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The irreducible factorization of polynomials over power series is central to several
problems in computer algebra: integral bases, genus of a curve, Jacobian of a curve,
Riemann–Roch spaces. Well-known applications include cryptography and algebraic
geometry error-correcting codes. Towards solving these problems with quasi-optimal
complexity, recent algorithmsmake use of the so-called “contact representation”. When
carrying out the Newton polygonmethod, this allows intermediate objects to be repre-
sented in a compact way with respect to the required relative precision. In this paper,
we focus on the complexity of the corresponding “contact arithmetic” and present
quasi-optimal algorithms for multiplication and division in the contact representation.
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1. INTRODUCTION

Consider the valued field 𝕃=𝕂((z)) of Laurent series over an effective field 𝕂. Here
“effective” means that algorithms are at our disposal for the arithmetic operations and
the zero test in 𝕂. We will write v: 𝕃→Γ𝕃∪ {∞} for the valuation on 𝕃, with value
group Γ𝕃=ℤ.

Computing the irreducible factorization of polynomials over 𝕃 is central for several
problems in computer algebra: integral bases, genus of a curve, Jacobian of a curve,
Riemann–Roch spaces. Well-known applications include cryptography and algebraic
geometry error-correcting codes.

The standardway to factor polynomials over𝕃 is to use theNewton–Puiseuxmethod.
Themathematical description of this algorithm goes back toNewton and Puiseux [16, 21].
Analyzing its computational complexity turns out to be subtle, due to the infinite nature
of Laurent series. In particular, we must first decide how to represent and truncate ele-
ments in algebraic extensions of 𝕃.
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If P∈𝕃[x] is an irreducible polynomial, then 𝔼≔𝕃[x]/(P(x)) is again a valued field
and v extends uniquely to 𝔼. The main goal of this paper is to device efficient algorithms
for computations with suitably truncated elements in 𝔼.

If 𝕂 has characteristic zero, then the roots of P are conjugate Puiseux series whose
coefficients lie in an algebraic extension of 𝕂. Taking 𝜉 to be one of these roots, one
obvious plan for computations in 𝔼 is to simply extend 𝕃 by 𝜉 and do all our com-
putations with Puiseux series. However, this is non-trivial to implement with good com-
plexity and the restriction to characteristic zero is an important drawback.

In order to factor polynomials over 𝕃with good complexity, modern algorithms [11,
18–20] are based on an alternate representation for elements in 𝔼. This representation
was used by Abhyankar and Moh in [1, 2] and is called the contact representation in [11].
The precise definition is somewhat technical and recalled in section 1.1 below. It has the
advantage of providing a compact representation for truncations of elements of 𝔼, in
particular when the relative precision of such truncations is low.

Given an ordinary non-zero Laurent series f =∑k⩾𝜎 fkz
k with 𝜎≔v( f ), its truncation

with relative precision 𝜌 is simply f𝜎 z𝜎+ ⋅ ⋅ ⋅ + f𝜎+𝜌−1z𝜎+𝜌−1. Truncating elements of 𝔼
depends on the basis we choose for 𝔼 as a vector space over 𝕃. Consider for instance the
case when P=(x2−3z31)2−xz1001 and the element f =x2−3z31∈𝔼with v( f )=2033/4. It
is more accurate and compact to represent approximations of f with respect to the basis
1, x, x2− 3 z31, x (x2− 3 z31) than with respect to the canonical basis 1, x, x2, x3. Although
conversions between both bases are possible, such conversions involve a constant loss of
precision, which is a problem when working with low relative precision.

In a nutshell, the contact representation is both compact and accurate for low relative
precisions, whereas the usual representation with respect to the basis 1,x, . . . ,xdegP−1 is
more straightforward and efficient from a computational point for high precisions. In
the recent works [3, 11, 18–20], the subtleties of the contact representation were circum-
vented by keeping the precision sufficiently high; in this way, it remained acceptable
to do all actual computations using the classical representation. However, in the case
of [11], this could only be achieved at the price of several convolutions, making part of
the algorithms less natural.

The present work is inspired by the idea that, in order to design efficient and elegant
algorithms for high-level mathematical problems (e.g. factorization over 𝕃), it is worth-
while to find the intrinsically best adapted representation for the underlying objects (the
contact representation) and then to first develop efficient algorithms in order to work
with this representation (contact arithmetic); see also [7].

In this paper, we present quasi-optimal algorithms for basic arithmetic operations
when using the contact representation. The contact representation can be regarded as
a hybrid one that mixes recursive p-adic expansions (at high relative precision) and
towers of algebraic extensions (at low relative precision). Our complexity bounds are
quasi-optimal, uniformly in the required precision. In order to achieve them, we will
borrow techniques from [9] to accelerate computations in towers of algebraic extensions.

The contact representation is fairly subtle, which explains the length of this paper.
But we believe that this makes it even more worthwhile to separate the “low-level” con-
tact arithmetic that we develop here from high-level applications to factorization and
other problems (which we intend to work out in upcoming work).
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1.1. Main result
In order to present our main result we need several definitions for the contact represen-
tation of elements of 𝔼.

DEFINITION 1.1. A contact tower of height t consists of:
• Variables 𝜑1, . . . ,𝜑t, called contact coordinates;
• Defining polynomials Φi∈𝕂[[z]][𝜑1, . . . ,𝜑i] for i=1, . . . , t;
• Rational numbers 𝛾1, . . . , 𝛾t+1, called contact slopes.
These data are required to satisfy the following properties:
• Regarded in 𝕂[[z]][𝜑1, . . . ,𝜑i−1][𝜑i], the polynomialΦi is monic in 𝜑i of degree di⩾1;
• deg𝜑j Φi<dj, for i=2, . . . , t and j=1, . . . , i−1;
• 𝛾1⩾0 and di𝛾i⩾1 for i=2, . . . , t;
• We endow𝕂[[z,𝜑1,...,𝜑t+1]]with the weighted valuation defined by val z≔1 and val 𝜑i≔𝛾i

for i=1, . . . , t. We demand that:
∘ val Φi=di𝛾i, for i=1, . . . , t;
∘ 𝛾i+1>di𝛾i, for i=1, . . . , t.

The tower is said to be almost reduced when di⩾2 for i=2, . . . , t. We write Di≔d1 ⋅ ⋅ ⋅ di for
i=1, . . . , t.

The above contact tower defines the following sequence of isomorphic 𝕂((z))-alge-
bras:

ℙi≔𝕂((z))[𝜑1, . . . ,𝜑i+1]/(Φ1−𝜑2, . . . ,Φi−𝜑i+1), for i=1, . . . , t;

see [11, Lemma 3.15]. Note that [11] definesℙi over𝕂[[z]], but the results from there can
naturally be restated over 𝕂((z)) instead. An element a in ℙi admits a unique represen-
tative, called canonical, in the form of a polynomial in𝕂((z))[𝜑1, . . . ,𝜑i+1]whose partial
degree in 𝜑j is <dj for j=1, . . . , i; see [11, section 3.5]. We write (ℙt)<l for the elements
of ℙt whose canonical representative has degree <l in 𝜑t+1. We let

Γi≔ℤ+ℤ𝛾1+ ⋅ ⋅ ⋅ +ℤ𝛾i.

Following [11, Proposition 3.22], the valuation v:𝕂((z))→ℤ∪{∞} extends to a semi-val-
uation v(⋅;ℙi):ℙi→Γi+1∪{∞} defined by v(𝜑j;ℙt)≔𝛾j for j=1, . . . , i+1, and such that ℙi
inherits the above weighted grading of𝕂((z))[[𝜑1, . . .,𝜑i+1]]. Most of the valuations con-
sidered in this paperwill be semi-valuations, sowewill drop the prefix “semi” for conve-
nience.

The initial inverse of b∈ℙt−1 is a homogeneous element u∈ℙt−1 such that:
• v(u;ℙt−1)=−v(b;ℙt−1),
• the homogeneous component of valuation 0 of ub, written [ub;ℙt−1]0, equals 1.
Note that in [11, Definition 4.2 and Lemma 4.3] we forced a normalized form to repre-
sent initial inverses. This normalization is not needed in this paper because we perform
computations in contact towers directly over𝕂((z)) instead of 𝕂[[z]].

DEFINITION 1.2. A contact tower (ℙi)i⩽t as in Definition 1.1 is said to be separablewhen ∂Φi
∂𝜑i

is
initially invertible inℙi, for i=1,...,s. It is said to be effectively separable if the initial inverse
of the ∂Φi

∂𝜑i
is known for algorithmic purposes, for i=1, . . . , t.
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DEFINITION 1.3. With the notation of Definition 1.1, a contact tower of height t is said to be
regular whenΦi(𝜑1, . . .,𝜑i−1, 0) has valuation di𝛾i and is initially invertible, for i=1,.. .,s. It is
said to be effectively regular if the initial inverse of Φi(𝜑1,...,𝜑i−1,0) is known for algorithmic
purposes, for i=1, . . . , t.

We denote by [ℙt]𝜎;𝜌 the 𝕂-vector space of the elements of ℙt having valuation ⩾𝜎
and (weighted) degree<𝜎+𝜌. For a∈ℙt, we also write [a;ℙt]𝜎;𝜌 for the sum of the terms
of a that belong to [ℙt]𝜎;𝜌. For complexity estimates we often use the soft-Oh notation:
f (n)= Õ(g(n)) means that f (n)= g(n)(log(g(n)))O(1); see [4, chapter 25, section 7] for
technical details. An algebraic complexity model (e.g. straight-line programs) will be
used for counting operations in𝕂.

For i=1,..., t+1, there exists a unique integer Ri∈ℕ such that Γi equals Ri
−1ℤ; see [11,

section 3.1]. The (logarithmic) height of a rational number a/b is defined by

ht(a/b)≔log(max(|a|, |b|)),

where log represents the natural logarithm. The number of bits for storing a/b in a dense
fashion is asymptotically proportional to ht(a/b). Elements in a contact tower will be
represented by themixed dense-sparse representation described in section 2.3. A contact
polynomial P∈ℙt is said to be clustered if its canonical representative is monic in 𝜑t+1
of degree l⩾1 (that is Pl∈𝕂) and v(P;ℙt)= l𝛾t+1. The definitions of the quotient and
remainder of contact polynomials, written quo𝜑t+1 and rem𝜑t+1, are recalled in section 3.1.
With these conventions, we are now able to state our main result.

THEOREM 1.4. Let 𝜖>0 (thought to be arbitrarily small) [the 𝜖 notation is not so nice, because
of the 𝜖i and because it used without warning as an arbirarily small positive constants at several
places]. Given an almost reduced effectively separable and regular contact tower (ℙi)i⩽t and
𝜌∈Rt+1

−1 ℕ>0, we can compute auxiliary data (that only depend on the tower and 𝜌) using

Rt
−1 Õ(Dt

1+𝜖 rt+1Rt(𝜌+ht 𝛾t))

operations in 𝕂, such that, for any l∈ rt+1ℕ>0, the following tasks can be performed using

Rt+1
−1 Õ(Dt

1+𝜖 lRt+1𝜌)

operations in 𝕂:

• given A∈[(ℙt)<l]v(A;ℙt);𝜌 and B∈[(ℙt)<l]v(B;ℙt);𝜌, compute [AB;ℙt]v(A;ℙt)+v(B;ℙt);𝜌,

• given A∈ [(ℙt)<2l]v(A;ℙt);𝜌 and B ∈ [(ℙt)<l]v(B;ℙt);𝜌 clustered of degree l, compute
[A quo𝜑t+1 B;ℙt]v(A;ℙt)−v(B;ℙt);𝜌 and [A rem𝜑t+1 B;ℙt]v(A;ℙt);𝜌.

1.2. Related work

Theorem 1.4 contains the first nearly linear complexity bound for computing in contact
towers. This result relies on our previous fast algorithms for algebraic towers [9, 10].
We are not aware of any other method with subquadratic complexity. Of course, when
the relative precision is sufficiently large, a known fast strategy is to always work with
respect to the plain coordinates z,x, modulo appropriate conversions; see [11, section 3.6].
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Let P be irreducible in 𝕂((z))[x]. In characteristic zero or >deg P, rational Puiseux
expansions can be computed efficiently [18], hence𝔼=𝕂((z))[x]/(P(x)) becomes explic-
itly isomorphic to 𝔼′≔𝕂[𝛼]((z))[x]/(xe−𝛼 t), where 𝛼 is algebraic over𝕂 of degree s≔
(deg P)/e. In this way, arithmetic operations in 𝔼′ can be achieved in softly linear time.
The extension of this approach is tedious for small characteristic: Puiseux expansions
do not exist any longer and uniformizing parameters are not known to be computable
in quasi-linear time so far.

Contact towers (a term coined in [11]) constitute an alternate approach, that goes
back to Mac Lane [15] and that has been independently popularized by Abhyankar and
Moh [1, 2] in the seventies. In fact, the latter authors designed specific contact towers
from so-called approximate roots of P, that can be computed easily. Poteaux andWeimann
achieved a quasi-linear complexity bound for irreducibility testing [19]. Compared to
Puiseux expansions, contact towers yield more convenient algorithmic and geometric
views for germs of plane curves (the geometric counterpart of polynomials over power
series).

Puiseux expansions and contact towers are central tools for computing local irre-
ducible factorizations. Unless the characteristic is too small, fast algorithms have been
recently presented in [3, 11, 19, 20], to which we also refer for further bibliographical
references.

1.3. Overview of the paper
The paper divides into two parts: up to section 5 we gather definitions and design rather
elementary (but new) algorithms for contact towers and sparse arithmetic, and from
section 6 we focus on fast operations.

More precisely, the next section gathers notations and prerequisites about algo-
rithms for multivariate polynomials and power series that are truncated with respect to
a weighted valuation. In section 3 we design elementary algorithms for contact towers.
We assume that algorithms are known for some ℙh with h< t and we reduce compu-
tations in ℙt to operations in ℙh. Overall we achieve a product in ℙt whose cost grows
with 5t times the square of the input of the multiplicands. The goal of the next sections
is the construction of another tower that is isomorphic to ℙt but with a sufficiently small
height with respect to its degree Dt.

Let in(Φi) represent the initial form ofΦi, that is its homogenous component of lowest
valuation. In section 4 we show how to compute a univariate representation of

𝕂((z))[𝜑1, . . . ,𝜑t]/(in(Φ1), . . . , in(Φt))

over

𝕂((z))[𝜑1, . . . ,𝜑h]/(in(Φ1), . . . , in(Φh))

in terms of an invertible primitive element of valuationRt
−1. Wewill call this a univariate-

valued representation in terms of a primitive-valued element1.1. In section 5 this represen-
tation is lifted at a prescribed relative precision 𝜌 whenever

𝜌⩽min(𝛾h+1−dh𝛾h, 𝛾t+1−dt𝛾t),

1.1. Such an element is sometimes called a uniformizing parameter or a local parameter. Our terminology tries to
convey the idea that this is a primitive element both for the algebraic and valuative structures.
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in order to obtain a univariate-valued representation of ℙt over ℙh at precision 𝜌.
We introduce flattenings in section 6: they consists in replacing consecutive levels

of small degrees in a contact tower by a single level in a flattening. The problem is
much more intricate than for algebraic towers [9]: a first type of flattening computes
a univariate-valued representation, a second type is more straightforward to build but
conversions to this representation induce a loss of precision. In addition we will design
a specific fast flattened multiplication algorithm based on sparse arithmetic.

The different types of flattenings used in this article are presented in section 7. The
first type will handle the case where 𝜌⩽𝛾h+1− dh𝛾h and 𝜌⩽𝛾t+1− dt𝛾t so Φh=0 and
Φt=0 hold at relative precision 𝜌 in ℙt. We will show that computing in ℙt at relative
precision 𝜌 is equivalent to computing in ℙt/(𝜑t+1). By means of the univariate-valued
representation introduced in section 5, we will then construct an isomorphism between
ℙt/(𝜑t+1) and

(ℙh/(𝜑h+1))[�̃�]/(Φ̃(𝜑1, . . . ,𝜑h, �̃�))

where �̃� is primitive-valued for ℙt/(𝜑t+1) over ℙh/(𝜑h+1) and Φ̃ is its minimal polyno-
mial. It will be sufficient to perform these computations using a number of operations
in ℙh/(𝜑h+1) that remains polynomial in Dh

−1Dt. In fact Dh
−1Dt represents the degree of

the underlying flattening and it will be chosen of magnitudeO(Dt
𝜖), where 𝜖 can be fixed

arbitrarily small. Conversions betweenℙt/(𝜑t+1) and (ℙh/(𝜑h+1))[�̃�]/(Φ̃(𝜑1, . . .,𝜑h, �̃�))
will be performed without increasing the current precision 𝜌.

For the second type of flattening, wewill replaceℙt byℙh[𝜑t+1]/(Φ̃t−𝜑t+1), where Φ̃t
is constructed as follows: Φ̃h+1≔Φh+1 and

Φ̃i(𝜑1, . . . ,𝜑h+1)≔Φi(𝜑1, . . . ,𝜑h+1, Φ̃h+1(𝜑1, . . . ,𝜑h+1), . . . , Φ̃i−1(𝜑1, . . . ,𝜑h+1)),

for i= h+2, . . . , t. The conversions between ℙt and ℙh[𝜑t+1]/(Φ̃t−𝜑t+1) will be done
fast, but with a loss of precision of order Dh

−1Dt𝜌. So, once again, this flattening will be
used only when Dh

−1Dt=O(Dt
𝜖). The special case where h=0 was treated before in [11,

section 3.5] and corresponds to conversions between contact and plain coordinates.
Finally, the top level algorithms are presented in section 8, where we describe

a strategy to build efficient flattenings.

2. WEIGHTED POLYNOMIALS

In this sectionwe first gather notations and known facts about weightedmultivariate poly-
nomials and series. Then we design fast algorithms for multiplying truncated weighted
polynomials.

2.1. Notation

Let𝕃 be a commutative ring endowedwith a (semi-)valuation v, whose valuation group
is R0

−1ℤ for some R0∈ℕ>0. Let 𝜑1, . . . , 𝜑n be indeterminates. For any positive integers
l1, . . . , ln, we define

𝕃[𝜑1, . . . ,𝜑n]<(l1, . . . ,ln)≔{P∈𝕃[𝜑1, . . . ,𝜑n] :deg𝜑1 P< l1, . . . ,deg𝜑n P< ln}.
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For i=1, . . . ,n, we assign the weight 𝛾i∈ℚ>0 to 𝜑i and write val for the corresponding
weighted valuation of 𝕃[𝜑1, . . . ,𝜑n], that is

val(a𝜑1
e1 ⋅ ⋅ ⋅ 𝜑n

en)=v(a)+ e1𝛾1+ ⋅ ⋅ ⋅ + en𝛾n,

for all a∈𝕃. As in the above context of contact towers (where 𝕃=𝕂((z)) and R0=1) we
define

Ri
−1ℤ≔R0

−1ℤ+𝛾1ℤ+ ⋅ ⋅ ⋅ +𝛾iℤ, (2.1)

with Ri∈ℕ. Since Ri−1 divides Ri we can set ri≔Ri/Ri−1∈ℕ for i=1, . . .,n. Given 𝜎∈ℚ
and 𝜌∈ℚ>0 we write

[𝕃[𝜑1, . . . ,𝜑n]]𝜎;𝜌

for the 𝕃-module of polynomials of valuation ⩾𝜎 that are defined up to valuation 𝜎+𝜌,
whichmeans that two polynomials coincide in [𝕃[𝜑1,...,𝜑n]]𝜎;𝜌whenever their difference
has valuation ⩾𝜎+𝜌.

Since di𝛾i<𝛾i+1 for i=1, . . . , t, we have Rt𝛾i⩽Rt𝛾t and since the denominator of 𝛾i is
Ri we have

ht 𝛾i⩽ht 𝛾t. (2.2)

2.2. Sparse representation
A sparse representation of a polynomial P in 𝕂[𝜑1, . . . , 𝜑n] is a data structure that only
stores the non-zero terms of P. The support of P is the set of its monomials having a
non-zero coefficient. Each such term is a pair made of a coefficient and a degree vector.
In an algebraic complexity model the bit size of the exponents counts for free, and the
relevant size of such a polynomial is the cardinality of its support.

Consider two polynomials P and Q of 𝕂[𝜑1, . . . , 𝜑n] in sparse representation. An
extensive literature exists about the general problem of multiplying P andQ; see [17] for
a recent survey. In this paper, a superset 𝒮 of the support of PQ will always be known
and we will rely on the following classical result.

PROPOSITION 2.1. Let l1,..., ln be positive integers and let 𝜃∈𝕂 be of multiplicative order⩾l1 ⋅⋅⋅ ln.
Let 𝒮 be a subset of {0, . . . , l1−1}× ⋅ ⋅ ⋅ ×{0, . . . , ln−1}, and let

Θ≔(𝜃,𝜃 l1, 𝜃 l1l2, . . . , 𝜃 l1⋅ ⋅ ⋅ ln−1).

1. The value of Θ and the set𝒫 of all products (𝜃 e1, 𝜃 e2l1, . . . , 𝜃 enl1⋅ ⋅ ⋅ ln−1) for (e1, . . . , en)∈𝒮 can
be computed using O(|𝒮| log(l1 ⋅ ⋅ ⋅ ln)) operations in 𝕂.

2. Assume that 𝒫 has been precomputed. Let P be in 𝕂[𝜑1, . . . , 𝜑n]<(l1, . . . ,ln), in sparse repre-
sentation, and with a support included in 𝒮. All the values of P at {Θ0,Θ1, . . . ,Θ |𝒮|−1} can
be computed using Õ(|𝒮|) operations in 𝕂.

3. Assume that 𝒫 has been precomputed. Given y0, . . . ,y|𝒮|−1 in 𝕂, there exists a unique poly-
nomial P with support in 𝒮 such that P(Θ i)=yi, for i=0, . . . , |𝒮|−1. This polynomial P can
be computed using Õ(|𝒮|) operations in 𝕂.

Proof. The first statement is straightforward by means of binary powering. The second
and third ones are adapted from [8, section 5.2]. □
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As said, handling supports of sparse polynomials does not matter from the algebraic
complexity point of view. Nevertheless in the rest of this subsection we provide the
reader with a few bit complexity bounds for building prescribed sparse supports but
also for computing with sparse polynomials. The bit complexity is estimated for a RAM
model over a fixed ℤ/Nℤ, as in [4]. These analyses aim at showing that the algebraic
complexity bounds of this paper might be turned into bit complexity bounds. Yet a com-
plete proof is out of the scope of this paper. We begin with the support of truncated
polynomials in one variable.

LEMMA 2.2. Let 𝜎∈R1
−1ℤ, 𝜌∈R1

−1ℕ>0 and l1∈ r1ℕ>0. Then there exists a subset

𝒮𝜎,𝜌,l1⊆{0, . . . , l1−1}

of cardinality ⩽l1min(R0𝜌,1) such that for all polynomials

A= �
0⩽i<l1

Ai𝜑1
i ∈[𝕃[𝜑1]<l1]𝜎;𝜌

we have [Ai]𝜎−i𝛾1;𝜌=0 whenever i∉𝒮𝜎,𝜌,l1. The set 𝒮𝜎,𝜌,l1 can be computed using

Õ(logR0+ht 𝜎 +ht 𝜌+ht 𝛾1)+ Õ(l1)min(R0𝜌,1)
bit operations.

Proof. If R0𝜌⩾1 thenwe take 𝒮≔{0,..., l1−1}. Otherwise there exists an integer k∈{1,...,
r1− 1} such that 𝜌= k/R1. If k=1, that is 𝜌= 1/R1, then [Ai]𝜎−i𝛾1;𝜌= [Ai]𝜎−i𝛾1 is zero
whenever 𝜎− i𝛾1∉R0

−1ℤ, or equivalently whenever

R1𝜎− iR1𝛾1∉ r1ℤ. (2.3)

By (2.1) we know thatR1𝛾1 is coprimewith r1, so the condition (2.3) is further equivalent
to i≠ jmod r1, where

j≔(R1𝛾1)−1R1𝜎 mod r1,
so we take

𝒮𝜎,𝜌,l1≔(j+ r1ℤ)∩{0, . . . , l1−1}.

Since l1∈ r1ℕ the cardinality of 𝒮𝜎,𝜌,l1 is l1/r1=R0𝜌 l1. Computing the value of j takes
Õ(logR1+ht 𝜎 +ht 𝛾1) bit operations. Then the construction of 𝒮𝜎,𝜌,l1 takes

O((l1/r1) log l1)= Õ(l1)min(R0𝜌,1)

additional bit operations. If k⩾2, then we take

𝒮𝜎,𝜌,l1≔𝒮𝜎,1/R1,l1∪𝒮𝜎+1/R1,1/R1,l1∪ ⋅ ⋅ ⋅ ∪𝒮𝜎+(k−1)/R1,1/R1,l1,

whose cardinality is ⩽kR0 l1/R1=R0𝜌 l1. From the value of j computed for 𝜎, we deduce
the one for 𝜎+1/R1 as j+(R1𝛾1)−1mod r1 usingO(log r1) bit operations, so the total time
is as claimed. □

Here the support of a set of polynomials means the union of the supports of the poly-
nomials in this set. So, Lemma 2.2 means that the support of [𝕃[𝜑1]<l1]𝜎;𝜌 is a set of
monomials in𝜑1 of cardinality⩽l1min(R0𝜌,1). We extend this result to several variables.
Monomials in 𝜑1, . . . , 𝜑n are represented by vectors in ℕn and supports are sequences
of monomials.
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LEMMA 2.3. Let li∈ riℕ>0 for i=1, . . . ,n, let 𝜎 ∈Rn
−1ℤ, and let 𝜌∈Rn

−1ℕ>0. The support of
[𝕃[𝜑1, . . . ,𝜑n]<(l1, . . . ,ln)]𝜎;𝜌 has cardinality

⩽l1 ⋅ ⋅ ⋅ lnmin(R0𝜌,1)

and can be computed using

Õ(ht 𝜎 +nht 𝛾n)+ Õ(n l1 ⋅ ⋅ ⋅ ln)min(R0𝜌,1)

bit operations.

Proof. A homogeneous polynomial in 𝕃[𝜑1]<l1 has ⩽l1/r1= l1R0R1
−1 non-zero terms by

Lemma 2.2. A straightforward induction on n yields that any homogeneous polynomial
P in 𝕃[𝜑1, . . . ,𝜑n]<(l1, . . . ,ln) has at most ⩽l1 ⋅ ⋅ ⋅ lnR0Rn

−1 non-zero terms.
If the polynomial P is not homogeneous and if 𝜌= k/Rn<R0

−1, then the number of
non-zero terms is ⩽l1 ⋅ ⋅ ⋅ lnR0𝜌. If R0𝜌⩾1 then the bound on the number of monomials
is clear.

In order to compute the support of [𝕃[𝜑1, . . . , 𝜑n]<(l1, . . . ,ln)]𝜎 we begin by computing
Σ≔Rn𝜎 modRn, si≔ li/ri, and Gi=Rn𝛾imodRn, for i=1, . . . ,n using

Õ(ht 𝜎 +ht 𝛾1+ ⋅ ⋅ ⋅ +ht 𝛾n+n logRn+log(l1 ⋅ ⋅ ⋅ ln))
= Õ(ht 𝜎 +nht 𝛾n+n logRn+log(l1 ⋅ ⋅ ⋅ ln))

bit operations, by (2.2). Then kn≔val𝜑n P is the smallest nonnegative integer such that
𝜎 − kn 𝛾n∈Rn−1

−1 ℤ or equivalently that Σ−Gn kn∈ rnℤ. By (2.1) we know that Gn is
coprime with rn, so we obtain

kn≔Gn
−1Σmod rn

in time Õ(logRn). Without loss of generality we can replace 𝜎 by Σ/Rn and 𝛾i by Gi/Rn
for computing supports. Let us write

P=𝜑n
kn�P0+P1𝜑n

rn+ ⋅ ⋅ ⋅ +Psn−1𝜑n
(sn−1)rn�,

where

Pi∈[𝕃[𝜑1, . . . ,𝜑n−1]<(l1, . . . ,ln−1)]𝜎−(irn+kn)𝛾n.

Recursively we compute the support of Pi for i=0,...,sn−1, and deduce the support of P
in time

O(sn l1 ⋅ ⋅ ⋅ ln−1R0Rn−1
−1 log(l1 ⋅ ⋅ ⋅ ln))=O(s1 ⋅ ⋅ ⋅ snR0 log(l1 ⋅ ⋅ ⋅ ln)).

Let C(n) denote the cost for computing the support of a homogeneous polynomial in
𝕃[𝜑1, . . . ,𝜑n]<(l1, . . . ,ln). We have shown that

C(n)= snC(n−1)+O(s1 ⋅ ⋅ ⋅ snR0 log(l1 ⋅ ⋅ ⋅ ln)).

Unrolling this recurrence yields

C(n)=O(ns1 ⋅ ⋅ ⋅ snR0 log(l1 ⋅ ⋅ ⋅ ln))= Õ(n l1 ⋅ ⋅ ⋅ ln)R0Rn
−1.

For the next homogeneous component, of valuation 𝜎 +Rn
−1, we replace Σ by (Σ+

1)modRn and restart the computation of the support. Consequently, for 𝜌=k/Rn<R0
−1

we need to compute the support of k homogeneous polynomials. □
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2.3. Truncated polynomials
For a truncated polynomial P in [𝕂((z))[𝜑1,...,𝜑n]<(l1, . . . ,ln)]𝜎;𝜌weuse amixed dense-sparse
representation. Precisely, we store 𝜎 and the sequence of homogeneous components

([P]𝜎+i/Rn)i=0, . . . ,Rn𝜌−1,

where each [P]𝜎+i/Rn is stored as the sparse representation of its specialization at z=1,
that belongs to 𝕂[𝜑1, . . . ,𝜑n]<(l1, . . . ,ln).

LEMMA 2.4. Let li∈riℕ>0 for i=1,.. .,n, let 𝜎∈Rn
−1ℤ, and let 𝜌∈Rn

−1ℕ>0. The support with
respect to z,𝜑1, . . . ,𝜑n of [𝕂((z))[𝜑1, . . . ,𝜑n]<(l1, . . . ,ln)]𝜎;𝜌 has cardinality ⩽l1 ⋅ ⋅ ⋅ ln𝜌 and can be
computed using

Õ(ht 𝜎 +nht 𝛾n)+ Õ(n l1 ⋅ ⋅ ⋅ ln)𝜌
bit operations.

Proof. Weadapt the proof of Lemma 2.3, withR0=1. Let P∈[𝕂((z))[𝜑1,...,𝜑n]<(l1, . . . ,ln)]𝜎;𝜌.
Each homogeneous component of P has ⩽l1 ⋅ ⋅ ⋅ lnRn

−1 monomials in 𝕂[z, 𝜑1, . . . , 𝜑n]. A
polynomial with relative precision 𝜌 has ⩽Rn𝜌 homogeneous components. □

Given 𝜎∈Rn
−1ℤ and 𝜌∈Rn

−1ℕ>0, we will use the dense-sparse representation to mul-
tiply polynomials

A∈[𝕂((z))[𝜑1, . . . ,𝜑n]<(l1, . . . ,ln)]𝜎A;𝜌 and B∈[𝕂((z))[𝜑1, . . . ,𝜑n]<(l1, . . . ,ln)]𝜎B;𝜌

efficiently. Note that AB∈[𝕂((z))[𝜑1, . . . ,𝜑n]<(2l1−1, . . . ,2ln−1)]𝜎A+𝜎B;2𝜌.

