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The irreducible factorization of polynomials over power series is central to several
problems in computer algebra: integral bases, genus of a curve, Jacobian of a curve,
Riemann-Roch spaces. Well-known applications include cryptography and algebraic
geometry error-correcting codes. Towards solving these problems with quasi-optimal
complexity, recent algorithms make use of the so-called “contact representation”. When
carrying out the Newton polygon method, this allows intermediate objects to be repre-
sented in a compact way with respect to the required relative precision. In this paper,
we focus on the complexity of the corresponding “contact arithmetic” and present
quasi-optimal algorithms for multiplication and division in the contact representation.

KEYWORDS: contact factorization, approximate root, key polynomial, OM algorithm,
algebraic curve, accelerated tower, computer algebra, algorithm, complexity

1. INTRODUCTION

Consider the valued field L = K ((z)) of Laurent series over an effective field K. Here
“effective” means that algorithms are at our disposal for the arithmetic operations and
the zero test in K. We will write v: . - I'y U {0} for the valuation on L, with value
group I, =Z.

Computing the irreducible factorization of polynomials over L is central for several
problems in computer algebra: integral bases, genus of a curve, Jacobian of a curve,
Riemann-Roch spaces. Well-known applications include cryptography and algebraic
geometry error-correcting codes.

The standard way to factor polynomials over L is to use the Newton-Puiseux method.
The mathematical description of this algorithm goes back to Newton and Puiseux [16, 21].
Analyzing its computational complexity turns out to be subtle, due to the infinite nature
of Laurent series. In particular, we must first decide how to represent and truncate ele-
ments in algebraic extensions of LL.
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2 CONTACT ARITHMETIC

If Pe L[x] is an irreducible polynomial, then E:=L[x]/(P(x)) is again a valued field
and v extends uniquely to E. The main goal of this paper is to device efficient algorithms
for computations with suitably truncated elements in E.

If K has characteristic zero, then the roots of P are conjugate Puiseux series whose
coefficients lie in an algebraic extension of K. Taking ¢ to be one of these roots, one
obvious plan for computations in E is to simply extend L by ¢ and do all our com-
putations with Puiseux series. However, this is non-trivial to implement with good com-
plexity and the restriction to characteristic zero is an important drawback.

In order to factor polynomials over L with good complexity, modern algorithms [11,
18-20] are based on an alternate representation for elements in E. This representation
was used by Abhyankar and Moh in [1, 2] and is called the contact representation in [11].
The precise definition is somewhat technical and recalled in section 1.1 below. It has the
advantage of providing a compact representation for truncations of elements of E, in
particular when the relative precision of such truncations is low.

Given an ordinary non-zero Laurent series f =) k>0 fx ZF with o :=o( f), its truncation
with relative precision p is simply fyz7+ -+ +fr4p-12° ~1. Truncating elements of E
depends on the basis we choose for E as a vector space over L. Consider for instance the
case when P= (x2— 32312 — xz19%1 and the element f= x2—3z3 € E with v(f)=2033/4. It
is more accurate and compact to represent approximations of f with respect to the basis
1,x,x2 =323 x (x* =323 than with respect to the canonical basis 1,x,x%, x3. Although
conversions between both bases are possible, such conversions involve a constant loss of
precision, which is a problem when working with low relative precision.

In a nutshell, the contact representation is both compact and accurate for low relative
precisions, whereas the usual representation with respect to the basis 1,x, .. .,xdEgP ~lis
more straightforward and efficient from a computational point for high precisions. In
the recent works [3, 11, 18-20], the subtleties of the contact representation were circum-
vented by keeping the precision sufficiently high; in this way, it remained acceptable
to do all actual computations using the classical representation. However, in the case
of [11], this could only be achieved at the price of several convolutions, making part of
the algorithms less natural.

The present work is inspired by the idea that, in order to design efficient and elegant
algorithms for high-level mathematical problems (e.g. factorization over L), it is worth-
while to find the intrinsically best adapted representation for the underlying objects (the
contact representation) and then to first develop efficient algorithms in order to work
with this representation (contact arithmetic); see also [7].

In this paper, we present quasi-optimal algorithms for basic arithmetic operations
when using the contact representation. The contact representation can be regarded as
a hybrid one that mixes recursive p-adic expansions (at high relative precision) and
towers of algebraic extensions (at low relative precision). Our complexity bounds are
quasi-optimal, uniformly in the required precision. In order to achieve them, we will
borrow techniques from [9] to accelerate computations in towers of algebraic extensions.

The contact representation is fairly subtle, which explains the length of this paper.
But we believe that this makes it even more worthwhile to separate the “low-level” con-
tact arithmetic that we develop here from high-level applications to factorization and
other problems (which we intend to work out in upcoming work).
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1.1. Main result

In order to present our main result we need several definitions for the contact represen-
tation of elements of E.

DEFINITION 1.1. A contact tower of height t consists of:
e Variables ¢, ..., ¢, called contact coordinates;
o Defining polynomials ®;€ K[[z]][¢1,...,¢i] fori=1,...,t;
e Rational numbers 7y1,...,7:+1, called contact slopes.
These data are required to satisfy the following properties:
o Regarded in K[[z]][@1, ..., pi—1][@il, the polynomial ®; is monic in @; of degree d; >1;
° deg¢j®i<d]~,fori:2,...,tandj:1,...,i—1;
o 11=20andd;y;i 21 fori=2,...,t;
o Weendow K[z, ¢1,..., ¢r+1]] with the weighted valuation defined by val z:=1 and val ¢;:=1;
fori=1,...,t. We demand that:
o val®;=d;y,, fori=1,...,t;

o Yix1>diyi, fori=1,...,t.
The tower is said to be almost reduced when d; >2 fori=2,...,t. We write D;:=d; - - - d; for
i=1,...,t

The above contact tower defines the following sequence of isomorphic K ((z))-alge-
bras:

]P)i‘:K((Z))[q)l/---/§0i+1]/(q>l—§02/---/qu—(Pi+1)/ for l:]-//t/

see [11, Lemma 3.15]. Note that [11] defines P; over K[[z]], but the results from there can
naturally be restated over K ((z)) instead. An element 4 in IP; admits a unique represen-
tative, called canonical, in the form of a polynomial in K ((z))[¢1, ..., 9i+1] whose partial
degree in ¢; is <d; for j=1,...,1; see [11, section 3.5]. We write (P;); for the elements
of P; whose canonical representative has degree </ in ¢;,1. We let

Li:=Z+Zy1+---+Z;

Following [11, Proposition 3.22], the valuation v: K ((z)) — Z U { oo} extends to a semi-val-
uation v(-; P;): P;—I;;1 U {0} defined by v(¢j; P) :=7; for j=1,...,i+1, and such that P;
inherits the above weighted grading of K ((z))[[¢1,...,¢i+1]]. Most of the valuations con-
sidered in this paper will be semi-valuations, so we will drop the prefix “semi” for conve-
nience.

The initial inverse of b€ IP;_; is a homogeneous element u € P;_; such that:

o v(u; Pr_q) =—0v(b;Pry),

e the homogeneous component of valuation 0 of u b, written [u b; P;_1]o, equals 1.
Note that in [11, Definition 4.2 and Lemma 4.3] we forced a normalized form to repre-
sent initial inverses. This normalization is not needed in this paper because we perform
computations in contact towers directly over K ((z)) instead of K[[z]].

DEFINITION 1.2. A contact tower (IP;);<¢ as in Definition 1.1 is said to be separable when % is
initially invertible in P;, for i=1,...,s. It is said to be effectively separable if the initial inverse

of the % is known for algorithmzc purposes, fori=1,...,t.
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DEFINITION 1.3. With the notation of Definition 1.1, a contact tower of height t is said to be
regular when ®;(¢1,...,9;_1,0) has valuation d;7y; and is initially invertible, fori=1,...,s. It is
said to be effectively regular if the initial inverse of ®;(¢1,...,¢i—1,0) is known for algorithmic
purposes, fori=1,...,t.

We denote by [IP;],, the K-vector space of the elements of P; having valuation >¢
and (weighted) degree <o +p. For a € P;, we also write [a; P{],,, for the sum of the terms
of a that belong to [IP{],,,. For complexity estimates we often use the soft-Oh notation:
f(n)= O(g(n)) means that f (n) =g(n) (log(g(n)))o(l); see [4, chapter 25, section 7] for
technical details. An algebraic complexity model (e.g. straight-line programs) will be
used for counting operations in K.

Fori=1,...,t+1, there exists a unique integer R; € N such that I; equals R;” 17 see [11,
section 3.1]. The (logarithmic) height of a rational number a/b is defined by

ht(a/b) :=log(max (lal, |b])),

where log represents the natural logarithm. The number of bits for storing a /b in a dense
fashion is asymptotically proportional to ht(a/b). Elements in a contact tower will be
represented by the mixed dense-sparse representation described in section 2.3. A contact
polynomial P € P; is said to be clustered if its canonical representative is monic in @;11
of degree [>1 (that is P;€ K) and v(P; P;) =141. The definitions of the quotient and
remainder of contact polynomials, written quo,,,, and rem,, ,, are recalled in section 3.1.
With these conventions, we are now able to state our main result.

THEOREM 1.4. Let € >0 (thought to be arbitrarily small) [the € notation is not so nice, because
of the €; and because it used without warning as an arbirarily small positive constants at several
places]. Given an almost reduced effectively separable and reqular contact tower (IP;);<; and
p € Rizh N>, we can compute auxiliary data (that only depend on the tower and p) using

RO “rip1Re (p+ht )
operations in K, such that, for any 1 € r;,1 N>, the following tasks can be performed using

Ri10(D{*€1R41p)
operations in K:

o given A€ [(Py) <ilo;py;p and B € [(Pr) <ilos;pyy;er compute [AB; Piloa;py+oB;Py;pr

o given A € [(Pr)<a1]oa;py;p and B € [(Pt) <1]uB;py);p clustered of degree I, compute
[Aquog,,, B; Ptloa;py—oB;p;p and [Aremg, , B Piloa;py;p-

1.2. Related work

Theorem 1.4 contains the first nearly linear complexity bound for computing in contact
towers. This result relies on our previous fast algorithms for algebraic towers [9, 10].
We are not aware of any other method with subquadratic complexity. Of course, when
the relative precision is sufficiently large, a known fast strategy is to always work with
respect to the plain coordinates z,x, modulo appropriate conversions; see [11, section 3.6 ].
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Let P be irreducible in K ((z))[x]. In characteristic zero or >deg P, rational Puiseux
expansions can be computed efficiently [18], hence E =K ((z))[x]/ (P(x)) becomes explic-
itly isomorphic to E’:= K[a]((z))[x]/ (x* —at), where a is algebraic over K of degree s:=
(deg P) /e. In this way, arithmetic operations in E’ can be achieved in softly linear time.
The extension of this approach is tedious for small characteristic: Puiseux expansions
do not exist any longer and uniformizing parameters are not known to be computable
in quasi-linear time so far.

Contact towers (a term coined in [11]) constitute an alternate approach, that goes
back to Mac Lane [15] and that has been independently popularized by Abhyankar and
Moh [1, 2] in the seventies. In fact, the latter authors designed specific contact towers
from so-called approximate roots of P, that can be computed easily. Poteaux and Weimann
achieved a quasi-linear complexity bound for irreducibility testing [19]. Compared to
Puiseux expansions, contact towers yield more convenient algorithmic and geometric
views for germs of plane curves (the geometric counterpart of polynomials over power
series).

Puiseux expansions and contact towers are central tools for computing local irre-
ducible factorizations. Unless the characteristic is too small, fast algorithms have been
recently presented in [3, 11, 19, 20], to which we also refer for further bibliographical
references.

1.3. Overview of the paper

The paper divides into two parts: up to section 5 we gather definitions and design rather
elementary (but new) algorithms for contact towers and sparse arithmetic, and from
section 6 we focus on fast operations.

More precisely, the next section gathers notations and prerequisites about algo-
rithms for multivariate polynomials and power series that are truncated with respect to
a weighted valuation. In section 3 we design elementary algorithms for contact towers.
We assume that algorithms are known for some PP, with h <t and we reduce compu-
tations in IP; to operations in P,. Overall we achieve a product in P, whose cost grows
with 5' times the square of the input of the multiplicands. The goal of the next sections
is the construction of another tower that is isomorphic to IP; but with a sufficiently small
height with respect to its degree D;.

Let in(®;) represent the initial form of ®;, that is its homogenous component of lowest
valuation. In section 4 we show how to compute a univariate representation of

K@) [@1,..., 9]/ (Gn(Py), ..., in(Dy))

over
K@) 1., onl/ (in(P1), ..., in(Dy))

in terms of an invertible primitive element of valuation R; . We will call this a univariate-
valued representation in terms of a primitive-valued element!!. In section 5 this represen-
tation is lifted at a prescribed relative precision p whenever

p <min (yp1—dpyn Yer1—deye),

1.1. Such an element is sometimes called a uniformizing parameter or a local parameter. Our terminology tries to
convey the idea that this is a primitive element both for the algebraic and valuative structures.



6 CONTACT ARITHMETIC

in order to obtain a univariate-valued representation of P; over Pj, at precision p.

We introduce flattenings in section 6: they consists in replacing consecutive levels
of small degrees in a contact tower by a single level in a flattening. The problem is
much more intricate than for algebraic towers [9]: a first type of flattening computes
a univariate-valued representation, a second type is more straightforward to build but
conversions to this representation induce a loss of precision. In addition we will design
a specific fast flattened multiplication algorithm based on sparse arithmetic.

The different types of flattenings used in this article are presented in section 7. The
tirst type will handle the case where p <yy4+1—dpyn and p <41 —diyr so P, =0 and
®; =0 hold at relative precision p in P;. We will show that computing in P; at relative
precision p is equivalent to computing in P;/ (¢;4+1). By means of the univariate-valued
representation introduced in section 5, we will then construct an isomorphism between
P;/ (@t4+1) and

(Pu/ (@ns 1)) [P/ (D@1, -, @1, @)

where ¢ is primitive-valued for P;/ (¢¢4+1) over Py,/ (¢p4+1) and & is its minimal polyno-
mial. It will be sufficient to perform these computations using a number of operations
in P,/ (¢n+1) that remains polynomial in Dy, ID;. In fact Dy 1D, represents the degree of
the underlying flattening and it will be chosen of magnitude O(Dy), where € can be fixed
arbitrarily small. Conversions between P,/ (¢¢41) and (Pr,/ (¢n+1))[@]/ (q~>(g01,...,g0h,q~)))
will be performed without increasing the current precision p.

For the second type of flattening, we will replace P; by Pp[@;11]/ (H;— @t+1), Where P,
is constructed as follows: ®j,.1:= ®j,41 and

él‘(gol/- . -,§0h+l) = ®i(q)1/- < Ph+1, q~)h+1(§01/- . -/§0h+1)/- . -/éi—1(¢1/- . -/§0h+1))/

fori=h+2,...,t. The conversions between P; and Py[¢;41]/ (O, — @i+1) will be done
fast, but with a loss of precision of order Dj ' D;p. So, once again, this flattening will be
used only when Dj,; D, = O(D¥). The special case where h =0 was treated before in [11,
section 3.5] and corresponds to conversions between contact and plain coordinates.

Finally, the top level algorithms are presented in section 8, where we describe
a strategy to build efficient flattenings.

2. WEIGHTED POLYNOMIALS

In this section we first gather notations and known facts about weighted multivariate poly-
nomials and series. Then we design fast algorithms for multiplying truncated weighted
polynomials.

2.1. Notation

Let L be a commutative ring endowed with a (semi-)valuation v, whose valuation group
is Ry! Z for some Ry N>0. Let ¢y, ..., ¢, be indeterminates. For any positive integers
Ii,...,1,, we define

Lig1,...,@ul<qy,... 1) ={PEL[@1,...,¢n]:degy, P<Iy,...,degy, P <ly}.
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Fori=1,...,n, we assign the weight ;€ Q>O to ¢; and write val for the corresponding
weighted valuation of L[ ¢y, ..., 9,], that is

val(agf'--- @iy =v(@) +e1y1+ - +enyu,

forallae L. As in the above context of contact towers (where L =K ((z)) and Rg=1) we
define

RIZ=Ry'Z+1Z+-- +7:Z, (2.1)

with R; € N. Since R;_q divides R; we canset r;:=R;/R;_1EN fori=1,...,n. Givenc e Q
and p € Q>° we write

[E‘[Qplz---/@n]]a;p

for the L-module of polynomials of valuation >¢ that are defined up to valuation ¢ +p,
which means that two polynomials coincide in [L[¢,..., ¢1]]; Whenever their difference
has valuation >c + p.

