 to this equation, we obtain (δ−1H)P ∈ [G0]∂.
Since d

(c)
{G} ≤ d

(c)

{Ā} for all G ∈ G0 and c, we have AG ⊆ [Ā]∂ and rprem(G,A) =
aprem(G,AG) = dprem(G, Ā) = 0. Consequently, (δ−1H)P ∈ dsat(Ā). Since Ak is an
irreducible differential chain and H is regular w.r.t. Ak, it is regular w.r.t. AH ⊂ [Ā]∂. It
follows that δ−1H must be regular w.r.t. Aδ−1H ⊂ [Ā]∂; otherwise δ−1H ∈ asat(Aδ−1H).
Since Regular returns true, A is regular. By Theorem 4.10, we infer that A is the
characteristic set of sat(A), so that H ∈ sat(A). Since A is regular, rprem(H,A) =
aprem(H,AH) = dprem(H, Ā) = 0; a contradiction. We conclude that P ∈ dsat(Ā).
Equation (24) can be proved similarly to that of (22). 2

6.2. The zero decomposition algorithm

We first give two lemmas. A chain A is called a Wu characteristic set of a set P of
DD-polynomials if A ⊆ [P] and rprem(P,A) = 0 for all P ∈ P. As a direct consequence
of Lemma 3.8, we have
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Algorithm 6 — ZDT(P)

Input: A finite set P of DD-polynomials.

Output: W = {A1, . . . ,Ak} such that Ai is a coherent and proper irreducible
chain and Zero(P) =

⋃k
i=1 Zero(sat(Ai)).

Let B := CS(P), B := B1, . . . , Bp. /*/
If B = 1 then return {}.
Else

Let R := {rprem(f,B) 6= 0 | f ∈ (P \ B) ∪∆(B)}.
If R = ∅ then

If B∗ is not algebraic irreducible then
return W:= ∪k

i=1ZDT(P ∪ B ∪ {Pi})∪ ZDT (P ∪ B ∪ {Ii}),
where Pi, Ij correspond to the polynomials in Lemma 6.5 for B∗

Else, let (test, P̄) :=ProIrr(B).
If test then W = {B}∪ZDT(P ∪ B ∪ {Ii})∪ZDT(P ∪ B ∪ {Si}).
Else W:= ZDT(P,B, P̄)∪ ZDT (P ∪ B ∪ {Ii})∪ ZDT (P ∪ B ∪ {Si}),

where Ii, Si are the initials and separants of the DD-polynomials in B
Else W :=ZDT(P ∪ R).

/*/ CS(P) gives the characteristic set of P. Since P is finite, it is easy to find CS(P).

Lemma 6.4. Let P be a finite set of DD-polynomials, A = A1, . . . , Am a Wu character-
istic set of P, Ii = IAi , Si = SAi , and H =

∏m
i=1 IiSi. Then

Zero(P) = Zero(A/H) ∪
m⋃

i=1

Zero(P ∪ A ∪ {Ii}) ∪
m⋃

i=1

Zero(P ∪ A ∪ {Si})

Zero(P) = Zero(sat(A)) ∪
m⋃

i=1

Zero(P ∪ A ∪ {Ii}) ∪
m⋃

i=1

Zero(P ∪ A ∪ {Si}).

Lemma 6.5. (Lemma 3 on page 181 in (20)) If B is a reducible algebraic triangular set,
then we can find a set of polynomials P = {P1, P2, . . . , Ph} such that each Pi is reduced
w.r.t. B and

Zero(B) =
h⋃

i=1

Zero(B ∪ {Pi}) ∪
⋃
i

Zero(B ∪ {Ii}).

Here Ii stand for the initials of the polynomials in B.

We are now in a position to state the main algorithm ZDT of this paper which achieves
the zero-decomposition of a perfect DD-ideal.

Theorem 6.6. Let P be a finite set of DD-polynomials in K{y1, . . . , yn}. Then the algo-
rithm ZDT computes a sequence of coherent and proper irreducible chains A1, . . . ,Ak,
such that
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Zero(P) =
k⋃

i=1

Zero(Ai/Hi)

Zero(P) =
k⋃

i=1

Zero(sat(Ai)),

where Hi is a product of the initials and separants of Ai.

Proof: The algorithm ZDT is similar to the algebraic and differential zero decomposition
algorithms in (14; 20), except for using algorithm ProIrr. If R = ∅, then B is a coherent
Wu characteristic set of P. If B∗ is not algebraic irreducible, by Lemma 6.5, we have

Zero(B∗) = Zero(B) = ∪h
i=1Zero(B ∪ {Pi}) ∪ ∪jZero(B ∪ {Ij}).

Since B is a Wu characteristic set of P, we have Zero(P) = Zero(P ∪ B) =
⋃h

i=1 Zero(P ∪
B ∪ {Pi}) ∪ ∪jZero(P ∪ B ∪ {Ij}).

Since B is coherent and B∗ is irreducible, we can call Algorithm ProIrr(B). If test =
true, the result comes from Lemmas 6.4. If test = false, from Algorithm ProIrr, we
have

Zero(B) = Zero(B ∪ P̄) ∪ Zero(B ∪ {Ii}) ∪ Zero(B ∪ {Si}).
Since B is a Wu characteristic set of P, we have Zero(P) = Zero(P∪B) = Zero(P∪B∪P̄)∪
∪iZero(P ∪ B ∪ {Ii}) ∪ Zero(P ∪ B ∪ {Si}). This proves the correctness of the algorithm.
The termination of the algorithm is guaranteed by Lemmas 3.4 and 3.5. 2

We now show how to solve the perfect ideal membership problem.

Corollary 6.7. There exists an algorithm which takes a finite set P ⊆ K and Q ∈ P on
input and which checks whether Q ∈ {P}.

Proof: By Proposition 2.11, we have Q ∈ {P} if and only if Zero(P∪ {zQ− 1}) = ∅ for a
new variable z. Now the theorem yields a decomposition

Zero(P ∪ {zQ− 1}) =
m⋃

i=1

Zero(sat(Ai)), (25)

where Ai are coherent and proper irreducible chains. We have Zero(sat(Ai)) 6= ∅ for each
i, by Theorem 5.15. Hence Q ∈ {P} if and only if m = 0 in (25). 2

Example 6.8. Let A1 = y1,2,0 − y0,0,0, A2 = y2,2,0 − y0,0,2 and A = A1, A2. Then
A is already a coherent chain and the algorithm ZDT directly calls ProIrr(A). The
algorithm ProIrr calls DCS(Ā), since A∗ = A1, δA1, A2, δA2 is an algebraic irreducible
triangular set. In the algorithm DCS, we have H = 1 and, under the new variable order
y0,0,2 > y0,0,0 > y0,1,2 > y0,1,0 > y1,2,0 > y1,3,0 > y2,2,0 > y2,3,0,

Zero(A∗) = Zero(dsat(A1, δA1, A3, δA3)) = Zero(A1, δA1, A3, δA3),

where A3 = y2,2,0 − y1,2,2. The algorithm DCS returns A1, δA1, A3, δA3. Back in the
algorithm ProIrr we have G1 = δ−2{A3} = {A4 = y2,0,0−y1,0,2}. The algorithm ProIrr
returns (false,{A4}). We now return to the algorithm ZDT with input {A1, A2, A4}. Since
B = A1, A4 is a coherent and proper irreducible chain, the algorithm returns B and we
have Zero(A) = Zero(sat(B)) = Zero(B).
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