PROPOSITION 2.5. Given li∈ riℕ>0 for i= 1, . . . , n, two polynomials A∈ [𝕂((z))[𝜑1, . . . ,
𝜑n]<(l1, . . . ,ln)]𝜎A;𝜌 and B∈[𝕂((z))[𝜑1, . . . ,𝜑n]<(l1, . . . ,ln)]𝜎B;𝜌 can be multiplied using

Rn
−1 Õ(2n l1 ⋅ ⋅ ⋅ lnRn𝜌)

operations in 𝕂 and Õ(ht 𝜎A+ht 𝜎B+ht 𝛾n)+ Õ(2n l1 ⋅ ⋅ ⋅ ln)𝜌 bit operations.

Proof. Let C≔AB, 𝜎C≔𝜎A+𝜎B, and

I ≔ {𝜎A, 𝜎A+Rn
−1, . . . , 𝜎A+𝜌−Rn

−1}∪{𝜎B, 𝜎B+Rn
−1, . . . , 𝜎B+𝜌−Rn

−1}
∪{𝜎C, 𝜎C+Rn

−1, . . . , 𝜎C+2𝜌−Rn
−1}.

For i∈Rn
−1ℤ, we write 𝒮 i for the support of [𝕂((z))[𝜑1, . . .,𝜑n]<(2l1, . . . ,2ln)]i where z is spe-

cialized at 1. Since 𝒮 i=𝒮 i+1, it suffices to compute the 𝒮 i for i∈ Imod 1. By Lemma 2.4,
this takes

Õ(ht 𝜎A+ht 𝜎B+ht 𝛾1+ ⋅ ⋅ ⋅ +ht 𝛾n)+ Õ(2n l1 ⋅ ⋅ ⋅ ln)𝜌
= Õ(ht 𝜎A+ht 𝜎B+ht 𝛾n)+ Õ(2n l1 ⋅ ⋅ ⋅ ln)𝜌 (using (2.2))

bit operations, and we have |𝒮 i|⩽2n l1 ⋅ ⋅ ⋅ lnRn
−1.

Assume that we are given an element 𝜃∈𝕂 of multiplicative order ⩾2n l1 ⋅ ⋅ ⋅ ln, so we
apply Proposition 2.1 with 2 li instead of li. For each i∈ Imod 1, we compute Θ and the
set 𝒫 i corresponding to 𝒮 i using

O(2n l1 ⋅ ⋅ ⋅ lnRn
−1 log(2n l1 ⋅ ⋅ ⋅ ln))+ Õ(2n l1 ⋅ ⋅ ⋅ lnRn

−1)=Rn
−1 Õ(2n l1 ⋅ ⋅ ⋅ ln)
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operations in𝕂. Then we define

Ā(t)(𝜑1, . . . ,𝜑n)=A(t, t𝛾1𝜑1, . . . , t𝛾n𝜑n)= t𝜎A �
0⩽i<Rn𝜌

[A]𝜎A+i/Rn(1,𝜑1, . . . ,𝜑n) t i/Rn

that belongs to𝕂((t1/Rn))[𝜑1, . . . ,𝜑n]. We define B̄ similarly. By Proposition 2.1 we com-
pute Ā(t)(Θ j) and B̄(t)(Θ j) for j=0, . . . , |𝒮 i|−1 using

Õ(2n l1 ⋅ ⋅ ⋅ lnRn
−1)Rn𝜌.

We compute C̄(t)(Θ j)= Ā(t)(Θ j) B̄(t)(Θ j) for j=0,..., |𝒮 i|−1 at relative precision 𝜌 using

O(2n l1 ⋅ ⋅ ⋅ lnRn
−1) Õ(Rn𝜌)=Rn

−1 Õ(2n l1 ⋅ ⋅ ⋅ lnRn𝜌)

operations in𝕂. Then we interpolate C from C̄ using Proposition 2.1 again.
Finally, if we are not given an element 𝜃∈𝕂 of multiplicative order ⩾2n l1 ⋅ ⋅ ⋅ ln, then

we appeal to [12, Proposition A.2]: the overhead only induces logarithmic factors in the
complexity bound. □

3. ELEMENTARY CONTACT ARITHMETIC

Given a contact tower as in Definition 1.1, we are interested in computing the product
of two elements A and B in ℙt with relative precision 𝜌>0. This section is devoted to
relatively simple algorithms, on which the faster ones of section 7 will rely.

3.1. Generalized contact towers
As a first observation, since we are interested in computing with relative precision 𝜌
inℙt, we show that the defining polynomialΦi−𝜑i+1 can be replaced byΦi in the defin-
ition of ℙt whenever 𝛾i+1−di𝛾i⩾𝜌 holds. For this purpose we introduce integers 𝜖1, . . . ,
𝜖t in {0,1} and the generalized contact tower

ℙi
𝜖≔𝕂((z))[𝜑1, . . . ,𝜑i+1]/(Φ1−𝜖1𝜑2, . . . ,Φi−𝜖i𝜑i+1), for i=1, . . . , t.

Generalized contact towers share many of the properties of contact towers. We gather
the results needed in the sequel, along with brief proofs adapted from [11].

PROPOSITION 3.1. For i=1, . . . , t, any P∈ℙi
𝜖 admits a unique representative of the form

P= �
k1<d1, . . . ,ki<di,ki+1∈ℕ

Pk1, . . . ,ki+1𝜑1
k1 ⋅ ⋅ ⋅ 𝜑i+1

ki+1∈𝕂((z))[𝜑1, . . . ,𝜑i]<(d1, . . . ,di)[𝜑i+1],

which we call the canonical representative of P.

Proof. Assume that the polynomial P, written as above, belongs to the ideal

Ii𝜖≔(Φ1−𝜖1𝜑2, . . . ,Φi−𝜖i𝜑i+1).

If P is not identically zero, then its initial form in(P; ℙi) is non-zero. The proof of [11,
Lemma 3.7] extends to Ii𝜖 mutatis mutandis and gives us that

in(Ii𝜖)=(in(Φ1), . . . , in(Φi)).

Finally [11, Lemma 3.4] implies that in(P;ℙi) must be zero, that is a contradiction. □
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PROPOSITION 3.2. For i=1, . . . , t the map

v(⋅;ℙi
𝜖): ℙi

𝜖 → ℤ+ℤ𝛾1+ ⋅ ⋅ ⋅ +ℤ𝛾i+1∪{∞}
P ↦ min{valz Pk1, . . . ,ki+1+k1𝛾1+ ⋅ ⋅ ⋅ +ki+1𝛾i+1 :k1<d1, . . . ,ki<di,ki+1∈ℕ}

is a valuation of ℙi
𝜖, that inherits the weighted grading of 𝕂((z))[[𝜑1, . . . ,𝜑t+1]].

Proof. By routine adaptation of the proof of [11, Proposition 3.22]. □

The integer Ri∈ℕ defined by

Ri
−1ℤ=ℤ+𝛾1ℤ+ ⋅ ⋅ ⋅ +𝛾iℤ

is called the ramification index of v(⋅;ℙi) and v(⋅;ℙi
𝜖), for i=0, . . . , t+1. From Defini-

tion 1.1 it is clear that Ri divides d1 ⋅ ⋅ ⋅ di. By construction, Ri−1 divides Ri, and

ri≔Ri/Ri−1,
divides di, for i=1, . . . , t.

Elements inℙt
𝜖 will be called generalized contact polynomials. Such a polynomial P

will be usually written
P=Pl𝜑t+1

l + ⋅ ⋅ ⋅ +P1𝜑t+1+P0,

with Pi∈𝕂((z))[𝜑1, . . . , 𝜑t]<(d1, . . . ,dt) and Pl≠0. This is called the contact representation
of P. The integer l is called the degree of P in 𝜑t+1 and is written deg𝜑t+1P. We will write
(ℙt

𝜖)<l for the set of contact polynomials ofℙt
𝜖 of degree<l in 𝜑t+1. A contact polynomial

P∈ℙt
𝜖 is said to be clustered if its canonical representative is monic in 𝜑t+1 of degree l⩾1

(that is Pl∈𝕂) and v(P;ℙt
𝜖)= l𝛾t+1. Note that Φi is clustered in ℙi−1

𝜖 .
LetA and B be contact polynomials inℙt

𝜖, if B is clustered of degree n, then there exist
unique elements Qi∈(ℙt

𝜖)<n such that

A=�
i⩾0

QiB i.

This decomposition is adapted from [11, Lemma 3.12] and yields a natural notion of
division: there exists unique contact polynomials R∈(ℙt

𝜖)<n and Q∈ℙt
𝜖 such that

A=QB+R.

The quotient Q is written A quo𝜑t+1 B and the remainder R is written A rem𝜑t+1 B.
Now let A=∑i⩾0Ai𝜑t+1

i and B=∑i⩾0 Bi𝜑t+1
i be contact polynomials inℙt and let us

compute their product C=AB=∑i⩾0 Ci𝜑t+1
i , where

Ci≔ �
k+l=i

AkBl∈(ℙt)<2.

Each Ci writes canonically into Ci=ci+ci′Φt with ci and ci′ inℙt−1. Now if 𝛾t+1−dt𝛾t⩾𝜌,
then we have

[Ci;ℙt]v(A;ℙt)+v(B;ℙt)−i𝛾t+1;𝜌=[ci;ℙt−1]v(A;ℙt)+v(B;ℙt)−i𝛾t+1;𝜌.

In other words, computing [A B; ℙt]v(A;ℙt)+v(B;ℙt);𝜌 in ℙt is the same as in ℙt
𝜖 when

𝜖1= ⋅ ⋅ ⋅ = 𝜖t−1=1 and 𝜖t=0. By decreasing induction on t, it follows that computing
[AB;ℙt]v(A;ℙt)+v(B;ℙt);𝜌 in ℙt is the same as in ℙt

𝜖 where we set 𝜖i≔0 when 𝛾i+1− di𝛾i⩾
𝜌, and 𝜖i≔1 otherwise for i=1, . . . , t.
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The rest of this section is devoted to rather elementary algorithms for multiplying
elements in a generalized contact tower at a given relative precision 𝜌. In order to keep
the notation simple, we drop the superscript 𝜖 for generalized contact towers. So, unless
specified, contact towers will be of the generalized kind.

3.2. Cost functions
Given a clustered contact polynomial F∈ℙt of degree l⩾1 in 𝜑t+1, its pre-inverse will
refer to the clustered contact polynomial G∈ℙt of degree l in 𝜑t+1 such that

FG∈𝜑t+1
2l +(ℙt)<l.

Since FH∉𝜑t+1
2l +(ℙt)<l holds for all H∈(ℙt)<l, if a pre-inverse exists, then it is neces-

sarily unique. The existence of pre-inverses is addressed in section 3.5. We introduce the
following cost functions:
• A(d1, . . . , dt, l; 𝜌) is a function that bounds the cost for adding two elements in ℙt of

degree <l in 𝜑t+1 with relative precision ⩽𝜌.
• M(d1, . . . ,dt, l; 𝜌) is a function that bounds the cost for multiplying two elements in ℙt

of degree <l in 𝜑t+1 with relative precision ⩽𝜌.
• D(d1,...,dt, l;𝜌) bounds the cost of a division inℙt of a contact polynomial of degree<2 l

by a clustered contact polynomial of ℙt of degree lwith relative precision ⩽𝜌.
• I(d1, . . . ,dt, l; 𝜌) bounds the cost for computing the pre-inverse of a clustered contact

polynomial in ℙt of degree l in 𝜑t+1 with relative precision ⩽𝜌.
• B(d1, . . . ,dt, l; 𝜌)≔2A(d1, . . . ,dt, l; 𝜌)+M(d1, . . . ,dt, l; 𝜌)+D(d1, . . . ,dt, l; 𝜌).

LEMMA 3.3. Without loss of generality, we may always assume that

M(d1, . . . ,dt, 1; 𝜌)⩽M(d1, . . . ,dt; 𝜌)+D(d1, . . . ,dt; 𝜌).

Proof. LetA and B be in (ℙt)<1. Regarded in (ℙt−1)<dt their productC=AB costs⩽M(d1,...,
dt; 𝜌). We divide C by Φt in ℙt−1 with ⩽D(d1, . . . ,dt; 𝜌) operations. Let Q and R denote
the resulting quotientQ and remainder, so C=QΦt+R. SinceQ has valuation v(A;ℙt)+
v(B;ℙt)−dt𝛾t, and since 𝛾t+1>dt𝛾t, we have

[AB;ℙt]v(A;ℙt)+v(B;ℙt);𝜌=𝜖t [Q;ℙt]v(A;ℙt)+v(B;ℙt)−𝛾t+1;𝜌𝜑t+1+[R;ℙt]v(A;ℙt)+v(B;ℙt);𝜌. □

LEMMA 3.4. Let F be a clustered polynomial in ℙt of degree l in 𝜑t+1, together with its
pre-inverse G. For all P∈ (ℙt)<l at relative precision 𝜌 > 0, there exists a unique U ∈
[(ℙt)<l]v(P;ℙt);𝜌 such that

[P;ℙt]v(P;ℙt);𝜌=[(UF) quo𝜑t+1𝜑t+1
l ;ℙt]v(P;ℙt);𝜌. (3.1)

It is given by U=[(GP) quo𝜑t+1𝜑t+1
l ;ℙt]v(P;ℙt);𝜌.

Proof. Equation (3.1) corresponds to searching for U ∈ [(ℙt)<l]v(P;ℙt);𝜌 and R∈
[(ℙt)<l]v(P;ℙt)+l𝛾t+1;𝜌 such that

[UF;ℙt]v(P;ℙt)+l𝛾t+1;𝜌=[P𝜑t+1
l +R;ℙt]v(P;ℙt)+l𝛾t+1;𝜌,
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which implies that

0 = [GP𝜑t+1
l −UGF+GR;ℙt]v(P;ℙt)+2l𝛾t+1;𝜌

∈ [GP𝜑t+1
l −U �𝜑t+1

2l +(ℙt)<l�+GR;ℙt]v(P;ℙt)+2l𝛾t+1;𝜌,

so U=[(GP) quo𝜑t+1𝜑t+1
l ;ℙt]v(P;ℙt);𝜌 is the unique solution of Equation (3.1). □

3.3. Multiplication
The following simple multiplication algorithm in ℙt makes use of operations in ℙt−1,
whose cost functions are assumed to be as in section 3.2.

Algorithm 3.1
Input. A=∑i=0

l−1Ai𝜑t+1
i ∈[ℙt]𝜎A;𝜌 and B=∑i=0

l−1 Bi𝜑t+1
i ∈[ℙt]𝜎B;𝜌 of degree <l in 𝜑t+1.

Output. [AB;ℙt]𝜎A+𝜎B;𝜌.

1. For i=0, . . . , 2 l−2
compute Li+Hi𝜑t+1≔∑kA+kB=i [AkABkB;ℙt]𝜎A+𝜎B−i𝛾t+1;𝜌.

2. Return L0+(H0+L1)𝜑t+1+ ⋅ ⋅ ⋅ +(H2l−3+L2l−2)𝜑t+1
2l−2+H2l−2𝜑t+1

2l−1.

PROPOSITION 3.5. Algorithm 3.1 is correct and performs

⩽2B(d1, . . . ,dt;max(Rt
−1, 𝜌)) (min(Rt𝜌,1) l)2

operations in 𝕂, whenever 𝜌∈Rt+1
−1 ℕ>0 and l∈ rt+1ℕ>0.

Proof. The correctness is straightforward from the definitions. The number of non-zero
terms in A is ⩽min (Rt 𝜌, 1) l by Lemma 2.2. The number of non-zero products AkABkB
performed in step 1 is therefore ⩽(min(Rt𝜌,1) l)2, so this step costs

⩽(2A(d1, . . . ,dt; 𝜌)+M(d1, . . . ,dt; 𝜌)+D(d1, . . . ,dt; 𝜌)) (min(Rt𝜌,1) l)2

thanks to Lemma 3.3. Step 2 takes

⩽2A(d1, . . . ,dt; 𝜌)min(Rt𝜌,1) l

operations in 𝕂. Since l∈ rt+1ℕ>0, we use min(Rt𝜌, 1) l⩾1 in order to simply the final
cost bound. □

3.4. Division
Let F=∑i=0

l Fi𝜑t+1
i ∈ℙt be a clustered polynomial of degree l in 𝜑t+1 and let P∈(ℙt)<l.

We address the computation of the quotient P quo𝜑t+1 F and the remainder of P rem𝜑t+1 F
at relative precision 𝜌∈Rt+1

−1 ℕ>0. We assume that the pre-inverse 𝜑t+1+ g of 𝜑t+1+Fl−1
is at our disposal at relative precision 𝜌.

Algorithm 3.2
Input. A clustered polynomial F∈[ℙt]l𝛾t+1;𝜌 of degree l in 𝜑t+1, P∈[(ℙt)<2l]v(P;ℙt);𝜌, and

the pre-inverse 𝜑t+1+ g of 𝜑t+1+Fl−1 at relative precision 𝜌.
Output. [P quo𝜑t+1 F;ℙt]v(P;ℙt)−l𝛾t+1;𝜌 and [P rem𝜑t+1 F;ℙt]v(P;ℙt);𝜌.

1. Set R≔P.
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2. For i from 2 l−1 down to l do:
a. Compute Qi−l≔[((𝜑t+1+ g)Ri) quo 𝜑t+1;ℙt]v(P;ℙt)−i𝛾t+1;𝜌, where Ri represents

the coefficient of 𝜑t+1
i in the contact representation of R;

b. Replace R by R− [Qi−l𝜑t+1
i−l F;ℙt]v(P;ℙt);𝜌.

3. Return∑i=0
l−1Qi𝜑t+1

i and R.

PROPOSITION 3.6. Algorithm 3.2 is correct and performs

⩽2B(d1, . . . ,dt;max(Rt
−1, 𝜌)) (min(Rt𝜌,1) l)2

operations in 𝕂 whenever 𝜌∈Rt+1
−1 ℕ>0 and l∈ rt+1ℕ>0.

Proof. For a fixed value of i in step 2, by Lemma 3.4, we have

Ri=[Qi−l (𝜑t+1+Fl−1) quo 𝜑t+1;ℙt]v(P;ℙt)−i𝛾t+1;𝜌,

so the algorithm finishes with the expected quotient and remainder. The number of
non-zero coefficients Ri encountered during step 2 is ⩽min (Rt 𝜌, 1) l by Lemma 2.2.
According to Lemma 3.3, step 2.a costs ⩽B(d1, . . . ,dt; 𝜌). Step 2.b costs

⩽B(d1, . . . ,dt; 𝜌)min(Rt𝜌,1) l.

Finally we use min(Rt𝜌,1) l⩾1. □

3.5. Pre-inverse
Given F=∑i=0

l Fi 𝜑t+1
i ∈ℙt clustered of degree l in 𝜑t+1, we wish to compute its pre-

inverse G with relative precision 𝜌. We adapt the well-known method for power series
inversion. The algorithm is recursive on the height t. If t= 0 then the pre-inverse of
𝜑1+Fl−1 is 𝜑1−Fl−1 because Fl−1∈𝕂((z)).

LEMMA 3.7. If g is the pre-inverse of Φt+Fl−1 regarded as a clustered polynomial in ℙt−1 of
degree dt in 𝜑t and at relative precision 𝜌, then

�𝜑t+1−�g�(Fl−1Φt) quo𝜑t 𝜑t
dt�� quo𝜑t 𝜑t

dt;ℙt�𝛾t+1;𝜌

is the pre-inverse of 𝜑t+1+Fl−1 at relative precision 𝜌.

Proof. Since v(Fl−1;ℙt−1)⩾𝛾t+1>dt𝛾t,Φt+Fl−1 is clustered inℙt−1, so g is well defined.
Computing the pre-inverse of 𝜑t+1+Fl−1 means finding u∈[(ℙt)<1]𝛾t+1;𝜌 such that

[(𝜑t+1+u)(𝜑t+1+Fl−1);ℙt]2𝛾t+1;𝜌∈𝜑t+1
2 +(ℙt)<1.

This condition is equivalent to

[𝜑t+1(u+Fl−1)+uFl−1;ℙt]2𝛾t+1;𝜌∈(ℙt)<1,

that is further equivalent to

[u+Fl−1;ℙt−1]𝛾t+1;𝜌=−[(uFl−1) quo𝜑t Φt;ℙt−1]𝛾t+1;𝜌,
in ℙt−1, then to

[Fl−1Φt+u(Φt+Fl−1);ℙt−1]𝛾t+1+dt𝛾t;𝜌∈(ℙt−1)<dt,
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and finally to

�(Fl−1Φt) quo𝜑t 𝜑t
dt;ℙt−1�𝛾t+1;𝜌=−�(u(Φt+Fl−1)) quo𝜑t 𝜑t

dt;ℙt−1�𝛾t+1;𝜌.

From Lemma 3.4 we deduce that u=−��g�(Fl−1Φt) quo𝜑t 𝜑t
dt�� quo𝜑t 𝜑t

dt;ℙt−1�𝛾t+1;𝜌. □

LEMMA 3.8. Let k∈{1, . . . , l−1} and let G∈𝜑t+1
l +𝜑t+1

l−k (ℙt)<k be clustered of degree l in 𝜑t+1
such that

[FG;ℙt]2l𝛾t+1;𝜌∈𝜑t+1
2l +(ℙt)<2l−k.

There exists a unique Gl−(k+1)∈[(ℙt)<1](k+1)𝛾t+1;𝜌 such that

�F�G+Gl−(k+1)𝜑t+1
l−(k+1)�;ℙt�2l𝛾t+1;𝜌∈𝜑t+1

2l +(ℙt)<2l−(k+1).
It is given by

Gl−(k+1)≔−[(c (𝜑t+1+Gl−1)) quo𝜑t+1𝜑t+1;ℙt](k+1)𝛾t+1;𝜌,

where Gl−1 is the coefficient of 𝜑t+1
l−1 in G and c∈(ℙt)<1 is defined by

[FG;ℙt]2l𝛾t+1;𝜌=𝜑t+1
2l + c𝜑t+1

2l−(k+1)+(ℙt)<2l−(k+1).

Proof. From
F�G+Gl−(k+1)𝜑t+1

l−(k+1)�=FG+Gl−(k+1)𝜑t+1
l−(k+1)F,

the condition for Gl−(k+1) is equivalent to

[c+(Gl−(k+1)(𝜑t+1+Fl−1) quo𝜑t+1𝜑t+1);ℙt](k+1)𝛾t+1;𝜌∈(ℙt)<1.

Since 𝜑t+1+Gl−1 is the pre-inverse of 𝜑t+1+ Fl−1 at relative precision 𝜌, there exists a
unique solution for Gl−(k+1) given by Lemma 3.4. □

A straightforward induction based on the two latter lemmas shows that pre-inverses
do exist.

PROPOSITION 3.9. The pre-inverse of a clustered contact polynomial F∈ℙt of degree l∈rt+1ℕ>0

in 𝜑t+1 can be computed at relative precision 𝜌∈Rt+1
−1 ℕ>0 using

⩽4B(d1, . . . ,dt;max(Rt
−1, 𝜌)) (min(Rt𝜌,1) l)2+ I(d1, . . . ,dt;max(Rt

−1, 𝜌))

operations in 𝕂.

Proof. From Lemmas 3.7 and 3.3 we can compute the pre-inverse of

F quo𝜑t+1𝜑t+1
l−1=𝜑t+1+Fl−1

at relative precision 𝜌 using

⩽I(d1, . . . ,dt; 𝜌)+2B(d1, . . . ,dt;max(Rt
−1, 𝜌))

operations in 𝕂. By induction on k, suppose that the pre-inverse G of F quo𝜑t+1 𝜑t+1
l−k is

known along with the product GF, for some k⩾1 and still at relative precision 𝜌. Thanks
to Lemma 3.8 we deduce the pre-inverse G̃ of F quo𝜑t+1𝜑t+1

l−(k+1) in the form

G̃≔G𝜑t+1+Gl−(k+1)
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with a cost ⩽B(d1, . . . ,dt; 𝜌). The product

G̃F=GF𝜑t+1+Gl−(k+1)F

at relative precision 𝜌 costs

⩽B(d1, . . . ,dt;max(Rt
−1, 𝜌))min(Rt𝜌,1) l.

By taking the sum of these costs for k=1, . . . , l−1 and for when Gl−(k+1) is known to be
non-zero at relative precision 𝜌, we achieve the total bound

⩽ B(d1, . . . ,dt;max(Rt
−1, 𝜌)) (min(Rt𝜌,1) l(min(Rt𝜌,1) l+1)+2)

+ I(d1, . . . ,dt;max(Rt
−1, 𝜌))

for the pre-inverse of F. Finallywe usemin(Rt𝜌,1) l⩾1 in order to simplify this bound. □

3.6. From height h to t
So farwe have reduced operations inℙt to operations inℙt−1. Nowwe proceed by induc-
tion in order to reduce operations in ℙt to operations in ℙh for any fixed h< t.

LEMMA 3.10. For all h⩽ t and all 𝜌>0 we have

min(Rt𝜌,1)min(Rhmax(Rt
−1, 𝜌), 1)=min(Rh𝜌,1).

Proof. If 𝜌<Rt
−1 then

min(Rt𝜌,1)min(Rhmax(Rt
−1, 𝜌), 1)=Rt𝜌min(Rt

−1Rh, 1)=Rh𝜌=min(Rh𝜌,1).

Otherwise we have Rt
−1⩽𝜌, hence

min(Rt𝜌,1)min(Rhmax(Rt
−1, 𝜌), 1)=min(Rh𝜌,1). □

PROPOSITION 3.11. Let h∈{0, . . . , t}, 𝜌∈Rt+1
−1 ℕ>0, l∈ rt+1ℕ>0, and let F∈ℙt be a clustered

polynomial of degree l in 𝜑t+1. Let Φi,di−1∈(ℙi)<1 denote the coefficient of 𝜑i+1
di−1 in Φi. Then

the pre-inverses of 𝜑h+1+Φh+1,dh+1−1, . . . ,𝜑t+Φt,dt−1, 𝜑t+1+Fl−1 can be obtained with a cost

⩽ 5t−h+1B(d1, . . . ,dh;max(Rh
−1, 𝜌)) (min(Rhmax(Rt

−1, 𝜌), 1)dh+1 ⋅ ⋅ ⋅ dt)2

+ I(d1, . . . ,dh;max(Rh
−1, 𝜌)) (t−h+1).

Once these pre-inverses are known, we may compute in ℙt with the cost bound

B(d1, . . . ,dt, l; 𝜌)⩽5t−h+1B(d1, . . . ,dh;max(Rh
−1, 𝜌)) (min(Rh𝜌,1)dh+1 ⋅ ⋅ ⋅ dt l)2,

where underlying divisions in 𝜑t+1 are only allowed by F.
In addition, given the pre-inverses of 𝜑h+1+Φh+1,dh+1−1, . . . , 𝜑t+Φt,dt−1 we have

I(d1, . . . ,dt, l; 𝜌) ⩽ 5t−h+1B(d1, . . . ,dh;max(Rh
−1, 𝜌)) (min(Rh𝜌,1)dh+1 ⋅ ⋅ ⋅ dt l)2

+ I(d1, . . . ,dh;max(Rh
−1, 𝜌)).

Proof. From Proposition 3.5 we may take

M(d1, . . . ,dt, l; 𝜌)⩽2B(d1, . . . ,dt;max(Rt
−1, 𝜌)) (min(Rt𝜌,1) l)2.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 17



Assuming that the pre-inverse of 𝜑t+1+Fl−1 is known, thanks to Proposition 3.6, for divi-
sions by F, we may take

D(d1, . . . ,dt, l; 𝜌)⩽2B(d1, . . . ,dt;max(Rt
−1, 𝜌)) (min(Rt𝜌,1) l)2.

From Lemma 2.2 we straightforwardly obtain

A(d1, . . . ,dt, l; 𝜌)⩽A(d1, . . . ,dt;max(Rt
−1, 𝜌))min(Rt𝜌,1) l.

By summing these three inequalities and using min(Rt𝜌,1) l⩾1, we deduce

B(d1, . . . ,dt, l; 𝜌)⩽5B(d1, . . . ,dt;max(Rt
−1, 𝜌)) (min(Rt𝜌,1) l)2.

By unrolling the latter inequality and using Lemma 3.10, we obtain that

B(d1, . . . ,dt, l; 𝜌)
⩽ 52B(d1, . . . ,dt−1;max(Rt−1

−1 , 𝜌)) (min(Rt−1max(Rt
−1, 𝜌), 1)dtmin(Rt𝜌,1) l)2

⩽ 52B(d1, . . . ,dt−1;max(Rt−1
−1 , 𝜌)) (min(Rt−1𝜌,1)dt l)2

⋅⋅⋅
⩽ 5t−h+1B(d1, . . . ,dh;max(Rh

−1, 𝜌)) (min(Rh𝜌,1)dh+1 ⋅ ⋅ ⋅ dt l)2, (3.2)

whenever the pre-inverses of 𝜑h+1+Φh+1,dh+1−1, . . . , 𝜑t+Φt,dt−1, 𝜑t+1+Fl−1 are known.
From Proposition 3.9 we know that

I(d1, . . . ,dt, l; 𝜌)⩽4B(d1, . . . ,dt;max(Rt
−1, 𝜌)) (min(Rt𝜌,1) l)2+ I(d1, . . . ,dt;max(Rt

−1, 𝜌)).

By using (3.2) and Lemma 3.10 we deduce that

I(d1, . . . ,dt, l; 𝜌)
⩽ 4×5t−hB(d1, . . . ,dh;max(Rh

−1, 𝜌)) (min(Rt𝜌,1)min(Rhmax(Rt
−1, 𝜌), 1)dh+1 ⋅ ⋅ ⋅ dt l)2

+ I(d1, . . . ,dt;max(Rt
−1, 𝜌))

⩽ 4×5t−hB(d1, . . . ,dh;max(Rh
−1, 𝜌)) (min(Rh𝜌,1)dh+1 ⋅ ⋅ ⋅ dt l)2

+ I(d1, . . . ,dt;max(Rt
−1, 𝜌)).