Since d;y;<7yis1 fori=1,...,t, we have R;y; <Ry and since the denominator of 7; is
R; we have

hty; <ht ;. (2.2)

2.2. Sparse representation

A sparse representation of a polynomial P in K[¢y, ..., ¢,] is a data structure that only
stores the non-zero terms of P. The support of P is the set of its monomials having a
non-zero coefficient. Each such term is a pair made of a coefficient and a degree vector.
In an algebraic complexity model the bit size of the exponents counts for free, and the
relevant size of such a polynomial is the cardinality of its support.

Consider two polynomials P and Q of K[¢;,..., ¢,] in sparse representation. An
extensive literature exists about the general problem of multiplying P and Q; see [17] for
a recent survey. In this paper, a superset 5 of the support of PQ will always be known
and we will rely on the following classical result.

PROPOSITION 2.1. Let I,...,1,, be positive integers and let 6 € K be of multiplicative order 21y ---1,,.
Let 5 be a subset of {0,...,11—1}x---x{0,...,1,—1}, and let

@:=(0,01,0M, .., gl Iy,

1. The value of © and the set P of all products (6, ge2h . genlie ety for (ey,...,en) €S can
be computed using O(|5|log (11 - - 1,)) operations in K.

2. Assume that P has been precomputed. Let P be in K[ ¢, ..., @ul<q,,... 1, in sparse repre-
sentation, and with a support included in 5. All the values of P at (©%01,...,0° 1 an
be computed using O(S|) operations in K.

3. Assume that P has been precomputed. Given yo,...,y5—1 in K, there exists a unique poly-
nomial P with support in 5 such that P(® =y, fori=0,...,|5]1—1. This polynomial P can
be computed using O(5|) operations in K.

Proof. The first statement is straightforward by means of binary powering. The second
and third ones are adapted from [8, section 5.2]. i
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As said, handling supports of sparse polynomials does not matter from the algebraic
complexity point of view. Nevertheless in the rest of this subsection we provide the
reader with a few bit complexity bounds for building prescribed sparse supports but
also for computing with sparse polynomials. The bit complexity is estimated for a RAM
model over a fixed Z /N Z, as in [4]. These analyses aim at showing that the algebraic
complexity bounds of this paper might be turned into bit complexity bounds. Yet a com-
plete proof is out of the scope of this paper. We begin with the support of truncated
polynomials in one variable.

LEMMA 2.2. Let c €R7'Z, peRTIN>? and 1, € ¥y N>°. Then there exists a subset
‘-&U,p,ll g {0/ .. '/ll - 1}

of cardinality <lymin (Rop, 1) such that for all polynomials
A=) AigielLligilale,
0<i<ly

we have [A;]g ;0 =0 whenever i ¢ 54 1, The set 84 1, can be computed using

O(log Ro+ht o +ht p+ht+;) + O(l1) min (Rop, 1)

bit operations.

Proof. If Ryp>1 then we take 5:={0,...,/; —1}. Otherwise there exists an integer ke {1,...,
r1—1} such that p=k/Ry. If k=1, that is p=1/Ry, then [A;],_iy,;p = [Ailo—iy, is zero
whenever o —iy1 € Ry 17, or equivalently whenever

Ric—iRimé&nZ. (2.3)
By (2.1) we know that Ry 71 is coprime with r1, so the condition (2.3) is further equivalent
to i# jmod r;, where

j=(R171) 'Ry mod ry,
so we take
Se.pn=G+112Z)N{0,..., I —1).
Since /; €71 N the cardinality of 5,1, is I1/71=Ropl1. Computing the value of j takes
O(log Ry +ht o+ ht 1) bit operations. Then the construction of Sglp,ll takes
O((h/r1)logl1) = O(h) min (Rop, 1)

additional bit operations. If k >2, then we take

Sep1= 801 R, U Se1/R, 1Ry U - U Sa g (k1) /Ry, 1/Ry 1y

whose cardinality is <kRgl1/R1=Rop!l;. From the value of j computed for ¢, we deduce
the one for o +1/Rj as j+ (R171) “Tmodr using O(log r1) bit operations, so the total time
is as claimed. O

Here the support of a set of polynomials means the union of the supports of the poly-
nomials in this set. So, Lemma 2.2 means that the support of [L[¢1]<,] op 18 a set of
monomials in ¢ of cardinality </;min (Rop,1). We extend this result to several variables.
Monomials in ¢j, ..., ¢, are represented by vectors in N" and supports are sequences
of monomials.
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LEMMA 2.3. Let [;€r;N>° fori=1,...,n, let c €R; ' Z, and let p € R;*N>°. The support of
[L{p1, ..., ¢nl<qy, ... 1)]e;0 has cardinality
<l lymin (Rop, 1)

and can be computed using

O(ht o +nhty,) +Only ---1,) min (Rop, 1)

bit operations.

Proof. A homogeneous polynomial in L[¢1]<;, has <I1/r1=11RoR{ ! non-zero terms by
Lemma 2.2. A straightforward induction on 1 yields that any homogeneous polynomial
Pin L[g1,...,¢ul<q,...1,) has at most <Iq - - - 1,RoR; ! non-zero terms.

If the polynomial P is not homogeneous and if p=k/R, < Ry", then the number of
non-zero terms is </ --- I, Rop. If Ryp =1 then the bound on the number of monomials
is clear.

In order to compute the support of [L[¢1,...,@ul<q,...1,)]c We begin by computing
X:=R,omodR,, s;:=1;/r;, and G;=R,y;mod R, fori=1,...,n using

O(hto +hty;+--- +hty, +nlog R, +log(l ---1,))
= O(hto +nhtvy,+nlogR,+log(l ---1,))

bit operations, by (2.2). Then k;,:=val,, P is the smallest nonnegative integer such that
c—knpym € RN Z or equivalently that -G, k,€r,Z. By (2.1) we know that G, is
coprime with r,, so we obtain

k,:=G;'Zmodr,

in time O(log R,). Without loss of generality we can replace ¢ by £ /R, and ; by G;/R,
for computing supports. Let us write

kV’ n ”_1 n
P=g@y (Po+P1g)+ -+ +Ps, 15",
where
P;ie [IL[QOL .. -/§0n—1]<(11,...,ln,l)]a—(ir,,+kn)'yn-

Recursively we compute the support of P; fori=0,...,s,—1, and deduce the support of P
in time
Osuly -+ 1u—1RoR; log(ly -+ 1,)) = O(s1 - - s, Rolog (1 - - - 1))

Let C(n) denote the cost for computing the support of a homogeneous polynomial in
Lig1,...,¢nl<q,,.. 1,)- We have shown that

Cn)=5,C(n—1)+0(s1---s,Rolog(ly---1,)).
Unrolling this recurrence yields
C(n)=0(nsy---s,Rolog(ly---1,)) =0(nly---1,) RoR; %

For the next homogeneous component, of valuation ¢ + R;; 1 we replace X by (X +
1) mod R, and restart the computation of the support. Consequently, for p=k/R, <Rg"
we need to compute the support of k homogeneous polynomials. O
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2.3. Truncated polynomials

For a truncated polynomial Pin [K ((2))[@1,-.., @nl<y,... 1) ]o;p We use a mixed dense-sparse
representation. Precisely, we store ¢ and the sequence of homogeneous components

([Plo+i/R,)i=0,...,Ryp—1s
where each [P], iR, is stored as the sparse representation of its specialization at z=1,

that belongs to K[¢1,..., @nl<qy,.. 1)

LEMMA 2.4. Let ;€r;N>° fori=1,...,n, let c €R;;' Z, and let p € R; ' N>°. The support with
respect to z, @1, ..., @ of [K(@2)[@1,---, @ul<qy,... 1)]e;p has cardinality <y --- 1,0 and can be
computed using

é(htU-l—Tlht')/n) +é(7’lll'--ln)p

bit operations.

Proof. We adapt the proof of Lemma 2.3, with Ry=1. Let P€ [K ((2)) [@1,..., @ul<y, ... 1) ]op-
Each homogeneous component of P has <Iy---[,R; I monomials in K[z, @1, Pnl. A
polynomial with relative precision p has <R, p homogeneous components. O

Given 0 €R;;' Z and p € R;;' N>0, we will use the dense-sparse representation to mul-
tiply polynomials

Ae K@@, - @ul<ay,... 1n]oge and BE [K (@) [ @1, - -+, @ul<y,... 1) ]osp
efficiently. Note that ABE [K((2))[¢1, .., @ul<@ii-1,... 21— 1) 104+ 05;20-
PROPOSITION 2.5. Given I; € r; N>° fori=1,...,n, two polynomials A € [K((2))[¢1,...,
Pnl<y,... inlogp and BE[K((2)[@1,- -, @ul<qy, ... 1) 1og;p can be multiplied using
R;1OQ@"M;---1,R,p)

operations in K and O(ht o4 + ht o + ht Yn) + OQ"y---1,) o bit operations.

Proof. Let C:=AB, 0¢c:=04 + 03, and

I:= {oa00+R;Y...,00a+p—R; Y U{oB, o3+ R;L,...,08+p—RYH
U{oc,oc+R;Y,...,0c+20—R; 1)

ForieR;'Z, we write &, for the support of [K((2))[¢1,...,¢nl<1,,... 21,)]i Where z is spe-
cialized at 1. Since §;= 544, it suffices to compute the §; for ieImod 1. By Lemma 2.4,
this takes

O(htoy+htog+htyy+---+hty,) +OQ2"---1,) p
= O(htog+htog+htvy,) +OQ";---1,)p (using (2.2))
bit operations, and we have |5<2"];---1, R
Assume that we are given an element § € K of multiplicative order >2"I; ---1,,, so we

apply Proposition 2.1 with 2/; instead of /;. For each i€Imod 1, we compute ©® and the
set P; corresponding to &; using

O@2"ly---1,R;og (2" - 1)) + O™y - - - 1, Ry ) =R 1 O 2"y - - 1)
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operations in K. Then we define

A (@1, o) =AW @, ) =t Y [Algyrir, (L@, @) /R

0<i<R,p0

that b?longs to K ((£1/Rmyy [501/ ..., @n). We define B similarly. By Proposition 2.1 we com-
pute A(t)(®’) and B(t)(@®’) for j=0,...,15,— 1 using

0"y 1,R;YHY Ry p.
We compute C() (@) =A(t)(®))B(t)(®)) for j=0,...,15i—1 at relative precision p using
O@"y -+ 1,R;") O(Ry ) =R;; ' O(2"y -+ 1, Ry o)

operations in K. Then we interpolate C from C using Proposition 2.1 again.

Finally, if we are not given an element 6 € K of multiplicative order >2"[; - - - I,;, then
we appeal to [12, Proposition A.2]: the overhead only induces logarithmic factors in the
complexity bound. a

3. ELEMENTARY CONTACT ARITHMETIC

Given a contact tower as in Definition 1.1, we are interested in computing the product
of two elements A and B in P; with relative precision p > 0. This section is devoted to
relatively simple algorithms, on which the faster ones of section 7 will rely.

3.1. Generalized contact towers

As a first observation, since we are interested in computing with relative precision p
in IP;, we show that the defining polynomial ®; — ¢;,1 can be replaced by ®; in the defin-
ition of P; whenever ;1 —d;7; 2 p holds. For this purpose we introduce integers €y, ...,
€;in {0,1} and the generalized contact tower

Pi:=K(@)[@1,...,@is1]/ (P1—€19,..., Pi—€i i), fori=1,...,t.

Generalized contact towers share many of the properties of contact towers. We gather
the results needed in the sequel, along with brief proofs adapted from [11].
PROPOSITION 3.1. For i=1,...,t, any P € P admits a unique representative of the form
k ki
P= > Phr,. ke @1 9T EK@N @1, @il <ty ip[Pin1],
ki<dy,..., ki<dikiy1EN

which we call the canonical representative of P.

Proof. Assume that the polynomial P, written as above, belongs to the ideal

If:=(®P1—€192...,Pi—€i@it1).

If P is not identically zero, then its initial form in(P; P;) is non-zero. The proof of [11,
Lemma 3.7] extends to If mutatis mutandis and gives us that

in(If) = (in(Py),...,in(Py)).

Finally [11, Lemma 3.4] implies that in(P; P;) must be zero, that is a contradiction. O
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PROPOSITION 3.2. Fori=1,...,t the map

o5 PP PP > Z+Zyi+ -+ Zyie1 U {0}
P - min{valsz] k].+]+k1’)’1+"'+ki+1’yi+1:k1<d1,...,ki<dl-,ki+1€N}

.....

is a valuation of Py, that inherits the weighted grading of K((z))[[¢1, ..., Pr+1]]-
Proof. By routine adaptation of the proof of [11, Proposition 3.22]. O
The integer R; € N defined by

RIZ=Z+nZ+ -+, 7Z

is called the ramification index of v(-; ;) and v(:; P{), for i=0,...,t+ 1. From Defini-
tion 1.1 it is clear that R; divides d; - - - d;. By construction, R;_; divides R;, and

ri:=R;/Ri_y,

divides d;, fori=1,...,t.
Elements in P§ will be called generalized contact polynomials. Such a polynomial P
will be usually written

P=Pi@}1+---+P1pii1+Po,

with P;e K((2)[@1, ..., ¢tl<, ... dp and P;#0. This is called the contact representation
of P. The integer [ is called the degree of P in ¢;,1 and is written deg,,, P. We will write
(IP¥) < for the set of contact polynomials of IPf of degree </ in ;.. A contact polynomial
P e Pf is said to be clustered if its canonical representative is monic in ¢;41 of degree [ >1
(thatis P;e K) and v(P; Pf) =17;,1. Note that ®; is clustered in P{_;.

Let A and B be contact polynomials in P, if B is clustered of degree 7, then there exist
unique elements Q; € (Pf) ., such that

A=) QB
i>0

This decomposition is adapted from [11, Lemma 3.12] and yields a natural notion of
division: there exists unique contact polynomials R € (Pf), and Q € Pf such that

A=QB+R.
The quotient Q is written A quo,,,, B and the remainder R is written A rem,, , B.

Now let A= ZizoAi(piﬂ andB=3% ;5 B, ¢} .1 be contact polynomials in P; and let us
compute their product C=AB=}",,,C; @}.1, where

Cii= ) ABiE(Ppo.
k+1=i
Each C; writes canonically into C;=c;+ ¢; ®; with ¢; and ¢; in Py_1. Now if 111 —d i 2 p,
then we have

[Ci; Prloa; By +0B; Py —inis 0 = €6 Pr—11o(A; B +0(B; Py —ines10-

In other words, computing [A B; P]y(;p,)+u(B;Py;p in Py is the same as in Pf when
€1=---=¢€_1=1and € =0. By decreasing induction on ¢, it follows that computing
[AB; Pi]oa;P)+0(B;Pp;p in Py is the same as in Pf where we set €;:=0 when ;.1 —d;7; >
o, and €;:=1 otherwise fori=1,...,t.
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The rest of this section is devoted to rather elementary algorithms for multiplying
elements in a generalized contact tower at a given relative precision p. In order to keep
the notation simple, we drop the superscript € for generalized contact towers. So, unless
specified, contact towers will be of the generalized kind.

3.2. Cost functions

Given a clustered contact polynomial F € PP; of degree [ >1 in ¢y, 1, its pre-inverse will
refer to the clustered contact polynomial G € IP; of degree [ in ¢, such that

FGE @i+ (P

Since FH & (ptzil + (P¢) <1 holds for all H € (Py), if a pre-inverse exists, then it is neces-
sarily unique. The existence of pre-inverses is addressed in section 3.5. We introduce the
following cost functions:

o A(dy,...,d;p) is a function that bounds the cost for adding two elements in P; of
degree <l in ¢;,1 with relative precision <p.

e M(dy,...,ds,1;p) is a function that bounds the cost for multiplying two elements in P;
of degree </ in ¢, with relative precision <p.

e D(dy,...,d,[;p) bounds the cost of a division in P; of a contact polynomial of degree <21
by a clustered contact polynomial of P; of degree [ with relative precision <p.

e I(dy,...,d:,1;p) bounds the cost for computing the pre-inverse of a clustered contact
polynomial in PP; of degree [ in ¢, with relative precision <p.

o B(dy,..., d,Lp):=2Ad,...,d,Lp) +Mdy,...,d,Lp)+D(dy,...,d,1p).
LEMMA 3.3. Without loss of generality, we may always assume that
M(dy,...,d;, 1;0) <KMy,...,d;p)+ Dy, ...,d;p).
Proof. Let A and Bbein (P;) <. Regarded in (IP;_1) <4, their product C=AB costs <M(dj,...,
dy; p). We divide C by &, in P;_; with <D(dj, ...,d; p) operations. Let Q and R denote

the resulting quotient Q and remainder, so C=Q ®;+ R. Since Q has valuation v(A; P;) +
v(B; P;) —d;y:, and since ;41 >d; 7y, we have

[AB; Ptlo;py+oBiPpip = €t [Q; Prloa; Py +0B; Py —yisnip P41+ [K Peloa;py +oBiPpsp- - O

LEMMA 3.4. Let F be a clustered polynomial in Py of degree | in ¢;,1, together with its
pre-inverse G. For all P € (IP;) < at relative precision p >0, there exists a unique U €
[(Py) <t]op;py;p Sch that

[P; Ptlop;py;o= [(UF) quog, 4 (Pf‘+1} Ptlo;py;p- (3.1)
It is given by U=[(GP) quo,. q)fH; Ptloe;py;pr

Proof. Equation (3.1) corresponds to searching for U € [(P})</]op;p,);p and R €
[(Ps) <1]o(p;Py) +19441;p Such that

. ) .
[UF/ Pt]v(P;IP,)H'y,H;p = [P Pt+1 + R, ]P)t]v(P,'Pt)+l'y,+1;p/



14 CONTACT ARITHMETIC

which implies that
0 = [GP@i1—UGF+GR; Pilop.py+2ipip
€ [GPoly1—U(pH1+ (P)<) +GR; Pilop; P+ 20914107

so U=[(GP) quoy,,, g0£+1; Pt]op,py;p is the unique solution of Equation (3.1). m]

3.3. Multiplication

The following simple multiplication algorithm in PP; makes use of operations in P;_1,
whose cost functions are assumed to be as in section 3.2.

Algorithm 3.1

Input. A= Zﬁ;éAi g0§+1 € [Pt]oypand B= Zi;é Biq)iﬂ € [Pt]og;p of degree <lin 1.
Output. [AB; Pt]s, 05

1.Fori=0,...,2[-2
compute Li+ Hi@r41:= 3y 4 pomi [Aka B Prlogrop—inesvio-
2. Return Lo+ (Ho+L1) @rs14 - - + (Hy_3+ Lor_2) F7% + Ha_2 977"

PROPOSITION 3.5. Algorithm 3.1 is correct and performs
<2B(dy, ..., dymax (Ri, p)) (min (Rep, 1) 1)
operations in K, whenever p € Ri4y N>0 and 1€ v, 1 N0,

Proof. The correctness is straightforward from the definitions. The number of non-zero
terms in A is <min (R;p,1) | by Lemma 2.2. The number of non-zero products Ay, By,
performed in step 1 is therefore <(min (R;p,1) )2, so this step costs

thanks to Lemma 3.3. Step 2 takes
<2A(d1, . .,dt,'p) min (Rtp,l)l

operations in K. Since I €441 N>Y we use min (R¢p,1) 121 in order to simply the final
cost bound. O

3.4. Division

Let F= Zf’:o Fig0§+1 € P; be a clustered polynomial of degree I/ in ¢;,1 and let P & (P;) ;.
We address the computation of the quotient P quo,, ., F and the remainder of Prem, , F
at relative precision p € R;Lll N>% We assume that the pre-inverse @;.1+g of @1 +Fj_1
is at our disposal at relative precision p.

Algorithm 3.2

Input. A clustered polynomial F € [P{];y,,,;, of degree lin @41, P € [(Py) <a1lo(p;py);p, and
the pre-inverse ¢;,1+ g of @11+ F;_; at relative precision p.

Output. [P quog,MP; Pilop;pp—-1yii1:0 and [P reme, F; Ptlor;py;p-
1. Set R:=P.
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2.Forifrom?2!/—1downtoldo:

a. Compute Q;_;:= [(_(q)t+1 +8) Ri) quo @111, Plo(p;p,) —iny,;0 Where R; represents
the coefficient of ¢}, in the contact representation of R;

b. Replace R by R—[Q;_; go}:llF; Pilop;py;p-
3. Return Zf.;é Qipi,1and R.

PROPOSITION 3.6. Algorithm 3.2 is correct and performs
<2B(dy, ..., dymax (Ri,p)) (min (Rep, 1) 1)
operations in K whenever p € RiAN>Yand ler, .1 N0,

Proof. For a fixed value of i in step 2, by Lemma 3.4, we have
Ri=[Qi-1(¢t+1+ F1-1) qQUO @111, Pilop;By) —inssiior

so the algorithm finishes with the expected quotient and remainder. The number of
non-zero coefficients R; encountered during step 2 is <min (R;p,1) [ by Lemma 2.2.
According to Lemma 3.3, step 2.a costs <B(dj,...,d;p). Step 2.b costs

<By,...,dsp) min (R;p,1) 1.

Finally we use min (R;p,1)[>1. O

3.5. Pre-inverse

Given F = Zﬁzo F; ¢i41 € P; clustered of degree [ in ¢;,1, we wish to compute its pre-
inverse G with relative precision p. We adapt the well-known method for power series
inversion. The algorithm is recursive on the height t. If t =0 then the pre-inverse of
@1+ Fi_1is ¢1—F;_1 because F)_1 € K((2)).

LEMMA 3.7. If g is the pre-inverse of ®;+ F;_1 regarded as a clustered polynomial in Py_q of
degree d; in @ and at relative precision p, then

[@r11— (8 (Fi-1®1) quog, ¢i")) quog, ¢f Prl.,. .,

is the pre-inverse of @11+ Fi_1 at relative precision p.

Proof. Since v(F_1; P—_1) = Yt41>di i, P+ Fi—1 is clustered in P;_4, so g is well defined.
Computing the pre-inverse of ¢;,1+ F;—1 means finding u € [(P;) <1],,,; such that

[(@rr1+ 1) (@41 +F1-1); Prloy, 0 € PP+ (Pp) <.
This condition is equivalent to
[@t+1 (U+Fi—1) +uF1—1;Ptlog,, 0 € (P 1,
that is further equivalent to

[u+Fi_y; Pt—l]'y,H;p: —[(uF—1) quOy, Dy IP)t—l]’)/t+],'pl
in P;_q, then to

(F1o1 @i+ u (Dr+Fi1); Pro1ly, 14 diyp € (Pr-1) <d,s
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and finally to
[(Fi-1®1) quoy, ¢f'; Pi1]y,,00=—[W (Pt+Fi_1)) quoy, i Pi1]y,000

From Lemma 3.4 we deduce that u =—[(g ((Fi—1 P;) quoy, gofl’)) quoy, gofl’; P;_q] O

Yt+1;0°

LEMMA 3.8. Letke{1,...,|-1}and let Ge q)£+1 + goﬁ;’{ (Py) <k be clustered of degree | in @41
such that

(FG; Ptloiy, 10 € PP+ (P) <ok
There exists a unique G k+1) € [(P) <1 (k+1)y,,1;0 SUch that
[F(G+Gi_gsny pir ™), Pt]oty 10 € o1+ (Pr) 21— ks 1)-
It is given by
Gi—k+1):=—[(c (@r4+1+ G1-1)) QUOg,,; @141 Pl k1) 7111500
where G_y is the coefficient of ¢l31in G and c € (Py) <1 is defined by
(FG; Pty 0= pHi+c (Ptzi_l (kD) 4 (Py) <21 k+1)-
Proof. From
F(G+Gi-gn @izt ) =FG+Gi_gsny 9151 VF,
the condition for G;_ 1) is equivalent to
[+ (Gi—k+1) (Pr+1+Fi-1) QUOg,,, @14+1); Pl k1) yps1;0 € (Pr) <1

Since ¢;41+ Gj—1 is the pre-inverse of ¢;41+ F;_1 at relative precision p, there exists a
unique solution for G;_x41) given by Lemma 3.4. i

A straightforward induction based on the two latter lemmas shows that pre-inverses
do exist.

PROPOSITION 3.9. The pre-inverse of a clustered contact polynomial F € P; of degree | €741 N>
in @i41 can be computed at relative precision p € Rithy N>0 using

<4B(dy, ..., dgmax (Ri, p)) (min (Ryp, 1) )*+ I(dy, ..., dgmax (Ri™, p))
operations in K.
Proof. From Lemmas 3.7 and 3.3 we can compute the pre-inverse of
F quog, , ¢151=re1+Fi1
at relative precision p using
<l(dy, ..., dyp) +2B(dy, ..., dymax (Ri, p))
operations in K. By induction on k, suppose that the pre-inverse G of F quo,,,, pikis

known along with the product GF, for some k >1 and still at relative precision p. Thanks

to Lemma 3.8 we deduce the pre-inverse G of F quog, q)ilikﬂ) in the form

G:=G @1+ Gimks1)
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with a cost <B(dj, ...,ds; p). The product
GF=GF@i11+Gi—gs1) F
at relative precision p costs
<B(dy,...,d;max (R}, 0)) min (R;p,1) L.

By taking the sum of these costs for k=1,...,/ -1 and for when G;_ 1) is known to be
non-zero at relative precision p, we achieve the total bound

< By, ..., dymax (R, 0)) (min (R;p,1) I (min (Ryp,1)[+1) +2)
+1(dy, ..., dgmax (R %, p))

for the pre-inverse of F. Finally we use min (R;p,1)[>1 in order to simplify this bound. O

3.6. From heighthto t

So far we have reduced operations in IP; to operations in IP;_;. Now we proceed by induc-
tion in order to reduce operations in IP; to operations in PP, for any fixed h <t.

LEMMA 3.10. For all h<t and all p >0 we have

min (R;p,1) min (R;max (R;"}, 0), 1) =min (R p,1).

Proof. If p < R;”! then
min (R;p,1) min (R max (Rt_l,p),l) =Rypmin (Rfth,l) =Ryp=min (Ryp,1).
Otherwise we have Rj ' < o, hence
min (R;p,1) min (R max (Rt_l,p),l) =min (Ryp,1). O
PROPOSITION 3.11. Let he{0,...,t}, o€ RF1 N>, €11 N>, and let F € P, be a clustered

polynomial of degree I in @;,q. Let ®; 4 _1 € (IP;) < denote the coefficient of g7 in ®;. Then
the pre-inverses of @pi1+ Ppi1,dp-1,--- Pt + Pra,—1, Pr1+ Fi—1 can be obtained with a cost

< 57B(dy, ..., diymax (R, p)) (min (Rymax (Ri%,0), 1) djgr - - - dy)?
+1(dy, ..., dp;max (Ri;,0)) (t—h+1).

Once these pre-inverses are known, we may compute in Py with the cost bound
B(dy,...,dy, L;0) <57 1B(dy, ..., diymax (R, 0)) (min (Ryp, 1) djg1 -+ dy1)?,

where underlying divisions in @1 are only allowed by F.
In addition, given the pre-inverses of @1+ Ppi1,dy-1,---, P+ Pt g,—1 we have

I(dy, ..., dyL;p) < 5'7"1B(dy, ..., dymax (R, p)) (min (Ryp, 1) djsr -+ - di 1)
+1(dy,...,dymax (Rh_l,p)).
Proof. From Proposition 3.5 we may take

M(dy, ..., dyL;0) <2B(dy, ..., d;max (Ri, p)) (min (R;p, 1) )2
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Assuming that the pre-inverse of @1+ F;_; is known, thanks to Proposition 3.6, for divi-
sions by F, we may take

D(dy,...,d;,1;0) <2B(dy,...,d;max (R Y, 0)) (min (R;p,1) %
From Lemma 2.2 we straightforwardly obtain
Ady,...,d,10) <Ay, ..., d;max (RiL, 0)) min (R;p,1) 1.
By summing these three inequalities and using min (R;p,1)[>1, we deduce
B(dy,...,dy1;p) <5B(dy, ..., d;max (Rt'l,p)) (min (R¢p, 1) D2,
By unrolling the latter inequality and using Lemma 3.10, we obtain that

B(dl/ .- -rdt/l?P)
< 52B(dy, ..., di—;max (R, 0)) (min (R,—1max (R, p), 1) dymin (R¢p, 1) )
< 52B(dy,...,di—y;max (RiZ, p)) (min (Ri_1p,1) d;1)>

< 5By, ... dimax (R, ) (min (Ryp, 1) dpgr - - dil)?, (3.2)

whenever the pre-inverses of @y 14+ Ppi1,4,,1-1, -+ Pt + Pra,—1, Pr41+ Fi—1 are known.
From Proposition 3.9 we know that

I(dy, ..., d1,1;0) <4B(dy, ..., dymax (Ri, p)) (min (Ryp, 1) * + 1(dy, . .., dgmax (Ri™, p)).
By using (3.2) and Lemma 3.10 we deduce that

l(dy,...,dy1; )
< 4x57"B(dy,...,dymax (R, p)) (min (R;p,1) min (Rymax (R7L,0), 1) dpy1 - - di1)?
+ I(dl,...,dt;max(Rt'l,p))
< 4x57"B(dy,...,dymax (R L, p)) (min (Ry0,1) djyyq - - - di1)?
+ I(dl,...,dt;max(Rt_l,p)).

Iterating the latter inequality yields

l(dy,...,di1p)
< 4By, ..., dy;max (R, 0))
x (5" (min (Rymax (Ri71,0),1) djpy1-++del)*+ -+ +5 (min (Rymax (R 1,0), 1) di1)%)
+|(d1,...,dh;max(Rh_l,p))
< 4B(dy,...,dmax (R; L, )
x (5! (min (R, 1) djg1 -+ - de)?+ - - - +5 (min (R0, 1) djy1 - - di1)?)
+|(d1,...,dh;max(Rh_1,p))
< 57M1B(dy, ..., dy;max (R, 0)) (min (R, p,1) djyq - - - di1)?
+|(d1,...,dh;max(Rh_1,p)). (3.3)

From Lemmas 3.3 and 3.7 the pre-inverse of ¢;,1+ F;_1 is obtained at relative precision p
using

<l(dy, ..., dymax (Ri,0)) +2B(dy, ..., d;max (Ri ™, )
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operations in K. Consequently, the cost for obtaining the pre-inverses of @41+
Dyi1,dy =17 o-or Pt +Pra,—1, Qry1+Fi_qis

< Idy,...,dgmax (R7L )+ +1(dy, ..., d;max (R L, 0)
+2B(dl,...,dt;max(Rt_l,p))+~-~+2B(dl,...,dh;max(lel,p))

< 57"B(dy, ..., dpmax (R, p)) (min (Rymax (RiL, 0),1) djyq - - - dp)?
+1(dy, ..., dp;max (R, 0))

+5B(dy,...,dymax (Rh_l,p)) (min (R max (Rh_l,p), 1) dpi1)?
+1(dy,...,dymax (Rh_l,p)) (by using (3.3))

+|(d1,...,dh;max(R;71,p))

+2x57"B(dy, ..., dj;max (R; Y, 0)) (min (Rymax (R7,0), 1) dpy1 - - - dy)?

+2x5B(dy,...,dymax (R}, p)) (min (Rymax (R, 0),1) djs1)?
+2B(dy,...,dymax (Rh_l,p)) (by using (3.2))
< 57"B(dy, ..., dpmax (R, p)) (min (Rymax (RiL, 0), 1) djyq -+ - dp)?
+ I(dl,...,dh;max(R;fl,p))

+5B(dy, ..., dpmax (R; Y, p)) (min (Rymax (R7 L, 0),1) djyy - - - dp)?
+1(dq,...,dy;max (R;?l,p))

+1(dy,...,dymax (Rh_l,p))

+2x57"B(dy,...,dj;max (R; Y, 0)) (min (Rymax (R7,0), 1) dpy1 - - dy)?

+2x5B(dy,...,dymax (R, p)) (min (Rymax (R7L, 0),1) djy1 - - - dy)?
+2B(dy, ..., dymax (R; Y, 0))
< 57M1B(dy, ..., dy;max (R, ) (min (Rymax (RiY,0),1) djyq - - di)?
+(t=h+1)I(dy,...,d;max (R, 0)),

which concludes the proof. i

3.7. Fast division

So far we have designed rather elementary algorithms for contact towers, that will be
useful to section 7. Computing pre-inverses faster will be useful as well. The following
lemma is adapted from the usual fast power series inversion method.

LEMMA 3.12. Let F and G be clustered monic contact polynomials of P; of degree I in ;.1 and
let k<1 be such that

[FG3 Pilaty, i € 9Fe1+ (Pr) <2l
Then for any e <k, G quo ¢i5$ is the pre-inverse of F quo ¢!7$ at precision p.