Iterating the latter inequality yields

I(d1, . . . ,dt, l; 𝜌)
⩽ 4B(d1, . . . ,dh;max(Rh

−1, 𝜌))
×(5t−h(min(Rhmax(Rt+1

−1 ,𝜌),1)dh+1 ⋅⋅⋅dt l)2+⋅⋅⋅+5(min(Rhmax(Rh+1
−1 ,𝜌),1)dh+1)2)

+ I(d1, . . . ,dh;max(Rh
−1, 𝜌))

⩽ 4B(d1, . . . ,dh;max(Rh
−1, 𝜌))

×(5t−h(min(Rh𝜌,1)dh+1 ⋅ ⋅ ⋅ dt l)2+ ⋅ ⋅ ⋅ +5(min(Rh𝜌,1)dh+1 ⋅ ⋅ ⋅ dt l)2)
+ I(d1, . . . ,dh;max(Rh

−1, 𝜌))
⩽ 5t−h+1B(d1, . . . ,dh;max(Rh

−1, 𝜌)) (min(Rh𝜌,1)dh+1 ⋅ ⋅ ⋅ dt l)2

+ I(d1, . . . ,dh;max(Rh
−1, 𝜌)). (3.3)

From Lemmas 3.3 and 3.7 the pre-inverse of 𝜑t+1+Fl−1 is obtained at relative precision 𝜌
using

⩽I(d1, . . . ,dt;max(Rt
−1, 𝜌))+2B(d1, . . . ,dt;max(Rt

−1, 𝜌))
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operations in 𝕂. Consequently, the cost for obtaining the pre-inverses of 𝜑h+1+
Φh+1,dh+1−1, . . . , 𝜑t+Φt,dt−1, 𝜑t+1+Fl−1 is

⩽ I(d1, . . . ,dt;max(Rt
−1, 𝜌))+ ⋅ ⋅ ⋅ + I(d1, . . . ,dh;max(Rh

−1, 𝜌))
+2B(d1, . . . ,dt;max(Rt

−1, 𝜌))+ ⋅ ⋅ ⋅ +2B(d1, . . . ,dh;max(Rh
−1, 𝜌))

⩽ 5t−hB(d1, . . . ,dh;max(Rh
−1, 𝜌)) (min(Rhmax(Rt

−1, 𝜌), 1)dh+1 ⋅ ⋅ ⋅ dt)2

+ I(d1, . . . ,dh;max(Rh
−1, 𝜌))

⋅ ⋅ ⋅
+5B(d1, . . . ,dh;max(Rh

−1, 𝜌)) (min(Rhmax(Rh
−1, 𝜌), 1)dh+1)2

+ I(d1, . . . ,dh;max(Rh
−1, 𝜌)) (by using (3.3))

+I(d1, . . . ,dh;max(Rh
−1, 𝜌))

+2×5t−hB(d1, . . . ,dh;max(Rh
−1, 𝜌)) (min(Rhmax(Rt

−1, 𝜌), 1)dh+1 ⋅ ⋅ ⋅ dt)2

⋅ ⋅ ⋅
+2×5B(d1, . . . ,dh;max(Rh

−1, 𝜌)) (min(Rhmax(Rh+1
−1 , 𝜌), 1)dh+1)2

+2B(d1, . . . ,dh;max(Rh
−1, 𝜌)) (by using (3.2))

⩽ 5t−hB(d1, . . . ,dh;max(Rh
−1, 𝜌)) (min(Rhmax(Rt

−1, 𝜌), 1)dh+1 ⋅ ⋅ ⋅ dt)2

+ I(d1, . . . ,dh;max(Rh
−1, 𝜌))

⋅ ⋅ ⋅
+5B(d1, . . . ,dh;max(Rh

−1, 𝜌)) (min(Rhmax(Rt
−1, 𝜌), 1)dh+1 ⋅ ⋅ ⋅ dt)2

+ I(d1, . . . ,dh;max(Rh
−1, 𝜌))

+I(d1, . . . ,dh;max(Rh
−1, 𝜌))

+2×5t−hB(d1, . . . ,dh;max(Rh
−1, 𝜌)) (min(Rhmax(Rt

−1, 𝜌), 1)dh+1 ⋅ ⋅ ⋅ dt)2

⋅ ⋅ ⋅
+2×5B(d1, . . . ,dh;max(Rh

−1, 𝜌)) (min(Rhmax(Rt
−1, 𝜌), 1)dh+1 ⋅ ⋅ ⋅ dt)2

+2B(d1, . . . ,dh;max(Rh
−1, 𝜌))

⩽ 5t−h+1B(d1, . . . ,dh;max(Rh
−1, 𝜌)) (min(Rhmax(Rt

−1, 𝜌), 1)dh+1 ⋅ ⋅ ⋅ dt)2

+(t−h+1) I(d1, . . . ,dh;max(Rh
−1, 𝜌)),

which concludes the proof. □

3.7. Fast division
So far we have designed rather elementary algorithms for contact towers, that will be
useful to section 7. Computing pre-inverses faster will be useful as well. The following
lemma is adapted from the usual fast power series inversion method.

LEMMA 3.12. Let F and G be clustered monic contact polynomials of ℙt of degree l in 𝜑t+1 and
let k⩽ l be such that

[FG;ℙt]2l𝛾t+1;𝜌∈𝜑t+1
2l +(ℙt)<2l−k.

Then for any e⩽k, G quo 𝜑t+1
l−e is the pre-inverse of F quo 𝜑t+1

l−e at precision 𝜌.

Proof. Let F1≔Fquo𝜑t+1𝜑t+1
l−e , F0≔F rem𝜑t+1𝜑t+1

l−e ,G1≔Gquo𝜑t+1𝜑t+1
l−e ,G0≔G rem𝜑t+1𝜑t+1

l−e .
From

[�F1𝜑t+1
l−e+F0� �G1𝜑t+1

l−e+G0�;ℙt]2l𝛾t+1;𝜌∈𝜑t+1
2l +(ℙt)<2l−k,
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we obtain

�F1G1𝜑t+1
2(l−e)+(F1G0+F0G1)𝜑t+1

l−e+F0G0;ℙt�2l𝛾t+1;𝜌∈𝜑t+1
2l +(ℙt)<2l−k.

Since deg𝜑t+1(F1G0+F0G1)< l and deg𝜑t+1(F0G0)<2(l− e), we deduce that

[F1G1;ℙt]2e𝛾t+1;𝜌∈𝜑t+1
2e +(ℙt)<2e−k.

The conclusion follows from 2 e−k⩽ e. □

LEMMA 3.13. Let k∈{1, . . . , l− 1}, let K≔min(2 k, l), and let G∈ℙt be clustered of degree l
in 𝜑t+1 such that

[FG;ℙt]2l𝛾t+1;𝜌∈𝜑t+1
2l +(ℙt)<2l−k.

There exists a unique G̃∈[(ℙt)<K−k]K𝛾t+1;𝜌 such that

[F�G+ G̃𝜑t+1
l−K�;ℙt]2l𝛾t+1;𝜌∈𝜑t+1

2l +(ℙt)<2l−K.
It is given by

G̃=���G quo𝜑t+1𝜑t+1
l−(K−k)�C� quo𝜑t+1𝜑t+1

K−k;ℙt�K𝛾t+1;𝜌,

where C∈(ℙt)<K−k is defined by

[FG;ℙt]2l𝛾t+1;𝜌=𝜑t+1
2l +C𝜑t+1

2l−K+(ℙt)<2l−K.

Proof. From
F�G+ G̃𝜑t+1

l−K�=FG+FG̃𝜑t+1
l−K,

the condition for G̃ becomes

[C𝜑t+1
l +FG̃;ℙt](l+K)𝛾t+1;𝜌∈(ℙt)<l

and then
C=���F quo𝜑t+1𝜑t+1

l−(K−k)� G̃� quo𝜑t+1𝜑t+1
K−k;ℙt�K𝛾t+1;𝜌.

By Lemma 3.12, G quo𝜑t+1𝜑t+1
l−(K−k) is the pre-inverse of F quo𝜑t+1𝜑t+1

l−(K−k) at relative pre-
cision 𝜌. There exists a unique solution for G̃ given by Lemma 3.4. □

PROPOSITION 3.14. The pre-inverse of a clustered contact polynomial F∈ℙt of degree l in 𝜑t+1
can be computed at relative precision 𝜌∈Rt+1

−1 ℕ>0 using

O(M(d1, . . . ,dt, l; 𝜌) log l)+ I(d1, . . . ,dt;max(Rt
−1, 𝜌))

operations in 𝕂 whenever l∈ rt+1ℕ>0.

Proof. From Lemma 3.7 we can compute the pre-inverse of

F quo𝜑t+1𝜑t+1
l−1=𝜑t+1+Fl−1

at relative precision 𝜌 using

⩽I(d1, . . . ,dt;max(Rt
−1, 𝜌))+O(M(d1, . . . ,dt, l; 𝜌)+A(d1, . . . ,dt, l; 𝜌))

operations in𝕂. This makes it possible to apply Lemma 3.13O(log l) times, with k=1,2,
4, . . . , in order to obtain the pre-inverse of F using

O(M(d1, . . . ,dt, l; 𝜌) log l)
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operations in𝕂. □

As for usual polynomials, pre-inverses are used to reduce divisions to multiplica-
tions.

LEMMA 3.15. Let F be a clustered monic contact polynomials of ℙt of degree l in 𝜑t+1, let G be
its pre-inverse, and let A∈(ℙt)<2l. The quotient Q≔A quo𝜑t+1 F can be computed as

Q=GA quo𝜑t+1𝜑t+1
2l .

Proof. Let W≔GF−𝜑t+1
2l ∈(ℙt)<l, and let R≔A rem𝜑t+1 F, so we have

A=QF+R.

By multiplying both sides of this equality by Gwe obtain

GA=QGF+GR=Q�𝜑t+1
2l +W�+GR=Q𝜑t+1

2l +QW+GR,

whence Q=GA quo𝜑t+1𝜑t+1
2l . □

PROPOSITION 3.16. Let F be a clustered monic contact polynomial of ℙt of degree l∈rt+1ℕ>0 in
𝜑t+1 and given at precision 𝜌∈Rt+1

−1 ℕ>0. Given the pre-inverse G of F at precision 𝜌, the division
of a contact polynomial of (ℙt)<2l at precision 𝜌 costs

O(M(d1, . . . ,dt, l; 𝜌)+A(d1, . . . ,dt, l; 𝜌)).

Proof. This follows from Lemma 3.15. □

4. INITIAL PRIMITIVE-VALUED REPRESENTATION

Throughout this section, (ℙi)i⩽t represents a generalized contact tower as inDefinition 1.1
and h< t is a fixed integer. We will assume that 𝜖h=𝜖t=0 so that 𝕂((z))⊆ℙh/(𝜑h+1)⊆
ℙt/(𝜑t+1) is a tower of algebraic extensions. One important question is how to compute
efficiently in ℙt/(𝜑t+1), provided that we know how to compute efficiently in ℙh/(𝜑h).
We will achieve this by representing elements in ℙt/(𝜑t+1) as follows.

DEFINITION 4.1. A univariate-valued representation of ℙt/(𝜑t+1) over ℙh/(𝜑h+1) at pre-
cision 𝜌∈Rt

−1ℕ>0 is made of the following data:
• a homogeneous primitive element 𝜛 of ℙt/(𝜑t+1) over ℙh/(𝜑h+1) of valuation Rt

−1,
• an initially separable monic polynomial 𝜒(T)∈(ℙh/(𝜑h+1))[T] of degree Dh

−1Dt, of valua-
tion (Dh

−1Dt)Rt
−1 at relative precision 𝜌, where T has valuation Rt

−1,
• polynomials wh+1(T), . . . ,wt(T) in (ℙh/(𝜑h+1))[T]<Dh

−1Dt
of valuations 𝛾h+1, . . . , 𝛾t and at

relative precision 𝜌.
These data satisfy the following properties:
• [(𝜛(𝜑1, . . . ,𝜑h,wh+1(T), . . . ,wt(T))−T) rem 𝜒(T)]Rt

−1;𝜌=0,
• [𝜒(𝜛);ℙt](Dh

−1Dt)Rt
−1;𝜌=0,

• [(Φi(𝜑1, . . . ,𝜑h,wh+1(T), . . . ,wt(T))−𝜖iwi+1(T)) rem 𝜒(T)]di𝛾i;𝜌=0, for i=h+1, . . . , t.
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Any element of ℙt/(𝜑t+1) can uniquely be represented as an element of ℙh/(𝜑h+1)[T]/(𝜒(T))
via the following isomorphism:

ℙh/(𝜑h+1)[T]/(𝜒(T)) ≅ ℙt/(𝜑t+1)
T ↦ 𝜛

wi(T) ↤ 𝜑i for i=h+1, . . . , t.

In this section, we focus on the computation of an initial primitive-valued representation,
which is simply a univariate-valued representation of minimal precision 𝜌=Rt

−1. For this
purpose, we define

𝕀i≔𝕂((z))[𝜑1, . . . ,𝜑i]/(in(Φ1), . . . , in(Φi)),

for i=1, . . . , t. Computing an initial univariate-valued representation of ℙt/(𝜑t+1) over
ℙh/(𝜑h+1) essentially amounts to computing a homogeneous element 𝜛 in 𝕀t of valua-
tion Rt

−1 such that the map

𝕀h[T] → 𝕀t
T ↦ 𝜛

is surjective. We call such a 𝜛 a primitive-valued element of 𝕀t over 𝕀h. Its minimal poly-
nomial 𝜒 over 𝕀h is the monic generator of the kernel of this map. It is homogeneous
of degree Dh

−1Dt. The surjectivity further implies the existence of homogeneous poly-
nomials wh+1, . . . ,wt in 𝕀h[T]<Dh

−1Dt
such that 𝜑i=wi(𝜛) holds for i= h+1, . . . , t. These

polynomials are obtained as a byproduct of the computation of 𝜛 and, together with 𝜛,
give rise to the desired initial univariate-valued representation.

It is classical that 𝕀t is isomorphic to an algebra of the form 𝔸t((z))[T]/(TRt− 𝜁 T),
where 𝔸t is an algebraic extension of 𝕂 and 𝜁 ∈𝔸t; see [11, section 6]. On the level of
coefficients, we are therefore led to compute in so-called algebraic towers (𝔸i)i⩽t over𝕂.
Some relevant complexity results for such computations are recalled in section 4.1.

Now direct computations in𝔸t((z))[T]/(TRt−𝜁T) can become expensive for towers
of large heights, since every next floor gives rise to a constant overhead. This explains
the interest of doing relative computations of 𝕀t over 𝕀h: using the univariate-valued rep-
resentation, this will allow us to bundle all floors between level h and t into a single
univariate extension, for which we can use fast univariate arithmetic, in the same spirit
as the accelerated tower arithmetic from [9]. In section 4.2, we first construct an iso-
morphism Υ of the form 𝕀t≅ �̇�t((z))[Th,Tt]/�Th

Rh− 𝜌h z,Tt
Rh
−1Rt− 𝜁tTh�, where 𝜌h∈𝔸h

and 𝜌t∈�̇�t. Here �̇�t is a primitive algebraic extension of𝔸h that is isomorphic to𝔸t (in
particular, computations in �̇�t will be more efficient than computations in𝔸t).

A natural candidate for a primitive-valued 𝜛 for 𝕀t over 𝕀h is Y−1(Tt). Although this
element is not always primitive, as we shall show in section 4.3, it turns out that we may
always take 𝜛≔Y−1(𝜃Tt) for some suitable value of 𝜃 in �̇�t. In section 4.4 we show how
to compute 𝜒, wh+1, . . . ,wt, and derive the desired initial primitive-valued representation
of ℙt/(𝜑t+1) over ℙh/(𝜑h+1).

Remark 4.2. From amathematical perspective, it is not essential that𝜛 be homogeneous
in Definition 4.1. Nonetheless, this is naturally the case for initial primitive-valued rep-
resentations, and this property also simplifies computations. Furthermore, it turns out
that we can keep the same primitive-valued element 𝜛 when lifting our representation
to higher precisions, as we will show in section 5 below.
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4.1. Separable algebraic towers
A separable (algebraic) tower over𝕂 is a sequence (𝔸i)i⩽t with𝔸0≔𝕂 and

𝔸i≔𝔸i−1[xi]/(𝜇i(xi)), for i=1, . . . , t,

where the 𝜇i(xi)∈𝔸i−1[xi] are monic separable polynomials. We write 𝛼i for the image
of xi in𝔸i and set si≔deg 𝜇i for i=1, . . . , t. We will write

Si≔ s1 ⋅ ⋅ ⋅ si
for the degree of 𝔸i over 𝕂. The tower is said to be effectively separable when we are
further given ui and vi in𝔸i−1[xi] of respective degree<deg 𝜇i and<deg𝜇i−1 such that
the Bézout relation

1=ui𝜇i′+vi𝜇i

holds, for i=1, . . . , t. Throughout the rest of this paper, without loss of generality, we
will freely assume that such towers are simplified so that si⩾2 holds for i=1, . . . , t. The
cardinality of𝕂will be written card𝕂. We will rely on the following complexity bound.

PROPOSITION 4.3. Let 𝜖<1/2 be a fixed positive constant, that can be taken arbitrarily close
to 0. Given an explicitly separable tower (𝔸i)i⩽t, one multiplication and one inversion (when the
inverse exists) in 𝔸t costs

Õ(St
1+𝜖)

operations in 𝕂.

Proof. If card𝕂>�St2�, then the result directly follows from [10, Theorem 4]. Otherwise,
with the notation of [10, section 7], we observe that the assumption on card 𝕂 is only
needed to build primitive tower representations of degree<𝛿=O(St

𝜖), so it is sufficient to
assume card𝕂>�𝛿2� instead. After that, if card𝕂⩽�𝛿2�⩽St, then we appeal to [12, Propo-
sition A.2]: the overhead only induces logarithmic factors in the complexity bound. □

The next lemma addresses the complexity for obtaining a univariate representation
of𝔸t over𝔸h for a given h< t. For the purpose of this paper, this complexity bound does
not need to be sharp because Sh

−1St will be taken relatively small.

LEMMA 4.4. Let h< t and assume card𝕂>�Sh
−1St
2

�. There exist 𝜈h+1, . . . , 𝜈t in 𝔸h, Ξ∈𝔸h[U]
separable and monic of degree Sh

−1St, and Ah+1, . . . ,At∈𝔸h[U]<Sh−1St such that

𝔸t → �̇�t≔𝔸h[U]/(Ξ(U))
𝛼i ↦ Ai(U) for i=h+1, . . . , t

is an 𝔸h-algebra isomorphism and that

(𝜈h+1Ah+1(U)+ ⋅ ⋅ ⋅ +𝜈tAt(U)−U) remΞ(U)=0.

In addition, if we are given >�Sh
−1St
2

� distinct elements in 𝕂, then such a univariate represen-
tation 𝜈h+1, . . . , 𝜈t, Ξ, Ah+1, . . . ,At of 𝔸t over 𝔸h can be computed using

Õ(Sh
1+𝜖 (Sh

−1St)3)

operations in 𝕂. One conversion between 𝔸t and �̇�t costs Õ(Sh
1+𝜖 (Sh

−1St)2) operations in 𝕂.
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Proof. If 𝔸h is a field, then [9, Corollary 1] allows us to compute the univariate repre-
sentation �̇�t of 𝔸t over 𝔸h using Õ((Sh

−1St)3) operations in 𝔸h. In general, 𝔸h is not a
field, but panoramic evaluation can be used to simulate field operations in it. Precisely
we appeal to [10, Corollary 1] in order to run the algorithm underlying [9, Corollary 1]:
using

Õ(Sh
1+𝜖 (Sh

−1St)3)

operations in𝕂, we obtain a so-called panoramic splitting

P: 𝔸h≅𝔻1⊕ ⋅ ⋅ ⋅ ⊕𝔻ℓ

of 𝔸h and univariate representations 𝜈h+1
(j) , . . . , 𝜈t

(j), Ξ(j), Ah+1
(j) , . . . ,At

(j) for the restrictions
of𝔸t over𝔻j for j=1, . . . , ℓ. We further know from [10, Corollary 1] that one evaluation
of P and P−1 takes Õ(Sh

1+𝜖) operations in 𝕂. Finally, we take 𝜈i≔P−1�𝜈i
(1), . . . , 𝜈i

(ℓ)� for
i=h+1, . . . , t. We extend P to 𝔸h[T] coefficient-wise, and set Ξ≔P−1(Ξ(1), . . . ,Ξ(ℓ)) and
Ai≔P−1�Ai

(1), . . . ,Ai
(ℓ)� for i=h+1, . . . , t.

The cost of the conversions between 𝔸t and �̇�t is addressed in [9, Proposition 5],
which simplifies to Õ((Sh

−1St)2) operations in 𝔸h: these conversions only involve ring
operations in𝔸h, so [9, Proposition 5] can be used even if 𝔸h is not a field. □

4.2. Relative ramified and primitive constant extensions
It is known that 𝕀i decomposes into a separable extension of 𝕂 followed by purely ram-
ified extensions; see for instance [11, section 6]. Given h< t, we use this decomposition
in order to compute a univariate-valued representation of 𝕀t over 𝕀h. We let

Si≔Di/Ri and si≔Si−1
−1 Si for i=1, . . . , t.

We begin with a first technical rewriting of 𝕀t, summarized in the following lemma.

LEMMA 4.5. Let (ℙi)i⩽t be an almost reduced, effectively separable and regular contact tower, let
h< t, and assume that we are given >�Sh

−1St
2

� distinct elements in 𝕂. Using

Õ(St
1+𝜖 (ht 𝛾t log3Dt+(Sh

−1St)2 logDt))

operations in 𝕂, we can compute the following data:
• An effectively separable algebraic tower (𝔸i)i⩽t as in section 4.1;
• A univariate representation 𝜈h+1, . . . , 𝜈t, Ξ, Ah+1, . . . ,At of 𝔸t over 𝔸h, as in Lemma 4.4;
• 𝜌h,c1, . . .,ch in𝔸h, 𝜁t,ch+1, . . . ,ct in �̇�t, e1, . . ., et in ℤ, f1, . . ., ft in {0, . . . ,Rh−1} and gh+1, . . .,

gt in {0, . . . ,Rt−1} such that

Y: 𝕀t ≅ �̇�t((z))[Th,Tt]/�Th
Rh−𝜌hz,Tt

Rh
−1Rt−𝜁tTh�,

𝜑i ↦ cizeiTh
fi for i=1, . . . ,h

𝜑i ↦ cizeiTh
fiTt

gi for i=h+1, . . . , t

is a 𝕂((z))-algebra isomorphism, that preserves the valuation, when setting v(Th)≔Rh
−1

and v(Tt)≔Rt
−1.

One evaluation of Y and Y−1 at a homogeneous element costs

Õ(St
1+𝜖 (ht 𝛾t log2Dt+Sh

−1St))
operations in 𝕂.
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Proof. By [11, Proposition 13] we can compute a so-called initial expansion [11, Defini-
tion 10] of (ℙi)i⩽t, using

Õ(St
1+𝜖 log(dt𝛾tDt) log2Dt)= Õ(St

1+𝜖ht 𝛾t log3Dt) (4.1)

operations in𝕂. In particular, combined with [11, Proposition 12], we obtain:
• An effectively separable tower

𝔸0≔𝕂 and 𝔸i≔𝔸i−1[xi]/(𝜇i(xi)), for i=1, . . . , t,

where 𝜇i is monic of degree si>0 in 𝔸i−1[xi]. For i=1, . . . , t, the class 𝛼i of xi in 𝔸i is
invertible and its inverse is known.

• For i=1,..., t, an invertible 𝜌i∈𝔸i and its inverse, along with a𝕂((z))-algebra isomor-
phism

Εi: 𝕀i ≅ 𝔸i((z))[Ti]/�Ti
Ri−𝜌iz�

that preserves the valuation for the weight Ri
−1 of Ti and such that one evaluation

of Εi and Εi
−1 in valuation 𝜎∈Ri

−1ℤwith |𝜎|<1 costs

Õ(Si
1+𝜖 log((|𝜎|+di𝛾i)Ri) logDi) = Õ(Si

1+𝜖ht 𝛾i log2Di)
= Õ(Si

1+𝜖ht 𝛾t log2Dt), (4.2)

by (2.2). Note that this complexity bound further holds for any valuation, up to
rescaling the arguments of Εi and Εi

−1 by a suitable power of z.
Then, we compute 𝜃t∈𝔸t invertible such that Et(Eh

−1(Th))=𝜃t−1Tt
Rh
−1Rt holds, and define

the 𝔸t((z))-algebra isomorphism

F: 𝔸t((z))[Tt]/(Tt
Rt−𝜌tz) ≅ 𝔸t((z))[Th,Tt]/�Th

Rh−𝜌hz,Tt
Rh
−1Rt−𝜃tTh�

Tt ↦ Tt.

Thanks to Lemma 4.4, we may compute a univariate representation of 𝔸t over𝔸h using

Õ(Sh
1+𝜖 (Sh

−1St)3)= Õ(St
1+𝜖 (Sh

−1St)2) (4.3)

operations in𝕂. Lemma 4.4 also ensures that one conversion between𝔸t and �̇�t costs

Õ(Sh
1+𝜖 (Sh

−1St)2)= Õ(St
1+𝜖 (Sh

−1St)). (4.4)

In particular we compute 𝜁t≔A(𝜃t) with this cost, and extend A coefficient-wise into Ā:

𝔸t((z))[Th,Tt]/�Th
Rh−𝜌hz,Tt

Rh
−1Rt−𝜃tTh�

≅ �̇�t((z))[Th,Tt]/�Th
Rh−𝜌hz,Tt

Rh
−1Rt−𝜁tTh�.

Finally, we set
Y≔Ā∘F∘Et.

For i=1, . . . ,h, we take ei≔(𝛾iRh) quoRh, fi≔(𝛾iRh) remRh, and ci∈𝔸h such that

Y(𝜑i)=Εh(𝜑i)= cizeiTh
fi.

For i=h+1, . . . , t, we compute 𝜍i invertible in𝔸t such that

Εt(𝜑i)=𝜍iz ẽiTt
f̃i,
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where ẽi≔(Rt 𝛾i) quo Rt and f̃i≔(Rt 𝛾i) rem Rt. Writing ei′ ≔ f̃i quo (Rh
−1Rt) and fi′ ≔

f̃i rem (Rh
−1Rt), we obtain that

F�𝜍iz ẽiTt
f̃i� = 𝜍iz ẽi�Tt

Rh
−1Rt�ei′Tt

fi′mod �Tt
Rh
−1Rt−𝜃tTh�

= 𝜍i𝜃tei
′z ẽiTh

ei′Tt
fi′

= 𝜍i𝜃tei
′z ẽi(𝜌hz)ei′quoRhTh

ei′ remRhTt
fi′

= 𝜍i𝜃tei
′𝜌h

ei′quoRhz ẽi+ei′quoRhTh
ei′ remRhTt

fi′,

so we take
𝜎i≔𝜍i𝜃tei

′𝜌h
ei′quoRh, ei≔ ẽi+ ei′ quoRh, fi≔ ei′ remRh, gi≔ fi′.

In this way, O(ht 𝛾i+ht 𝛾t) products in 𝔸t suffice to obtain 𝜎i from 𝜍i, that is O(ht 𝛾t)
products thanks to (2.2).

The total cost of this construction of Y is the sum of (4.1), (4.3),O(logDt) evaluations
of Eh, Eh

−1, Et of cost (4.2),O(logDt) conversions from𝔸t to �̇�t of cost (4.4), andO(ht 𝛾t)
further products in𝔸t.

When evaluating Y (resp. Y−1) at a homogeneous element, the contribution of Ā
(resp. of Ā−1) costs (4.4), since a homogeneous element of 𝔸t((z))[Th,Tt]/�Th

Rh− 𝜌h z,
Tt
Rh
−1Rt−𝜃tTh� is represented uniquely in the form czeTh

fTt
g, where c∈𝔸t, e∈ℤ, 0⩽ f <Rh,

0⩽g<Rh
−1Rt. For such an element czeTh

fTt
g we have

F−1�czeTh
fTt

g�= c𝜃t
− f zeTt

g+ f (Rh
−1Rt).

Therefore, one evaluation of F or F−1 costs

Õ(St
1+𝜖 logRh)= Õ(St

1+𝜖 logDt). (4.5)

Finally, the cost of one evaluation of Y or Y−1 at a homogeneous element is bounded by
the sum of (4.2), (4.4), and (4.5). □

Example 4.6. Let us consider the contact tower over 𝕂≔𝔽11=ℤ/11ℤ defined by t≔3,
𝛾1≔1/2, 𝛾2≔5/4, 𝛾3≔41/8, and

Φ1(𝜑1) ≔ 𝜑1
2−z

Φ2(𝜑1,𝜑2) ≔ 𝜑2
4−z5+z6

Φ3(𝜑1,𝜑2,𝜑3) ≔ 𝜑3
4−z18𝜑2

2.

At the first level of the contact tower, we have r1=2, s1=1, and we take 𝜇1(x1)≔x1−1,
whence 𝔸1≅𝕂, 𝛼1=1, and

𝕀1≅𝔸1((z))[y1]/(y12−z).

Since the image 𝜋1 of y1 in 𝕀1 is primitive-valued, we may define

Ε1: 𝕀1 ≅ 𝔸1((z))[T1]/(T1
2−z)

𝜑1 ↦ T1.

At the second level, in(Φ2) is rewritten 𝜑2
4−𝜋1

10 over 𝕀1, whence r2=2 and s1=2. We set
𝜇2(x1,x2)≔x22−1, hence 𝔸2≅𝕂[x2]/(x22−1), and obtain

𝕀2≅𝔸2((z))[y1,y2]/(y12−z,y22−𝛼2z2y1),
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where 𝛼2 is the image of x2 in 𝔸2. Taking the image 𝜋2 of z−1 y2 in 𝕀2 for a primitive-
valued element, we define

Ε2: 𝕀2 ≅ 𝔸2((z))[T2]/(T2
4−z)

𝜑1 ↦ 𝛼2T2
2

𝜑2 ↦ zT2.

For the third level of the contact tower, in(Φ3) is rewritten 𝜑3
4− z20𝜋2

2 over 𝕀2, whence
r3=2 and s2=2. We set 𝜇3(x1,x2,x3)≔x32−1 and obtain

𝕀3≅𝔸3((z))[y1,y2,y3]/(y12−z,y22−𝛼2z2y1,y32−𝛼3z9y2).

Taking the image 𝜋3 of 𝛼2z−5y3 in 𝕀3 for a primitive-valued element, we define

Ε3: 𝕀3 ≅ 𝔸3((z))[T3]/(T3
8−z)

𝜑1 ↦ 𝛼2T3
4

𝜑2 ↦ 𝛼3zT3
2

𝜑3 ↦ 𝛼2z5T3.

Now, let us build the map Y of Lemma 4.5 for h≔1. For the univariate representation
of 𝔸3 over𝔸1, we use the primitive element x2+2x3, hence

Ξ(U)=(U−3)(U−1)(U+3)(U+1),

and obtain

A: 𝔸3 → �̇�3≔𝔸1[U]/(Ξ(U))
𝛼2 ↦ A2(U)≔2U3−3U
𝛼3 ↦ A3(U)≔−U3+2U.

We deduce the following expression for Y:

Y: 𝕀3 ≅ �̇�3((z))[T1,T3]/(T1
2−z,T3

4−A2(U)T1),
𝜑1 ↦ T1

𝜑2 ↦ A3(U)zT32

𝜑3 ↦ A2(U)z5T3.

4.3. Construction of primitive-valued elements
Anatural candidate for a primitive element of minimal valuation for 𝕀t over 𝕀h is Y−1(Tt).
Unfortunately, it is not always primitive, as illustrated by the following example.

Example 4.7. (Continued from Example 4.6) The minimal polynomial of Y−1(T3) over 𝕀1
is ∏Ξ(𝜉)=0 (T

4−A2(𝜉)T1)= (T4−T1)2 (T4+T1)2=(T8− z)2, which is not separable. So
Y−1(Tt) is not a primitive element of 𝕀3 over 𝕀1.