I- I- - I-
Proof. Let F1:=F quoy,,, ¢;31, Fo:=Fremy,, ¢;31, G1:=G quoy,,, ¢:11, Go:=Gremy, , ¢;i1.
From

[(F1¢155 +Fo) (G19135 +Go); Pilain,, 0 € 9F1 + (P <21k
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we obtain
[F1G19r{T? + (F1Go+FoG1) 9135+ Fo Gy Ptloty 10 € PH 1+ (Py) <o
Since degy,,,(F1Go+FoG1) <l and deg,,,,(FoGo) <2 (I—e), we deduce that

[F1G1; Pt]Ze*yH],'p S q)tzj—l + (Py) <2e—k-

The conclusion follows from 2e—k<e. O

LEMMA 3.13. Let ke{1,...,1—1}, let K:=min (2k,[), and let G € P; be clustered of degree |
in @41 such that

[F G PiJaty, 0 € 91+ (Pr) <tk
There exists a unique Ge [(Py) <k—k]Kyy41;0 SUCh that
[F(G+Gpt3X); Pilaty,, 0 € 91 + (P <oi—k.
It is given by
G=[((Gquoy,, i+1 ™) C) quog,,, i Piliy,.
where C € (Py) <x— is defined by
[FG;Pilatyip= 9Fa1 + Coiia + (P <ok
Proof. From
F(G+Goir}) =FG+FGoiiY,
the condition for G becomes

[CPli+FG P sk7p € (P«

and then
I—(K=k)\ ~ -
C= [((P quO§0t+1 §0t+i )) G) quO§0t+1 goﬁlk; ]P)t]K'ytH;p'
B [—(K=k) . . I—(K—=k) .
y Lemma 3.12, G quoy,,, ;11 is the pre-inverse of F quoy,,, ;1 at relative pre-
cision p. There exists a unique solution for G given by Lemma 3.4. a

PROPOSITION 3.14. The pre-inverse of a clustered contact polynomial F € P; of degree | in @441
can be computed at relative precision p € R34 N> using

O(M(dy,...,dy ;p)log ) +1(dy, ..., di;max (Ri , p)
operations in K whenever | €141 N>Y,
Proof. From Lemma 3.7 we can compute the pre-inverse of
F quoy,,, i11=@rs1+Fia
at relative precision p using
<l(dy, ..., dymax (Ri,0)) + OMdy, ..., dy, o) + Aldy, ..., dy, 1 0))

operations in K. This makes it possible to apply Lemma 3.13 O(log ) times, with k=1,2,
4,...,in order to obtain the pre-inverse of F using

OMy,...,d,L;p)logl)
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operations in K. m]

As for usual polynomials, pre-inverses are used to reduce divisions to multiplica-
tions.

LEMMA 3.15. Let F be a clustered monic contact polynomials of P of degree I in @11, let G be
its pre-inverse, and let A € (Pt) <. The quotient Q:=A quoy,,, F can be computed as

0=GA quoy, gotzil.

Proof. Let W:=GF — goﬂl € (Py)«;, and let R:= Arem,, , F, so we have
A=QF+R.

By multiplying both sides of this equality by G we obtain

GA=QGF+GR=Q(¢* 1+ W)+GR=Q¢*,+QW+GR,

whence Q=GA quoy,,, P i

PROPOSITION 3.16. Let F be a clustered monic contact polynomial of ®; of degree | € 141 N> in
@141 and given at precision p € Ri}; N>C. Given the pre-inverse G of F at precision p, the division
of a contact polynomial of (IP;) <o at precision p costs

O(M(dll . -/dtrl}P) +A(d1/ . /dt/l/p))

Proof. This follows from Lemma 3.15. O

4. INITIAL PRIMITIVE-VALUED REPRESENTATION

Throughout this section, (IP;);<; represents a generalized contact tower as in Definition 1.1
and h <t is a fixed integer. We will assume that €, = €; =0 so that K((z)) C P,/ (¢n+1) C
P:/ (¢:41) is a tower of algebraic extensions. One important question is how to compute
efficiently in PP;/ (¢¢4+1), provided that we know how to compute efficiently in P/ (¢p).
We will achieve this by representing elements in P;/ (¢¢41) as follows.

DEFINITION 4.1. A univariate-valued representation of P;/ (¢:+1) over P,/ (¢n41) at pre-
cision p € Ry N> is made of the following data:

e 1 homogeneous primitive element @ of P;/ (¢i41) over P/ (¢n41) of valuation R,

e an initially separable monic polynomial x(T) € (Py/ (¢n11))[T] of degree Dy * Dy, of valua-
tion (Dy; Dy R at relative precision p, where T has valuation Ry v

o polynomials wy1(T),...,w(T) in (Pn/ (@n+1)) [T]<D;1Dt of valuations yp41,...,7: and at
relative precision p.

These data satisfy the following properties:

o [(@(@1,..., ¢nwh1(T), ..., wy(T)) —T) rem x(T)Ig;1,,=0,

o [X(@);Pt]pripyrie =0,

o [(Di(p1,...,pnwni1(T), ..., wi(T)) — €;wir1(T)) rem x(T)]4,9,,0=0, fori=h+1,...,t.
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Any element of Pt/ (¢14+1) can uniquely be represented as an element of Py / (¢n+1)[T1/ (x(T))
via the following isomorphism:

Pu/ (@ns ) [T1/ (x(T)) Pi/ (@r41)
T - @
wi(T) « @ifori=h+1,...,t

IR

In this section, we focus on the computation of an initial primitive-valued representation,
which is simply a univariate-valued representation of minimal precision p=R; . For this
purpose, we define

Hi:: K((Z))[¢1/ . -r?i] / (1n<q>l)/ .. Iln(q)l))l

fori=1,...,t. Computing an initial univariate-valued representation of P;/ (¢;;1) over
Py / (@n4+1) essentially amounts to computing a homogeneous element @ in I; of valua-
tion R;"! such that the map

IT] - I
T - o

is surjective. We call such a @ a primitive-valued element of I; over I. Its minimal poly-
nomial x over I} is the monic generator of the kernel of this map. It is homogeneous
of degree D! D;. The surjectivity further implies the existence of homogeneous poly-
nomials wy41,...,w; in Hh[T]<D,,—1Dt such that ¢; =w;(w) holds for i=h+1,...,t. These
polynomials are obtained as a byproduct of the computation of @ and, together with ,
give rise to the desired initial univariate-valued representation.

It is classical that I; is isomorphic to an algebra of the form A;((z))[T]/ (TR — ¢,
where A, is an algebraic extension of K and { € A, see [11, section 6]. On the level of
coefficients, we are therefore led to compute in so-called algebraic towers (A;);<; over K.
Some relevant complexity results for such computations are recalled in section 4.1.

Now direct computations in A;((z))[T]/ (TR — ¢T) can become expensive for towers
of large heights, since every next floor gives rise to a constant overhead. This explains
the interest of doing relative computations of I; over [: using the univariate-valued rep-
resentation, this will allow us to bundle all floors between level 1 and t into a single
univariate extension, for which we can use fast univariate arithmetic, in the same spirit
as the accelerated tower arithmetic from [9]. In section 4.2, we first construct an iso-
morphism Y of the form I;= Ay@)[Ty, T/ (T,fh —0nz, TtRh_lRf - Th), where p, € Ay,
and p;€ A,. Here A, is a primitive algebraic extension of A, that is isomorphic to A; (in
particular, computations in A; will be more efficient than computations in A;).

A natural candidate for a primitive-valued @ for I; over I}, is Y-T)). Although this
element is not always primitive, as we shall show in section 4.3, it turns out that we may
always take @:= Y ~1(8T}) for some suitable value of 8 in A;. In section 4.4 we show how
to compute x, wy41,...,wy, and derive the desired initial primitive-valued representation
of P;/ (@i11) over Py / (¢n41)-

Remark 4.2. From a mathematical perspective, it is not essential that 0 be homogeneous
in Definition 4.1. Nonetheless, this is naturally the case for initial primitive-valued rep-
resentations, and this property also simplifies computations. Furthermore, it turns out
that we can keep the same primitive-valued element @ when lifting our representation
to higher precisions, as we will show in section 5 below.
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4.1. Separable algebraic towers
A separable (algebraic) tower over K is a sequence (A;);<; with Ag:=K and
A=A q[x]/ (uilx), fori=1,...,t,
where the p;(x;) € A;_1[x;] are monic separable polynomials. We write «; for the image
of x;in A; and set s;:=deg y; fori=1,...,t. We will write
Sii=81-++8;
for the degree of A; over K. The tower is said to be effectively separable when we are

further given u; and v; in A;_1[x;] of respective degree <deg y; and <deg y1;—1 such that
the Bézout relation

L= i +0i s

holds, for i=1,...,t. Throughout the rest of this paper, without loss of generality, we
will freely assume that such towers are simplified so that s; >>2 holds fori=1,...,t. The
cardinality of K will be written card K. We will rely on the following complexity bound.

PROPOSITION 4.3. Let € <1/2 be a fixed positive constant, that can be taken arbitrarily close
to 0. Given an explicitly separable tower (A;)i<:, one multiplication and one inversion (when the
inverse exists) in Ay costs

O(S1*)

operations in K.

Proof. If card K > @), then the result directly follows from [10, Theorem 4]. Otherwise,
with the notation of [10, section 7], we observe that the assumption on card K is only
needed to build primitive tower representations of degree <6 =0(Sf), so it is sufficient to
assume card K > (g) instead. After that, if card K < (3) < Sy, then we appeal to [12, Propo-
sition A.2]: the overhead only induces logarithmic factors in the complexity bound. O

The next lemma addresses the complexity for obtaining a univariate representation
of A;over Ay for a given h <t. For the purpose of this paper, this complexity bound does
not need to be sharp because Sj, ' S; will be taken relatively small.

LEMMA 4.4. Let h < t and assume card K > (5'72] Sf). There exist Vi1, ...,V in Ay, € Ap[U]
separable and monic of degree Sh_l Sy, and Apy,..., A€ Ah[u]<s;1st such that

Ap - Ap= AU/ (ED))
a;j —» A;U) fori=h+1,...,t

is an Ay-algebra isomorphism and that
Wnp1Appr(U) + - - + v A(U) — U) rem Z(U) =0.

In addition, if we are given >(5h— 215') distinct elements in K, then such a univariate represen-
tation vy41,...,v B, Apt1, ..., Arof Ayover Ay can be computed using
OSiHe(Si' s

operations in K. One conversion between A;and Ay costs O(S;ll’L€ 5y, 152 operations in K.
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Proof. If Ay, is a field, then [9, Corollary 1] allows us to compute the univariate repre-
sentation At of A; over Ay, using O((Sh_ 1 St)?’) operations in Aj. In general, Ay, is not a
field, but panoramic evaluation can be used to simulate field operations in it. Precisely
we appeal to [10, Corollary 1] in order to run the algorithm underlying [9, Corollary 1]:
using
O(Si € (Si" Sn%)
operations in K, we obtain a so-called panoramic splitting
P Apy=Dio---Dy

of Aj, and univariate representations 1/}(1]:1, el vfj ), =0, A;ljll, .. .,Aij ) for the restrictions
of Ajover Djfor j=1,...,{. We further know from [10, Corollary 1] that one evaluation
of P and P~ takes O(S;; ™€) operations in K. Finally, we take v; =P~ 1(vY, ..., v for
i=h+1,...,t. We extend P to A;,[T] coefficient-wise, and set Z:=P~1(ED, ... E®) and
Ai=P 1 AD, A fori=h+1,...,t.

The cost of the conversions between A; and A, is addressed in [9, Proposition 5],
which simplifies to O((S, 1592y operations in Aj: these conversions only involve ring
operations in Ay, so [9, Proposition 5] can be used even if Ay, is not a field. O

4.2. Relative ramified and primitive constant extensions

It is known that I; decomposes into a separable extension of K followed by purely ram-
ified extensions; see for instance [11, section 6]. Given I <t, we use this decomposition
in order to compute a univariate-valued representation of I; over I;. We let

S;:=D;/R;and s;:=S;74 S, fori=1,...,t.

We begin with a first technical rewriting of I;, summarized in the following lemma.

LEMMA 4.5. Let (IP;);<t be an almost reduced, effectively separable and regular contact tower, let
=1
h<t, and assume that we are given >(Sh2 5f> distinct elements in K. Using

O(S}F€ (hty:log® Di + (S, S1)%log D))

operations in K, we can compute the following data:
o An effectively separable algebraic tower (A;)i; as in section 4.1;
o A univariate representation vyy1,...,Vy, 2, Apya, ..., Arof Ayover Ay, as in Lemma 4.4;
® On,C1y ..., Crin Ay, Ly, Chyt, ..., Cein Ay eq,... erin Z, f1,..., f1in{0,...,Ry—1} and gp41,. ..,
g+in{0,...,Ry—1} such that
Yo L = AT T/ (TR — oz, T =4 T),
gi = ciz0T) fori=1,...h
gi = czOTITE fori=h+1,...,t
is a K ((z))-algebra isomorphism, that preserves the valuation, when setting v(Ty) := Ry, !
and v(Ty) =R .

One evaluation of Y and Y~ at a homogeneous element costs

O(S#*¢ (htylog? Dy + St Sp))

operations in K.
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Proof. By [11, Proposition 13] we can compute a so-called initial expansion [11, Defini-
tion 10] of (IP;)i<s, using

O(Si*€log(d;1:Dy) log? Dy) = O(S}H¢ht y;log® Dy) (4.1)

operations in K. In particular, combined with [11, Proposition 12], we obtain:
e An effectively separable tower
Ap:=K and A;:=A;_1[x;]/ (pi(xy)), fori=1,...,t,

where y; is monic of degree s;>0in A;_1[x;]. Fori=1,...,t, the class a; of x;in A, is
invertible and its inverse is known.

e Fori=1,...,t,aninvertible p; € A; and its inverse, along with a K ((z))-algebra isomor-
phism

Ex I = Ad@)IT/ (TN -piz)
that preserves the valuation for the weight R;"! of T; and such that one evaluation
of E; and E; ! in valuation o € R;' Z with |o| < 1 costs
O(Si*“log((lo] +di1) R)log Dy) = O(S; **ht y;log? D;)
= O(S!*¢ht+,log? Dy), (4.2)

by (2.2). Note that this complexity bound further holds for any valuation, up to
rescaling the arguments of E; and E; ! by a suitable power of z.

Then, we compute 6; € A, invertible such that E/(E; YTy =671 TtR;T 1R holds, and define
the A;((z))-algebra isomorphism

IR

B AT/ (TR —piz) = AT T/ (TR —puz, TR R - 60,T;)
Tt = Tt.

Thanks to Lemma 4.4, we may compute a univariate representation of A; over A, using
O(Sh™e (S Sn%) = O(SI€ (S S»?) (4.3)

operations in K. Lemma 4.4 also ensures that one conversion between A; and A costs
O(SET (S Sn?) = O(SI€ (S Sn). (4.4)

In particular we compute {;:= A(6;) with this cost, and extend A coefficient-wise into A:

AT, T/ (TR = puz, TR R = 6,T,)

AT T/ (TR = ouz, TR N = i Ty).

IR

Finally, we set
Y:=A o FoE,.
Fori=1,...,h, we take e;:= (4;Ry) quo Ry, fi:= (7iRy) rem Ry, and c; € Ay, such that
Y(9;) = En(g) =ciz8 T

Fori=h+1,...,t, we compute ¢; invertible in A; such that

E¢(¢i) =€iZEithi,
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\:vhere é;:= (R¢i) quo Ry and f~l := (Ryy;) rem R;. Writing e; := fl quo (Rﬁ1 Ry) and f{:=
firem (Rj; ' R;), we obtain that
F(gizé”thN") = gizé"(TtRh_]Rt)e’! th/ mod (TtRh_]R’— 9tTh)
= 0T ]
= by z" (o R Ty

! eiquoRy _gte! iremRy, o fi
= ¢;6¢ phzq hze,+e,quoRhTZ‘1rem hth;,

so we take

0i=G; Gf; p,i’{quORh, ei:=¢i+e{quoRy, fir=eiremRy, g;i:=f/.
In this way, O(ht ; +ht ) products in A; suffice to obtain ¢; from g;, that is O(ht ;)
products thanks to (2.2).

The total cost of this construction of Y is the sum of (4.1), (4.3), O(log D;) evaluations
of Ej, B, E; of cost (4.2), O(log Dy) conversions from A, to A, of cost (4.4), and O(ht ;)
further products in A;.

When evaluating Y (resp. Y~') at a homogeneous element, the contribution of A
(resp. of A1) costs (4.4), since a homogeneous element of A;((2))[Ty, T¢]/ (T;fh —Pnz,
TtR PR 0, Th> is represented uniquely in the form cz° ,{ Ttg, wherece A, e€Z,0< f <Ry,
0<g<Rj;'R;. For such an element cz° T;{ Tf we have

F_l(czeT,{Ttg) = ceffzeTtg+f(R’;1R’).
Therefore, one evaluation of F or F~! costs
O(S{*€log Ry) = O(S{€log Dy). (4.5)

Finally, the cost of one evaluation of Y or Y ! at a homogeneous element is bounded by
the sum of (4.2), (4.4), and (4.5). m]

Example 4.6. Let us consider the contact tower over K :=Fy; =7 /11 Z defined by t:=3,
Y1:=1/2,72:=5/4, v3:=41/8, and

D1(p1) = pi—2z
_ 4 5, 6
Do(@1,92) == @p3—2"+2z
D3(p1, 92, 93) = @3—28¢3.

At the first level of the contact tower, we have r1 =2, s1 =1, and we take pq(x1):=x1—1,
whence A=K, a;=1, and

I = A1) [1]/ (yi-2).
Since the image 71 of y1 in I is primitive-valued, we may define

Ex I = A(@)[T1]/(Tf—2)
(Pl — Tl.
At the second level, in(®,) is rewritten go% — 119 over I3, whence r,=2 and s; =2. We set
U2(x1,X2) = x3—1, hence A,=K[x5]/(x3—1), and obtain

o= Ay((2)) [y, v2]/ (Y3 — 2,93 — 4222 Y1),
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where a5 is the image of x; in Aj. Taking the image 7 of z71 y2 in I, for a primitive-
valued element, we define

Ex Ip = Ax(2)[T2]/ (T3 —2)
@1~ T3
@2 — zTo.

20

For the third level of the contact tower, in(®3) is rewritten go% -z 71% over I,, whence

r3=2and s, =2. We set p3(x1,x2,x3) := x3—1 and obtain
3= As((2) Y1, Y2, ¥3]/ (Y —2,y5 — a2z’ y1, y3 — 4327 o).
Taking the image 713 of ayz 70 y3in I3 for a primitive-valued element, we define
By I = As(@)[T3]/(T5-2)
@1~ a3

@y = ucng§
Q3 — £K225T3.

Now, let us build the map Y of Lemma 4.5 for h:=1. For the univariate representation
of Az over A1, we use the primitive element x; + 2 x3, hence

EWH=U-3)U-1)U+3)U+D),
and obtain

A: Ag, d Ag,:: A1[U]/(E(u))
ay — A(U):=2U%-3U
as — Asz(U):=—-U+2U.

We deduce the following expression for Y:

Y: I3 = Az(2)[Ty, T3]/ (TE -z, T§— Ax(U) Ty),

p1— Th
@2 — Az(U)zT3
@3 — AZ(U) ZST3.

4.3. Construction of primitive-valued elements

A natural candidate for a primitive element of minimal valuation for I; over I is Y-HT).
Unfortunately, it is not always primitive, as illustrated by the following example.

Example 4.7. (Continued from Example 4.6) The minimal polynomial of Y ~1(T3) over I;
is Ha(g)zo (T* —Ax($)Th) = (T* = T?(T* + Ty)? = (T® - 2)?, which is not separable. So
Y~-YT}) is not a primitive element of I3 over I;.

We will show in the proof of Proposition 4.10 that Y~!(0T}) is indeed primitive for I,
over I, for suitable values of 6 in A,. We begin with a technical lemma, where A stands
for a new polynomial variable: in the context of Lemma 4.4, if U is a primitive element
of A; over Ay, then (U +A)Rn R ¢¢(U) is also primitive for almost all A € K.
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LEMMA 4.8. Let the assumptions and the notation be as in Lemma 4.5, assume that we are
given >(Dh_1 Dy)? elements in K, and let

Y (U, A) :=Resy(E(U), T — (U + AR Rz (1)) € AT, Al

where {;(U) represents the pre-image of (yin Ap[U] <578y Using
OS5+ (D' D)

operations in K, we can compute A € Ay, S :=YW,A\),and Ve Ah[a]<s;1st such that:
i. U+ A is invertible modulo Z(U),
ii. 2(U) is separable,

iii. V((U+M)RRiz(U)) = U =0 mod Z(U).

Proof. Let us first assume that A}, is a field. Given A € Ay, note that E(U — A) is the
minimal polynomial of U+ A in Ap[U]/(E(U)). Therefore if ¢ is a root of Z in a suitable
algebraic closure, then ¢ + A is invertible if and only if Z(—A) is non-zero. Consequently
at most S, ' S; values of A do not satisfy property (i). Letting

A(A) :=Discg(¥(U,A)) € Ay[A],
the multiplicativity of the resultant yields

YA = [] (U= @+n8 ")
Z(6)=0
AN =+ [] Beew,

E(§)=E(¢")=0
g#¢!

where
Mg (A)i= (E+ MR Rz (E) = (& + NRTR (&),

Since I is a separable extension of K((z)), the polynomial Tth — p:z is separable in Tj,
and therefore R; is invertible in K. Consequently, if (&) = {,(¢’), then the leading term
of Ag e (N) is

Ri7 Ry (F—&") (&) ARV Ri=1,

If 2u(&) #{n(E"), then Az (N) clearly has degree R;Tl Ry in A. It follows that A is not the
zero polynomial and that at most (R, IR (S’I lef> values of A do not satisfy property (ii).

Since
Si'S:

Sils,+ (RiIRy) ( ,

) <(Di'Dy?

there exists a suitable value for A in any given set .L of cardinality (Dj, D% +1. Inorder
to find a suitable value, it suffices to evaluate Z(—A) A(A) at all the points of L.
The polynomial ¥ (U,A) has degree <5, 1s,in U and degree

<Rj; ' RS 8;=0(Dj; ' Dy)
in A. So it can be computed using

O(D; ' DsSi 'S4 (Si, Sty = O((D;; ' Dy)®)
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operations in Ay, by means of the Berkowitz algorithm [22] applied to the Sylvester
matrix of T — (U+A)R’71Rt Cn(U) rem E(U) and E(U). Since A(A) has degree

< (Ri'Ry) (85,1802 =0((Dy ' Dy)?),

it can be computed using

O(L(R; 'Ry (Si 1821 (Sit st = 0Dyt D)

operations in Aj, by means of the Berkowitz algorithm.

The evaluation of Z(—A)A(A) at all the elements of .L takes O( (Dy; 1 Dt)z) operations
in Ay; see [4, Chapter 10] for instance. From Proposition 4.3 we know that one operation
in Ay reduces to O(S i ) operations in K. Consequently we obtain a suitable value for A
using a total number of O(SHe (Dh_1 D% operations in K.

In this way (U +A)Rr Re Zi(U) is a primitive element of A, of minimal polyno-
mial Z({I). Therefore, there exists a unique V (U) € Ah[U] <s;i1s, satisfying property (iii).
If ¢ is a root of Z(U), then Z(U) and & — (U + )R 'R ¢+(U) share a proper ged, that is
U—-V(¢). In this case, it is known that this gcd is proportional to the first subresultant
of E(U) and ¢ — (U + A)Ri 'R ¢i(U); see [14, Theorem 9]. Since the specialization at U=
& of the first subresultant So(U) U — S1(U) of Z(U) and U — (U +/\)R’71Rt {(U) coincides
with the first subresultant of Z(U) and ¢ — (U +A)R’”_]Rt Zy(U), we deduce that So(D) is
invertible modulo Z(U).

The polynomials Sy and S; are minors of the Sylvester matrix of Z(U) and T —

u +)L)Rh_]Rt Cn(U) rem E(U); see [14, section 2.1] for instance. They can thus be com-
puted using O((Sh_ Lg% operations in A}, again by means the Berkowitz algorithm.
Computing V() =S1(U)/So(t) mod R(U,A) further needs é(S,;lst) operations in Ay,

It remains to handle the case where A}, is not a field. Panoramic evaluation can per-
form the above calculations [10, Corollary 1] still using O(S i+e (Dy, D)% operations
in K: we obtain a panoramic splitting

P. AyzDi1o---dDy

of Aj, and suitable values AV, ...,A® in K for the restrictions of Aj over D jforj=1,...,¢
along with the corresponding £ and V'’ € A,[U] <si's, We further know from [10,

Corollary 1] that one evaluation of P and P~! takes OS5, operations in K. Finally
we take A:=P~ 1AM, A0y B:=PYED, . 2Oy V=P 1L(VD, .. VO) whereP is
implicitly extended to Ay [U] coefficient-wise. O

Example 4.9. (Continued from Example 4.7) In Lemma 4.8, we can take A =4 and

=) = U*+50%+3U%+4U+9
vy = 9ul+10U>

4.4. Initial univariate-valued representation

We put Lemmas 4.5 and 4.8 together in order to construct an initial primitive-valued
element of I; over I}, written @ in the following proposition.
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PROPOSITION 4.10. Let (IP;)i<; be an almost reduced effectively separable and regular contact
tower, let h <t, and assume that we are given >(Dh_1 Dy)? distinct elements in K. Using
O(S{*€ (ht 4+ (D' D)%)
operations in K, we can compute:
e a homogeneous polynomial @ in 1; of valuation R;",

e a monic separable homogeneous polynomial x € I;,[T] of degree Dy, 'D,, where T has valua-
tion R;” !,

e homogeneous polynomials wyy1,...,wsin I,[T] <D 1D, of respective valuations yp41,...,7s
such that

(CD((PL'",(Ph/wh+l(T>/~~,wt(T))_T) remX(T):O/
and
in(®) (1, ..., onwns1(T), ..., wi(T)) rem x(T) =0, fori=h+1,...,t
In other words, the map
Z: Iy = I[T]/ (x(T))
@i = wi(T) fori=h+1,...,n

is an isomorphism of 1j-algebras. One evaluation of Z and Z~! at a homogeneous element costs

O(St*¢ (hty+Dj; ' D))

operations in K.

Proof. We set

Br:= An(@)[Thl / (Ty" — pnz),
which is another K ((z))-algebra representation of I, via the map Ej: I, = B, introduced
in the proof of Lemma 4.5. A homogeneous element of B, can be written cz* T;{ , where
ce Ay, z€Z, and 0< f <Ry. Consequently, the product of two homogeneous elements

of By, costs <2 operations in Ay,
First, we build the isomorphism Y of Lemma 4.5 using

O(S1*€ (hty;log® Dy + (Si; ' Sp2log Dy)) (4.6)
operations in K. Then, we compute A € Ay, =, and V as in Lemma 4.8, using
O(S)** (Dir ' D) (47)
operations in K. This yields the following isomorphism of Bj-algebras:
M BylU, T/ (W), TR M- Th) = By[0, T/ (2@, TV ™ -0T)
ue~ v

T, » (V) +A)'T
U+DRRE ) — O
From Lemma 4.8, we know that Z(—A) is invertible. Since Z(X —A) is the minimal poly-
nomial of U +A modulo Z(U), the inverse of U +A modulo ZE(U) is given by

H(X—-A)—=E(=A)
—E(-1)X

1) =:( )<U+A>,
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which can be obtained with O(S n 15, ring operations in A, plus the inversion of Z(—A).
The inverse of~ V(l:l) + A modulo E(CI) equals I(V(CI)) rem E(l:l), which can be com-
puted using O((Sy, 16,)?) further operations in Aj;. On the other hand, computing

u +)L)R}’_]Rt Z:(U) modulo E(U) takes O(S;fl Stlog(Rh_lRt)) operations in Ay,

A homogeneous element of B,[U, T;] / (E(U), TtR’I R _ ) Th) can be uniquely
written C(U) z°€ T,{Ttg, where C(U) € Ah[ll]<5h_15t, e€Z,0< f<Rpand 0<g< Rh_l R:.
Consequently, computing

My (CAUD 28 T TF) = C(V () (V) +A) 826 T T mod E (1)
takes
O((Si" S+ S Silog (R ' Ry) (4.8)
operations in Aj. The same cost bound applies to M1 ™.

The characteristic polynomial of Tt over By is

STy . (BT TRR: T _ S8t & (=1 RiR,
x( .—Resu(d(U),T I —LITh)_Th a(Th T ),
and its computation takes

O(Si'Sy) (4.9)

operations in Bj. As seen in the proof of Lemma 4.8, the integer R; is invertible in K, so ¥
is separable, and the map

~ o~ ~ ~ ~np-—1 ~
My B[O, T/ (B, T X - UT,

N——

= Bu[T]/(x(T))
o Ty TRIR:
- T

T

is a Bj-algebra isomorphism. Let us consider a homogeneous element of B;[T]/ (x(T)),
of the form

o .
Te Z Cize, T}{, (TRh Rt)ll
0<i<S;1S;

where 0 <e<Rh_1Rt, c;€Ayp e,€Z,0< fi<Ryp, and g::ei+Rh_1 (fi+1) is independent of i.
The computation of

i “1p N
Ml T Y o) (TRRY
0<i<S; s,
~ ., ~p—1 . ~p-—1 ~
=T Y ez (T ™) mod (T M- UT)
0<i<S; 1S,
= Tf Z cize’Terll:Ii
0<i<S;'s;
— Tte Z Cip;lfi+i)qllORhZei+(fi+i)quoR;,T}Efi"ri)remRhCli
0<i<S; 1S
+1) qQUORy, 1 R Ry 7
_ Z Cip;Zﬁ+z)quo e Z(gR;,)quoRhT}Eg n)rem e

0<i<S;'S;
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takes
O(Sitsy) (4.10)

operations in Aj,. By reverting these calculations, the same cost is achieved for one eval-
uation of M. We extend the map Ej, to I,[T] coefficientwise, and compute

X(T) =E;  (X(T)).

Composed with Y, we finally obtain the desired initial univariate-valued representation
of I; over I;:

EpoMpoMyoY:  T;=T,[T]/ (x(T)).

The total cost of the construction of Y, Ej,, M1, and M; is bounded by the sum of (4.6) and
(4.7), that is

OS¢ (ht ¢+ (D ' Dp®))

operations in K. The cost of one evaluation of E;, o MyoMoY or (Ejo MyoM;oY) ! is at
most by the sum of (4.8), (4.10), and the costs for Y and Ej, given in Lemma 4.5, that is
bounded by

O(S1* (ht i+ Dy ' Dy)
operations in K. Finally we take @:= (Ejo MyoM10Y)"NT) and w;(T) := Ej,o MpoM oY (9i),
fori=h+1,...,t O

Example 4.11. (Continued from Example 4.9). We calculate the representation of I;
over I, given in Proposition 4.10. The initial primitive-valued element is

@ =Y N U+4)Ts)
= 227019303+ (42 8193 +270) @3

and the corresponding initial univariate-valued representation is

X(T) = T+3¢1 T +62T8+22¢1 T*+92>
wy(T) = 627 g1 TH+8T0+5¢p, T +22T>
ws3(T) = 7234)1T13+9Z4T9+4z4q)1T5+z5T.

5. PRIMITIVE-VALUED REPRESENTATION
In this section we consider a generalized contact tower (I;);<; as in section 3.1 and an
index h <t such that

ep=¢;=0.

It follows that P/ (¢;+1) has dimension Dh_1 D; over P,/ (¢n+1), and that P/ (¢y+1) has
dimension Dy over K((z)). We are interested in computing a primitive-valued element
representation of P;/ (¢¢4+1) over Pr/ (@n41).
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Using Proposition 4.10, we first compute an initial univariate-valued representation
of ;=K ((2)[¢1,....,p:] / (in(DP1),...,in(Py)) over I, =K ((2)) [¢1,..., pr] / (in(DP1),...,in(Py)).
This yields a homogeneous polynomial @ in I; of valuation R;!, a monic separable homo-
geneous polynomial y € I,[T] of degree Dj, ' D;, where T has valuation R; !, and homoge-
neous polynomials wy,1,...,wyin I[T] <D D, of respective valuation y,41,...,7t such that

[(@(@1, .-, @nWh1(T), ..., w(T)) = T) rem x(T) Jg-1.g 1 =0,

and

[(Di(1,.-., onwWh1(T), ..., wi(T)) — €iwis1(T)) rem x(T)14,1,z-1=0, fori=h+1,...,t

Then, given a target precision p € Ri' N>, we will use a suitable Hensel lifting in order

to obtain )({p} € (Py/ (@n+1))[T] monic of degree Dh_l Dy, and polynomials w,{ﬁr}l, .. .,wip}

in (Py/(¢nt1)) [T]<D;71D, such that:
e in(x") =y, and in(wfp)) =in(w;), fori=h+1,...,t,
. [(co((pl,...,goh,w,{l’fl(T),...,wt{p}(T))—T) rem)({p}(T)]Rfl;pZO,
. [(<I>i(q01,...,@h,w;li}l(T),...,wl{p}(T)) —eiwfp}(T)) rem)({p}(T)]dl_%_;p:O, fori=h+1,...,t.

We begin by presenting our lifting strategy, which is naturally based on the Newton
operator of the map (¢1,...,¢1) = (P1—€1¢2,..., Pr—€rPry1).

5.1. Hasse derivative and Taylor expansion

Let A denote a commutative ring, let f € A[xy,...,x,] and let yy,...,y, be independent
variables. Expanding

f&xy,. o ox)=fyi1+@x1=v1),...,.Yn+ Xn—Yn))

in terms of the powers of (x;—y;) in A[xy,..., Xy, Y1, ..., Y] yields

foax)= Y DO Yy ) (=YD (= Yn), (5.1)

where D"+ f are polynomials in A[yj,...,y,] of total degree <deg f — (e1+--- +ey).
This operator D (€1,---/en) jg usually called the Hasse derivative of orders (e, ...,e,). Applied

to a monomial x’{l e x’,ﬁ”, where k1 >0,...,k, >0, we have

k k - _
D(e]/u.,En)(xllﬂ.'.xﬁn):( 1)( n)xllﬂ 61“.x§n en

€1 €n
Note that
a€1+. . .+Cnf
(ey,..., en) f—_~ )
31!'-'€n!D f_axe1~-~axe".