We will show in the proof of Proposition 4.10 that Y−1(𝜃Tt) is indeed primitive for 𝕀t
over 𝕀h for suitable values of 𝜃 in �̇�t. We begin with a technical lemma, where Λ stands
for a new polynomial variable: in the context of Lemma 4.4, if U is a primitive element
of 𝔸t over𝔸h, then (U+𝜆)Rh

−1Rt𝜁t(U) is also primitive for almost all 𝜆∈𝕂.
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LEMMA 4.8. Let the assumptions and the notation be as in Lemma 4.5, assume that we are
given >(Dh

−1Dt)2 elements in 𝕂, and let

Ψ(Ũ,Λ)≔ResU�Ξ(U), Ũ− (U+Λ)Rh
−1Rt𝜁t(U)�∈𝔸h[Ũ,Λ],

where 𝜁t(U) represents the pre-image of 𝜁t in 𝔸h[U]<Sh−1Sh. Using

Õ(Sh
1+𝜖 (Dh

−1Dt)6)

operations in 𝕂, we can compute 𝜆∈𝔸h, Ξ̃(Ũ)≔Ψ(Ũ, 𝜆), and V∈𝔸h[Ũ]<Sh−1St such that:
i. U+𝜆 is invertible modulo Ξ(U),
ii. Ξ̃(Ũ) is separable,

iii. V�(U+𝜆)Rh
−1Rt𝜁t(U)�−U=0modΞ(U).

Proof. Let us first assume that 𝔸h is a field. Given 𝜆∈𝔸h, note that Ξ(U− 𝜆) is the
minimal polynomial of U+𝜆 in𝔸h[U]/(Ξ(U)). Therefore if 𝜉 is a root of Ξ in a suitable
algebraic closure, then 𝜉 +𝜆 is invertible if and only if Ξ(−𝜆) is non-zero. Consequently
at most Sh

−1St values of 𝜆 do not satisfy property (i). Letting

Δ(Λ)≔DiscŨ(Ψ(Ũ,Λ))∈𝔸h[Λ],

the multiplicativity of the resultant yields

Ψ(Ũ,Λ) = �
Ξ(𝜉)=0

�Ũ− (𝜉 +Λ)Rh
−1Rt𝜁t(𝜉)�

Δ(Λ) = ± �
Ξ(𝜉)=Ξ(𝜉 ′)=0

𝜉≠𝜉 ′

Δ𝜉,𝜉 ′(Λ),

where
Δ𝜉,𝜉 ′(Λ)≔(𝜉 +Λ)Rh

−1Rt𝜁t(𝜉)− (𝜉 ′+Λ)Rh
−1Rt𝜁t(𝜉 ′).

Since 𝕀t is a separable extension of 𝕂((z)), the polynomial TtRt− 𝜌t z is separable in Tt,
and therefore Rt is invertible in𝕂. Consequently, if 𝜁h(𝜉)=𝜁h(𝜉 ′), then the leading term
of Δ𝜉,𝜉 ′(Λ) is

Rh
−1Rt(𝜉−𝜉 ′)𝜁t(𝜉)ΛRh

−1Rt−1.

If 𝜁h(𝜉)≠𝜁h(𝜉 ′), then Δ𝜉,𝜉 ′(Λ) clearly has degree Rh
−1Rt in Λ. It follows that Δ is not the

zero polynomial and that at most (Rh
−1Rt)�Sh

−1St
2

� values of 𝜆 do not satisfy property (ii).
Since

Sh
−1St+(Rh

−1Rt)�Sh
−1St
2 �⩽(Dh

−1Dt)2

there exists a suitable value for 𝜆 in any given setℒ of cardinality (Dh
−1Dt)2+1. In order

to find a suitable value, it suffices to evaluate Ξ(−Λ)Δ(Λ) at all the points of ℒ.
The polynomial Ψ(Ũ,Λ) has degree ⩽Sh

−1St in Ũ and degree

⩽Rh
−1RtSh

−1St= Õ(Dh
−1Dt)

in Λ. So it can be computed using

Õ(Dh
−1DtSh

−1St(Sh
−1St)4)= Õ((Dh

−1Dt)6)
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operations in 𝔸h by means of the Berkowitz algorithm [22] applied to the Sylvester
matrix of T− (U+Λ)Rh

−1Rt𝜁h(U) remΞ(U) and Ξ(U). Since Δ(Λ) has degree

⩽(Rh
−1Rt)(Sh

−1St)2= Õ((Dh
−1Dt)2),

it can be computed using

Õ([(Rh
−1Rt)(Sh

−1St)2] (Sh
−1St)4)= Õ((Dh

−1Dt)6)

operations in𝔸h by means of the Berkowitz algorithm.
The evaluation of Ξ(−Λ)Δ(Λ) at all the elements of ℒ takes Õ((Dh

−1Dt)2) operations
in𝔸h; see [4, Chapter 10] for instance. From Proposition 4.3 we know that one operation
in𝔸h reduces to Õ(Sh

1+𝜖) operations in𝕂. Consequently we obtain a suitable value for 𝜆
using a total number of Õ(Sh

1+𝜖 (Dh
−1Dt)6) operations in𝕂.

In this way (U + 𝜆)Rh
−1Rt 𝜁t(U) is a primitive element of �̇�t, of minimal polyno-

mial Ξ̃(Ũ). Therefore, there exists a unique V(Ũ)∈𝔸h[Ũ]<Sh−1St satisfying property (iii).
If 𝜉 is a root of Ξ̃(Ũ), then Ξ(U) and 𝜉 − (U+𝜆)Rh

−1Rt 𝜁t(U) share a proper gcd, that is
U−V(𝜉). In this case, it is known that this gcd is proportional to the first subresultant
of Ξ(U) and 𝜉 − (U+𝜆)Rh

−1Rt 𝜁t(U); see [14, Theorem 9]. Since the specialization at Ũ=
𝜉 of the first subresultant S0(Ũ)U−S1(Ũ) of Ξ(U) and Ũ− (U+𝜆)Rh

−1Rt 𝜁t(U) coincides
with the first subresultant of Ξ(U) and 𝜉 − (U+𝜆)Rh

−1Rt 𝜁t(U), we deduce that S0(Ũ) is
invertible modulo Ξ̃(Ũ).

The polynomials S0 and S1 are minors of the Sylvester matrix of Ξ(U) and T−
(U+𝜆)Rh

−1Rt 𝜁h(U) rem Ξ(U); see [14, section 2.1] for instance. They can thus be com-
puted using Õ((Sh

−1 St)4) operations in 𝔸h, again by means the Berkowitz algorithm.
Computing V(Ũ)=S1(Ũ)/S0(Ũ)modR(Ũ, 𝜆) further needs Õ(Sh

−1St) operations in𝔸h.
It remains to handle the case where 𝔸h is not a field. Panoramic evaluation can per-

form the above calculations [10, Corollary 1] still using Õ(Sh
1+𝜖 (Dh

−1Dt)6) operations
in𝕂: we obtain a panoramic splitting

P: 𝔸h≅𝔻1⊕ ⋅ ⋅ ⋅ ⊕𝔻ℓ

of𝔸h and suitable values 𝜆(1), . . . ,𝜆(l) in𝕂 for the restrictions of𝔸h over𝔻j for j=1, . . . , ℓ,
along with the corresponding Ξ̃(j) and V (j)∈𝔸h[Ũ]<Sh−1St. We further know from [10,
Corollary 1] that one evaluation of P and P−1 takes Õ(Sh

1+𝜖) operations in 𝕂. Finally
we take 𝜆≔P−1(𝜆(1), . . . , 𝜆(ℓ)), Ξ̃≔P−1(Ξ̃(1), . . . , Ξ̃(ℓ)), V≔P−1(V (1), . . . ,V (ℓ)), where P is
implicitly extended to 𝔸h[Ũ] coefficient-wise. □

Example 4.9. (Continued from Example 4.7) In Lemma 4.8, we can take 𝜆=4 and

Ξ̃(Ũ) = Ũ4+5 Ũ3+3 Ũ2+4 Ũ+9
V(Ũ) = 9 Ũ3+10 Ũ2.

4.4. Initial univariate-valued representation

We put Lemmas 4.5 and 4.8 together in order to construct an initial primitive-valued
element of 𝕀t over 𝕀h, written 𝜛 in the following proposition.
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PROPOSITION 4.10. Let (ℙi)i⩽t be an almost reduced effectively separable and regular contact
tower, let h< t, and assume that we are given >(Dh

−1Dt)2 distinct elements in 𝕂. Using

Õ(St
1+𝜖 (ht 𝛾t+(Dh

−1Dt)6))
operations in 𝕂, we can compute:
• a homogeneous polynomial 𝜛 in 𝕀t of valuation Rt

−1,
• a monic separable homogeneous polynomial 𝜒∈𝕀h[T] of degree Dh

−1Dt, where T has valua-
tion Rt

−1,
• homogeneous polynomials wh+1, . . . ,wt in 𝕀h[T]<Dh

−1Dt
of respective valuations 𝛾h+1, . . . , 𝛾t,

such that
(𝜛(𝜑1, . . . ,𝜑h,wh+1(T), . . . ,wt(T))−T) rem 𝜒(T)=0,

and
in(Φi)(𝜑1, . . . ,𝜑h,wh+1(T), . . . ,wi(T)) rem 𝜒(T)=0, for i=h+1, . . . , t.

In other words, the map

Z: 𝕀t ≅ 𝕀h[T]/(𝜒(T))
𝜑i ↦ wi(T) for i=h+1, . . . ,n

is an isomorphism of 𝕀h-algebras. One evaluation of Z and Z−1 at a homogeneous element costs

Õ(St
1+𝜖 (ht 𝛾t+Dh

−1Dt))
operations in 𝕂.

Proof. We set
𝔹h≔𝔸h((z))[Th]/�Th

Rh−𝜌hz�,

which is another 𝕂((z))-algebra representation of 𝕀h via the map Eh: 𝕀h≅𝔹h introduced
in the proof of Lemma 4.5. A homogeneous element of 𝔹h can be written c zeTh

f , where
c∈𝔸h, z∈ℤ, and 0⩽ f <Rh. Consequently, the product of two homogeneous elements
of 𝔹h costs ⩽2 operations in𝔸h.

First, we build the isomorphism Y of Lemma 4.5 using

Õ(St
1+𝜖 (ht 𝛾t log3Dt+(Sh

−1St)2 logDt)) (4.6)

operations in𝕂. Then, we compute 𝜆∈𝔸h, Ξ̃, and V as in Lemma 4.8, using

Õ(Sh
1+𝜖 (Dh

−1Dt)6) (4.7)

operations in𝕂. This yields the following isomorphism of 𝔹h-algebras:

M1: 𝔹h[U,Tt]/�Ξ(U),Tt
Rh
−1Rt−𝜁t(U)Th� ≅ 𝔹h[Ũ, T̃t]/�Ξ̃(Ũ), T̃t

Rh
−1Rt− ŨTh�

U ↦ V(Ũ)
Tt ↦ (V(Ũ)+𝜆)−1 T̃t

(U+𝜆)Rh
−1Rt𝜁t(U) ↤ Ũ.

From Lemma 4.8, we know that Ξ(−𝜆) is invertible. Since Ξ(X−𝜆) is the minimal poly-
nomial of U+𝜆modulo Ξ(U), the inverse of U+𝜆modulo Ξ(U) is given by

I(U)≔(((((((Ξ(X−𝜆)−Ξ(−𝜆)
−Ξ(−𝜆)X )))))))(U+𝜆),
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which can be obtained with Õ(Sh
−1St) ring operations in𝔸h plus the inversion of Ξ(−𝜆).

The inverse of V(Ũ) + 𝜆 modulo Ξ̃(Ũ) equals I(V(Ũ)) rem Ξ̃(Ũ), which can be com-
puted using Õ((Sh

−1 St)2) further operations in 𝔸h. On the other hand, computing
(U+𝜆)Rh

−1Rt𝜁t(U) modulo Ξ(U) takes Õ(Sh
−1St log(Rh

−1Rt)) operations in𝔸h.
A homogeneous element of 𝔹h[U, Tt]/�Ξ(U), Tt

Rh
−1Rt − 𝜁t(U) Th� can be uniquely

written C(U) zeTh
f Tt

g, where C(U) ∈𝔸h[U]<Sh−1St, e∈ℤ, 0⩽ f <Rh, and 0⩽ g<Rh
−1Rt.

Consequently, computing

M1�C(U)zeTh
fTt

g�=C(V(Ũ))(V(Ũ)+𝜆)−gzeTh
f T̃t

gmod Ξ̃(Ũ)

takes

Õ((Sh
−1St)2+Sh

−1St log(Rh
−1Rt)) (4.8)

operations in𝔸h. The same cost bound applies to M1
−1.

The characteristic polynomial of T̃t over 𝔹h is

�̃�(T)≔ResŨ�Ξ̃(Ũ),TRh
−1Rt− ŨTh�=Th

Sh−1St Ξ̃�Th
−1TRh

−1Rt�,

and its computation takes

O(Sh
−1St) (4.9)

operations in𝔹h. As seen in the proof of Lemma 4.8, the integer Rt is invertible in𝕂, so �̃�
is separable, and the map

M2: 𝔹h[Ũ, T̃t]/�Ξ̃(Ũ), T̃t
Rh
−1Rt− ŨTh� ≅ 𝔹h[T]/(�̃�(T))

Ũ ↦ Th−1TRh
−1Rt

T̃t ↦ T

is a 𝔹h-algebra isomorphism. Let us consider a homogeneous element of 𝔹h[T]/(�̃�(T)),
of the form

Te �
0⩽i<Sh−1St

cizeiTh
fi�TRh

−1Rt�i,

where 0⩽e<Rh
−1Rt, ci∈𝔸h, ei∈ℤ, 0⩽ fi<Rh, and g≔ ei+Rh

−1( fi+ i) is independent of i.
The computation of

M2
−1

(((((((((((((((((T
e �
0⩽i<Sh−1St

cizeiTh
fi�TRh

−1Rt�i)))))))))))))))))
= T̃t

e �
0⩽i<Sh−1St

cizeiTh
fi�T̃t

Rh
−1Rt�imod �T̃t

Rh
−1Rt− ŨTh�

= T̃t
e �
0⩽i<Sh−1St

cizeiTh
fi+i Ũ i

= T̃t
e �
0⩽i<Sh−1St

ci𝜌h
( fi+i)quoRhzei+( fi+i)quoRhTh

( fi+i)remRh Ũ i

= ((((((((((((((((( �
0⩽i<Sh−1St

ci𝜌h
( fi+i)quoRh Ũ i

)))))))))))))))))z
(gRh)quoRhTh

(gRh)remRh T̃t
e,
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takes

Õ(Sh
−1St) (4.10)

operations in𝔸h. By reverting these calculations, the same cost is achieved for one eval-
uation of M2. We extend the map Εh to 𝕀h[T] coefficientwise, and compute

𝜒(T)≔Εh
−1(�̃�(T)).

Composed with Y, we finally obtain the desired initial univariate-valued representation
of 𝕀t over 𝕀h:

Εh∘M2∘M1∘Y: 𝕀t≅𝕀h[T]/(𝜒(T)).

The total cost of the construction of Y, Εh, M1, andM2 is bounded by the sum of (4.6) and
(4.7), that is

Õ(St
1+𝜖 (ht 𝛾t+(Dh

−1Dt)6))

operations in 𝕂. The cost of one evaluation of Εh∘M2∘M1∘Y or (Εh∘M2∘M1∘Y)−1 is at
most by the sum of (4.8), (4.10), and the costs for Y and Εh given in Lemma 4.5, that is
bounded by

Õ(St
1+𝜖 (ht 𝛾t+Dh

−1Dt))

operations in𝕂. Finallywe take𝜛≔(Εh∘M2∘M1∘Y)−1(T) andwi(T)≔Εh∘M2∘M1∘Y(𝜑i),
for i=h+1, . . . , t. □

Example 4.11. (Continued from Example 4.9). We calculate the representation of 𝕀t
over 𝕀h given in Proposition 4.10. The initial primitive-valued element is

𝜛 = Y−1((U+4)T3)
= 2z−17𝜑1𝜑2

2𝜑3
3+(4z−8𝜑1𝜑2

2+z−5)𝜑3

and the corresponding initial univariate-valued representation is

𝜒(T) = T16+3𝜑1T12+6zT8+2z𝜑1T4+9z2

w2(T) = 6z−1𝜑1T14+8T10+5𝜑1T6+2zT2

w3(T) = 7 z3𝜑1T13+9z4T9+4z4𝜑1T5+z5T.

5. PRIMITIVE-VALUED REPRESENTATION

In this section we consider a generalized contact tower (ℙi)i⩽t as in section 3.1 and an
index h< t such that

𝜖h=𝜖t=0.

It follows that ℙt/(𝜑t+1) has dimension Dh
−1Dt over ℙh/(𝜑h+1), and that ℙh/(𝜑h+1) has

dimension Dh over 𝕂((z)). We are interested in computing a primitive-valued element
representation of ℙt/(𝜑t+1) over ℙh/(𝜑h+1).
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Using Proposition 4.10, we first compute an initial univariate-valued representation
of 𝕀t=𝕂((z))[𝜑1,...,𝜑t]/(in(Φ1),..., in(Φt)) over 𝕀h=𝕂((z))[𝜑1,...,𝜑h]/(in(Φ1),..., in(Φh)).
This yields a homogeneous polynomial𝜛 in 𝕀t of valuationRt

−1, amonic separable homo-
geneous polynomial 𝜒∈𝕀h[T] of degreeDh

−1Dt, where T has valuationRt
−1, and homoge-

neous polynomials wh+1,...,wt in 𝕀h[T]<Dh
−1Dt

of respective valuation 𝛾h+1,...,𝛾t, such that

[(𝜛(𝜑1, . . . ,𝜑h,wh+1(T), . . . ,wt(T))−T) rem 𝜒(T)]Rt
−1;Rt

−1=0,

and

[(Φi(𝜑1, . . . ,𝜑h,wh+1(T), . . . ,wi(T))−𝜖iwi+1(T)) rem 𝜒(T)]di𝛾i;Rt
−1=0, for i=h+1, . . . , t.

Then, given a target precision 𝜌∈Rt
−1ℕ>0, we will use a suitable Hensel lifting in order

to obtain 𝜒 {𝜌}∈(ℙh/(𝜑h+1))[T] monic of degree Dh
−1Dt, and polynomials wh+1

{𝜌} , . . . ,wt
{𝜌}

in (ℙh/(𝜑h+1))[T]<Dh
−1Dt

such that:

• in(𝜒 {𝜌})=𝜒, and in�wi
{𝜌}�=in(wi), for i=h+1, . . . , t,

• ��𝜛�𝜑1, . . . ,𝜑h,wh+1
{𝜌} (T), . . . ,wt

{𝜌}(T)�−T� rem 𝜒 {𝜌}(T)�Rt
−1;𝜌=0,

• ��Φi�𝜑1,...,𝜑h,wh+1
{𝜌} (T),...,wi

{𝜌}(T)�−𝜖iwi
{𝜌}(T)� rem𝜒 {𝜌}(T)�di𝛾i;𝜌=0, for i=h+1,..., t.

We begin by presenting our lifting strategy, which is naturally based on the Newton
operator of the map (𝜑1, . . . ,𝜑t)↦(Φ1−𝜖1𝜑2, . . . ,Φt−𝜖t𝜑t+1).

5.1. Hasse derivative and Taylor expansion

Let 𝔸 denote a commutative ring, let f ∈𝔸[x1, . . . ,xn] and let y1, . . . ,yn be independent
variables. Expanding

f (x1, . . . ,xn)= f (y1+(x1−y1), . . . ,yn+(xn−yn))

in terms of the powers of (xj−yj) in𝔸[x1, . . . ,xn,y1, . . . ,yn] yields

f (x1, . . . ,xn)= �
e1⩾0, . . . ,en⩾0

(D(e1, . . . ,en) f )(y1, . . . ,yn)(x1−y1)e1 ⋅ ⋅ ⋅ (xn−yn)en, (5.1)

where D(e1, . . . ,en) f are polynomials in𝔸[y1, . . . ,yn] of total degree ⩽deg f −(e1+ ⋅⋅ ⋅+ en).
This operatorD(e1, . . . ,en) is usually called theHasse derivative of orders (e1, . . .,en). Applied
to a monomial x1

k1 ⋅ ⋅ ⋅ xnkn, where k1⩾0, . . . ,kn⩾0, we have

D(e1, . . . ,en)�x1k1 ⋅ ⋅ ⋅ xnkn�=�k1e1
� ⋅ ⋅ ⋅ �knen

�x1k1−e1 ⋅ ⋅ ⋅ xnkn−en.

Note that

e1! ⋅ ⋅ ⋅ en!D(e1, . . . ,en) f = ∂e1+⋅ ⋅ ⋅+en f
∂xe1 ⋅ ⋅ ⋅ ∂xen .

For any (a1, . . . , an)∈𝔸n, the following Taylor expansion holds after replacing yj by aj
in (5.1):

f (x1, . . . ,xn)= �
e1⩾0, . . . ,en⩾0

(D(e1, . . . ,en) f )(a1, . . . ,an)(x1−a1)e1 ⋅ ⋅ ⋅ (xn−an)en. (5.2)
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5.2. Newton operator
Consider the map

Φt : 𝕂((z))[𝜑1, . . . ,𝜑t]t → 𝕂((z))[𝜑1, . . . ,𝜑t]t

((((((((((((((((((
((((((((((((((((((
(((
(
( 𝜑1

⋅⋅⋅
𝜑t−1
𝜑t ))))))))))))))))))

))))))))))))))))))
)))
)
)

↦

((((((((((((((((((
((((((((((((((((((
(((
(
( Φ1(𝜑1)−𝜖1𝜑2

⋅⋅⋅
Φt−1(𝜑1, . . . ,𝜑t−1)−𝜖t−1𝜑t

Φt(𝜑1, . . . ,𝜑t) ))))))))))))))))))
))))))))))))))))))
)))
)
)
,

whose Jacobian matrix is

𝑱t≔

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
(((((((((((((

(

( ∂Φ1
∂𝜑1

−𝜖1 0
⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅ ⋅

∂Φt−1
∂𝜑1

⋅ ⋅ ⋅ ∂Φt−1
∂𝜑t−1

−𝜖t−1

∂Φt
∂𝜑1

⋅ ⋅ ⋅ ∂Φt
∂𝜑t )))))))))))))))))

)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))

)

)
.

The corresponding Newtor iterator is the map

(((((((((((((((((
(((((((
(
( 𝜑1

⋅⋅⋅
𝜑t ))))))))))))))))
)))))))))
)
↦(((((((((((((((((
(((((((
(
( 𝜑1

⋅⋅⋅
𝜑t ))))))))))))))))
)))))))))
)
− 𝑱t−1 ⋅Φt(𝜑1, . . . ,𝜑t).

In order to quantify the convergence of this operator, we begin by studying the valua-
tions of the determinant and the adjunct matrix of 𝑱t.

LEMMA 5.1. For all k, l with 1⩽k⩽ l⩽ tj we have

in

||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
|||||||||||||

|

| ∂Φk
∂𝜑k

−𝜖1 0
⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅ ⋅

∂Φl−1
∂𝜑k

⋅ ⋅ ⋅ ∂Φl−1
∂𝜑l−1

−𝜖l−1

∂Φl
∂𝜑k

⋅ ⋅ ⋅ ∂Φl
∂𝜑l ||||||||||||||||||

||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
|||||||||||||

|

|
=in((((((((((∂Φk

∂𝜑k
⋅ ⋅ ⋅ ∂Φl

∂𝜑l )))))))))).

Proof. For simplicity, the proof is presented for k=1 and l= t. The general case only
involves syntactic adjustments. The usual expansion of the determinant of Jt yields

det 𝑱t= �
𝜎∈𝔖t

(−1)sig𝜎 �
1⩽i⩽t

𝑱t;i,𝜎(i), (5.3)

where 𝔖t is the permutation group of {1, . . . , t}, sig represents the usual signature func-
tion, and 𝑱t;i, j stands for the entry (i, j) in 𝑱t. Note that a product ∏i=1

t 𝑱t;i,𝜎(i) vanishes
whenever 𝜎(i)> i+1 for some i in {1, . . . , t− 2}, and that the identity permutation idt is
the only element of 𝔖t that satisfies 𝜎(i)⩽ i for all i=1, . . . , t.

Now let 𝔖t
(k) denote the subset of permutations 𝜎 that satisfy 𝜎(i)⩽ i+1 for all i=

1, . . . , t−1 and such that the latter inequality is an equality for exactly k values of i. The
expansion (5.3) of the determinant rewrites into

det 𝑱t=
∂Φ1
∂𝜑1

⋅ ⋅ ⋅ ∂Φt
∂𝜑t

+ �
1⩽k<t

�
𝜎∈𝔖t

(k)

(−1)sig𝜎 �
1⩽i⩽t

𝜎(i)=i+1

𝜖i �
1⩽i⩽t
𝜎(i)⩽i

t ∂Φi
∂𝜑𝜎(i)

.
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The valuation of the first term equals ∑i=1
t (di− 1)𝛾i. For k∈{1, . . . , t−1} and 𝜎 ∈𝔖t

(k),
we have

val

((((((((((((((((((
(((((((((
(
( �
1⩽i⩽t
𝜎(i)⩽i

∂Φi
∂𝜑𝜎(i)))))))))))))))))))

)))))))))
)
) ⩾ �

1⩽i⩽t
𝜎(i)⩽i

di𝛾i− �
1⩽i⩽t
𝜎(i)⩽i

𝛾𝜎(i)

= �
1⩽i⩽t

di𝛾i− �
1⩽i⩽t

𝜎(i)=i+1

di𝛾i− �
1⩽i⩽t

𝛾𝜎(i)+ �
1⩽i⩽t

𝜎(i)=i+1

𝛾𝜎(i)

= �
1⩽i⩽t

(di−1)𝛾i+ �
1⩽i⩽t

𝜎(i)=i+1

(𝛾i+1−di𝛾i)

> val((((((((((∂Φ1
∂𝜑1

⋅ ⋅ ⋅ ∂Φt
∂𝜑t )))))))))),

which concludes the proof. □

LEMMA 5.2. Let adj 𝑱t represent the adjunct matrix of 𝑱t. The entry (k, l) of adj 𝑱t has valuation

⩾val(det 𝑱t)+𝛾k−dl𝛾l.

Proof. The entry (k, l) of adj Jt is (−1)k+l times the (l, k)-minor 𝑲k,l of 𝑱t. When l⩽ k, we
have

𝑲k,l=

||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
|||

|

| ∂Φ1
∂𝜑1

−𝜖1
⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ 0

∂Φl−1
∂𝜑1

⋅ ⋅ ⋅ ∂Φl−1
∂𝜑l−1

−𝜖l−1

∂Φl+1
∂𝜑1

⋅ ⋅ ⋅ ∂Φl+1
∂𝜑l+1

−𝜖l+1

⋅⋅⋅ ⋅⋅ ⋅ −𝜖k−2
∂Φk−1
∂𝜑1

⋅ ⋅ ⋅ ∂Φk−1
∂𝜑k−1

∂Φk
∂𝜑1

⋅ ⋅ ⋅ ∂Φk
∂𝜑k−1

−𝜖k
∂Φk+1
∂𝜑1

⋅ ⋅ ⋅ ∂Φk+1
∂𝜑k+1

−𝜖k+1

⋅⋅⋅ ⋅⋅ ⋅ −𝜖t−1
∂Φt
∂𝜑1

⋅ ⋅ ⋅ ∂Φt
∂𝜑t ||||||||||||||||||

||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
|||

|

|

. (5.4)

Let 𝔖t
(𝜅1,𝜅2,𝜅3) denote the set of bijections

𝜎: {1, . . . , t}∖{l}→{1, . . . , t}∖{k}

such that 𝜎(i) ⩽ i+1, 𝜅1 (resp. 𝜅2, 𝜅3) is the number of indices i∈{1, . . . , l− 1} (resp.
i∈{l+1,.. .,k−2}, i∈{k, . . ., t−1}) such that 𝜎(i)= i+1. We expand the determinant (5.4)
as follows

𝑲k,l= �
𝜅1+𝜅2+𝜅3⩽t−1

�
𝜎∈𝔖t

(𝜅1,𝜅2,𝜅3)

(−1)sig(𝜎) �
1⩽i⩽t
i≠k,l

𝜎(i)=i+1

𝜖i �
1⩽i<l
𝜎(i)⩽i

∂Φi
∂𝜑𝜎(i)

�
l+1⩽i<k
𝜎(i)⩽i

∂Φi
∂𝜑𝜎(i)

�
k⩽i⩽t
𝜎(i)⩽i

∂Φi
∂𝜑𝜎(i)

.
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Then for all 𝜎∈𝔖t
(𝜅1,𝜅2,𝜅3) we verify that

val

((((((((((((((((((
(((((((((
(
( �
1⩽i<l
𝜎(i)⩽i

∂Φi
∂𝜑𝜎(i)

�
l+1⩽i<k
𝜎(i)⩽i

∂Φi
∂𝜑𝜎(i)

�
k⩽i⩽t
𝜎(i)⩽i

∂Φi
∂𝜑𝜎(i)))))))))))))))))))

)))))))))
)
)

⩾ �
1⩽i⩽t
i≠l

𝜎(i)⩽i

di𝛾i− �
1⩽i⩽t
i≠l

𝜎(i)⩽i

𝛾𝜎(i)

= �
1⩽i⩽t
i≠l

di𝛾i− �
1⩽i⩽t
i≠l

𝜎(i)=i+1

di𝛾i− �
1⩽i⩽t
i≠l

𝛾𝜎(i)+ �
1⩽i⩽t
i≠l

𝜎(i)=i+1

𝛾𝜎(i)

= �
1⩽i⩽t
i≠l

di𝛾i− �
1⩽i⩽t
i≠k

𝛾i+ �
1⩽i⩽t
i≠l

𝜎(i)=i+1

(𝛾i+1−di𝛾i)

⩾ �
1⩽i⩽t
i≠l

di𝛾i− �
1⩽i⩽t
i≠k

𝛾i

= (((((((((((((( �
1⩽i⩽t

(di−1)𝛾i))))))))))))))+𝛾k−dl𝛾l.

Thanks to Lemma 5.1, this concludes the proof of the lemma when l⩽k. If l⩾k, then the
determinant

𝑲k,l=

||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
|||

|

| ∂Φ1
∂𝜑1

−𝜖1
⋅⋅⋅ ⋅⋅ ⋅ −𝜖k−2

∂Φk−1
∂𝜑1

⋅ ⋅ ⋅ ∂Φk−1
∂𝜑k−1

0
∂Φk
∂𝜑1

⋅ ⋅ ⋅ ∂Φk
∂𝜑k−1

−𝜖k
∂Φk+1
∂𝜑1

⋅ ⋅ ⋅ ∂Φk+1
∂𝜑k+1

−𝜖k+1

⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅ ⋅
∂Φl−1
∂𝜑1

⋅ ⋅ ⋅ ∂Φl−1
∂𝜑l−1

−𝜖l−1

∂Φl+1
∂𝜑1

⋅ ⋅ ⋅ ∂Φl+1
∂𝜑l+1

−𝜖l+1

⋅⋅⋅ ⋅⋅ ⋅ −𝜖t−1
∂Φt
∂𝜑t

⋅ ⋅ ⋅ ∂Φt
∂𝜑t ||||||||||||||||||

||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
||||||||||||||||||
|||

|

|

,

is block triangular (with three blocks). Applying Lemma 5.1 to the first and third blocks,
we obtain

in(𝑲k,l)=(−1)l−k+1 in((((((((((∂Φ1
∂𝜑1

⋅ ⋅ ⋅ ∂Φk−1
∂𝜑k−1

∂Φl+1
∂𝜑l+1

⋅ ⋅ ⋅ ∂Φt
∂𝜑t )))))))))).