For any (ay,...,a,) € A", the following Taylor expansion holds after replacing y; by a;
in (5.1):

fayx)= ) (DO )@y, a,) (X —a) - (g — ). (5.2)
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5.2. Newton operator

Consider the map

& K(@)[p1,---, 911" = K@)y, ...,

P1 D1(p1) — €192
N — N
Pi-1 Di_1(@1,- - Pr—1) — €191 |
on Du(@1,..., 1)
whose Jacobian matrix is
od, ¢
991 1 0
Ji:= 0D 0Dy —

991 APi—1 t-1
0Dy od;
991 Iy

The corresponding Newtor iterator is the map

Y1 ?1
N E R I M (Pt
Pt (o
In order to quantify the convergence of this operator, we begin by studying the valua-
tions of the determinant and the adjunct matrix of J;.

LEMMA 5.1. For all k,l with 1 <k <1< t; we have

9Dy
EZ 0
, L) 9d,
m 9D, 9D, e :ln(a—wa—@)
Ay 9pi-1 -1
od; 0P,

Proof. For simplicity, the proof is presented for k=1 and /=t. The general case only
involves syntactic adjustments. The usual expansion of the determinant of J; yields

detJi= Z (—1)87 n Jtioiys (5.3)
rES; 1<i<t
where &; is the permutation group of {1,...,t}, sig represents the usual signature func-
tion, and J;;; ; stands for the entry (i, j) in J;. Note that a product H§=1 Jti o) vanishes
whenever ¢ (i) >i+1 for some iin {1,...,t —2}, and that the identity permutation id; is
the only element of &; that satisfies o (i) <iforalli=1,...,t.

Now let GEk) denote the subset of permutations ¢ that satisfy o (i) <i+1 for all i =
1,...,t =1 and such that the latter inequality is an equality for exactly k values of i. The
expansion (5.3) of the determinant rewrites into

t

b1 9 igo oD
detlt:a_goll...a—goz—}- Z Z (_1>5g 1_[ €i 1_[ aq)g(li).

1<k<t UEGE’” 1<ist 1<igt
c)=i+1 oc@()<i
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The valuation of the first term equals 2521 (di—1)7y;. Forke{l,...,t—1}and c €6

we have

val n

1<ist
o(i)<i

which concludes the proof.

0 D;

9P (i)

(k)
t 7

Y divi— Y e

1<i<t 1<i<t
o(i)<i o(i)<i
Yodivi— Y dimi— Y Yew+ Y. Yew
1<i<t 1<i<t 1<i<t 1<i<t
o(i)y=i+1 o(i)y=i+1
Z (di=1)vi+ Z (Yis1—divi)
1<i<t 1<i<t
o(i)=i+1
al(aq)] a@)
V — ¢ —
dp1 9 )’

O

LEMMA 5.2. Let adj J; represent the adjunct matrix of J. The entry (k,1) of adjJ; has valuation

>val(det J;) + v —di .

Proof. The entry (k,[) of adjJ; is (=) ! times the (I, k)-minor Ky of J;. When I<k, we

have

0D,
a(p1

9P
a(pl

a<I>l+1
a(p1

Kij=| 0o
B<p1
9Dy
g1

a‘bk+1
84)1

od;
a(p]

0
—€1-1
acI>I+1
—€
9141 1+1
—€k-2
0D_q . (54)
APr-1
oDy
—€,
APk-1 k
acI:’k+1 _
OPk+1 k+1
—€t-1
o0d;
a(pt

Let &> denote the set of bijections

oAl .. BN —={L,.... 1\ {k}

such that ¢ (i) <i+1, x1 (resp. «, x3) is the number of indices i€ {1,...,]—1} (resp.
ie{l+1,...,k—2},ie{k,...,t —1}) such that o (i) =i+ 1. We expand the determinant (5.4)

as follows

K= ).

)3

K1+ Ko+ K3<t—1 U’EG;KLKZ'K?’)

(=158 n €; 1—[ aaﬁ n ik n aagoiin'

, Do

1<ict i<t CP7D ik 9P g

i%k,1 c()<i ci<i ci)<i
o(i)=i+1
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Then for all & € G"**» we verify that

od; od; 9d;
val n d n 9P i) kn P i)

1<i<l Po i) 1+1<i<k

<ist
o(i)<i o(i)<i o(i)<i
> > divi— ) Yew
1<i<t 1<i<t
il il
o(i)<i (i) <i
= Y divi— Y dimi— ) Yewt Y. Yo
1<ist 1<ist 1<ist 1<ist
il il i#l il
o(i)=i+1 o(i)=i+1
= Y dmi— ) mt+ Y (ia—dim)
1<igt 1<ist 1<ist
il i#k il
o(i)=i+1
2 Z diyi— Z Vi
1<igt 1<ist
i#l i+k
= (Z <di_1)7i)+')’k—dl')’l~
1<ist

Thanks to Lemma 5.1, this concludes the proof of the lemma when I <k. If [ >k, then the
determinant

odq

i

: —€k—2
o0Py_q oPy_q
A1 gra
oD oD
e e

9%k ...

Kk 1= Gl OPk+1 k+1 ,

’

9D o 9P,
991 9¢i_1
aq:‘ZJrl . a(DZJrl
Gl 9PI41

—€1-1

—€l+1

: —€t-1
o0d; oD,
Bgut Bq)t

is block triangular (with three blocks). Applying Lemma 5.1 to the first and third blocks,
we obtain

ilfl(Kk,l)=(—1)1_k“11r1(aq)1 0Pi—1 P41 6@)‘

0p1  O@r_1 90@i1  O¢
It follows that

valKgi= Y di-Dyi— Y (di=Dyz Y di-Dyi—dim+,

1<ist k<i<l 1<ist

since Zizk di=D)yi=diyi— (m—di—1y-1) — - = (Vks1 = deye) — e <d1v1— k- O
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5.3. One lifting step
The above valuation estimates now allow us to study of the behavior of the Newton
operator of ®; from precision # to 2#. For this purpose, let L be a valued algebra over
K((z)). Fori=1,...,t, leta;€[L],,, be such that
[(Di(ay,...,a;) — €idiv1)dny = [Piay, ..., a;) —€iair1]odyry = 0

and Ji(ay,...,a;) is invertible of valuation val(det J;). Still fori=1,...,t, we are looking
for 4;€ [L],,2, such that [4;],,,=a; and

[Di(@y,...,41) — €idis1]apy2y = [Pildr, ..., A1) — €idiz1]odyr2y = 0 (5.5)
Setting d;:=d; —a; € [L],,4y;, the first order Taylor expansion of ®; yields

a e1(ay, ay)
q’t(al,...,ﬂf) = q)t(lll,...,ﬂt)+It(a1,...,llf) + 7 (56)
az St(all"'/af/al/-“/at)

where ¢; represents the sum of the terms of order at least 2:
sj(al,...,ﬂi,ﬁl,...,ﬁj) = Z (D(E]’“.,ED q)i)(ﬂl,...,aj) di]ﬁfl
e1+---+ei=2
Since v((D“ ) @) (ay, ..., a7)) Zdiyi—ery1— -+ —eiyiand v(d@;) 2 yi+1, fori=1,...,t,

we have

U(Si(ﬂ],. . ‘Iailﬁll e -/dl'))

> min  diyvi—eimi—--—eiviter () + - 4ei (i)
e1+---+ei=2

= min (dj’)/i+€1171+"'+€i77i)
e1+---+ei=2

> divi+21.

After left multiplying both sides of (5.6) by adj J:(ay,...,a;), we obtain that
ad] Ii’(al/ . . ~/at) (Dt(ﬁl/ . . '/[jt)

5]
= adjJi(ay, ..., a1) ®i(ay, ..., a;) +det]i(ay, ... a0 |
at
e1(ay,dy)
+adj]t(a1/"'/at) :
St(alr .. 'Iatldll .. '/ﬁt)
Regarding “v” and “>” component-wise, Lemma 5.2 yields
val(det];) +71+27y
U(adj]t(ﬂ],...,ﬂt) q)t([l\l/---/ﬁt))Z s
val(detJy) +7:+27
and
e1(ay,a1) Val(detIt)+’)’1+217
v|adjJi(ay,...,a) : > :
ei(ay, ..., asdy, ..., 0;) val(det];) +7:+27
It follows that
i1 val(detJy) +71+27
vladjJi(ay, ..., a;) ®ay,...,a) +detJiay,... a0 | : > :

ay Val(det]tj +7:+27
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Consequently, under the contraints on the valuations of the 4;, equations (5.5) are equiv-

alent to
b:l .__adet(ﬂl;--.,at)
T det]i(ay, ..., a0

: (I)t(ﬂl,...,ﬂt). (57)
by

Finally we have shown that the 4; exist and are uniquely determined by

a1 [b1]0;71+211 [b1]71+77;77
ay [bt]0;7t+217 [bl‘]%+77/'77
In other words
ai a, [b1]71+17;17
S E :
as ap (Bt] g4

is the unique solution of (5.5).

5.4. Complete lifting

We are now ready to extend Proposition 4.10 for the computation of univariate-valued
representations at higher precisions. The following algorithm is adapted from [5, Sec-
tion 4].

Algorithm 5.1

Input. An effectively separable and regular contact tower (P;);<;. Aninteger h<t,and a
relative precision p € Ry ' N0,
Output. A univariate-valued representation of P;/ (¢:+1) over P,/ (pn41) at precision p.

Assumption. €;,=¢;=0, and we are given >(D;, D2 distinct elements in K.

1. Compute @, x, wp41, ..., w; as in Proposition 4.10 and let 17::Rt_1.
2. While < p do:

a. Compute (wy,1(T),.. ., @/(T))T modulo Xx(T) at relative precision 27 as
adjJi(g1,...,onwn1(T),..., wi(T))
detJi (@1, ..., onwps1(T), ..., wi(T))

b. Compute @;(T) := [wi(T) + @;(T) 1,24, fori=h+1,...,t.

c. Compute A(T) :=[(@(¢1, ..., ¢nWn+1(T), ..., w(T)) = T) rem x(T) Ir: 12

d. Compute x(T):=[x— (Ax") rem X1 (p-1p, R0y

e.Fori=h+1,...,t, compute w;:= [W; — (Aw;]) rem X Jo;2y-

Di(p1, .-, @, wWh1(T), ..., wi(T)).

f. Replace # by min (27, p), x by x and w; by w;, fori=h+1,...,t.
3. Return @, x, wy41, ..., Wt.

PROPOSITION 5.3. Algorithm 5.1 is correct. If Py is almost reduced, then it performs

O(D{* (D' Dp°ht ;)
+ OBy, ..., dymax (R;Y, 0)) (min (R,p,1) D ' Dy)2 Dy ! Diht plog? Dy)
operations in K. In addition, the polynomials )X, wp41,..., W of a univariate-valued representation

are uniquely determined at precision p by the contact tower Py and the choice of . The constant
coefficient x (0) is initially invertible in Py, of valuation (Dj; Dy R
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Proof. Let
L:=(Py/ (@) [T/ (x(T))

and let v(-; L) be the extension of v(; ;) to L, so v(T;L) =R . Proposition 4.10 gives
us a univariate-valued representation at precision 77=R; !. Note that @ is homogeneous,
and that y and the w; are uniquely determined by the choice of @ at this precision.

In step 2.a, the Newton iteration (5.7) is applied to

ai = @i, forizl,...,h
a; == wi(T), fori=h+1,...,t.

Note that @; =0, fori=1,...,h. At the end of step 2.b, we obtain [w;(T) lysn=[wi(T)]y;, and
[(Pi(p1,. ., @, Wpy1(T), ..., 0i(T)) — €;W;41(T)) rem X(T) a2 =0,

fori=h+1,...,t. The w; are uniquely determined by these properties, under the con-
straints on the valuation of the w;(T).

By construction, A(T) has valuation >Ry 1y n and therefore X, Wp41,. .., w; coincide
with x,wp41,...,w; at precision 7. It follows that

[X(T+A) rem x] pipyrity = [(X+(AX") remx] pripritay
= [(x=AX"=X") remx] p-1p,yr;ii2y
=0,
and that
[W;(T+A) remX]’y,;Zq = [(w;+ (AZI){)) rem?(]yi;zr]
[W; — A (wi —]) rem x 14,29

= w;,
fori=h+1,...,t. It follows that

[(Di(@1, -+, @, Wps1(T), ..., wi(T)) — €;w;41(T)) rem X (T) a2

[(q)i(§01/~ . '/@h/wh+1(T_A)/' . /@I(T_A)) - eiwi-i-l(T_A)) remX(T_A)]d,")/i;Z‘r]
= [(Pi@1,-- -, @ Wy 1(T), ..., Wi(T)) — €;W;41(T)) rem X (T)) (T = A) 1aiy2¢
0

holds fori=h+1,...,t, and similarly that

[(@(@1, -, @p Whs1(T), ..., w(T)) = T) rem x(T) Ig;1,0,
= [((@(@1,---, o Wp1(T), ..., WH(T)) — (T +A)) rem x(T)) (T — ) Ig; 1,2,
= 0.

This proves that the values for @, x, wy+1, . .., w; returned by the algorithm actually con-
stitute a univariate-valued representation of P,/ (¢i+1) over P,/ (@p41) at precision p. We
are done with the correctness. The latter calculations further show that such a univariate-
valued representation Y, w1, ..., W; in terms of @ is unique.

Let us now assess the complexity. By Proposition 4.10 we compute @, X, Wp41, ..., Wt
at precision R; ! in time

O(D}*e(D; ' Dpehtyy). (5.8)
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Assuming that operations in P,/ (¢54+1) with relative precision p can be done using
B(dy,...,dymax (Rﬁl,p)) operations in K, one operation in Pu[T]/ (¢n+1, x(T)) at rel-
ative precision p does not exceed

O(B(dy, ..., di;max (R; ', p)) (min (R0, 1) (Dj; ' Dp)?),

by using the schoolbook methods, thanks to Lemma 2.2.
Fori=h+1,...,t, the evaluation of all the ®; and of the Jacobian J; at (¢1,..., ¢s,
wp41(T),...,w(T)) modulo x(T) at relative precision p costs

O((min (Ry,p,1) D; ' D)2 Dy ' Dy t2) (5.9)

operations in P,/ (@y+1). The determinant and the adjunct matrix of Ji(¢1,..., on, wp4+1(T),...,
w(T)) modulo x(T) can be obtained using

O((min (Ry,p,1) D; ' Dy)?t%) (5.10)

operations in P/ (@p4+1) by using the Berkowitz algorithm. By Lemma 5.1 the initial
inverse of

det(Ji (1, ..., onwp1(T), ..., w(T)))

can be computed as the initial of
(Al(ﬁol) e At(ﬁolz .. '/@h/wh+1(T)/ .. '/wt(T))) remX(T)/

in time bounded by (5.9), where A; represents the initial inverse of g;j;i.

The inverse of det Ji (@1, ..., ¢n,wp41(T),...,wi(T)) at precision p can be lifted efficiently
via the usual Newton iteration, using O(log(R;p)) = O(ht p) operations in P,[T]/ (¢n+1,
x(D)).

Since @ is homogeneous in K ((z))[@1,..., @t]1<,, ... 4, its evaluation in step 2.c does not
exceed (5.9). Computing y and wy41,...,Ww; takes O((min (Ryp, 1) Dh_lDf)zt) further oper-
ations in P;,/ (¢y+1). We conclude by adding the costs of all these intermediate tasks. O

.....

Example 5.4. (Continued from Example 4.11) We are interested in lifting the univariate-
valued representation of Example 4.11 with €; =€3=0, e2=1, and precision p=1/4. We
enter the lifting at precision 1/8 with

@ =2z2"p19503+ 4z 8193 +27°) @3
x(T) = T16+3g01Tu+6zTS+22g01T4+9z2
wy(T) = 627 g1 TH+8T0+5¢p, T +22T>
w3(T) = 723(p1T13+9Z4T9+4z4q01T5+z5T.
We have
Dy (@1, wr(T)) —w3(T) rem x(T) = —w3(T)
@3(¢1,w2(T),ws(T)) rem x(T) = 0.
With the notation of Algorithm 5.1, we perform following Newton iteration at relative
precision 2n7=1/4:
@) _ [ 4waD? 0 )T @algr,wa(T)) —ws(T)
w3(T) —228w,(T) 4ws(T)3 D3 (@1, w2(T), ws(T))

(527 i TP+ 7T 4+ 791 T7 +82 T3
- 7T10 '

mod x(T)
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Then, we obtain
ANT)=3¢1 TH+TO+8¢ T6+2T?
and deduce the univariate-valued representation at relative precision 277=1/4:

XT) = T+ TR 4+39; T+ 72T +62T8+229, T*+92°
Wy(T) = z 1 TP+ 6271 T+ 8T+ 791 T7 + 5901 TO+22T3 +22 T2
W3(T) = 7281 TH+ 7231 TR+ 724 T+ 924 T + 624 1 TO+ 424 1 T +2°T? + 2°T.