It follows that

val 𝑲k,l= �
1⩽i⩽t

(di−1)𝛾i− �
k⩽i⩽l

(di−1)𝛾i⩾ �
1⩽i⩽t

(di−1)𝛾i−dl𝛾l+𝛾k,

since ∑i=k
l (di−1)𝛾i=dl𝛾l− (𝛾l−dl−1𝛾l−1)− ⋅ ⋅ ⋅− (𝛾k+1−dk𝛾k)−𝛾k⩽dl𝛾l−𝛾k. □
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5.3. One lifting step
The above valuation estimates now allow us to study of the behavior of the Newton
operator of Φt from precision 𝜂 to 2𝜂. For this purpose, let 𝕃 be a valued algebra over
𝕂((z)). For i=1, . . . , t, let ai∈[𝕃]𝛾i;𝜂 be such that

[Φi(a1, . . . ,ai)−𝜖iai+1]di𝛾i;𝜂 = [Φi(a1, . . . ,ai)−𝜖iai+1]0;di𝛾i+𝜂 = 0

and 𝑱t(a1, . . . , at) is invertible of valuation val(det 𝑱t). Still for i=1, . . . , t, we are looking
for âi∈[𝕃]𝛾i;2𝜂 such that [âi]𝛾i;𝜂=ai and

[Φi(â1, . . . , âi)−𝜖i âi+1]di𝛾i;2𝜂 = [Φi(â1, . . . , âi)−𝜖i âi+1]0;di𝛾i+2𝜂 = 0 (5.5)

Setting ãi≔ âi−ai∈[𝕃]𝛾i+𝜂;𝜂, the first order Taylor expansion of 𝚽t yields

𝚽t(â1, . . . , ât) = 𝚽t(a1, . . . ,at)+𝑱t(a1, . . . ,at)(((((((((((((((((
(((((((
(
( ã1

⋅⋅⋅
ãt ))))))))))))))))
)))))))))
)
+(((((((((((((((((
(((((((
(
( 𝜀1(a1, ã1)

⋅⋅⋅
𝜀t(a1, . . . ,at, ã1, . . . , ãt) ))))))))))))))))

)))))))))
)
, (5.6)

where 𝜀i represents the sum of the terms of order at least 2:

𝜀i(a1, . . . ,ai, ã1, . . . , ãi)≔ �
e1+⋅ ⋅ ⋅+ei⩾2

(D(e1, . . . ,ei)Φi)(a1, . . . ,ai) ã1e1 ⋅ ⋅ ⋅ ãiei.

Since v((D(e1, . . . ,ei)Φi)(a1, . . . ,ai))⩾di𝛾i− e1𝛾1− ⋅ ⋅ ⋅− ei𝛾i and v(ãi)⩾𝛾i+𝜂, for i=1, . . . , t,
we have

v(𝜀i(a1, . . . ,ai, ã1, . . . , ãi))
⩾ min

e1+⋅ ⋅ ⋅+ei⩾2
(di𝛾i− e1𝛾1− ⋅ ⋅ ⋅− ei𝛾i+ e1(𝛾1+𝜂1)+ ⋅ ⋅ ⋅ + ei (𝛾i+𝜂i))

= min
e1+⋅ ⋅ ⋅+ei⩾2

(di𝛾i+ e1𝜂1+ ⋅ ⋅ ⋅ + ei𝜂i)

⩾ di𝛾i+2𝜂.

After left multiplying both sides of (5.6) by adj Jt(a1, . . . ,at), we obtain that

adj 𝑱t(a1, . . . ,at)𝚽t(â1, . . . , ât)

= adj 𝑱t(a1, . . . ,at)𝚽t(a1, . . . ,at)+det 𝑱t(a1, . . . ,at)(((((((((((((((((
(((((((
(
( ã1

⋅⋅⋅
ãt ))))))))))))))))
)))))))))
)

+adj 𝑱t(a1, . . . ,at)(((((((((((((((((
(((((((
(
( 𝜀1(a1, ã1)

⋅⋅⋅
𝜀t(a1, . . . ,at, ã1, . . . , ãt) ))))))))))))))))

)))))))))
)
.

Regarding “v” and “⩾” component-wise, Lemma 5.2 yields

v(adj 𝑱t(a1, . . . ,at)𝚽t(â1, . . . , ât))⩾(((((((((((((((((
(((((((
(
( val(det 𝑱t)+𝛾1+2𝜂

⋅⋅⋅
val(det 𝑱t)+𝛾t+2𝜂 )))))))))))))))))

)))))))
)
)
,

and

v(((((((((((((((((
(((((((
(
(
adj 𝑱t(a1, . . . ,at)(((((((((((((((((

(((((((
(
( 𝜀1(a1, ã1)

⋅⋅⋅
𝜀t(a1, . . . ,at, ã1, . . . , ãt) ))))))))))))))))

)))))))))
)
)))))))))))))))))
)))))))
)
)
⩾(((((((((((((((((
(((((((
(
( val(det 𝑱t)+𝛾1+2𝜂

⋅⋅⋅
val(det 𝑱t)+𝛾t+2𝜂 )))))))))))))))))

)))))))
)
)
.

It follows that

v(((((((((((((((((
(((((((
(
(
adj 𝑱t(a1, . . . ,at)𝚽t(a1, . . . ,at)+det 𝑱t(a1, . . . ,at)(((((((((((((((((

(((((((
(
( ã1

⋅⋅⋅
ãt ))))))))))))))))
)))))))))
)
)))))))))))))))))
)))))))
)
)

⩾ (((((((((((((((((
(((((((
(
( val(det 𝑱t)+𝛾1+2𝜂

⋅⋅⋅
val(det 𝑱t)+𝛾t+2𝜂 )))))))))))))))))

)))))))
)
)
.
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Consequently, under the contraints on the valuations of the âi, equations (5.5) are equiv-
alent to

(((((((((((((((((
(((((((
(
( b1

⋅⋅⋅
bt ))))))))))))))))
)))))))))
)
≔−adj 𝑱t(a1, . . . ,at)

det 𝑱t(a1, . . . ,at)
𝚽t(a1, . . . ,at). (5.7)

Finally we have shown that the ãi exist and are uniquely determined by

(((((((((((((((((
(((((((
(
( ã1

⋅⋅⋅
ãt ))))))))))))))))
)))))))))
)
=((((((((((((((((((
(((((((((
(
( [b1]0;𝛾1+2𝜂

⋅⋅⋅
[bt]0;𝛾t+2𝜂 )))))))))))))))))

))))))))))
)
)
=((((((((((((((((((
(((((((((
(
( [b1]𝛾1+𝜂;𝜂

⋅⋅⋅
[bt]𝛾t+𝜂;𝜂 )))))))))))))))))

))))))))))
)
)
.

In other words

(((((((((((((((((
(((((((
(
( â1

⋅⋅⋅
ât )))))))))))))))
))))))))))
)
=(((((((((((((((((
(((((((
(
( a1

⋅⋅⋅
at ))))))))))))))))
)))))))))
)
+((((((((((((((((((
(((((((((
(
( [b1]𝛾1+𝜂;𝜂

⋅⋅⋅
[bt]𝛾t+𝜂;𝜂 )))))))))))))))))

))))))))))
)
)
.

is the unique solution of (5.5).

5.4. Complete lifting
We are now ready to extend Proposition 4.10 for the computation of univariate-valued
representations at higher precisions. The following algorithm is adapted from [5, Sec-
tion 4].

Algorithm 5.1
Input. An effectively separable and regular contact tower (ℙi)i⩽t. An integer h< t, and a

relative precision 𝜌∈Rt
−1ℕ>0.

Output. A univariate-valued representation of ℙt/(𝜑t+1) over ℙh/(𝜑h+1) at precision 𝜌.
Assumption. 𝜖h=𝜖t=0, and we are given >(Dh

−1Dt)2 distinct elements in𝕂.

1. Compute 𝜛,𝜒,wh+1, . . . ,wt as in Proposition 4.10 and let 𝜂≔Rt
−1.

2. While 𝜂<𝜌 do:
a. Compute (w̃h+1(T), . . . , w̃t(T))⊤ modulo 𝜒(T) at relative precision 2𝜂 as

−adj 𝑱t(𝜑1, . . . ,𝜑h,wh+1(T), . . . ,wt(T))
det 𝑱t(𝜑1, . . . ,𝜑h,wh+1(T), . . . ,wt(T))

𝚽t(𝜑1, . . . ,𝜑h,wh+1(T), . . . ,wt(T)).

b. Compute ŵi(T)≔[wi(T)+ w̃i(T)]𝛾i;2𝜂, for i=h+1, . . . , t.
c. Compute Δ(T)≔[(𝜛(𝜑1, . . . ,𝜑h, ŵh+1(T), . . . , ŵt(T))−T) rem 𝜒(T)]Rt

−1;2𝜂.
d. Compute �̄�(T)≔[𝜒− (Δ𝜒′) rem 𝜒](Dh

−1Dt)Rt
−1;2𝜂.

e. For i=h+1, . . . , t, compute w̄i≔[ŵi− (Δwi′) rem 𝜒]𝛾i;2𝜂.
f. Replace 𝜂 by min(2𝜂,𝜌), 𝜒 by �̄� and wi by w̄i, for i=h+1, . . . , t.

3. Return 𝜛,𝜒,wh+1, . . . ,wt.

PROPOSITION 5.3. Algorithm 5.1 is correct. If ℙt is almost reduced, then it performs

Õ(Dt
1+𝜖 (Dh

−1Dt)6ht 𝛾t)
+ Õ(B(d1, . . . ,dh;max(Rh

−1, 𝜌)) (min(Rh𝜌,1)Dh
−1Dt)2Dh

−1Dtht 𝜌 log4Dt)

operations in𝕂. In addition, the polynomials 𝜒,wh+1,...,wt of a univariate-valued representation
are uniquely determined at precision 𝜌 by the contact towerℙt and the choice of 𝜛. The constant
coefficient 𝜒(0) is initially invertible in ℙh of valuation (Dh

−1Dt)Rt
−1.
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Proof. Let

𝕃≔(ℙh/(𝜑t+1))[T]/(𝜒(T))

and let v(⋅; 𝕃) be the extension of v(⋅;ℙh) to 𝕃, so v(T; 𝕃)=Rt
−1. Proposition 4.10 gives

us a univariate-valued representation at precision 𝜂=Rt
−1. Note that 𝜛 is homogeneous,

and that 𝜒 and the wi are uniquely determined by the choice of 𝜛 at this precision.
In step 2.a, the Newton iteration (5.7) is applied to

ai ≔ 𝜑i, for i=1, . . . ,h
ai ≔ wi(T), for i=h+1, . . . , t.

Note that w̃i=0, for i=1,...,h. At the end of step 2.b, we obtain [ŵi(T)]𝛾i;𝜂=[wi(T)]𝛾i;𝜂 and

[(Φi(𝜑1, . . . ,𝜑h, ŵh+1(T), . . . , ŵi(T))−𝜖i ŵi+1(T)) rem 𝜒(T)]di𝛾i;2𝜂=0,

for i= h+1, . . . , t. The ŵi are uniquely determined by these properties, under the con-
straints on the valuation of the ŵi(T).

By construction, Δ(T) has valuation ⩾Rt
−1+𝜂 and therefore �̄�, w̄h+1, . . . , w̄t coincide

with 𝜒,wh+1, . . . ,wt at precision 𝜂. It follows that

[�̄�(T+Δ) rem 𝜒](Dh
−1Dt)Rt

−1;2𝜂 = [(�̄�+(Δ �̄�′)) rem 𝜒](Dh
−1Dt)Rt

−1;2𝜂
= [(𝜒−Δ(𝜒′− �̄� ′)) rem 𝜒](Dh

−1Dt)Rt
−1;2𝜂

= 0,

and that

[w̄i(T+Δ) rem 𝜒]𝛾i;2𝜂 = [(w̄i+(Δ w̄i′)) rem 𝜒]𝛾i;2𝜂
= [ŵi−Δ(wi′− w̄i′) rem 𝜒]𝛾i;2𝜂
= ŵi,

for i=h+1, . . . , t. It follows that

[(Φi(𝜑1, . . . ,𝜑h, w̄h+1(T), . . . , w̄i(T))−𝜖i w̄i+1(T)) rem �̄�(T)]di𝛾i;2𝜂
= [(Φi(𝜑1, . . . ,𝜑h, ŵh+1(T−Δ), . . . , ŵi(T−Δ))−𝜖i ŵi+1(T−Δ)) rem 𝜒(T−Δ)]di𝛾i;2𝜂
= [((Φi(𝜑1, . . . ,𝜑h, ŵh+1(T), . . . , ŵi(T))−𝜖i ŵi+1(T)) rem 𝜒(T))(T−Δ)]di𝛾i;2𝜂
= 0

holds for i=h+1, . . . , t, and similarly that

[(𝜛(𝜑1, . . . ,𝜑h, w̄h+1(T), . . . , w̄t(T))−T) rem �̄�(T)]Rt
−1;2𝜂

= [((𝜛(𝜑1, . . . ,𝜑h, ŵh+1(T), . . . , ŵt(T))− (T+Δ)) rem 𝜒(T))(T−Δ)]Rt
−1;2𝜂

= 0.

This proves that the values for 𝜛,𝜒,wh+1, . . . ,wt returned by the algorithm actually con-
stitute a univariate-valued representation ofℙt/(𝜑t+1) overℙh/(𝜑h+1) at precision 𝜌. We
are donewith the correctness. The latter calculations further show that such a univariate-
valued representation �̄�, w̄h+1, . . . , w̄t in terms of 𝜛 is unique.

Let us now assess the complexity. By Proposition 4.10 we compute 𝜛,𝜒,wh+1, . . . ,wt
at precision Rt

−1 in time

Õ(Dt
1+𝜖 (Dh

−1Dt)6ht 𝛾t). (5.8)
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Assuming that operations in ℙh/(𝜑h+1) with relative precision 𝜌 can be done using
B(d1, . . . , dh; max (Rh

−1, 𝜌)) operations in 𝕂, one operation in ℙh[T]/(𝜑h+1, 𝜒(T)) at rel-
ative precision 𝜌 does not exceed

O(B(d1, . . . ,dh;max(Rh
−1, 𝜌)) (min(Rh𝜌,1)(Dh

−1Dt))2),

by using the schoolbook methods, thanks to Lemma 2.2.
For i= h+1, . . . , t, the evaluation of all the Φi and of the Jacobian 𝑱t at (𝜑1, . . . , 𝜑h,

wh+1(T), . . . ,wt(T)) modulo 𝜒(T) at relative precision 𝜌 costs

Õ((min(Rh𝜌,1)Dh
−1Dt)2Dh

−1Dt t2) (5.9)

operations inℙh/(𝜑h+1). The determinant and the adjunctmatrix of 𝑱t(𝜑1,...,𝜑h,wh+1(T),...,
wt(T)) modulo 𝜒(T) can be obtained using

Õ((min(Rh𝜌,1)Dh
−1Dt)2 t4) (5.10)

operations in ℙh/(𝜑h+1) by using the Berkowitz algorithm. By Lemma 5.1 the initial
inverse of

det(𝑱t(𝜑1, . . . ,𝜑h,wh+1(T), . . . ,wt(T)))

can be computed as the initial of

(Δ1(𝜑1) ⋅ ⋅ ⋅ Δt(𝜑1, . . . ,𝜑h,wh+1(T), . . . ,wt(T))) rem 𝜒(T),

in time bounded by (5.9), where Δi represents the initial inverse of
∂Φi
∂𝜑i

.
The inverse of det 𝑱t(𝜑1,...,𝜑h,wh+1(T),...,wt(T)) at precision 𝜌 can be lifted efficiently

via the usual Newton iteration, using O(log(Rt𝜌))=O(ht 𝜌) operations in ℙh[T]/(𝜑h+1,
𝜒(T)).

Since𝜛 is homogeneous in𝕂((z))[𝜑1,...,𝜑t]<(d1, . . . ,dt), its evaluation in step 2.c does not
exceed (5.9). Computing �̄� and w̄h+1,...,w̄t takes Õ((min(Rh𝜌,1)Dh

−1Dt)2 t) further oper-
ations in ℙh/(𝜑h+1). We conclude by adding the costs of all these intermediate tasks. □

Example 5.4. (Continued from Example 4.11) We are interested in lifting the univariate-
valued representation of Example 4.11 with 𝜖1=𝜖3=0, 𝜖2=1, and precision 𝜌=1/4. We
enter the lifting at precision 1/8 with

𝜛 = 2z−17𝜑1𝜑2
2𝜑3

3+(4z−8𝜑1𝜑2
2+z−5)𝜑3

𝜒(T) = T16+3𝜑1T12+6zT8+2z𝜑1T4+9z2

w2(T) = 6z−1𝜑1T14+8T10+5𝜑1T6+2zT2

w3(T) = 7 z3𝜑1T13+9z4T9+4z4𝜑1T5+z5T.

We have

Φ2(𝜑1,w2(T))−w3(T) rem 𝜒(T) = −w3(T)
Φ3(𝜑1,w2(T),w3(T)) rem 𝜒(T) = 0.

With the notation of Algorithm 5.1, we perform following Newton iteration at relative
precision 2𝜂=1/4:

(((((((((((( w̃2(T)
w̃3(T) )))))))))))) = −(((((((((((((((((

4w2(T)3 0
−2z18w2(T) 4w3(T)3 )))))))))))))))))

−1

((((((((((((Φ2(𝜑1,w2(T))−w3(T)
Φ3(𝜑1,w2(T),w3(T)) ))))))))))))mod 𝜒(T)

= (((((((((((((((((
5z−1𝜑1T15+7T11+7𝜑1T7+8zT3

7T10 ))))))))))))))))).
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Then, we obtain
Δ(T)=3𝜑1T14+T10+8𝜑1T6+2T2,

and deduce the univariate-valued representation at relative precision 2𝜂=1/4:

�̄�(T) = T16+𝜑1T13+3𝜑1T12+7 zT9+6zT8+2z𝜑1T4+9z2

w̄2(T) = z−1𝜑1T15+6z−1𝜑1T14+8T10+7𝜑1T7+5𝜑1T6+2zT3+2zT2

w̄3(T) = 7 z3𝜑1T14+7 z3𝜑1T13+7 z4T10+9z4T9+6z4𝜑1T6+4z4𝜑1T5+z5T2+z5T.

6. FLATTENED REPRESENTATION

For this section we are given a generalized contact tower (ℙi)i⩽t, of the form

ℙi≔𝕂((z))[𝜑1, . . . ,𝜑i+1]/(Φ1(𝜑1)−𝜖1𝜑2,Φ2(𝜑1,𝜑2)−𝜖2𝜑3, . . . ,Φi(𝜑1, . . . ,𝜑i)−𝜖i𝜑i+1).

Wewish to compute inℙt at relative precision 𝜌>0, which leads us to assume that 𝜖i=1
if 𝛾i+1−di𝛾i<𝜌 and 𝜖i=0 otherwise, for i=1, . . . , t.

6.1. Flattenings
The complexity bounds of section 3 for computing with contact polynomials grow expo-
nentially with the height t of the tower. In order to circumvent this dependency on t, we
will replace consecutive levels of the tower of low degree by a single level. This tactic
was used before in the simpler context of towers of algebraic extension and gave rise to
so-called accelerated tower arithmetic [9].

Unfortunately, when compressing several levels in a contact tower, the resulting “flat-
tened” tower will not be of contact type. There will be two main types of flattenings.
The first type introduces an algebraic extension which violates the condition that 𝛾i+1>
di 𝛾i for all i. The second type of flattening gives rise to a defining polynomial that is
not initially separable and that will necessitate increasing the relative precision.

In order to cover these two types of flattenings, plus a trivial third one, we need the
following technical definition. For simplicity the tower will be assumed almost reduced,
and the first level (that was allowed to be of degree one) is left unchanged.

DEFINITION 6.1. Let (ℙi)i⩽t be an almost reduced generalized contact tower such that 𝜖i≔1 if
𝛾i+1−di𝛾i<𝜌 and 𝜖i≔0 otherwise, for i=1, . . . , t. A tower (ℙ̃j)j⩽t̃ of the form

ℙ̃j≔𝕂((z))[�̃�1, . . . , �̃�j+1]/(Φ̃1(�̃�1)− �̃�1 �̃�2, Φ̃2(�̃�1, �̃�2)− �̃�2 �̃�3, . . . , Φ̃j(�̃�1, . . . , �̃�j)− �̃�j �̃�j+1),

for j=1, . . . , t̃ is a flattening for (ℙi)i⩽t at relative precision 𝜌 if
1. Φ̃j∈𝕂((z))[�̃�1, . . . , �̃�j−1]<(d̃1, . . . ,d̃j−1)[�̃�j] is monic of degree in �̃�j written d̃j, for j=1, . . . , t̃,

with Φ̃1(�̃�1)=Φ1(�̃�1).
2. There exists an integer sequence

0= i0< i1< ⋅ ⋅ ⋅ < it̃= t,

with i1=1, and a sequence of 𝕂((z))-algebra isomorphisms

𝜉j: ℙij→ℙ̃j

with the following properties for j=1, . . . , t̃:
F1. �̃�j=𝜖ij;
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F2. The restriction of 𝜉j to (ℙij−1)<1 coincides with 𝜉j−1;
F3. The projection of 𝕂((z))[�̃�1, . . . , �̃�j]<(d̃1, . . . ,d̃j) to ℙ̃j is injective and equals 𝜉j((ℙij)<1);
F4. 𝜉j(𝜑ij+1)=�̃�j+1;
F5. If j< t̃ and 𝜖ij=1 then 𝜉j+1(𝜑ij+1)=�̃�j+1;

F6. v�𝜉j−1�Φ̃j− �̃�j
d̃j�;ℙij−1�⩾ d̃jv(𝜉j−1(�̃�j);ℙij)

3. For j=1, . . . , t̃, there exists Ω̃j∈𝕂((z))[�̃�1, . . . , �̃�j−1]<(d̃1, . . . ,d̃j−1)[�̃�j] monic of degree d̃j in �̃�j
such that the image of Ω̃j Φ̃j in ℙ̃j−1 belongs to the image of

�̃�j
2d̃j+𝕂((z))[�̃�1, . . . , �̃�j]<(d̃1, . . . ,d̃j)

in ℙ̃j−1, and that v�𝜉j−1�Ω̃j− �̃�j
d̃j�;ℙij−1�⩾ d̃jv(𝜉j−1(�̃�j);ℙij).

Property F4 imposes the natural image 𝜉j(𝜑ij+1)=�̃�j+1. If 𝜖ij=�̃�j=1, then F5 naturally
extends this requirement to 𝜉j+1; the image 𝜉j+1(𝜑ij+1) might have been chosen more
arbitrarily if 𝜖ij=�̃�j=0. Property F6 ensures that the defining polynomial Φ̃j is clustered
as an element of ℙij−1. The polynomial Ω̃j is required to be the clustered pre-inverse
of Φ̃j in ℙij−1.

As a consequence of the definition, the pre-image 𝜉j−1(A) of an element A∈ℙ̃j can be
written

𝜉j−1(A)=�
k⩾0

bk𝜑ij+1
k ,

where bk∈(ℙij)<1. The representation of A in the form

A=�
k⩾0

ak �̃�j+1
k ,

where ak=𝜉j(bk)∈𝕂((z))[�̃�1,..., �̃�j]<(d̃1, . . . ,d̃j), will be said canonical. In particular we note
that d̃j= dij−1+1 ⋅ ⋅ ⋅ dij, for j=1, . . . , t̃, that d̃1= d1 may be equal to one, and that d̃j⩾2 for
j=2, . . . , t̃.

In the rest of the paper, the canonical representation of an element A of ℙ̃j will be
written redjA. We will also write deg�̃�j+1(redjA) for its degree in �̃�j+1 and (ℙ̃j)<l for the
elements whose canonical representative has degree <l in �̃�j+1.

For k=0, . . . , t̃, we endow 𝕂((z))[�̃�1, . . . , �̃�k+1] with the weighted valuation, written
valk, defined by

valk �̃�1 ≔ 𝛾1
valk �̃�j ≔ v(𝜉k−1(�̃�j);ℙik), for j=2, . . . ,k+1. (6.1)

In particular F4 implies valk �̃�k+1=𝛾ik+1. For 2⩽ j⩽ k, by F3 we have 𝜉k−1(�̃�j)∈ (ℙik)<1,
while 𝜉 t̃

−1 coincides with 𝜉k−1 on (ℙik)<1 by F2. Consequently,

val t̃ �̃�j=v(𝜉 t̃
−1(�̃�j);ℙt)=v(𝜉k−1(�̃�j);ℙik)=valk �̃�j, whenever j⩽k⩽ t̃. (6.2)

We set �̃�1≔𝛾1 and 𝛾j≔valj �̃�j for j=2, . . . , t̃. If j< t̃, note that F5 implies

�̃�j+1=valj+1 �̃�j+1=v(𝜉j+1
−1 (�̃�j+1);ℙij+1)=𝛾ij+1, whenever 𝜖ij=1. (6.3)

Given P̃∈𝕂((z))[�̃�1, . . . , �̃�t̃+1] the notation [P̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]𝜎;𝜌 will stand for the
truncation of P̃ from valuation 𝜎 and precision 𝜌 with respect to val t̃.
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Example 6.2. Let us consider the following contact tower of height t≔4 over𝕂≔ℚ:

Φ1(𝜑1) = 𝜑1−1−z
Φ2(𝜑1,𝜑2) = 𝜑2

2−z
Φ3(𝜑1,𝜑2,𝜑3) = 𝜑3

2−z2𝜑2

Φ4(𝜑1,𝜑2,𝜑3,𝜑4) = 𝜑4
2−z4𝜑3,

with 𝜖1=𝜖2=𝜖3=𝜖4=1, so d1=1, d2= d3= d4=2, 𝛾1=0, 𝛾2=1/2, 𝛾3=5/4, 𝛾4=21/8,
𝛾5≔+∞. By definition, the first level of the flattening is “trivial”, with Φ̃1(�̃�1)≔Φ1(�̃�1):

𝜉1: ℙ1 → ℙ̃1

𝜑1 ↦ �̃�1

𝜑2 ↦ �̃�2.

Then, we build a second level, that will be called of “second type” in section 7.3, with
i1=1, i2≔3,

Φ̃2(�̃�1, �̃�2)≔Φ3(�̃�1, �̃�2,Φ2(�̃�1, �̃�2)),
and

𝜉2: ℙ3 → ℙ̃2

𝜑1 ↦ �̃�1

𝜑2 ↦ �̃�2

𝜑3 ↦ Φ̃2(�̃�1, �̃�2)
𝜑4 ↦ �̃�3=Φ3(�̃�1, �̃�2,Φ2(�̃�1, �̃�2))

The third level of the flattening is “trivial”, that is i3≔4,

Φ̃3(�̃�1, �̃�2, �̃�3)≔Φ4(�̃�1, �̃�2,Φ2(�̃�1, �̃�2), �̃�3),
and

𝜉3: ℙ4 → ℙ̃3

𝜑1 ↦ �̃�1

𝜑2 ↦ �̃�2

𝜑3 ↦ Φ̃2(�̃�1, �̃�2)
𝜑4 ↦ �̃�3=Φ3(�̃�1, �̃�2,Φ2(�̃�1, �̃�2))
𝜑5 ↦ �̃�4=Φ̃3(�̃�1, �̃�2, �̃�3).

We have �̃�1=𝛾1, 𝛾2=𝛾2, 𝛾3=𝛾4.

Assume that (ℙ̃j)j⩽t̃ is a flattening for (ℙi)i⩽t at precision 𝜌. For any j=1,..., t̃, we note
that (ℙ̃j′)j′⩽ j is again a flattening for (ℙi′)i′⩽ij at precision 𝜌. Flattenings will be built by
induction on the height, so it will be useful to keep in mind that

ℙij = ℙij−1[𝜑ij−1+2, . . . ,𝜑ij+1]/(Φij−1+1(𝜑1, . . . ,𝜑ij−1+1)−𝜖ij−1+1𝜑ij+2, . . . ,
Φij(𝜑1, . . . ,𝜑ij)−𝜖ij𝜑ij+1)

ℙ̃j = ℙ̃j−1[�̃�j+1]/(Φ̃j(�̃�1, . . . , �̃�j)− �̃�j �̃�j+1).

LEMMA 6.3. The canonical representative Ã of an element of ℙ̃t̃ satisfies

val t̃ Ã⩽v(𝜉 t̃
−1(Ã);ℙt).
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Proof. We first handle the case where Ã∈(ℙ̃t̃)<1. Let us write

Ã= �
0⩽k<d̃t̃

ãk �̃�t̃
k,

where ã0, . . . , ãd̃t̃−1 are in (ℙ̃t̃−1)<1. The proof is done by induction on t̃. The case t̃=0 is
clear. Let us assume that the lemma holds for t̃−1⩾0. We verify that

v(𝜉 t̃
−1(Ã);ℙt) = v((((((((((((((((( �

0⩽k<d̃t̃

𝜉 t̃−1
−1 (ãk)𝜉 t̃

−1(�̃�t̃)k;ℙt))))))))))))))))) (by F2)

⩾ min
0⩽k<d̃t̃

(v(𝜉 t̃−1
−1 (ãk);ℙit̃−1)+v(𝜉 t̃

−1(�̃�t̃)k;ℙt))

⩾ min
0⩽k<d̃t̃

(val t̃−1 ãk+kval t̃ �̃�t̃) (by induction)

= min
0⩽k<d̃t̃

(val t̃ ãk+kval t̃ �̃�t̃) (by (6.2))

= val t̃ Ã. (6.4)

Now consider a general Ã=∑k⩾0 ãk �̃�t̃+1
k , written canonically:

v(𝜉 t̃
−1(Ã);ℙt) = v((((((((((((((�k⩾0

𝜉 t̃
−1(ãk)𝜑t+1

k ;ℙt)))))))))))))) (by F4)

⩾ min
k⩾0

(v(𝜉 t̃
−1(ãk);ℙt)+kv(𝜑t+1;ℙt)) (by (6.4))

⩾ min
k⩾0

(val t̃ ãk+kval t̃ �̃�t̃+1) (by F4 and (6.1))

= val t̃ Ã. □

We define the following important quantity, called the defect of 𝜉j, that measures the
loss of precision when converting contact polynomials via 𝜉j:

dct 𝜉j≔ max
A∈�ℙij�<1

(v(A;ℙij)−valj(redj(𝜉j(A)))). (6.5)

By Lemma 6.3 the backward conversion does not cause any precision loss. If A is in ℙt
and if Ã=∑k⩾0 ãk �̃�t̃+1

k is the canonical representative of 𝜉 t̃(A), then we have

val t̃ Ã = min
k⩾0

(val t̃ ãk+k𝛾t+1)

⩾ min
k⩾0

(v(𝜉 t̃
−1(ãk);ℙt)−dct 𝜉 t̃+k𝛾t+1)

= v(A;ℙt)−dct 𝜉 t̃. (6.6)

In order to multiply two elements of (ℙt)<1, we shall first convert them into their canon-
ical representations in (ℙ̃t̃)<1, then compute their product in𝕂((z))[�̃�1,..., �̃�t], next reduce
this product into its canonical representative in ℙ̃t̃, and finally convert the result back into
(ℙt)<2. The following proposition details the extra precision needed for this approach.