6. FLATTENED REPRESENTATION

For this section we are given a generalized contact tower (P;);;, of the form

Pi:=K(@)[@1, .-, Qis1]/ (P1(@1) — €192, P2(@1, 92) —€203,...,Pi(@1,...,9i)) — € Piy1).

We wish to compute in P; at relative precision p >0, which leads us to assume that ;=1
if yi4+1—d;i7i<p and €;=0 otherwise, fori=1,...,¢t.

6.1. Flattenings

The complexity bounds of section 3 for computing with contact polynomials grow expo-
nentially with the height ¢ of the tower. In order to circumvent this dependency on ¢, we
will replace consecutive levels of the tower of low degree by a single level. This tactic
was used before in the simpler context of towers of algebraic extension and gave rise to
so-called accelerated tower arithmetic [9].

Unfortunately, when compressing several levels in a contact tower, the resulting “flat-
tened” tower will not be of contact type. There will be two main types of flattenings.
The first type introduces an algebraic extension which violates the condition that ;41>
d;y; for all i. The second type of flattening gives rise to a defining polynomial that is
not initially separable and that will necessitate increasing the relative precision.

In order to cover these two types of flattenings, plus a trivial third one, we need the
following technical definition. For simplicity the tower will be assumed almost reduced,
and the first level (that was allowed to be of degree one) is left unchanged.

DEFINITION 6.1. Let (IP;);<; be an almost reduced generalized contact tower such that €;:=1 if
Yi+1—divi<p and €;:=0 otherwise, fori=1,...,t. A tower (Pf)Kf of the form

Pi=K(@)[P1,--., §j+1]/ (P1(P1) — &1 P, Po(P1, §2) — €233, .., Pj(P1, .., §)) — & Pj41),

forj=1,...,tis a flattening for (P;);<; at relative precision p if
1. CTJJE ]I§((z))[gb1,...,gbj_1]<(d1 ..... a?H)[‘PJ'] is monic of degree in @; written d]-,forj: 1,...1
with ®1(¢1) = P1(1).
2. There exists an integer sequence
O=ip<iz<---<iz=t,
with i1=1, and a sequence of K ((z))-algebra isomorphisms

o Py— P

with the following properties for j=1,...,t:

F1. é]:eij;
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Fy. The restriction of ¢jto (Pi,,1)<1 coincides with &;_1;
F3. The projection of K@) [@1,---, 9114,
Fy. §i(@i+1) =@j41

Fs. If j<tand e;=1 then &j 1(pi11) = §jr1;

Fo o(&7 (@9} ):21.) 207 ;P

3. Forj=1,. ., there exists () eK@NIP1 - ¢j-1l4, ...
such that the image of Q <I> in ]P’ _1 belongs to the image of

g to ]13’]» is injective and equals §;j((P;)<1);

.....

[@;] monic of degree J]- in @;

]1)

~2df+]1<\((z))[§01/ Pl

in Bj_y, and that o( & ((y gb]d’) i) 2 A0 @) Py).

Property F4 imposes the natural image Gi(@i+1) = Pjr1. If €,=€=1, then Fs naturally
extends this requirement to ¢;,1; the image g’,‘]+1(q0, 1) mlght have been chosen more
arbitrarily if ;= €;=0. Property Fe ensures that the defining polynomial ®; is clustered
as an element of P;_,. The polynomial Q is required to be the clustered pre-inverse
of CI> inP; .

As a consequence of the definition, the pre-image ¢; 1(A) of an element A € ]P’ can be
written

&GHA =) brgli,

k=0

where by € (Pi)<1- The representation of A in the form

~k
A= Z Ak Pjt1,
k>0

where ax=¢;(by) K ((2))[¢1,.-., )] <.y will be said canonical. In particular we note

that 5?]- = di,-,1+1 .- dl-],, forj=1,..., f that dy=d; may be equal to one, and that 5?]- >2 for
j=2,...,t

In the rest of the paper, the canonical representation of an element A of ]f’j will be
written red; A. We will also write deg(pm(rede) for its degree in ¢;,1 and (]f”]-)<l for the
elements whose canonical representative has degree </ in @;,1.

For k=0,...,t, we endow K((2))[@1, ..., Pr+1] with the weighted valuation, written
valy, defined by

Valk 431
valy ¢; :

g

v(& (@i Py, for j=2,..k+1. (6.1)
In particular F4 implies valy @1 ="i,+1. For 2<j<k, by F; we have Ck_l((i)j) e (Pi)<1,
while 6{1 coincides with { Lon (P;,) <1 by F,. Consequently,

val; ;= v((jg_l(gbj); P, = v(é’k_l(gb]-); ;) =val ¢;, whenever j<k< . (6.2)
We set 71:=71 and j;:=val; ¢, for j=2,.. LEIf i< f, note that Fs implies
V1= valj1 §jr1=0(E71(Pj+1); Pi,.) = i1, whenever €; =1. (6.3)

Given Pe K ((2)) [¢1,...,P741] the notation [15; K@), ..., gbg_,_l]]g;p will stand for the
truncation of P from valuation ¢ and precision p with respect to val;.
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Example 6.2. Let us consider the following contact tower of height t:=4 over K := Q:
DP1(p1) = p1—1-2z
Dy(91,92) = @3-z
P3(91, 92, 03) = ¢3—27 92
Dy(@1, 92, 93,92) = Pi—2" g3,
with €1=€2=€3:€4:1, SO d1:1, d2:d3=d4:2, ’)/1:0, ’)/2:1/2, ’)/325/4, ’)’4221/8,
75:=+co. By definition, the first level of the flattening is “trivial”, with Ci>1(g7)1) =Dq(¢1):
g P1 - Py
P1 = ¢1
P2~ 2.
Then, we build a second level, that will be called of “second type” in section 7.3, with
i1 = 1, iz = 3,

Dy (1, §2) := D3(P1, P2, P2(P1, $2)),

and
& Py o P
P11~ ¢1
P2 = 2
@3 — Do, §2)
s = P3=D3(P1, P2, P21, $2))

The third level of the flattening is “trivial”, that is i3:=4,

D3 (1, P2, §3) = Pu(P1, P2, D2(P1, §2), P3),
and
& Py - Py
1~ 91
P2 = P2
@3 = Do(P1,P2)
P4 = P3=DP3(P1, P2, P2(P1,$2))
@5 = Ps=D3(P1, P2, P3).
We have y1=71, 12=72 ¥3="74
Assume that (]f”j) j<i is a flattening for (IP;);<; at precision p. For any j= 1,...,t, we note

that (]137].,) j'<j is again a flattening for (P;)<;; at precision p. Flattenings will be built by
induction on the height, so it will be useful to keep in mind that
Pij = Pi/_1[¢ij_1+2/ ceey 471']»+1] / (q)i/_1+1(§01/ ceey 471'/_1+1) - eij_1+l §0ij+2/ ceey
Qi (@1, Pi)) — €i;Pip+1)
P; = Pja[@j+11/(Pj(@1,-- -, @) — € Pj+1)-

LEMMA 6.3. The canonical representative A of an element of P satisfies

Valgﬁgv(@_l(z‘i);ﬂ’)t)
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Proof. We first handle the case where A € (]137;)<1. Let us write

A=Y &gf,

0<k<(i;

where ay, ..., a5 _; are in (P;_1)<1. The proof is done by induction on f. The case f=0 is
clear. Let us assume that the lemma holds for f —1>0. We verify that

of Y &h@ & @nhe (by F2)
0<k<lj§

> min (&4 @0; P ) + o0& (@5 Po)

0<k<d;

> min (valj_; dx+kval; ¢5) (by induction)
0<k<d;
min (valjax+ kval; ¢y) (by (6.2))

0<k<d;

= val;A. (6.4)

o(&HA); Py

Now consider a general A=Y >0 Ak gbif +1, written canonically:

oG AP = of Y & a0 ok Py (by Fa)
k=0

> min (0 @0); P +Kko(pr1;P) (by (6.4))

> mig (valdx+kval; ¢z, 1) (by Fyand (6.1))

= val;A. O

We define the following important quantity, called the defect of ¢, that measures the
loss of precision when converting contact polynomials via ¢;:

detgj:= max (v(4; Py) — val;(red;(gi(A)))). (6.5)

Ae(Pfj <1

By Lemma 6.3 the backward conversion does not cause any precision loss. If A is in P;
andif A=) k>0 ak gbf 1 is the canonical representative of {;(A), then we have

;A = mi 1:d
val; min (va pak+kyee)

=z

\Y

min V(& @r); Py —det &+ ki)
v(A; Py) —dct ;. (6.6)

In order to multiply two elements of (IP;) .1, we shall first convert them into their canon-
ical representations in (If”;) <1, then compute their product in K ((z))[§1,..., ¢+], next reduce
this product into its canonical representative in P;, and finally convert the result back into
(P) <2. The following proposition details the extra precision needed for this approach.

PROPOSITION 6.4. Let A and B be in (P;) 1 at relative precision p, let A and B be the canonical
representatives of §i(A) and i(B), let DP:= AB, and let n =dct ¢z Then the product A B at
relative precision p can be computed using

[AB; Pt]U(A;]Pf) +0(B;Py);p0
-1 ~ ~ ~
= [&7 ([red; P, K(@) [ @1, - -+, Pir1]]oa; Py +0B; By —044) Jo(A; Py +0(B; Py;p-
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Proof. By (6.6) we have ValgA 2>v(A;Py) —nand Val;B >v(B;Py) —1. By Lemma 6.3, the
terms of val; A (resp. of val; B) have valuation <v(A; P;) +p (resp. <v(B;Py) +p). In
other words, we have

= [{i; K@)[@1,- - @i lloapy—po+y
[B} K ((Z)) [(Pl/ ceey 43{-1.1] ]U(B;]I’,)—n;p+‘r]r

T
|

hence
P=[D; KN @1, -, Prs1]loa Py +o(BPry—2p20+ 21
Since P equals ¢;(AB) in ]f”g, we have
valj(red; D) >v(AB;P)) — n2v(A; Py +o(B; Py) —11.

On the other hand, from Lemma 6.3, we know that if C is the canonical representative of
an element of ]15; of valuation val; C >v(A; Py) + v(B; ;) + p then

0(&N(C); P 2 0(A; Pr) +0(B; Pp) +p.
Consequently, we may recover
[AB; Ptloa; Py +0B;Py;or
from red; P at precision p + 7. O

The rest of this section is dedicated to speed up multiplication and Euclidean division
using flattenings.

6.2. Reduction in the flattened representation

Given Pe K ((2)) [@1,...,9;7], we define its nested valuation nval; P by

. 1,7 ~ ~
nval; P := min (G (P, k) Pi) + kjpavaly @je1 + - - +kpval; @),
1<t ki, - kg

where for every j=1,...,f, the P,

4
P= Y Py, k@i gy
Kivi,-. ki
IfPe (]f”;)<1 is reduced, then we have
nvalgl3 = v(é;_l(P); Py).
Using (6.2) we also note that
nval; IBij ,,,,, k;=nval; P — kj+1 valy@j1—---— kyval; ¢z,

forall j,kjy1,... ki
LEMMA 6.5. Let A and B be the canonical representatives of two elements of (]f”;)<1. Then

P=ABEK@)[P1, -, Pl cir-1,.. 2d-1)
has nested valuation

nval; P >nval; A + nval; B.
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Proof. Consider the canonical representations

A — A =kjx1 =k
A= Z Akj+1,~-~,k;()0j+1 P
kj+1<dj+1 ,,,,, kg<d;
B — B =kivn =k
B = Z Bkj+1,~.,kz§0j+1 @
kj+1<dj+1 ..... k;<d;
Givenin j,kj41,...,k;, we have
=1, x . ~1,2y. =~ - LA
0(Gi Ak, k) Pr) 2087 (A); Py) —kjravaly @ — - - —kpvaly g

Since Akm/m/kze K@@y Pilca,...dp the pre-image (f{l(Ak].“ ,,,,, k;) belongs to (P;) <1,
SO

0(&7 Ak, k)i PO =0 Ary, k)i Py

Similar properties hold for B. From

Pk/‘+],...,k§: A€j+1 ..... E;Bf/‘+1,...,f;/
ejv1+ fiv1=kj41, ..., er+ fi=k;
we deduce that PR
0 (G Pry, . )i )
> min v(&E (A, ;P40 ~1(Bf, i); Py
ejir1+ fir1=kj+1,-- -, ep+ f=k; (ér] ( Gt Et) l]) (ér] ( fretoes ]t> l])
> o(& N (A);P) +0(&  (B); Py —kjr1val; §je1 — - - - —kpval; ¢y,
which concludes the proof. O

The goal of this subsection is an algorithm to compute red; P efficiently. It is adapted
from Lebreton's method for algebraic towers [13]. We say that a flattening (]P’]-)jg; for
()i is given at relative precision p € Ry N>? and defect bound 7> dct & when the
following data are known:

o [DuKE@)IP1 P2 i,y [PEEE@DIP - Pre1 gyt
o [QuK@)P1, P25y [OEKE P, Prealigmpiy
Since val; 1 q~>]. > J]- 7j—1 we have

[d)]/ K ((Z)) [951/ ceey ¢j+l] ]O}dj')?j'*',o = [é]/ K ((Z)) [951; ey ¢j+l] ]‘ij’?]'_ﬂ?P'*'ﬂ’
for j=1,...,t. The same property holds for the truncations of the QJ-.

Algorithm 6.1

Input. An almost reduced generalized contact tower (IP;);<; at relative precision p €
Ry 1E\I>~0, a flattening (If”]-)jg for (IP;)i: at relative precision p and @efect bound 7 >
det &, PE[K (@)@, - Prir)cdy-1,... 241,y o —2p0429 Withnvaly P> 0.

Output. [red; D K(2)[¢1, .-, P111)lo—ppen EK@N P, -, Prial o, . 72

1. If f=0 then return [P; K@) Io—ypo+9-
2. Write P=Py+ Py ¢j+ -+ + 132&2_2 (f);ZdE_Z with

Po,..., P 2 €K@, Pi1)c iy, .. 20, 1)



JORIS VAN DER HOEVEN, GREGOIRE LECERF 47

Fori=-1,.. .,J;— 2, recursively compute

Li+&_1Hig:=[red;_4 p{i;+i/. K@), .- -r(f’f]]n—(&;+i)7;—17;p+17

and then PM as

~di=2 .~ - di—
Pi +€Z—1H£; 297

(&i_1H_1+Lo) + (&_1Ho+L1) §j+--- + (&1_ 1Hd 3+Ld Y.

3. Compute A:=pN [f);; K@), ..., gongl]]ﬂjm_mer,7 as
i i D ~&Z
Ph q)t +Ph ([ ((Z))[le . ’q)z+1]](§ﬂ;—11;p+17_¢? )

~2d -1

4. Write A= Ag+ Ay 5+ -- +A2d 197 with

Ao, Agg L EK@DIPY - Pl cod1, . ods 1)

Fori=0,.. .,c?;— 1, recursively compute
Li+&_Hi gy:= [red?—l(;‘&m)) K@)[p1 - 9illo— @siyymmprny

and AME[K (@)1, P, dp)o—drgmypp+y 35

ti ~_ ad !/ ...dt—l
i +€t—1Hd;—1€0z

(&1 Ho+LD) + (&1 Hi+L2) §i+ -+ + (&1 Hj_o+Li_1) §;'
5. Compute B:= P — AN [®; K ((2)[¢1, .. i1 g 57—+ 3

i i d
B AN Gl AP (15 K ()1 711y 1)

6. Write B=Bo+ By {7+ - +B2d 1g0t2d ! with

Bo,...,Byi 1 EKWNIPy -, Pit)cad,1, . 2ds 1)

Fori=0,.. .,J;— 1, recursively compute
LY +&_1Hi' §y:= [red;_1 B K@) [P, -, §illo—isi—pt e

and B € [K()[§1, -, P, dplo—np+y as

,,,,,

Frr ~ Crrr o T ~ ..d -1
Lo + (€_1Ho +L1) @i+ --- + (€= 1Hd 2+Ld 1) 95

7. Return &AM ¢, | +B.
PROPOSITION 6.6. Algorithm 6.1 is correct and performs
Ri1O(3'DiR (o +1))
operations in K.

Proof. If f=0 then Pe K ((z)), so step 1 returns the correct value. Otherwise the nested
valuation property ensures that v(é‘;_l(f’) ;Py) >0, 50 (6.6) yields

Val;(red;P)) =0 —1.
On the other hand,

Bie [K(@) [y -1, 2d_ 1, 1)) o—if—2mp+21
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has nested valuation >0 —i; for i=0,...,2 dt 2, so the recursive calls in step 2 are
valid. It follows that val;_;(red;_; P;) > > o —i9;—1, and that L] + &_, H{ $; approximates
red;_, P; at precision >p +1.