PROPOSITION 6.4. Let A and B be in (ℙt)<1 at relative precision 𝜌, let Ã and B̃ be the canonical
representatives of 𝜉 t̃(A) and 𝜉 t̃(B), let P̃≔ Ã B̃, and let 𝜂⩾dct 𝜉 t̃. Then the product A B at
relative precision 𝜌 can be computed using

[AB;ℙt]v(A;ℙt)+v(B;ℙt);𝜌

= [𝜉 t̃
−1([red t̃ P̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]v(A;ℙt)+v(B;ℙt)−𝜂;𝜌+𝜂)]v(A;ℙt)+v(B;ℙt);𝜌.
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Proof. By (6.6) we have val t̃ Ã⩾v(A;ℙt)−𝜂 and val t̃ B̃⩾v(B;ℙt)−𝜂. By Lemma 6.3, the
terms of val t̃ Ã (resp. of val t̃ B̃) have valuation <v(A; ℙt)+ 𝜌 (resp. <v(B; ℙt)+ 𝜌). In
other words, we have

Ã = [Ã;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]v(A;ℙt)−𝜂;𝜌+𝜂

B̃ = [B̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]v(B;ℙt)−𝜂;𝜌+𝜂,

hence
P̃=[P̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]v(A;ℙt)+v(B;ℙt)−2𝜂;2𝜌+2𝜂.

Since P̃ equals 𝜉 t̃(AB) in ℙ̃t̃, we have

val t̃(red t̃ P̃)⩾v(AB;ℙt)−𝜂⩾v(A;ℙt)+v(B;ℙt)−𝜂.

On the other hand, from Lemma 6.3, we know that if C̃ is the canonical representative of
an element of ℙ̃t̃ of valuation val t̃ C̃⩾v(A;ℙt)+v(B;ℙt)+𝜌 then

v(𝜉t−1(C̃);ℙt)⩾v(A;ℙt)+v(B;ℙt)+𝜌.

Consequently, we may recover
[AB;ℙt]v(A;ℙt)+v(B;ℙt);𝜌,

from redt P̃ at precision 𝜌+𝜂. □

The rest of this section is dedicated to speed upmultiplication and Euclidean division
using flattenings.

6.2. Reduction in the flattened representation
Given P̃∈𝕂((z))[�̃�1, . . . , �̃�t̃], we define its nested valuation nval t̃P by

nval t̃P ≔ min
1⩽ j⩽t̃,kj+1, . . . ,kt̃

(v(𝜉j−1(P̃kj+1, . . . ,kt̃);ℙij)+kj+1val t̃ �̃�j+1+ ⋅ ⋅ ⋅ +kt̃val t̃ �̃�t̃),

where for every j=1, . . . , t̃, the P̃kj+1, . . . ,kt̃ are the coefficients of the canonical expansion

P̃= �
kj+1, . . . ,kt̃

P̃kj+1, . . . ,kt̃ �̃�j+1
kj+1 ⋅ ⋅ ⋅ �̃�t̃

kt̃.

If P̃∈(ℙ̃t̃)<1 is reduced, then we have

nval t̃ P̃=v(𝜉 t̃
−1(P̃);ℙt).

Using (6.2) we also note that

nval t̃ P̃kj+1, . . . ,kt̃⩾nval t̃P−kj+1val t̃ �̃�j+1− ⋅ ⋅ ⋅−kt̃val t̃ �̃�t̃,

for all j,kj+1, . . . ,kt̃.

LEMMA 6.5. Let Ã and B̃ be the canonical representatives of two elements of (ℙ̃t̃)<1. Then

P̃≔ Ã B̃∈𝕂((z))[�̃�1, . . . , �̃�t̃]<(2d̃1−1, . . . ,2d̃t̃−1)

has nested valuation
nval t̃ P̃⩾nval t̃ Ã+nval t̃ B̃.
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Proof. Consider the canonical representations

Ã = �
kj+1<d̃j+1, . . . ,kt̃<d̃t̃

Ãkj+1, . . . ,kt̃ �̃�j+1
kj+1 ⋅ ⋅ ⋅ �̃�t̃

kt̃

B̃ = �
kj+1<d̃j+1, . . . ,kt̃<d̃t̃

B̃kj+1, . . . ,kt̃ �̃�j+1
kj+1 ⋅ ⋅ ⋅ �̃�t̃

kt̃.

Given in j,kj+1, . . . ,kt̃, we have

v�𝜉 t̃
−1(Ãkj+1, . . . ,kt̃);ℙt�⩾v(𝜉 t̃

−1(Ã);ℙt)−kj+1val t̃ �̃�j+1− ⋅ ⋅ ⋅−kt̃val t̃ �̃�t̃.

Since Ãkj+1, . . . ,kt̃∈𝕂((z))[�̃�1,..., �̃�j]<(d̃1, . . . ,d̃j) the pre-image 𝜉 t̃
−1(Ãkj+1, . . . ,kt̃) belongs to (ℙij)<1,

so
v�𝜉 t̃

−1(Ãkj+1, . . . ,kt̃);ℙt�=v(𝜉j−1(Ãkj+1, . . . ,kt̃);ℙij).

Similar properties hold for B̃. From

P̃kj+1, . . . ,kt̃= �
ej+1+ fj+1=kj+1, . . . ,et̃+ ft̃=kt̃

Ãej+1, . . . ,et̃ B̃fj+1, . . . , ft̃,

we deduce that

v(𝜉j−1(P̃kj+1, . . . ,kt̃);ℙij)
⩾ min

ej+1+ fj+1=kj+1, . . . ,et̃+ ft̃=kt̃
v(𝜉j−1(Ãej+1, . . . ,et̃);ℙij)+v(𝜉j−1(B̃fj+1, . . . , jt̃);ℙij)

⩾ v(𝜉 t̃
−1(Ã);ℙt)+v(𝜉 t̃

−1(B̃);ℙt)−kj+1val t̃ �̃�j+1− ⋅ ⋅ ⋅−kt̃val t̃ �̃�t̃,

which concludes the proof. □

The goal of this subsection is an algorithm to compute red t̃ P̃ efficiently. It is adapted
from Lebreton's method for algebraic towers [13]. We say that a flattening (ℙ̃j)j⩽t̃ for
(ℙi)i⩽t is given at relative precision 𝜌∈Rt

−1ℕ>0 and defect bound 𝜂⩾dct 𝜉 t̃ when the
following data are known:
• [Φ̃1;𝕂((z))[�̃�1, �̃�2]]d̃1𝛾1−𝜂;𝜌+𝜂, . . . , [Φ̃t̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]d̃t̃𝛾t̃−𝜂;𝜌+𝜂,
• [Ω̃1;𝕂((z))[�̃�1, �̃�2]]d̃1𝛾1−𝜂;𝜌+𝜂, . . . , [Ω̃ t̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]d̃t̃𝛾t̃−𝜂;𝜌+𝜂.
Since valj+1 Φ̃j⩾ d̃j𝛾j−𝜂we have

[Φ̃j;𝕂((z))[�̃�1, . . . , �̃�j+1]]0;d̃j𝛾j+𝜌=[Φ̃j;𝕂((z))[�̃�1, . . . , �̃�j+1]]d̃j𝛾j−𝜂;𝜌+𝜂,

for j=1, . . . , t̃. The same property holds for the truncations of the Ω̃j.

Algorithm 6.1
Input. An almost reduced generalized contact tower (ℙi)i⩽t at relative precision 𝜌∈

Rt
−1ℕ>0, a flattening (ℙ̃j)j⩽t̃ for (ℙi)i⩽t at relative precision 𝜌 and defect bound 𝜂⩾

dct 𝜉 t̃, P̃∈�𝕂((z))[�̃�1, . . . , �̃�t̃+1]<(2d̃1−1, . . . ,2d̃t̃−1,1)�𝜎−2𝜂;𝜌+2𝜂 with nval t̃ P̃⩾𝜎.
Output. [red t̃ P̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]𝜎−𝜂;𝜌+𝜂∈𝕂((z))[�̃�1, . . . , �̃�t̃+1]<(d̃1, . . . ,d̃t̃,2).

1. If t̃=0 then return [P̃;𝕂((z))]𝜎−𝜂;𝜌+𝜂.

2. Write P̃= P̃0+ P̃1 �̃�t̃+ ⋅ ⋅ ⋅ + P̃2d̃t̃−2 �̃�t̃
2d̃t̃−2 with

P̃0, . . . , P̃2d̃t̃−2∈𝕂((z))[�̃�1, . . . , �̃�t̃−1]<(2d̃1−1, . . . ,2d̃t̃−1−1).
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For i=−1, . . . , d̃t̃−2, recursively compute

L̃i+�̃�t̃−1 H̃i �̃�t̃≔�red t̃−1 P̃d̃t̃+i;𝕂((z))[�̃�1, . . . , �̃�t̃]�𝜎−(d̃t̃+i)𝛾t̃−𝜂;𝜌+𝜂

and then P̃hi as

(�̃�t̃−1H̃−1+ L̃0)+(�̃�t̃−1H̃0+ L̃1) �̃�t̃+ ⋅ ⋅ ⋅ +��̃�t̃−1H̃d̃t̃−3+ L̃d̃t̃−2� �̃�t̃
d̃t̃−2+�̃�t̃−1H̃d̃t̃−2 �̃�t̃

d̃t̃−1.

3. Compute Ã≔ P̃hi[Ω̃ t̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]d̃t̃𝛾t̃−𝜂;𝜌+𝜂 as

P̃hi �̃�t̃
d̃t̃+ P̃hi�[Ω̃ t̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]d̃t̃𝛾t̃−𝜂;𝜌+𝜂− �̃�t̃

d̃t̃�.

4. Write Ã= Ã0+ Ã1 �̃�t̃+ ⋅ ⋅ ⋅ + Ã2d̃t̃−1 �̃�t̃
2d̃t̃−1 with

Ã0, . . . , Ã2d̃t̃−1∈𝕂((z))[�̃�1, . . . , �̃�t̃−1]<(2d̃1−1, . . . ,2d̃t̃−1−1).

For i=0, . . . , d̃t̃−1, recursively compute

L̃i′+ �̃�t̃−1 H̃i′ �̃�t≔�red t̃−1�Ãd̃t̃+i�;𝕂((z))[�̃�1, . . . , �̃�t̃]�𝜎−(d̃t̃+i)𝛾t̃−𝜂;𝜌+𝜂,

and Ãhi∈[𝕂((z))[�̃�1, . . . , �̃�t̃]<(d̃1, . . . ,d̃t̃)]𝜎−d̃t𝛾t−𝜂;𝜌+𝜂 as

(�̃�t̃−1 H̃0′ + L̃1′)+(�̃�t̃−1 H̃1′ + L̃2′) �̃�t̃+ ⋅ ⋅ ⋅ +��̃�t̃−1 H̃d̃t̃−2′ + L̃d̃t̃−1′ � �̃�t̃
d̃t̃−2+�̃�t̃−1 H̃d̃t̃−1′ �̃�t̃

d̃t̃−1.

5. Compute B̃≔ P̃− Ãhi[Φ̃t̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]d̃t̃𝛾t̃−𝜂;𝜌+𝜂 as

P̃− Ãhi �̃�t̃
d̃t̃− Ãhi�[Φ̃t̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]d̃t̃𝛾t̃−𝜂;𝜌+𝜂− �̃�t̃

d̃t̃�.

6. Write B̃= B̃0+ B̃1 �̃�t̃+ ⋅ ⋅ ⋅ + B̃2d̃t̃−1 �̃�t̃
2d̃t̃−1 with

B̃0, . . . , B̃2d̃t̃−1∈𝕂((z))[�̃�1, . . . , �̃�t̃−1]<(2d̃1−1, . . . ,2d̃t̃−1−1).

For i=0, . . . , d̃t̃−1, recursively compute

L̃i′′+ �̃�t̃−1 H̃i′′ �̃�t≔[red t̃−1 B̃i;𝕂((z))[�̃�1, . . . , �̃�t̃]]𝜎−i𝛾t−𝜂;𝜌+𝜂,

and B̃ lo∈[𝕂((z))[�̃�1, . . . , �̃�t̃]<(d̃1, . . . ,d̃t̃)]𝜎−𝜂;𝜌+𝜂 as

L̃0′′+(�̃�t̃−1 H̃0′′+ L̃1′′) �̃�t̃+ ⋅ ⋅ ⋅ +��̃�t̃−1 H̃d̃t̃−2′′ + L̃d̃t̃−1′′ � �̃�t̃
d̃t̃−1.

7. Return �̃�t̃ Ãhi �̃�t̃+1+ B̃ lo.

PROPOSITION 6.6. Algorithm 6.1 is correct and performs

Rt
−1 Õ�3t̃DtRt(𝜌+𝜂)�

operations in 𝕂.

Proof. If t̃=0 then P̃∈𝕂((z)), so step 1 returns the correct value. Otherwise the nested
valuation property ensures that v(𝜉 t̃

−1(P̃);ℙt)⩾𝜎, so (6.6) yields

val t̃(red t̃ P̃))⩾𝜎−𝜂.
On the other hand,

P̃i∈�𝕂((z))[�̃�1, . . . , �̃�t̃]<(2d̃1−1, . . . ,2d̃t̃−1−1,1)�𝜎−i𝛾t̃−2𝜂;𝜌+2𝜂
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has nested valuation ⩾𝜎 − i �̃�t̃, for i=0, . . . , 2 d̃t̃− 2, so the recursive calls in step 2 are
valid. It follows that val t̃−1(red t̃−1 P̃i)⩾𝜎− i �̃�t̃−𝜂, and that L̃i′+ �̃�t̃−1 H̃i′ �̃�t̃ approximates
red t̃−1 P̃i at precision ⩾𝜌+𝜂.

If 𝜖t̃−1=1 then �̃�t̃=val t̃ �̃�t̃=𝛾it̃−1+1=val t̃−1 �̃�t̃ by (6.3), whence

P̃hi=�red t̃−1 P̃ quo�̃�t̃ �̃�t̃
d̃t̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]�𝜎−𝜂;𝜌+𝜂

.

If 𝜖t̃−1=0, then the latter equality trivially holds. By construction of P̃hi there exists

P̃lo∈𝕂((z))[�̃�1, . . . , �̃�t̃]<(d̃1, . . . ,d̃t̃)

such that
[red t̃−1 P̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]𝜎−𝜂;𝜌+𝜂= P̃lo+ P̃hi �̃�t̃

d̃t̃.

In step 3, the polynomial Ã belongs to �𝕂((z))[�̃�1, . . . , �̃�t̃+1]<(2d̃1−1, . . . ,2d̃t̃−1,1)�𝜎−2𝜂;𝜌+2𝜂
and nval t̃ Ã⩾𝜎 + d̃t̃ �̃�t̃ by Lemma 6.5 and Property F6 of Definition 6.1. The correctness
of step 4 is thus similar to step 2. There exists Ãlo∈𝕂((z))[�̃�1, . . . , �̃�t̃]<(d̃1, . . . ,d̃t̃) such that

[red t̃−1 Ã;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]𝜎+d̃t̃𝛾t̃−𝜂;𝜌+𝜂= Ãlo+ Ãhi �̃�t̃
d̃t̃.

Using Property 3 of Definition 6.1, let W̃∈𝕂((z))[�̃�1, . . . , �̃�t̃]<(d̃1, . . . ,d̃t̃) be such that

�̃�t̃
2d̃t̃+W̃

= �red t̃−1�[Ω̃ t̃Φ̃t̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]2d̃t̃𝛾t̃−2𝜂;2𝜌+2𝜂�;𝕂((z))[�̃�1, . . . , �̃�t̃+1]�2d̃t̃𝛾t̃−𝜂;𝜌+𝜂.

By Lemma 6.5 we have val t̃(red t̃−1(P̃Ω̃ t̃Φ̃t̃))⩾𝜎+2 d̃t̃𝛾t̃. Then we verify that

[red t̃−1((P̃Ω̃ t̃)Φ̃t̃);𝕂((z))[�̃�1, . . . , �̃�t̃+1]]𝜎+2d̃t̃𝛾t̃−𝜂;𝜌+𝜂

= �red t̃−1��Ãhi �̃�t̃
d̃t̃+ Ãlo�Φ̃t̃ �̃�t̃

d̃t̃+ P̃loΩ̃ t̃Φ̃t̃�;𝕂((z))[�̃�1, . . . , �̃�t̃+1]�𝜎+2d̃t̃𝛾t̃−𝜂;𝜌+𝜂

= �red t̃−1�ÃhiΦ̃t̃ �̃�t̃
2d̃t̃+�Ãlo �̃�t̃

d̃t̃+ P̃loΩ̃ t̃�Φ̃t̃�;𝕂((z))[�̃�1, . . . , �̃�t̃+1]�𝜎+2d̃t̃𝛾t̃−𝜂;𝜌+𝜂
(6.7)

and also that

[red t̃−1(P̃(Ω̃ t̃Φ̃t̃));𝕂((z))[�̃�1, . . . , �̃�t̃+1]]𝜎+2d̃t̃𝛾t̃−𝜂;𝜌+𝜂

= �red t̃−1�P̃ �̃�t̃
2d̃t̃+ P̃ W̃�;𝕂((z))[�̃�1, . . . , �̃�t̃+1]�𝜎+2d̃t̃𝛾t̃−𝜂;𝜌+𝜂

. (6.8)

Since deg�̃�t̃�red t̃−1��Ãlo �̃�t̃
d̃t̃+ P̃loΩ̃ t̃�Φ̃t̃��<3 d̃t̃, equating (6.7) with (6.8) leads to

[red t̃ P̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]𝜎−𝜂;𝜌+𝜂

= [red t̃(ÃhiΦ̃t̃+ R̃);𝕂((z))[�̃�1, . . . , �̃�t̃+1]]𝜎−𝜂;𝜌+𝜂

= �̃�t̃ Ãhi �̃�t̃+1+ R̃,

for some R̃∈(ℙ̃t̃)<1. From val t̃(�̃�t̃ �̃�t̃+1)⩾val t̃(�̃�t̃ Φ̃t̃) and val t̃(red t̃ P̃)⩾𝜎 − 𝜂, it follows
that the algorithm actually returns [red t̃ P̃;𝕂((z))[�̃�1, . . . , �̃�t̃+1]]𝜎−𝜂;𝜌+𝜂.

As for the complexity analysis, note that Ã and ÃhiΦ̃t̃ belong to

𝕂((z))[�̃�1, . . . , �̃�t̃]<(2d̃1−1, . . . ,2d̃t̃−1−1,2d̃t̃).

By Proposition 2.5, the products in steps 3 and 5 take

Rit̃
−1 Õ�2t̃ D̃t̃Rit̃ (𝜌+𝜂)�
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operations in𝕂. LetR(d̃1,..., d̃t̃;𝜌) denote the cost function of Algorithm 6.1. By Lemma 2.3,
the recursive calls to Algorithm 6.1 take

3min(Rit̃−1(2𝜌+2𝜂),1) d̃t̃R(d̃1, . . . , d̃t̃−1;max(Rit̃−1
−1 , 𝜌))

operations in𝕂. It follows that

R(d̃1, . . . , d̃t̃; 𝜌)
⩽ 3R(d̃1, . . . , d̃t̃−1;max(Rit̃−1

−1 , 𝜌))min(Rit̃−1(2𝜌+2𝜂),1) d̃t̃
+Rit̃

−1 Õ�2t̃ D̃t̃Rit̃max(Rit̃
−1, 𝜌+𝜂)�

⩽ 32R(d̃1, . . . , d̃t̃−2;max(Rit̃−2
−1 , 𝜌))

×min(Rit̃−1(2𝜌+2𝜂),1)min(Rit̃−2max(Rit̃−1
−1 , 2𝜌+2𝜂),1) d̃t̃−1 d̃t̃

+3min(Rit̃−1(2𝜌+2𝜂),1) d̃t̃Rit̃−1
−1 Õ�2t̃−1 D̃t̃−1Rit̃−1max(Rit̃−1

−1 , 𝜌+𝜂)�
+Rit̃

−1 Õ�2t̃ D̃t̃Rit̃ (𝜌+𝜂)�
⩽ 32R(d̃1, . . . , d̃t̃−2;max(Rit̃−2

−1 , 𝜌))min(Rit̃−2(2𝜌+2𝜂),1) d̃t̃−1 d̃t̃ (by Lemma 3.10)

+ 3
2 Rit̃

−1 Õ�2t̃ D̃t̃Rit̃ (𝜌+𝜂)�+Rit̃
−1 Õ�2t̃ D̃t̃Rit̃ (𝜌+𝜂)�

⋅⋅⋅
= Rit̃

−1 Õ�3t̃ D̃t̃Rit̃ (𝜌+𝜂)�. □

6.3. Flattened multiplication and division
As a direct application of Algorithm 6.1, we obtain the following multiplication method,
which benefits from flattenings.

Algorithm 6.2
Input. An almost reduced generalized contact tower (ℙi)i⩽t at relative precision 𝜌∈

Rt+1
−1 ℕ>0, a flattening (ℙ̃j)j⩽t̃ for (ℙi)i⩽t at relative precision 𝜌 and defect bound

𝜂 ⩾ dct 𝜉 t̃, Ã= [red t̃(𝜉 t̃(A)); 𝕂((z))[�̃�1, . . . , �̃�t̃+1]]v(A;ℙt)−𝜂;𝜌+𝜂, and B̃= [red t̃(𝜉 t̃(B);
𝕂((z))[�̃�1, . . . , �̃�t̃+1])]v(B;ℙt)−𝜂;𝜌+𝜂, where A and B are in (ℙt)<l.

Output. [red t̃(Ã B̃);𝕂((z))[�̃�1, . . . , �̃�t̃+1]]v(A;ℙt)+v(B;ℙt)−𝜂;𝜌+𝜂.

1. Compute C̃≔ Ã B̃ in𝕂((z))[�̃�1, . . . , �̃�t̃+1].
2. Write C̃= C̃0+ C̃1 �̃�t̃+1+ ⋅ ⋅ ⋅ + C̃2l−2 �̃�t̃+1

2l−2

with C̃0, . . . , C̃2l−2∈𝕂((z))[�̃�1, . . . , �̃�t̃]<(2d̃1−1, . . . ,2d̃t̃−1).
For i=0, . . . , 2 l−2, compute L̃i+𝜖t H̃i �̃�t̃+1≔[red t̃(C̃i)]v(A;ℙt)+v(B;ℙt)−i𝛾t̃+1−𝜂;𝜌+𝜂 by
using Algorithm 6.1.

3. Return L̃0+(𝜖t H̃0+ L̃1) �̃�t̃+1+ ⋅ ⋅ ⋅ +(𝜖t H̃2l−3+ L̃2l−2) �̃�t̃+1
2l−2+𝜖t H̃2l−2 �̃�t̃+1

2l−1.

PROPOSITION 6.7. Algorithm 6.2 is correct and performs

Rt+1
−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)�

operations in 𝕂, whenever l∈ rt+1ℕ>0.

Proof. By Lemma 6.5, we have nval t̃ C̃⩾v(A;ℙt)+v(B;ℙt). So the correctness follows as
in the proof of Proposition 6.6. The cost of step 1 is given in Proposition 2.5, that is

Rt+1
−1 Õ�2t̃+1Dt lRt+1(𝜌+𝜂)�
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The cost of step 2 follows from Proposition 6.6 and Lemma 2.2:

Rt
−1 Õ�3t̃Dt lmin(Rt𝜌,1)Rtmax(Rt

−1, 𝜌+𝜂)�
= Rt

−1 Õ�3t̃Dt lmin(Rt(𝜌+𝜂),1)max(Rt(𝜌+𝜂),1)�
= Rt

−1 Õ�3t̃Dt lRt(𝜌+𝜂)�
= Rt+1

−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)�.

The cost of step 3 is negligible. □

In short, red t̃(𝜉 t̃(A)) will be called the flattened representation of A∈ℙt. Propo-
sition 6.7 shows that fast products can be achieved using flattened representations, in
the sense that red t̃(𝜉 t̃(AB)) is obtained from red t̃(𝜉 t̃(A)) and red t̃(𝜉 t̃(B)). This approach
extends to divisions as follows.

PROPOSITION 6.8. Let F∈ℙt be a clustered monic contact polynomial of degree l∈ rt+1ℕ>0 in
𝜑t+1 and given at precision 𝜌∈Rt+1

−1 ℕ>0. Let G be the pre-inverse of F at relative precision 𝜌,
and let A be a contact polynomial of (ℙt)<2l of valuation ⩾𝜎 at precision 𝜌. Given [red t̃(𝜉 t̃(F));
𝕂((z))[�̃�1,..., �̃�t̃+1]]l𝛾t+1−𝜂;𝜌+𝜂, [red t̃(𝜉 t̃(G));𝕂((z))[�̃�1,..., �̃�t̃+1]]l𝛾t+1−𝜂;𝜌+𝜂, and [red t̃(𝜉 t̃(A));
𝕂((z))[�̃�1, . . . , �̃�t̃+1]]𝜎−𝜂;𝜌+𝜂, we can compute

[red t̃(𝜉 t̃(A quo 𝜑t+1 F);𝕂((z))[�̃�1, . . . , �̃�t̃+1])]𝜎−l𝛾t+1−𝜂;𝜌+𝜂

and [red t̃(𝜉 t̃(A rem𝜑t+1 F));𝕂((z))[�̃�1, . . . , �̃�t̃+1]]𝜎−𝜂;𝜌+𝜂

using
Rt+1
−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)�

operations in 𝕂.

Proof. This follows from Propositions 3.16 and 6.7. □

7. THREE TYPES OF FLATTENING

In this section, we present three types of flattening along with conversion algorithms.
The given generalized contact tower is still written (ℙi)i⩽t and is assumed to be almost
reduced, effectively separable and regular. The relative precision we want to compute
with is 𝜌∈Rt+1

−1 ℕ>0.
When a flattening for (ℙi)i⩽t is given as in Definition 6.1, we know from Lemma 6.3

and Equation (6.5) that an element A∈ℙt can be recovered at precision 𝜌 from

[red t̃(𝜉 t̃(A));𝕂((z))[�̃�1, . . . , �̃�t̃+1]]v(A;ℙt)−𝜂;𝜌+𝜂

whenever 𝜂⩾dct 𝜉 t̃. In the rest of the paper the notation

C(ℙit̃,<1;𝜌↔ℙ̃t̃,<1;𝜌+𝜂)

will represent a complexity bound for the following tasks:
• compute 𝜉 t̃(A) at relative precision 𝜌+𝜂, for any A∈(ℙit̃)<1 given at relative preci-

sion 𝜌,
• compute 𝜉 t̃

−1(Ã) at relative precision 𝜌, from the canonical representative Ã∈(ℙ̃t̃)<1
at relative precision 𝜌+𝜂.
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Each type of flatteningwill involve precomputed auxiliary data for the sake of efficiency.
In fact, at level j of a flattening, data in ℙij−1 at precision 𝜌 shall be converted to ℙ̃j−1 at
relative precision⩾𝜌+dct 𝜉j in order to benefit from the flattened products and divisions
of section 6.3. The pre-inverse of 𝜑i+Φi,di−1 in ℙi will be written Ψi.

7.1. Trivial flattening
We say that a flattening is trivial at level jwhen ij= ij−1+1, Φ̃j=𝜉j−1(Φij), and 𝜉j(𝜑ij)≔�̃�j.
Without loss of generality we may assume that j= t̃ for the sake of the presentation.

LEMMA 7.1. Assume that it̃−1= t−1 and that (ℙ̃j)j⩽t̃−1 is a flattening for (ℙi)i⩽it̃−1. Then there
exists a flattening (ℙ̃j)j⩽t̃ of (ℙi)i⩽it̃, trivial at level t̃, with it̃≔ it̃−1+1= t, �̃�t̃≔𝜖it̃,

Φ̃t̃(�̃�1, . . . , �̃�t̃)≔𝜉 t̃−1(Φit̃),

𝜉 t̃: ℙt → ℙ̃t̃
𝜑k ↦ 𝜉 t̃−1(𝜑k) for k=1, . . . , it̃

𝜑it̃+1 ↦ �̃�t̃+1.

We take Ω̃ t̃≔𝜉 t̃−1(Ωt), where Ωt is the pre-inverse of Φt in ℙt−1. In addition we have dct 𝜉 t̃=
dct 𝜉 t̃−1.

Proof. The proof is straightforward from Definition 6.1. □

The next proposition concerns the complexity for building a trivial flattening at level t̃.
We recall that a flattening as in Definition 6.1 is said to be given at precision 𝜌 and defect
𝜂⩾dct 𝜉 t̃ when the Φ̃j and the Ω̃j are known at precision 𝜌+𝜂, for j=1, . . . , t̃.

PROPOSITION 7.2. Let (ℙi)i⩽t be an almost reduced, effectively separable and regular contact
tower at precision 𝜌∈Rt

−1ℕ>0, and let (ℙ̃j)j⩽t̃−1 be a flattening for (ℙi)i⩽it̃−1 with it̃−1= t−1
at precision 𝜌 and defect 𝜂⩾dct 𝜉 t̃. Then we can compute a flattening (ℙ̃j)j⩽t̃ of (ℙi)i⩽it̃ trivial
at level t̃ at precision 𝜌 and defect 𝜂 using

O(M(d1, . . . ,dt; 𝜌) log dt)
+ C(ℙit̃−1,<1;𝜌↔ℙ̃t̃−1,<1;𝜌+𝜂)O(min(Rt−1𝜌,1)dt)
+ I(d1, . . . ,dt−1;max(Rt−1

−1 , 𝜌))

operations in 𝕂.

Proof. We compute the pre-inverse Ωt of Φt at precision 𝜌 using

O(M(d1, . . . ,dt; 𝜌) log dt)+ I(d1, . . . ,dt−1;max(Rt−1
−1 , 𝜌))

operations in 𝕂 thanks to Proposition 3.14. By Lemma 2.2 we need O(min(Rt−1𝜌,1)dt)
evaluations of 𝜉 t̃−1 at elements of (ℙt−1)<dt in order to obtain 𝜉 t̃−1(Φt) and 𝜉 t̃−1(Ωt) at
relative precision 𝜌+𝜂. □

PROPOSITION 7.3. With the notation and assumptions of Proposition 7.2, one conversion between
(ℙt)<1 at precision 𝜌∈Rt

−1ℕ>0 and (ℙ̃t̃)<1 at precision 𝜌+𝜂 costs

C(ℙit̃−1,<1;𝜌↔ℙ̃t̃−1,<1;𝜌+𝜂)O(min(Rt−1𝜌,1)dt).
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Proof. For an element A in (ℙt)<1, we consider its contact representation∑i=0
dt−1 Ai𝜑t

i and
compute 𝜉t−1(Ai). The number of non-zero Ai is O(min(Rt−1𝜌,1),dt) by Lemma 2.2. □

7.2. First type of flattening
We say that the level j of a flattening is of first type whenever

𝜖ij−1=𝜖ij=0.

For the sake of the presentation, as previously we focus on the case where j= t̃, that is
𝜖it̃−1=𝜖it̃=0. In other words,ℙit̃−1 (resp. ℙit̃) is of the form 𝔼it̃−1[𝜑it̃−1+1] (resp. 𝔼it̃[𝜑it̃+1])
where 𝔼it̃−1≔ℙit̃−1/(𝜑it̃−1+1) (resp. 𝔼it̃≔ℙit̃/(𝜑it̃+1)) has finite dimension over𝕂((z)).

By Proposition 5.3 (with h= it̃−1 and 𝜌=+∞ [we assumed 𝜌<∞ in our definitions]),
if card𝕂>(Dh

−1Dt)2, then there exists a univariate-valued representation

𝜒,wit̃−1+1, . . . ,wit̃

of 𝔼it̃ over 𝔼it̃−1 in terms of a primitive-valued 𝜛, hence

𝜒(𝜛)=0,

and 𝜑k=wk(𝜛) for k= it̃−1+1,..., it̃. In the proof of Proposition 7.5 below [not very kind],
we shall see that there exists anΩ∈𝔼it̃−1[T] with

Ω(T)𝜒(T)∈T2d̃t̃+𝔼it̃−1[T]<d̃t̃. (7.1)

In the following lemma, we extend 𝜉 t̃−1 coefficientwise toℙit̃−1[T], and 𝜉 t̃−1(𝜒) stands for
the application of this extended map to 𝜒.

LEMMA 7.4. Assume that (ℙ̃j)j⩽t̃−1 is a flattening of (ℙi)i⩽it̃−1 and that 𝜖it̃−1=𝜖it̃=0. Then there
exists a flattening (ℙ̃j)j⩽t̃ of (ℙi)i⩽it̃ of first type at level t̃, with it̃≔ t, �̃�t̃≔0,

Φ̃t̃(�̃�1, . . . , �̃�t̃)≔𝜉 t̃−1(𝜒)(�̃�t̃),

𝜉 t̃: ℙt → ℙ̃t̃
𝜑k ↦ 𝜉 t̃−1(𝜑k) for k=1, . . . , it̃−1
𝜑k ↦ 𝜉 t̃−1(wk)(�̃�t̃) for k= it̃−1+1, . . . , it̃

𝜑it̃+1 ↦ �̃�t̃+1

and Ω̃ t̃≔𝜉 t̃−1(Ω)(�̃�t̃). In addition we have dct 𝜉 t̃=dct 𝜉 t̃−1.

Proof. By construction, Definition 6.1 holds. Only a brief explanation is necessary for F3:
the 𝕂((z))-vector space isomorphism

𝕂((z))[�̃�1, . . . , �̃�t̃]<(d̃1, . . . ,d̃t̃) ≅ 𝔼it̃

�
0⩽k<d̃t̃

Ãk �̃�t̃
k ↦ �

0⩽k<d̃t̃

𝜉 t̃−1
−1 (Ãk)𝜛k

shows that the projection𝕂((z))[�̃�1,..., �̃�t̃]<(d̃1, . . . ,d̃t̃)→ℙ̃t̃ is injective, with image 𝜉 t̃((ℙt)<1).
Given Ã∈(ℙ̃t̃)<1, let us write

𝜉 t̃
−1(Ã)= �

0⩽k<d̃it̃

bk𝜛k
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canonically in terms of 𝜛, where bk∈(ℙit̃−1)<1. Hence,

Ã= �
0⩽k<d̃t̃

𝜉 t̃−1(bk) �̃�t̃
k.

Definition (6.5) gives
val t̃−1(𝜉 t̃−1(bk))⩾v(bk;ℙit̃−1)−dct 𝜉 t̃−1,

hence

val t̃(Ã) = min
0⩽k<d̃t̃

�valt̃−1(𝜉 t̃−1(bk))+val t̃��̃�t̃
k��

⩾ min
0⩽k<d̃t̃

�v(bk;ℙit̃−1)−dct 𝜉 t̃−1+val t̃��̃�t̃
k��

= (((((((((( min
0⩽k<d̃t̃

(v(bk;ℙit̃−1)+v(𝜛k;ℙt))))))))))))−dct 𝜉 t̃−1

= v(𝜉 t̃
−1(Ã);ℙt)−dct 𝜉 t̃−1,

and dct 𝜉 t̃⩽dct 𝜉 t̃−1. □

Let us now investigate flattenings of the first type from a complexity perspective. We
still assume that a flattening is already at our disposal for ℙit̃−1.

PROPOSITION 7.5. Let (ℙi)i⩽t be an almost reduced, effectively separable and regular contact
tower at precision 𝜌∈Rt

−1ℕ>0, and let (ℙ̃j)j⩽t̃−1 be a flattening for (ℙi)i⩽it̃−1 at precision 𝜌 and
defect ⩽𝜂. If we are given >d̃t̃

2 distinct elements in 𝕂, then we can compute a flattening (ℙ̃j)j⩽t̃
of (ℙi)i⩽t as in Lemma 7.4, using

Õ(Dt
1+𝜖 d̃t̃

6ht 𝛾t)
+ Õ(B(d1, . . . ,dit̃−1;max(Rit̃−1

−1 , 𝜌)) (min(Rit̃−1𝜌,1) d̃t̃)
2 d̃t̃ht 𝜌 log4Dt)

+ O(C(ℙit̃−1,<1;𝜌↔ℙ̃t̃−1,<1;𝜌+𝜂)min(Rit̃−1𝜌,1) d̃t̃ logDt)

operations in 𝕂.

Proof. This propositionmostly rephrases Proposition 5.3 for h= it̃−1 by taking into account
the computation of Ω̃ t̃. Let us first describe the computation ofΩ from (7.1). Since𝔼it̃−1 is
a finite dimensional vector space over 𝕂((z)) [finite 𝕂((z))-algebra], a classical Newton
iteration can be used as follows. We let

𝜒
˘
(T)=T d̃t̃ 𝜒(T−1)

and we compute its inverseΩ
˘
of degree⩽d̃t̃ in 𝔼it̃−1[[T]]/�T

d̃t̃+1�. By Lemma 2.2, a poly-
nomial in 𝔼it̃−1[[T]]/�T

d̃t̃+1� hasO(min(Rit̃−1𝜌,1) d̃t̃) non-zero terms. Therefore two such
polynomials can bemultiplied by the schoolbookmethod usingO((min(Rit̃−1𝜌,1)deg𝜒)

2)
operations in𝔼it̃−1. In total the Newton iteration performsO(log d̃t̃) such products, hence

Õ(B(d1, . . . ,dit̃−1;max(Rit̃−1
−1 , 𝜌)) (min(Rit̃−1𝜌,1)deg 𝜒)

2 log d̃t̃) (7.2)

operations in𝕂. Then we have

Ω
˘
(T)𝜒

˘
(T)=1+T d̃t̃+1Q

˘
(T),

for some Q
˘
∈𝔼it̃−1[T]<d̃t̃, so we define

Ω(T)≔T d̃t̃Ω
˘
(T−1) and Q(T)≔T d̃t̃−1Q

˘
(T−1),
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and obtain
Ω(T)𝜒(T)=T2d̃t̃+Q(T).

Deducing Φ̃t̃=𝜉 t̃−1(𝜒), Ω̃ t̃=𝜉 t̃−1(Ω), and 𝜉 t̃−1(wk) for k= it̃−1+1, . . . , it̃ costs

O((it̃− it̃−1)C(ℙit̃−1,<1;𝜌↔ℙ̃t̃−1,<1;𝜌+𝜂)min(Rit̃−1𝜌,1)deg 𝜒). (7.3)

The total cost is the sumof (7.2), (7.3), and the cost stated in Proposition 5.3 for h= it̃−1. □

For efficiency reasons, conversions between (ℙt)<1 and (ℙ̃t̃)<1 will benefit from pre-
computations: the precomputed data will be called “auxiliary” in the sequel. [Where is
the complexity of the precomputations analyzed?]

PROPOSITION 7.6. With the notation of Proposition 7.5, assume that the following auxiliary data
are given at precision 𝜌+𝜂:
• 𝜉 t̃−1(Φit̃−1+1), . . . , 𝜉 t̃−1(Φt),
• 𝜉 t̃−1(Ψit̃−1+1), . . . , 𝜉 t̃−1(Ψt),
• �̃�=𝜉 t̃−1(𝜛),
• �̃�≔𝜉 t̃−1(𝜒), w̃it̃−1+1≔𝜉 t̃−1(wit̃−1+1), . . . , w̃it̃≔𝜉 t̃−1(wit̃).
Then we have

C(ℙit̃,<1;𝜌↔ℙ̃t̃,<1;𝜌+𝜂)
= Rt

−1 Õ�3t̃DtRt(𝜌+𝜂) d̃t̃
5�+C(ℙit̃−1,<1;𝜌↔ℙ̃t̃−1,<1;𝜌+𝜂)min(Rit̃−1𝜌,1) d̃t̃.

Proof. Each polynomial in T at precision 𝜌 of degree <d̃t̃ has at most min (Rit̃−1 𝜌, 1) d̃t̃
non-zero terms by Lemma 2.3. By means of binary powering and schoolbook products
and divisions with respect to T one sum or product modulo 𝜒 takes

O((min(Rit̃−1𝜌,1) d̃t̃)
2)

operations in 𝔼it̃−1. Let A∈(ℙt)<1 be written canonically

A= �
kit̃−1+1<dit̃−1+1, . . . ,kit̃<dit̃

akit̃−1+1, . . . ,kit̃
𝜑it̃−1+1
kit̃−1+1 ⋅ ⋅ ⋅ 𝜑it̃

kit̃.

In order to convertA into (ℙ̃t̃)<1, we computewit̃−1+1
kit̃−1+1 ⋅⋅⋅wit̃

kit̃ rem𝜒 at precision 𝜌 for all 0⩽
kit̃−1+1<dit̃−1+1, . . ., 0⩽kit̃<dit̃ with akit̃−1+1, . . . ,kit̃

≠0, via flattened arithmetic. By Lemma 2.3,
at mostmin(Rit̃−1𝜌,1) d̃t̃ terms of A are non-zero. So we compute the flattened represen-
tative ãkit̃−1+1, . . . ,kit̃

of the non-zero akit̃−1+1, . . . ,kit̃
, then w̃it̃−1+1

kit̃−1+1 ⋅⋅⋅w̃it̃
kit̃ rem �̃� at precision 𝜌+𝜂, so

�
kit̃−1+1<dit̃−1+1, . . . ,kit̃<dit̃

ãkit̃−1+1, . . . ,kit̃
w̃it̃−1+1

kit̃−1+1 ⋅ ⋅ ⋅ w̃it̃
kit̃ rem �̃�

is obtained using
O((min(Rit̃−1(𝜌+𝜂),1) d̃t̃)3 logDt)

flattened operations in 𝔼it̃−1, which corresponds to

Rit̃−1
−1 Õ�3t̃−1 D̃t̃−1Rit̃−1max(Rit̃−1

−1 , 𝜌+𝜂)�(min(Rit̃−1(𝜌+𝜂),1) d̃t̃)3 logDt

= Rit̃−1
−1 Õ�3t̃DtRit̃−1(𝜌+𝜂) d̃t̃

2�
= Rt

−1 Õ�3t̃DtRt(𝜌+𝜂) d̃t̃
2�
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operations in𝕂, by Proposition 6.7 with t+1= it̃−1 and Dt l= D̃t̃−1.
Conversely, given

Ã= �
0⩽k<d̃t̃

ãk �̃�t̃
k

there are ⩽min(Rit̃−1(𝜌+𝜂),1) d̃t̃ non-zero ãk, by Lemma 2.3, so the computation of

�
0⩽k<d̃t̃

ãk �̃�k

takesO(min(Rit̃−1(𝜌+𝜂),1) d̃t̃ log d̃t̃) flattened operations in (ℙt)<1. By taking advantage
of the auxiliary data 𝜉 t̃−1(Φit̃−1+1), . . . , 𝜉 t̃−1(Φt) and 𝜉 t̃−1(Ψit̃−1+1), . . . , 𝜉 t̃−1(Ψt), each such
flattened operation reduces to

O(5it̃−it̃−1B(d1, . . . ,dit̃−1;max(Rit̃−1
−1 , 𝜌)) (min(Rit̃−1𝜌,1)dit̃−1+1 ⋅ ⋅ ⋅ dt)2)

= O(5it̃−it̃−1B(d1, . . . ,dit̃−1;max(Rit̃−1
−1 , 𝜌)) (min(Rit̃−1𝜌,1) d̃t̃)

2)
= O�B(d1, . . . ,dit̃−1;max(Rit̃−1

−1 , 𝜌))min(Rit̃−1𝜌,1) d̃t̃
5� (using 2it̃−it̃−1⩽ d̃t̃)

operations in 𝕂 by Proposition 3.11 (with h= it̃−1). Thanks to Proposition 6.7 (with t+
1= it̃−1 and Dt l= D̃t̃−1), and still for the flattened representation, we may take

B(d1, . . . ,dit̃−1;max(Rit̃−1
−1 , 𝜌+𝜂))=Rit̃−1

−1 Õ�3t̃−1 D̃t̃−1Rit̃−1max(Rit̃−1
−1 , 𝜌+𝜂)�.

Overall, the flattened representation of ∑0⩽k<d̃t̃
ãk �̃�k totalizes

O�B(d1, . . . ,dit̃−1;max(Rit̃−1
−1 , 𝜌))min(Rit̃−1𝜌,1) d̃t̃

5min(Rit̃−1(𝜌+𝜂),1) d̃t̃ log d̃t̃�
= Rit̃−1

−1 Õ�3t̃−1 D̃t̃−1Rit̃−1max(Rit̃−1
−1 , 𝜌+𝜂)�min(Rit̃−1(𝜌+𝜂),1) d̃t̃

6 log d̃t̃
= Rit̃−1

−1 Õ�3t̃ D̃t̃Rit̃−1(𝜌+𝜂) d̃t̃
5�

= Rt
−1 Õ�3t̃DtRt(𝜌+𝜂) d̃t̃

5�

operations in𝕂, which concludes the proof. □

Example 7.7. (Continued from Example 5.4) We take t̃≔2, i1=1 and i2=3 and relative
precision 𝜌=1/4 and defect 𝜂=0. The first level of the flattening is trivial:

Φ̃1(�̃�1)≔Φ1(�̃�1).

For the second level we add the following flattened level of first type:

Φ̃2(�̃�1, �̃�2)≔�̃�2
16+�̃�1 �̃�2

13+3�̃�1 �̃�2
12+7 z �̃�2

9+6z �̃�2
8+2z �̃�1 �̃�2

4+9z2

and

𝜉2(𝜑1) ≔ �̃�1

𝜉2(𝜑2) ≔ z−1 �̃�1 �̃�2
15+6z−1 �̃�1 �̃�2

14+8�̃�2
10+7�̃�1 �̃�2

7+5�̃�1 �̃�2
6+2z �̃�2

3+2z �̃�2
2

𝜉2(𝜑3) ≔ 7 z3 �̃�1 �̃�2
14+7 z3 �̃�1 �̃�2

13+7 z4 �̃�2
10+9z4 �̃�2

9+6z4 �̃�1 �̃�2
6+4z4 �̃�1 �̃�2

5+z5 �̃�2
2+z5 �̃�2.

7.3. Second type of flattening
The second type of flattening concerns the case where

𝜖ij−1+1=𝜖ij−1+2= ⋅ ⋅ ⋅ =𝜖ij−2=𝜖ij−1=1. (7.4)
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For all k⩽ lwe define the following polynomials by induction:

Φk↝l(𝜑1, . . . ,𝜑k)≔Φl(𝜑1, . . . ,𝜑k,Φk↝k(𝜑1, . . . ,𝜑k), . . . ,Φk↝l−1(𝜑1, . . . ,𝜑k)).

Note that Φk↝k(𝜑1, . . . ,𝜑k)=Φk(𝜑1, . . . ,𝜑k).

Example 7.8. Φ1↝2(𝜑1)=Φ2(𝜑1,Φ1(𝜑1)) and Φ1↝3(𝜑1)=Φ3(𝜑1,Φ1(𝜑1),Φ1↝2(𝜑1)).

Again, in order to keep the notation simple, and without loss of generality, we focus
on the case where j= t̃.

LEMMA 7.9. Let (ℙi)i⩽t be an almost reduced, effectively separable, and regular contact tower at
precision 𝜌∈Rt

−1ℕ>0, let (ℙ̃j)j⩽t̃−1 be a flattening for (ℙi)i⩽it̃−1 and assume that 𝜖it̃−1+1= ⋅ ⋅ ⋅=
𝜖it̃−1=1. Then there exists a flattening (ℙ̃j)j⩽t̃ for (ℙi)i⩽it̃ with it̃≔ t, �̃�t̃=𝜖it̃,

Φ̃t̃(�̃�1, . . . , �̃�t̃)≔𝜉 t̃−1(Φit̃−1+1↝it̃),

𝜉 t̃: ℙt → ℙ̃t̃
𝜑k ↦ 𝜉 t̃−1(𝜑k) for k=1, . . . , it̃−1+1
𝜑k ↦ 𝜉 t̃−1(Φit̃−1+1↝k−1(𝜑1, . . . ,𝜑it̃−1+1)) for k= it̃−1+2, . . . , it̃

𝜑it̃+1 ↦ �̃�t̃+1,

Ω̃ t̃≔𝜉 t̃−1(Ω), whereΩ stands for the pre-inverse of Φit̃−1+1↝it̃ inℙit̃−1 at precision 𝜌+𝜅t̃, where

𝜅t̃≔ �
it̃−1+1<k⩽it̃

(dk ⋅ ⋅ ⋅ dit̃−1)(𝛾k−dk−1𝛾k−1)

satisfies
dct 𝜉 t̃⩽dct 𝜉 t̃−1+𝜅t̃ and 𝜅t̃⩽ d̃t̃𝜌.

Proof. For k= it̃−1+2, . . . , it̃ the polynomial Φit̃−1+1↝k(𝜑1, . . . , 𝜑it̃−1+1) is monic in 𝜑it̃−1+1
and its initial in ℙit̃−1 is

in�Φit̃−1+1
dit̃−1+2⋅ ⋅ ⋅dk;ℙit̃−1�.

It follows that Φit̃−1+1↝it̃ is clustered in ℙit̃−1 and that

v(Φit̃−1+1↝it̃;ℙit̃−1)= d̃t̃𝛾it̃−1+1.
By [11, Lemma 15] the map

𝕂((z))[�̃�1, . . . , �̃�t̃−1]<(d̃1, . . . ,d̃t̃−1)[�̃�t̃]<d̃t̃ ≅ (ℙt)<1

�
k=0

d̃t̃−1

Ãk �̃�t̃
k ↦ �

k=0

d̃t̃−1

𝜉 t̃−1
−1 (Ãk)𝜑it̃−1+1

k ,

where Ãk∈𝕂((z))[�̃�1, . . ., �̃�t̃−1]<(d̃1, . . . ,d̃t̃−1), is a𝕂((z))-vector space isomorphism, so Prop-
erty F3 of Definition 6.1 holds. Other properties of Definition 6.1 hold by construction.
For

A= �
kit̃−1+1<dit̃−1+1, . . . ,kit̃<dit̃

akit̃−1+1, . . . ,kit̃
𝜑it̃−1+1
kit̃−1+1 ⋅ ⋅ ⋅ 𝜑it̃

kit̃∈(ℙt)<1,

where akit̃−1+1, . . . ,kit̃
∈(ℙit̃−1)<1, we have

v(A;ℙt)= min
kit̃−1+1<dit̃−1+1, . . . ,kit̃<dit̃

�v�akit̃−1+1, . . . ,kit̃
;ℙit̃−1�+kit̃−1+1𝛾it̃−1+1+ ⋅ ⋅ ⋅ +kit̃𝛾it̃�.
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SinceΦit̃−1+1↝it̃ is clustered inℙit̃−1 of valuation dit̃−1+1 ⋅⋅⋅dit̃𝛾it̃−1+1, the contact polynomial
𝜑it̃−1+1
kit̃−1+1Φit̃−1+1↝it̃−1+1

kit̃−1+2 ⋅ ⋅ ⋅ Φit̃−1+1↝it̃−1
kit̃ is clustered in ℙit̃−1 of degree

Δkit̃−1+1, . . . ,kit̃
≔ kit̃−1+1+dit̃−1+1kit̃−1+2+ ⋅ ⋅ ⋅ +dit̃−1+1 ⋅ ⋅ ⋅ dit̃−1kit̃

in 𝜑it̃−1+1 and of valuation

v�𝜑it̃−1+1
kit̃−1+1Φit̃−1+1↝it̃−1+1

kit̃−1+2 ⋅ ⋅ ⋅ Φit̃−1+1↝it̃−1
kit̃ ;ℙit̃−1�=Δkit̃−1+1, . . . ,kit̃

𝛾it̃−1+1.

It follows that

v�akit̃−1+1, . . . ,kit̃
𝜑it̃−1+1
kit̃−1+1Φit̃−1+1↝it̃−1+1

kit̃−1+2 ⋅ ⋅ ⋅ Φit̃−1+1↝it̃−1
kit̃ ;ℙit̃−1�

⩾ v�akit̃−1+1, . . . ,kit̃
;ℙit̃−1�+v�𝜑it̃−1+1

kit̃−1+1Φit̃−1+1↝it̃−1+1
kit̃−1+2 ⋅ ⋅ ⋅ Φit̃−1+1↝it̃−1

kit̃ ;ℙit̃−1�
⩾ v(A;ℙit̃)− (kit̃−1+1𝛾it̃−1+1+ ⋅ ⋅ ⋅ +kit̃𝛾it̃)+Δkit̃−1+1, . . . ,kit̃

𝛾it̃−1+1,

hence
v(A;ℙit̃−1)⩾v(A;ℙit̃)−𝜂, (7.5)

where
𝜂≔ max

kit̃−1+1<dit̃−1+1, . . . ,kit̃<dit̃
�kit̃−1+1𝛾it̃−1+1+ ⋅ ⋅ ⋅ +kit̃𝛾it̃−Δkit̃−1+1, . . . ,kit̃

𝛾it̃−1+1�.

Note that
𝛾l⩾dit̃−1+1 ⋅ ⋅ ⋅ dl−1𝛾it̃−1+1

for l= it̃−1+1, . . . , it̃, so 𝜂⩾0. Consequently [where do you need 𝜂⩾0?], the canonical
representative of A in ℙit̃−1 can be written in the canonical form

A= �
kit̃−1+1<dit̃−1+1, . . . ,kit̃<dit̃

bkit̃−1+1, . . . ,kit̃
𝜑it̃−1+1
Δkit̃−1+1, . . . ,kit̃,

with

v�bkit̃−1+1, . . . ,kit̃
;ℙit̃−1� ⩾ v(A;ℙit̃−1)−Δkit̃−1+1, . . . ,kit̃

𝛾it̃−1+1

⩾ v(A;ℙit̃)−𝜂−Δkit̃−1+1, . . . ,kit̃
𝛾it̃−1+1, (7.6)

using (7.5). Therefore

𝜉 t̃(A)= �
kit̃−1+1<dit̃−1+1, . . . ,kit̃<dit̃

𝜉 t̃−1�bkit̃−1+1, . . . ,kit̃
� �̃�t̃

Δkit̃−1+1, . . . ,kit̃.

is the canonical representative of 𝜉 t̃(A) and

val t̃(𝜉 t̃(A))= min
kit̃−1+1<dit̃−1+1, . . . ,kit̃<dit̃

�val t̃−1�𝜉 t̃−1�bkit̃−1+1, . . . ,kit̃
��+Δkit̃−1+1, . . . ,kit̃

𝛾it̃−1+1�,

since 𝛾it̃−1+1=val t̃ �̃�t̃. Then, combining (7.6) with

v�bkit̃−1+1, . . . ,kit̃
;ℙit̃−1�−dct 𝜉 t̃−1⩽val t̃−1�𝜉 t̃−1�bkit̃−1+1, . . . ,kit̃

��
yields

v(A;ℙit̃)−𝜂−dct 𝜉 t̃−1⩽val t̃−1�𝜉 t̃−1�bkit̃−1+1, . . . ,kit̃
��+Δkit̃−1+1, . . . ,kit̃

𝛾it̃−1+1,
whence

val t̃(𝜉 t̃(A))⩾v(A;ℙit̃)−𝜂−dct 𝜉 t̃−1.
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Next, we verify that

𝜂 = max
kit̃−1+1<dit̃−1+1, . . . ,kit̃<dit̃

�
it̃−1+1<l⩽it̃

kl (𝛾l−dit̃−1+1 ⋅ ⋅ ⋅ dl−1𝛾it̃−1+1)

= �
it̃−1+1<l⩽it̃

(dl−1)(𝛾l−dit̃−1+1 ⋅ ⋅ ⋅ dl−1𝛾it̃−1+1)

= �
it̃−1+1<l⩽it̃

(dl−1) �
it̃−1+1<k⩽l

dk ⋅ ⋅ ⋅ dl−1(𝛾k−dk−1𝛾k−1)

= �
it̃−1+1<k⩽it̃

(𝛾k−dk−1𝛾k−1) �
k⩽l⩽it̃

dk ⋅ ⋅ ⋅ dl−1(dl−1)

= �
it̃−1+1<k⩽it̃

(dk ⋅ ⋅ ⋅ dit̃−1)(𝛾k−dk−1𝛾k−1)

= 𝜅t̃.

In our setting, we recall that 𝜖i−1=1 holds whenever 𝛾i− di−1𝛾i−1⩽𝜌. Therefore (7.4)
implies that 𝛾k− dk−1𝛾k−1⩽𝜌 for all it̃−1+1< k⩽ it̃. By using dk⩾2 for k⩾ it̃−1+1, we
obtain d̃t̃⩾2k−(it̃−1+1)dk ⋅ ⋅ ⋅ dit̃, hence the bound

𝜅t̃ ⩽ �
it̃−1+1<k⩽it̃

(dk ⋅ ⋅ ⋅ dit̃−1)𝜌

< �
it̃−1+1<k⩽it̃

1
2k−(it̃−1+1) d̃t̃𝜌

⩽ d̃t̃𝜌. □

For i=1, . . . , t we introduce

Πi: ℙi → ℙi−1

A ↦ A(𝜑1, . . . ,𝜑i,Φi).

For k′⩾k, we also define

Πk′↝k=Πk∘ ⋅ ⋅ ⋅ ∘Πk′.

Let us now study flattenings of the second type from a complexity perspective. We will
not optimize the complexity of our algorithms as a function d̃t̃, because d̃t̃ will always be
taken relatively small in the next section.

LEMMA 7.10. Let l∈rt+1ℕ>0, let A∈(ℙt)<l be given at relative precision 𝜌∈Rt+1
−1 ℕ>0, and let

𝜂⩾(l−1)(𝛾t+1−dt𝛾t). Then

[Πt(A);ℙt−1]v(A;ℙt)−𝜂;𝜌+𝜂=[Πt(A);ℙt−1]0;v(A;ℙt)+𝜌

can be computed using

O(B(d1, . . . ,dt−1;max(Rt−1
−1 , 𝜌+𝜂))(min(Rt−1(𝜌+𝜂),1)dt l)2 l)

operations in 𝕂.

Proof. Let ∑j<lAj𝜑t+1
j denote the contact representation of A. We obtain

�AjΦt
j;ℙt−1�v(A;ℙt)−𝜂;𝜌+𝜂
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for all j=0, . . . , l−1, using

O(B(d1, . . . ,dt−1;max(Rt−1
−1 , 𝜌+𝜂))(min(Rt−1(𝜌+𝜂),1)dt l)2 l)

operations in𝕂 by Proposition 3.5, whence the claimed cost. □

LEMMA 7.11. Let l∈ rt+1ℕ>0, let F∈ℙt be monic of degree l in 𝜑t+1 and given in contact rep-
resentation ∑i⩽l Fi𝜑t+1

i , and let 𝜑t+1+G denote the pre-inverse of 𝜑t+1+Fl−1. Then, (𝜑t+1+
G)j quo𝜑t+1𝜑t+1

j−1 is the pre-inverse of F j quo𝜑t+1𝜑t+1
jl−1 for all j⩾1.

Proof. Expanding the terms of highest degrees of the product of twomonic contact poly-
nomials F and H yields

�𝜑t+1
l +Fl−1𝜑t+1

l−1+Fl−2𝜑t+1
l−2+ ⋅ ⋅ ⋅� (𝜑t+1

m +Hm−1𝜑t+1
m−1+Hm−2𝜑t+1

m−2+ ⋅ ⋅ ⋅)
= 𝜑t+1

l+m+(Fl−1+Hm−1)𝜑t+1
l+m−1+(Fl−1Hm−1+Fl−2+Hm−2)𝜑t+1

l+m−2+ ⋅ ⋅ ⋅

Consequently, the sub-dominant coefficient Fl−1+Hm−1+Fl−1Hm−1 quo𝜑t Φt in this pro-
duct only depend on the sub-dominant coefficients Fl−1 andHm−1 of F andH. [Not clear
how this yields the desired result. The change from □ quo𝜑t+1 𝜑t+1

j−1 to □ quo𝜑t Φt is also
confusing.] □

LEMMA 7.12. Let l∈ rt+1ℕ>0, let A∈(ℙt)<l be of valuation ⩾𝜎, let 𝜌∈Rt+1
−1 ℕ>0, and let

𝜂⩾(l−1)(𝛾t+1−dt𝛾t). Given B≔[Πt(A);ℙt−1]𝜎−𝜂;𝜌+𝜂 and [Ψt;ℙt−1]𝛾t;𝜌+𝜂, we can compute
[A;ℙt]𝜎;𝜌 using

O(B(d1, . . . ,dt−1;max(Rt−1
−1 , 𝜌+𝜂))(min(Rt−1(𝜌+𝜂),1)dt l)2 l)

operations in 𝕂.

Proof. Let A=∑j<l Aj𝜑t+1
j and B=∑k<dtl Bk𝜑t

k denote the contact representations of A
and B. We compute Cj≔�Φt

j;ℙt−1�jdt𝛾t;𝜌+𝜂 and �Ψt
j quo𝜑t𝜑t

j−1;ℙt−1�𝛾t;𝜌+𝜂 for j=0,..., l−1,
using

O(B(d1, . . . ,dt−1;max(Rt−1
−1 , 𝜌+𝜂))(min(Rt−1(𝜌+𝜂),1)dt l)2 l)

operations in𝕂 by Proposition 3.5. Then, we set Hl−1≔B and for j from l−1 down to 0,
we recursively compute

Dj ≔ [Hj quo𝜑tCj;ℙt−1]𝜎−𝜂− jdt𝛾t;𝜌+𝜂

Hj−1 ≔ [Hj rem𝜑t Cj;ℙt−1]𝜎−𝜂;𝜌+𝜂.

In this way, we obtain the following approximation of the Φt-adic expansion of B:

B=[[[[[[[[[[[[[[�j<l
DjΦt

j;ℙt−1]]]]]]]]]]]]]]𝜎−𝜂;𝜌+𝜂

.

Since
𝜎−𝜂− j dt𝛾t+𝜌+𝜂=𝜎− j dt𝛾t+𝜌⩾𝜎+𝜌− j𝛾t+1,

we can read off [Aj;ℙt−1]𝜎;𝜌 from Dj. From Lemma 7.11, we know that Ψt
j quo𝜑t 𝜑t

j−1 is
the pre-inverse ofΦt

j quo𝜑t 𝜑t
dtj−1. Taking advantage of these pre-inverses, this sequence

of divisions costs

O(B(d1, . . . ,dt−1;max(Rt−1
−1 , 𝜌+𝜂))(min(Rt−1(𝜌+𝜂),1)dt l)2 l),
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in total, thanks to Proposition 3.6. □

LEMMA 7.13. Let h< t, let 𝜌∈Rt+1
−1 ℕ>0, let

𝜂⩾(l−1)(𝛾t+1−dt𝛾t)+(dt l−1)(𝛾t−dt−1𝛾t−1)+ ⋅ ⋅ ⋅+(dh+2 ⋅ ⋅ ⋅ dt l−1)(𝛾h+2−dh+1𝛾h+1),

and assume thatΨh, . . .,Ψt are known at precision 𝜌+𝜂. One evaluation of Πt↝h+1 with relative
precision 𝜌 at an element of degree <l∈ rt+1ℕ>0 in 𝜑t+1 at precision 𝜌+𝜂, and one evaluation
of Πt↝h+1

−1 with relative precision 𝜌+𝜂 at a polynomial of degree <dh+1 ⋅ ⋅ ⋅ dt l in 𝜑h+1, both cost

Õ(5t−hB(d1, . . . ,dh;max(Rh
−1, 𝜌+𝜂))min(Rh(𝜌+𝜂),1)(dh ⋅ ⋅ ⋅ dt l)4)

operations in 𝕂.

Proof. Recall thatΠt↝h+1=Πh+1∘⋅⋅⋅∘Πt. We apply Lemma 7.10 forΠi (resp. Lemma 7.12
forΠi

−1) recursively for i from t down to h+1. The total cost is

O(((((((((((((( �
h⩽i<t

B(d1, . . . ,di;max(Ri
−1, 𝜌+𝜂))(min(Rimax(Ri+2

−1 ,𝜌+𝜂),1)di+1 ⋅ ⋅ ⋅ dt l)2di+2 ⋅ ⋅ ⋅ dt l)))))))))))))),
which is bounded by

O(((((((((((((( �
h⩽i<t

B(d1, . . . ,di;max(Ri
−1, 𝜌+𝜂))(min(Ri (𝜌+𝜂),1)di+1 ⋅ ⋅ ⋅ dt l)2(di+2 ⋅ ⋅ ⋅ dt l)2)))))))))))))),

For i=h, . . . , t−1, Proposition 3.11 gives us

B(d1, . . . ,di;max(Ri
−1, 𝜌+𝜂))

⩽ 5i−hB(d1, . . . ,dh;max(Rh
−1, 𝜌+𝜂))(min(Rhmax(Ri

−1, 𝜌+𝜂),1)dh+1 ⋅ ⋅ ⋅ di)2.

Consequently,

O(B(d1, . . . ,di;max(Ri
−1, 𝜌+𝜂))(min(Ri (𝜌+𝜂),1)di+1 ⋅ ⋅ ⋅ dt l)2(di+2 ⋅ ⋅ ⋅ dt l)2)

⩽ 5i−hB(d1, . . . ,dh;max(Rh
−1, 𝜌+𝜂))min(Ri (𝜌+𝜂),1)

×min(Rhmax(Ri
−1, 𝜌+𝜂),1)(dh+1 ⋅ ⋅ ⋅ dt l)4

⩽ 5i−hB(d1, . . . ,dh;max(Rh
−1, 𝜌+𝜂))min(Rh(𝜌+𝜂),1)(dh ⋅ ⋅ ⋅ dt l)4,

using Lemma 3.10. The total cost for Πt↝h+1 and Πt↝h+1
−1 directly follows by taking the

sum of the latter bound for i=h, . . . , t−1. □

PROPOSITION 7.14. Given an almost reduced effectively separable and regular contact tower
(ℙi)i⩽t, given 𝜌∈Rt

−1ℕ>0, and a flattening (ℙ̃j)j⩽t̃−1 for (ℙi)i⩽it̃−1 at precision 𝜌 and defect⩽𝜂′.
Assume that 𝜖it̃−1+1= ⋅ ⋅ ⋅ = 𝜖it̃−1= 1 and that Ψit̃−1+1, . . . , Ψt are known at precision 𝜌+ 𝜅t̃.
Then we can compute a flattening (ℙ̃j)j⩽t̃ for (ℙi)i⩽t of second type at level t̃, precision 𝜌, and
defect ⩽𝜂≔𝜂′+𝜅t̃ using

Õ(5t−it̃−1B(d1, . . . ,dit̃−1;max(Rit̃−1
−1 , 𝜌+𝜂))min(Rit̃−1(𝜌+𝜂),1) d̃t̃

4)
+ I(d1, . . . ,dit̃−1;max(Rit̃−1

−1 , 𝜌+𝜂))
+ O(C(ℙit̃−1,<1;𝜌+𝜅t̃↔ℙ̃t̃−1,<1;𝜌+𝜂)min(Rit̃−1(𝜌+𝜂),1) d̃t̃)

operations in 𝕂.
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Proof. We use Lemma 7.13 with h= it̃−1 in conjunction with Lemma 7.9 in order to com-
pute Φit̃−1+1↝k=Πk−1↝it̃−1+1(Φk) at precision 𝜌+𝜂 for k= it̃−1+1, . . . , it̃. This costs

Õ(5t−it̃−1B(d1, . . . ,dit̃−1;max(Rit̃−1
−1 , 𝜌+𝜂))min(Rit̃−1(𝜌+𝜂),1) d̃t̃

4).

We compute the pre-inverse Ω t̃ of Φit̃−1+1↝it̃ at relative precision 𝜌+𝜅t̃, using

O(M(d1, . . . ,dit̃−1, d̃t̃;max(Rit̃−1+1
−1 , 𝜌+𝜂)) log d̃t̃)+ I(d1, . . . ,dit̃−1;max(Rit̃−1

−1 , 𝜌+𝜂))

operations in𝕂, thanks to Proposition 3.14. By Proposition 3.11 we have

M(d1, . . . ,dit̃−1, d̃t̃;max(Rit̃−1+1
−1 , 𝜌+𝜂))

= O(B(d1, . . . ,dit̃−1;max(Rit̃−1
−1 , (𝜌+𝜂)))(min(Rit̃−1max(Rit̃−1+1

−1 , 𝜌+𝜂),1) d̃t̃)2)
= O(B(d1, . . . ,dit̃−1;max(Rit̃−1

−1 , (𝜌+𝜂)))min(Rit̃−1max(Rit̃−1+1
−1 , 𝜌+𝜂),1) d̃t̃

2)
= O�B(d1, . . . ,dit̃−1;max(Rit̃−1

−1 , (𝜌+𝜂)))min(Rit̃−1(𝜌+𝜂),1) d̃t̃
3�.

Wededuce Φ̃t̃ and Ω̃ t̃ usingO(min(Ri t̃−1(𝜌+𝜂),1) d̃t̃) evaluations of 𝜉 t̃−1 by Lemma 2.3. □

[Where is the complexity of the precomputations analyzed?]

PROPOSITION 7.15. With the notation of Proposition 7.14, assume that the following auxiliary
data are given at precision 𝜌+𝜂:
• 𝜉 t̃−1(Φit̃−1+1), . . . , 𝜉 t̃−1(Φt) (here 𝜉 t̃−1 is applied coefficient-wise),
• 𝜉 t̃−1(Ψit̃−1+1), . . . , 𝜉 t̃−1(Ψt), where Ψj still denotes the pre-inverse of 𝜑j+Φj,dj−1 at precision

𝜌+𝜅t̃.
Then we have

C(ℙit̃,<1;𝜌↔ℙ̃t̃,<1;𝜌+𝜂)
= Rt

−1 Õ�3t̃DtRt(𝜌+𝜂)� d̃t̃
6

+C(ℙit̃−1,<1;𝜌+𝜅t̃↔ℙ̃t̃−1,<1;𝜌+𝜂)min(Rit̃−1(𝜌+𝜅t̃), 1) d̃t̃.

Proof. Let A∈(ℙit̃)<1 be written canonically

A= �
kit̃−1+1<dit̃−1+1, . . . ,kit̃<dit̃

Akit̃−1+1, . . . ,kit̃
𝜑it̃−1+1
kit̃−1+1 ⋅ ⋅ ⋅ 𝜑it̃

kit̃.

At relative precision 𝜌, the number of non-zero Akit̃−1+1, . . . ,kit̃
is

⩽min(Rit̃−1𝜌,1) d̃t̃

by Lemma 2.3. We first convert these non-zero coefficients into (ℙ̃t̃−1)<1 at relative preci-
sion 𝜌+𝜂. For the arithmetic operations in (ℙit̃−1)<1we then use the flattened representa-
tion, so Proposition 6.7 allows us to take

B(d1, . . . ,dit̃−1;max(Rit̃−1
−1 , 𝜌+𝜅t̃))=Rit̃−1

−1 Õ�3t̃ D̃t̃−1Rit̃−1max(Rit̃−1
−1 , 𝜌+𝜂)�.

Using 2it̃−it̃−1⩽ d̃t̃, we have 5it̃−it̃−1⩽ d̃t̃
3, so the cost bound given in Lemma 7.13 becomes

Rit̃−1
−1 Õ�3t̃ D̃t̃−1Rit̃−1

−1 max(Rit̃−1
−1 , 𝜌+𝜂)min(Rit̃−1(𝜌+𝜂),1) d̃t̃

7�
= Rt

−1 Õ�3t̃ D̃t̃Rt(𝜌+𝜂)� d̃t̃
6.

For the reverse conversion from (ℙ̃t̃)<1 to (ℙit̃)<1 the complexity is the same, again by
Lemma 7.13. □
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8. ACCELERATED TOWER ARITHMETIC

We carry on with the notation of Definition 6.1 for flattenings and we recall that d̃j≔
dij−1+1 ⋅ ⋅ ⋅ dij. We aim at constructing flattenings of sufficiently small height in order to
obtain a fast product in the given contact tower: this will be achieved by merging con-
secutive levels of small degree. All contact towers in this section will be almost reduced,
effectively separable, and regular.

8.1. δ-flattening
Given 𝛿⩽Dt, we can construct a sequence 𝜄k for k=0, . . . , s with 𝜄0=0, 𝜄0=1, and

s⩽3 logDt
log 𝛿 +2 (8.1)

such that if 𝜄k> 𝜄k−1+1, then dk<𝛿. We originally developed this construction for alge-
braic towers [9, section 4.2]. In this section we will refine it for contact towers. For a slice
between 𝜄k and 𝜄k+1−1, we will construct at most four consecutive flattening steps, either
trivial, or of first or second types.

We define (ij)j=0, . . . ,t̃ recursively from i0≔0 to it̃= t. We recall that the first level must
be trivial, so i1≔1. For j⩾2, assume that ij−1 has been defined and that ij−1= 𝜄k−1 for
some k∈{1, . . . , s}. If 𝜄k=𝜄k−1+1 then we set ij≔𝜄k and introduce a trivial flattening step
at level ij. Otherwise, we distinguish the following cases.
Case 1. If 𝜖𝜄k−1+1=1, then we distinguish the following sub-cases.

a. If 𝜖𝜄k−1+1= ⋅ ⋅ ⋅ = 𝜖𝜄k−1=1, then we set ij≔ 𝜄k and introduce a single flattening of
second type between ij−1 and ij.

b. Otherwise, there exists a largest integer ij⩽𝜄k such that 𝜖ij−1+1= ⋅ ⋅ ⋅ = 𝜖ij−1=1. By
construction ij< 𝜄k and 𝜖ij=0, so we still use a flattening of second type between
ij−1 and ij, but beyond ij, we distinguish two cases:
i. If 𝜖𝜄k=0 then we set ij+1≔ 𝜄k and a flattening of first type is used between ij

and ij+1.
ii. Otherwise, 𝜖𝜄k = 1 and there exists a smallest integer ij+1 ⩽ 𝜄k such that

𝜖ij+1+1=⋅⋅⋅=𝜖𝜄k=1. Between ij and ij+1 a flattening of first type is used. Between
ij+1 and ij+2≔𝜄k a flattening of second type is used.

Case 2. If 𝜖𝜄k−1+1=0, then we distinguish the following sub-cases.
a. If 𝜖𝜄k−1=0, then we set ij to the largest integer ⩽𝜄k such that 𝜖ij=0, so we use a

flattening of first type between ij−1 and ij. If ij<𝜄k then we add another flattening
of second type between ij and ij+1≔𝜄k.

b. Otherwise 𝜖𝜄k−1=1, and we set ij≔ ij−1+1= 𝜄k−1+1. Then we repeat the construc-
tion from case 1 at position 𝜄k−1+1 instead of 𝜄k−1.

A flattening constructed in this way will be called a δ-flattening for the contact
tower (ℙi)i⩽t. The maximum length of a subsequence of (ij)j⩽t̃ between 𝜄k−1 and 𝜄k is
at most 4. This maximum is reached in case 2b, when the recursive construction falls
in case 1bii, as illustrated below (where '∗' stands for 0 or 1):

i ij−1≔𝜄k−1 ij= ij−1+1 ij+1≔ ij+1 ⋅ ⋅ ⋅ ij+2−1 ij+2 ij+2+1 ⋅ ⋅ ⋅ ij+3 ij+3+1 ⋅ ⋅ ⋅ ij+4=𝜄k+1
𝜖i 1 0 1 ⋅ ⋅ ⋅ 1 0 ∗ ∗ 0 1 ⋅ ⋅ ⋅ 1
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LEMMA 8.1. There exists a 𝛿-flattening with the following properties:
• t̃⩽12 logDt

log 𝛿 +8,
• if ij+1> ij+1 then d̃j⩽𝛿, for j=1, . . . , t̃,
• dct 𝜉j⩽𝛿𝜌 j, for j=1, . . . , t̃.

Proof. The existence of the flattening and the bound ondct 𝜉j is a consequence of the above
construction, Lemmas 7.1, 7.4, and 7.9. The first bound follows from (8.1) and t̃⩽4 s. □

8.2. Conversion cost
Now we assume that a 𝛿-flattening is at our disposal and we study the cost of the con-
versions between (ℙit̃)<1 and (ℙ̃t̃)<1. By definition of dct 𝜉 t̃, any element A in (ℙit̃)<1
can be recovered at precision 𝜌 from its image 𝜉 t̃(A) at relative precision 𝜌+𝜂whenever
𝜂⩾dct 𝜉 t̃.

LEMMA 8.2. Given an almost reduced effectively separable and regular contact tower (ℙi)i⩽t, and
• 𝜌∈Rt

−1ℕ>0, 𝜂⩾𝛿𝜌 t̃, a 𝛿-flattening (ℙ̃j)j⩽t̃ of (ℙi)i⩽t at precision 𝜌,
• the auxiliary data of Proposition 7.3 (resp. 7.6 and 7.15), if the flattening at level j is trivial

(resp. of first and second type), for j=1, . . . , t̃.
Then we have

C(ℙit̃,<1;𝜌↔ℙ̃t̃,<1;𝜌+𝜂)=Rt
−1 Õ�3t̃DtRt(𝜌+𝜂)𝛿6�.

Proof. If the flattening at level t̃ is trivial or of first type, then we set 𝜅t̃≔0. The upper
bound 𝜂=𝛿𝜌 t̃ on the defect comes from Lemma 8.1. In case of a non-trivial flattening at
level t̃, we have d̃t̃⩽𝛿, and Propositions 7.6 and 7.15 yield

C(ℙit̃,<1;𝜌↔ℙ̃t̃,<1;𝜌+𝜂)
= Rt

−1 Õ�3t̃DtRt(𝜌+𝜂) d̃t̃
6�+C(ℙit̃−1,<1;𝜌+𝜅t̃↔ℙ̃t̃−1,<1;𝜌+𝜂)min(Rit̃−1(𝜌+𝜂),1) d̃t̃

= Rt
−1 Õ�3t̃DtRt(𝜌+𝜂)𝛿6�+C(ℙit̃−1,<1;𝜌+𝜅t̃↔ℙ̃t̃−1,<1;𝜌+𝜂)min(Rit̃−1(𝜌+𝜂),1) d̃t̃.

Otherwise, in case of a trivial flattening, we have it̃= it̃−1+1 and Proposition 7.3 gives

C(ℙit̃,<1;𝜌↔ℙ̃t̃,<1;𝜌+𝜂)=C(ℙit̃−1,<1;𝜌↔ℙ̃t̃−1,<1;𝜌+𝜂)min(Rit̃−1𝜌,1) d̃t̃.

It follows that

C(ℙit̃,<1;𝜌↔ℙ̃t̃,<1;𝜌+𝜂)
= Rt

−1 Õ�3t̃DtRt(𝜌+𝜂)𝛿6�+C(ℙit̃−1,<1;𝜌+𝜅t̃↔ℙ̃t̃−1,<1;𝜌+𝜂)min(Rit̃−1𝜌,1) d̃t̃
= Rt

−1 Õ�3t̃DtRt(𝜌+𝜂)𝛿6�
+Rit̃−1

−1 Õ�3t̃−1 D̃t̃−1Rit̃−1max(Rit̃−1
−1 , 𝜌+𝜂)𝛿6�min(Rit̃−1𝜌,1) d̃t̃

+C(ℙit̃−2,<1;𝜌+𝜅t̃+𝜅t̃−1↔ℙ̃t̃−2,<1;𝜌+𝜂)min(Rit̃−2max(Rit̃−1
−1 , 𝜌), 1)min(Rit̃−1𝜌,1) d̃t̃−1 d̃t̃

= Rt
−1 Õ��3t̃+3t̃−1�DtRt(𝜌+𝜂)𝛿6�
+C(ℙit̃−2,<1;𝜌+𝜅t̃+𝜅t̃−1↔ℙ̃t̃−2,<1;𝜌+𝜂)min(Rit̃−2𝜌,1) d̃t̃−1 d̃t̃ (by Lemma 3.10)

⋅⋅⋅
= Rt

−1 Õ�3t̃ D̃t̃Rt(𝜌+𝜂)𝛿6�,

which concludes the proof. □
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8.3. Fast product and division
We still assume that a 𝛿-flattening is at our disposal. Now we assess the cost of the mul-
tiplications and divisions in ℙt.

LEMMA 8.3. Let (ℙi)i⩽t be an almost reduced effectively separable and regular contact tower. Let
1⩽𝛿⩽d, l∈ rt+1ℕ>0, 𝜌∈Rt+1

−1 ℕ>0, and 𝜂⩾𝛿𝜌 t̃. Given a 𝛿-flattening for (ℙi)⩽t at precision 𝜌
and defect ⩽𝜂, together with the auxiliary data needed in Lemma 8.2, we have

B(d1 ⋅ ⋅ ⋅ dt, l; 𝜌) = Rt+1
−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)𝛿6�

I(d1, . . . ,dt, l; 𝜌) = Rt+1
−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)𝛿6�.

Proof. In order to multiply two elements of (ℙi)i⩽t, we convert them into the flattened
representation, multiply them, and convert them back. The number of the conversions is
given by Lemma 2.2, their cost by Lemma 8.2, whereas the cost of the products is stated
in Proposition 6.7, whence

M(d1, . . . ,dt, l; 𝜌)
= O(C(ℙit̃,<1;𝜌↔ℙ̃t̃,<1;𝜌+𝜂)min(Rt𝜌,1) l)+Rt+1

−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)�
= Rt

−1 Õ�3t̃DtRtmax(Rt
−1, 𝜌+𝜂)𝛿6min(Rt𝜌,1) l�+Rt+1

−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)�
= Rt

−1 Õ�3t̃DtRt(𝜌+𝜂)𝛿6 l�+Rt+1
−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)�

= Rt+1
−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)𝛿6�.

For computing a pre-inverse in degree lwe apply Proposition 3.14 with the latter bound
forM and achieve

Rt+1
−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)𝛿6�+ I(d1, . . . ,dt;max(Rt

−1, 𝜌)).

Thanks to Proposition 3.16 we deduce

D(d1, . . . ,dt, l; 𝜌)=Rt+1
−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)𝛿6�+ I(d1, . . . ,dt;max(Rt

−1, 𝜌)).

Finally, Proposition 3.14 leads to

I(d1, . . . ,dt, l; 𝜌)
= Rt+1

−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)𝛿6�+ I(d1, . . . ,dt;max(Rt
−1, 𝜌))

= Rt+1
−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)𝛿6�+Rt

−1 Õ�3t̃−1DtRtmax(Rt
−1, 𝜌+𝜂)𝛿6�

+ I(d1, . . . ,dt−1;max(Rt−1
−1 , 𝜌))

= Rt+1
−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)𝛿6�+Rt+1

−1 Õ�3t̃−1Dt lRt+1(𝜌+𝜂)𝛿6�
+ I(d1, . . . ,dt−1;max(Rt−1

−1 , 𝜌)) (since max(Rt
−1, 𝜌+𝜂)< rt+1(𝜌+𝜂))

⋅⋅⋅
= Rt+1

−1 Õ�3t̃Dt lRt+1(𝜌+𝜂)𝛿6�. □

8.4. Fast δ-flattening
It remains to compute 𝛿-flattenings. For level j, we recursively use the preceding fast
conversions, multiplications and divisions over ℙ̃j−1. In case of a trivial flattening, or
one of first type, at level j, recall that we set 𝜅j≔0. For the second type 𝜅j is defined in
Lemma 7.9. Let us now show how to compute the auxiliary data for each level.
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Algorithm 8.1
Input. An almost reduced effectively separable and regular contact tower (ℙi)i⩽t over

𝕂((z)) at precision 𝜌∈Rt
−1ℕ>0 a positive integer 𝛿<d.

Output. A 𝛿-flattening for (ℙi)i⩽t at precision 𝜌 and defect⩽𝛿𝜌 t̃, alongwith the auxiliary
data needed in Lemma 8.2.

Assumption. We are given >𝛿2 distinct elements in𝕂.

1. Determine the integer sequence 0= i0< ⋅ ⋅ ⋅ < it̃= t described before Lemma 8.1,
along with the flattening types for each level. Let 𝜂≔𝛿𝜌 t̃.

2. For j=1, . . . , t̃ do:
a. According to the type of the flattening at level j, use Proposition 7.2, 7.5, or 7.14

to increase the flattening for ℙij over ℙ̃j−1.
b. Compute Ψij−1+1, . . . , Ψij at precision 𝜌+ 𝜅j for a non-trival flattening. If the

flattening at level j is of first or second type, then compute the auxiliary data
needed in Proposition 7.6 or 7.15.

3. Return (ℙ̃j)j⩽t̃ along with the auxiliary data.

PROPOSITION 8.4. Algorithm 8.1 is correct and performs

Õ(Dt
1+𝜖𝛿6ht 𝛾t)+Rt

−1 Õ�3t̃DtRt𝜌𝛿12�
operations in 𝕂.

Proof. The correctness of Algorithm 8.1 is ensured by Lemmas 7.1, 7.4 and 7.9. We begin
with the following technical upper bound:

Rij
−1 Õ(3 j D̃jRijmax(Rij

−1, 𝜌+𝜂))
= Rij

−1 Õ(3 j D̃jRijRij
−1Rt(𝜌+𝜂)) (since max(Rij

−1, 𝜌+𝜂)⩽Rij
−1Rt(𝜌+𝜂))

= Rij
−1 Õ(3 jDtRij (𝜌+𝜂))

= Rt
−1 Õ(3 jDtRt𝜌𝛿). (8.2)

From Lemma 8.3 and (8.2), we obtain

B(d1, . . . ,dij−1;max(Rij−1
−1 , 𝜌+𝜂))

= Rij−1
−1 Õ(3 j−1 D̃j−1Rij−1max(Rij−1

−1 , 𝜌+𝜂)𝛿6)
= Rt

−1 Õ(3 jDtRt𝜌𝛿7), (8.3)

and
I(d1, . . . ,dij−1;max(Rij−1

−1 , 𝜌+𝜂))=Rt
−1 Õ(3 jDtRt𝜌𝛿7). (8.4)

For a trivial flattening, Proposition 7.2 gives the following cost for step 2.a:

O(M(d1, . . . ,dij;max(Rij
−1, 𝜌)) log dij)

+C(ℙij−1,<1;𝜌↔ℙ̃j−1,<1;𝜌+𝜂)O(min(Rij−1max(Rij
−1, 𝜌), 1)dij)

+ I(d1, . . . ,dij−1;max(Rij−1
−1 , 𝜌))

= Rij
−1 Õ(3 jDijRijmax(Rij

−1, 𝜌+𝜂)𝛿6) (by Lemma 8.3)
+Rij−1

−1 Õ�3 j D̃j−1Rij−1max(Rij−1
−1 , 𝜌+𝜂)𝛿6�O(min(Rij−1max(Rij

−1, 𝜌), 1)dij)
(by Lemma 8.2)

= Rt
−1 Õ(3 jDtRt𝜌𝛿8). (using (8.2))
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For a flattening of first type, Proposition 7.5 gives the following cost for step 2.a:

Õ(Dj
1+𝜖𝛿6ht 𝛾j)

+ Õ(B(d1, . . . ,dij−1;max(Rij−1
−1 , 𝜌)) (min(Rij−1max(Rij

−1, 𝜌), 1)𝛿)2𝛿ht 𝜌 log4Dj)
+O(C(ℙij−1,<1;𝜌↔ℙ̃j−1,<1;𝜌+𝜂)min(Rij−1max(Rij

−1, 𝜌), 1)𝛿 logDj)
= Õ(Dj

1+𝜖𝛿6ht 𝛾j)
+Rt

−1 Õ(3 j−1DtRt𝜌𝛿10) (using (8.3))
+Rt

−1 Õ(3 j−1DtRt𝜌𝛿6) (by Lemma 8.2)
= Õ(Dj

1+𝜖𝛿6ht 𝛾j)+Rt
−1 Õ(3 jDtRt𝜌𝛿10).

For a flattening of second type, Proposition 7.14 gives the following cost for step 2.a:

Õ�5ij−ij−1B(d1, . . . ,dij−1;max(Rij−1
−1 , 𝜌+𝜂))min(Rij−1max(Rij

−1, 𝜌+𝜂),1)𝛿4�
+ I(d1, . . . ,dij−1;max(Rij−1

−1 , 𝜌))
+O(C(ℙij−1,<1;𝜌↔ℙ̃j−1,<1;𝜌+𝜂)min(Rij−1𝜌,1) d̃j)

= Rt
−1 Õ(3 j−1DtRt𝜌𝛿11) (using (8.3))
+Rt

−1 Õ(3 j−1DtRt𝜌𝛿7) (using (8.4))
+Rt

−1 Õ(3 j−1DtRt(𝜌+𝜂)𝛿6) (by Lemma 8.2)
= Rt

−1 Õ(3 j−1DtRt𝜌𝛿11).

If the flattening at level j is non-trivial, then Proposition 3.11 applied to h= ij−1 and t= ij
gives the following cost bound for step 2.b:

⩽ 5ij−ij−1+1B(d1, . . . ,dij−1;max(Rij−1
−1 , 𝜌+𝜅j))(min(Rij−1max(Rij

−1, 𝜌+𝜅j), 1)𝛿)2

+ I(d1, . . . ,dij−1;max(Rij−1
−1 , 𝜌+𝜅j))(ij− ij−1)

= 5ij−ij−1+1Rt
−1 Õ(3 j−1DtRt𝜌𝛿9) (using (8.3) and (8.4))

= Rt
−1 Õ(3 j−1DtRt𝜌𝛿12). (using 5ij−ij−1⩽𝛿3)

The rest of step 2.b reduces to Õ(d̃j)= Õ(𝛿) evaluations of 𝜉j−1, which totalize

C(ℙij−1,<1;𝜌↔ℙ̃j−1,<1;𝜌+𝜂) Õ(𝛿) = Rt
−1 Õ(3 jDtRt(𝜌+𝜂)𝛿6)

by Lemma 8.2. We conclude by summing the costs of steps 2.a and 2.b for j=1, . . . , t̃,
simplifying with (2.2). □

8.5. Proof of Theorem 1.4
We finally combine the preceding algorithms in order to prove our main result, first in
terms of the parameter 𝛿, and then only in terms of Dt.

THEOREM 8.5. Let (ℙi)i⩽t be an almost reduced effectively separable and regular contact tower,
l∈rt+1ℕ>0, and let 𝛿⩽Dt. For all 𝜌∈Rt+1

−1 ℕ>0, after precomputations (that only depend on the
tower and 𝜌) of cost

Rt
−1 Õ�3t̃Dt rt+1Rt𝜌𝛿12�+ Õ(Dt

1+𝜖𝛿6ht 𝛾t),
the following holds:
• Given A∈[ℙt,<l]v(A;ℙt);𝜌, and B∈[ℙt,<l]v(B;ℙt);𝜌, we can compute the truncated product

[AB;ℙt]v(A;ℙt)+v(B;ℙt);𝜌 using
Rt+1
−1 Õ�3t̃Dt lRt+1𝜌𝛿6�

operations in 𝕂.
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• Given A∈[ℙt,<2l]v(A;ℙt);𝜌, and B∈[ℙt,⩽l]v(B;ℙt);𝜌monic of degree l, we can compute the trun-
cated quotient and remainder [A quo𝜑t+1B;ℙt]v(A;ℙt)−v(B;ℙt);𝜌 and [A rem𝜑t+1 B;ℙt]v(A;ℙt);𝜌
using

Rt+1
−1 Õ�3t̃Dt lRt+1𝜌𝛿6�

operations in 𝕂.

Proof. First we assume thatwe are given>𝛿2 distinct elements in𝕂. The cost for obtaining
a 𝛿-accelerated tower representation of (ℙi)i⩽t is given in Proposition 8.4. Then in order
to multiply two elements in (ℙi)i⩽t, we convert them into the flattening, multiply them,
and convert them back. The cost of the conversions is given in Lemma 8.2, and the costs
of the product and the division are stated in Propositions 6.7 and 6.8.

Finally if we are not given sufficiently many elements in𝕂, we appeal to [12, Propo-
sition A.2]: the overhead only induces logarithmic factors in the complexity bound. □

Proof of Theorem 1.4. It is important to notice that constants hidden in the “O” of The-
orem 8.5 are independent of the value for 𝛿, so we may freely choose 𝛿 in terms of Dt.
From Lemma 8.1 we know that

t̃⩽12 logDt
log 𝛿 +8

In order to balance the contributions of 3t̃ and 𝛿6 in the complexity bound of Theorem 8.5,
we take 𝛿 [hmm, recall that 𝛿 was assumed to be an integer in [9]] such that

6 log 𝛿=((((((((((12 logDt
log 𝛿 +8)))))))))) log 3,

so t̃=O(log1/2Dt),
log 𝛿
logDt

=O� 1
log1/2Dt

�, and 𝛿=Dt
o(1). □

[In the references, it should be Mac Lane.]
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