If €;_1 =1 then y;=val; ;=;;_, +1=val;_; $; by (6.3), whence

- N _d: 3 _
phi— [red_;_l P quog, @5 ;K@) [, - "§0?+1]]0—17;p+17'

If €;_, =0, then the latter equality trivially holds. By construction of P there exists

ploe K((z))[¢1/-'~r¢f]<((;1 ..... c?;)
such that

[red;_y B;K (@)1, -, Fri11lo—ypiy= DO + PP G

In step 3, the polynomial A belongs to [K((2)[§1, ..., Pir1lcod-1,... 241 Dle—2m0+2y
and nval; A > o + d;§; by Lemma 6.5 and Property Fq of Definition 6. 1. The correctness
of step 4 is thus similar to step 2. There exists AP e K ((2)) (@1, P, ... i such that

[red_ LK) [G1, s 11l sdgpppen= A0+ AN

Using Property 3 of Definition 6.1, let WeK((z) [P1,--, Pl 4, i be such that

rrrrr

gbfdf +W

= [red;_;([Q; P K@) [, .-, Prr1l)odgi—2n20429): K@DLP1, - Pry1) Lodgi— oy
By Lemma 6.5 we have valy(red;_; (P 0;®5)) >0 +2d; . Then we verify that
[red;_, (PO éz)-K<<z>>[¢1, SLIRY T
= [red;. 1((Ahlqo "+ A) By i+ PO D) K (@) [P, P |

= [red;_1<Ahl¢t¢2d +(A1°got +P0;) ;) K () [, - ,qbzﬂ]]ﬁzaﬂz_ww (6.7)

T+ 25T 10+

and also that
[redi_1 (P (@)Y K(@)P1 -, Prt N2y
= [redi1(PgF "+ PW ) K@) (G- Pral] pr (6.8)
Since deg(pi(redg_l( (Alo(i)df PlOQt) CDt)) <3d;, equating (6.7) with (6.8) leads to

[redgpi K@@, -, Pir1llo—po+y
= [refi;(AhICI)ﬁR);K((Z))[(i?l,---/§5Z+1]]a—r7;p+r7
= éZAhiﬁbhl +R,

for some Re (]f”;)<1. From val;(€; ¢;,1) = valz(€; CTD;) and Valg(redgp) >0 —1, it follows
that the algorithm actually returns [red;P; K@) [@1, - Piv1llo—mo+n-
As for the complexity analysis, note that A and A" ®; belong to

K@@, @il ody,..., 2d;_1—1,2dp)"
By Proposition 2.5, the products in steps 3 and 5 take

R;'O(2'DiR;; (0 +1)
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operations in K. Let R(ci 1,...,67;;;7) denote the cost function of Algorithm 6.1. By Lemma 2.3,
the recursive calls to Algorithm 6.1 take

3min (R;,_, 2p+21),1)d;R(d,,...,d;_;max (R;, p))
operations in K. It follows that

R(dl,...,dg;p)
< 3Ry, ..., dr_;;max (R, 0)) min (R
+R;; ' O(2'D;R; max (Ri; Y, p+17))
< 32R(111,...,ﬁ;_z;max(Rg_lz,p))
xmin (R;;_ (2p+27),1) min (R;;_,max (Rg}1,2p +2m),1) d;_l d;
+3min (R;._ (20+21),1)d;R;:L 0271 Dr_4 R
+R;'O(2'DiR;. (p+ 1)

< 32RWy, ..., di_ymax (R;,p)) min (R, (2p+21%),1)d;_1d;  (by Lemma 3.10)
3

+5 R O(2'DiR;, (p+1)) + R 1 O(2' DiR;, (o +17))

2p+2m),1)d;

-1

max (Rl-;ll,p + 77))

1F—1

T2

= R;'O(3'DiR;; (0+1)). O

6.3. Flattened multiplication and division

As a direct application of Algorithm 6.1, we obtain the following multiplication method,
which benefits from flattenings.

Algorithm 6.2

Input. An almost reduced generalized contact tower (IP;);<; at relative precision p €
R;_ll N>0 a flattening (Py)j<r for (IP;);<: at relative precision p and defect bound

n>dct &, A= [redi(Zi(A)); K(@)[§1, - -, Pi1)lowa;py—pp+y and B = [redi(&;(B);
K@N[P1, - -+ P11 JoB; By — 0+ where A and B are in (IP;) ;.

Output. [red(AB); K(@)[@1,-- ., Pi11]Toa:Py+0(B;P)— i+
1. Compute C:=ABin K@) [@1,..., i1l
2. Write C :?0 + él~§7);+1 +---+ 621_2 gb%j__lz
with Cy,...,Caure K@) [¢1,..., ¢?]<(2J1—1 ..... 201y
Fori=0,...,21-2, compute L;+ €;H; pj,1:= [red;(Ci)]v(A;po+U(B,.pt>_i%+l_,7;p+,7 by
using Algorithm 6.1.
3. Return Lo+ (€;Ho+L1) §yq+ -+ - + (€:Far_3+ Lor_2) §F1% + € Ha 2 77"

PROPOSITION 6.7. Algorithm 6.2 is correct and performs
RiZ1O(3'DilRys1 (p+1)
operations in K, whenever | € ;41 N>0,

Proof. By Lemma 6.5, we have nval; C>0v(A;Py) +v(B; Py). So the correctness follows as
in the proof of Proposition 6.6. The cost of step 1 is given in Proposition 2.5, that is

R4 é(ZEJr1 DiIRs41(0+ 1))
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The cost of step 2 follows from Proposition 6.6 and Lemma 2.2:

Rt_lé(BEDtlmin (R;p,1) Rymax (Rt_l,p+17))
= R71O(3'Dylmin (R, (0 +1),1) max (R, (o +17),1))
= R 'O(3'DiR; (p+1p)
= R4 O(3'Dil Ryt (o +1)).

The cost of step 3 is negligible. O

In short, red;(¢;(A)) will be called the flattened representation of A € P;. Propo-
sition 6.7 shows that fast products can be achieved using flattened representations, in
the sense that red;({;(AB)) is obtained from red;({;(A)) and red;(¢;(B)). This approach
extends to divisions as follows.

PROPOSITION 6.8. Let F € P; be a clustered monic contact polynomial of degree [ € 1411 N0 in
@111 and given at precision p € R}y N0, Let G be the pre-inverse of F at relative precision p,
and let A be a contact polynomial of (IPy) <o of valuation >o at precision p. Given [red;(¢7(F));
K@) [P1r Pri11liqes1 i+ [1€d:(CH(G)); K@) [@1)+ P11y 11— 045, a1 [red ;($3(A));
K@) [P1,-- -, Pre1]lo—y;p+n we can compute
[red; (i (A quo @i 41 F); K@D [@1, - -, Prea]) Jo—tya—mo+y
and [red;(é‘;(A rem @1 F)); K((2) [Gbl/ . -r¢f+1]]a—17;p+17
using
Ri1O(3 DR (0+1p)

operations in K.

Proof. This follows from Propositions 3.16 and 6.7. O

7. THREE TYPES OF FLATTENING

In this section, we present three types of flattening along with conversion algorithms.
The given generalized contact tower is still written (IP;);<; and is assumed to be almost
reduced, effectively separable and regular. The relative precision we want to compute
with is o€ Ri4 N0,

When a flattening for (IP;);«; is given as in Definition 6.1, we know from Lemma 6.3
and Equation (6.5) that an element A € IP; can be recovered at precision p from

[redf(gf(A) ), K((2)) [4771, .. -/¢E+1]]0(A;P,)—17;p+17

whenever 17> dct ;. In the rest of the paper the notation
C<Pl’g,<1;p < TfDZ,<1;p+;7)

will represent a complexity bound for the following tasks:
e compute (;(A) at relative precision p + 7, for any A € (P;;)<1 given at relative preci-
sion p,
e compute @;‘1(;1) at relative precision p, from the canonical representative Ae (]f”g)<1
at relative precision p + 7.
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Each type of flattening will involve precomputed auxiliary data for the sake of efficiency.
In fact, at level j of a flattening, data in IP;,_, at precision p shall be converted to ]1~”j_1 at
relative precision >p +dct ¢; in order to benefit from the flattened products and divisions
of section 6.3. The pre-inverse of ¢; + ®; 4,1 in P; will be written ¥;.

7.1. Trivial flattening
We say that a flattening is trivial at level j wheni;=1;_1+1, q~>]. =¢j-1(Py), and §;(¢i) := ;.

Without loss of generality we may assume that j=f for the sake of the presentation.

LEMMA 7.1. Assumf that i;_y =t —1 and that (@j)j<;_1 is a flattening for (P;)i<;._,. Then there
exists a flattening (P)) ;i of (Py)igiy trivial at level t, with ip:=1;_+1=t, ép:=€;,

D1, ..., D) =1 (D),
e Py - ]f”;
Pk — Ci(p) fork=1,...,i;
Piit1 ~ Piy1-
We take Qz:= &5_1(Q)y), where Q) is the pre-inverse of ®; in P;_1. In addition we have dct &=
dCt gi—l'

Proof. The proof is straightforward from Definition 6.1. O

The next proposition concerns the complexity for building a trivial flattening at level £.
We recall that a flattening as in Definition 6.1 is said to be given at prec151on © and defect
1 = dct §; when the <I> and the Q are known at precision p +7, for j=1,.

PROPOSITION 7.2. Let (P,’)l‘gt be an almost reduced, effectively separable and regular contact
tower at precision p € R7' N>, and let (P; j)i<i-1 be a flattening for ()<, | with iz_y=t—1
at precision p and defect n > dct &. Then we can compute a flattening (P; Dt of (Py)igi; trivial
at level t at precision p and defect 1 using

O(My, ..., ds; p)log d;)
+ C(Pi_<1;0 0 Pi_q,<1,044) O(min (Ri—1p,1) dy)
+ I(dll-"/dt—l;maX(Rt_—ll/p))

operations in K.
Proof. We compute the pre-inverse (); of ®; at precision p using

O(M(dl, . /dtlp) log dt) + I(dl/~ . .,dt_l}maX (Rt_—ll/p))

operations in K thanks to Proposition 3.14. By Lemma 2.2 we need O(min (R;_1p,1) d})
evaluations of ¢;_; at elements of (IP;_1) g4, in order to obtain ¢;_;(P;) and &7_1(€)) at
relative precision p + 7. O

PROPOSITION 7.3. With the notation and assumptions of Proposition 7.2, one conversion between
(Py) <1 at precision p € Rt_l N> and (]fD;)<1 at precision p + 1 costs

C(P;, <100 Pi_1 <1;4) O(min (Re_1p0,1) dy).
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Proof. For an element A in (IP;) <1, we consider its contact representation Zf;‘(} A; g0§ and
compute §;_1(A;). The number of non-zero A; is O(min (R;—1p,1),d;) by Lemma 2.2. O

7.2. First type of flattening
We say that the level j of a flattening is of first type whenever
61'/._] = eij =0.

For the sake of the presentation, as previously we focus on the case where j=*#, that is
€i;_,=€;=0. In other words, P;,_, (resp. P;) is of the form E;,_[¢;; ,+1] (resp. Ei[¢i41])
where E;;_ =P /(¢i;_+1) (resp. E;:= P/ (@i;+1)) has finite dimension over K ((z)).

By Proposition 5.3 (with h =1;_; and p =+ o0 [we assumed p < oo in our definitions]),
if card K > (D;, D)2 then there exists a univariate-valued representation

X, wi;,1+1/ oo /wi;
of E;; over E;;_ in terms of a primitive-valued @, hence
x(@) =0,

and ¢r=wi(w@) fork=i;_1+1,...,i7. In the proof of Proposition 7.5 below [not very kind |,
we shall see that there exists an Q€ E;,_ [T] with

QT) x(T)eT* + B, [T) (7.1)

g <ti;'

In the following lemma, we extend &;_; coefficientwise to P;,_[T], and ¢;_;(x) stands for
the application of this extended map to y.

LEMMA 7.4. Assume that (Hi’j)jgg_l is a flattening of (P;);<;;_, and that €;;_ = ¢€;;=0. Then there
exists a flattening (]IND]-)K; of (Py)ixi; of first type at level t, with i;:i=t, €;:=0,

Qi1 -, PP =10 (D),

e Py - ]f)’;
Pk = Ci-1(gr) fork=1,...,54
Pk — G (wi) (@p) fork=i;_1+1,...,0;
Pir+1 Pis1

and Q:= &_1(Q) (¢7). In addition we have dct & =dct &_;.

Proof. By construction, Definition 6.1 holds. Only a brief explanation is necessary for Fs:
the K ((z))-vector space isomorphism

R

K(<Z))[¢1/---/¢f]<({§1 ,,,,, &Z) = IE:Z';
Z Ap@f - Z & (A @
0<k<d; 0<k<d;
shows that the projection K ((z)) [§1,..., 7] <@ydn™ ]f”; is injective, with image ¢;((IP) «1).
Given A€ ( ]13’;) <1, let us write

Flh= ) b

O<k<diz
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canonically in terms of @, where by € (P;._ ) <1. Hence,

A=) & (b ¢r.
0<k<(2;
Definition (6.5) gives

valj_1(G5_1(bx)) Z0(b; Py, ) —dct &;_y,

hence
valy(A) = min_ (vali_;(&_(bp) +vali(§}))
0<k<d;
> min (o(bg Py,_,) —dct &_; +valy(¢f))
0<k<d;
= ( min (0(bg P;,_,) +0(0" ]P’t))) —dctér_q
0<k<d;
= o(& (A); P —det &_y,
and dct §y<dcet &;_q. O

Let us now investigate flattenings of the first type from a complexity perspective. We

still assume that a flattening is already at our disposal for P;;, ..

PROPOSITION 7.5. Let (IP;)i<; be an almost reduced, effectively separable and regular contact
tower at precision p € Ri'N>0 and let (]fpj)jgf—l be a flattening for (P;);«;;_, at precision p and
defect <1. If we are given >d? distinct elements in K, then we can compute a flattening (P))j<r
of (P;)igsas in Lemma 7.4, using
O+ dht )

+ O(B(dy,...,d;;_;max(R;!,p)) (min(R;,_ p,1)dp*diht plog* Dy)

+ OC(Ps;_, <1;0 < Pr_q <1,p4y) min (R;;_ o, 1) dilog Dy)
operations in K.
Proof. This proposition mostly rephrases Proposition 5.3 for h =i;_; by taking into account
the computation of ();. Let us first describe the computation of () from (7.1). Since E;; | is

a finite dimensional vector space over K ((z)) [finite K ((z))-algebra], a classical Newton
iteration can be used as follows. We let

R(T) =T x (T

and we compute its inverse Q of degree <d;in E; [T/ (T4, By Lemma 2.2, a poly-
nomial in E;;,_ [[T]]/ (Tde) has O(min (R;;_,p,1) J;) non-zero terms. Therefore two such
polynomials can be multiplied by the schoolbook method using O((min (Ri;_,p,1) deg )()2)
operations in E;,_. In total the Newton iteration performs O(log d) such products, hence

O(B(dy,.. ., dj;_;max (Rl-;_ll,p)) (min (R;;_, p,1) deg X)Zlog c?g) (7.2)
operations in K. Then we have
D) (D) =1+TH1Q(T),

for some Q eE; [T] <dy SO we define

Tf1

QT :=TH(TY) and Q(T):=TH1Q(TY,
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and obtain
O(T) X(T) =T+ Q(T).
Deducing ®;=&_;(x), Qi=_1(Q), and &_; (wy) for k=i;_1+1,...,i; costs
O((ir—ir_1) C(Py;_, <1;0 < Pi_1 <104, min (R;;_, p, 1) deg x). (7.3)
The total cost is the sum of (7.2), (7.3), and the cost stated in Proposition 5.3 for h=i;_;. O

For efficiency reasons, conversions between (P;) < and (]fD;) <1 will benefit from pre-
computations: the precomputed data will be called “auxiliary” in the sequel. [Where is
the complexity of the precomputations analyzed?]

PROPOSITION 7.6. With the notation of Proposition 7.5, assume that the following auxiliary data
are given at precision p +1:

o Gi1(Di_41),---,Ci-1(DPy),

o G 1(Yi_+1),---,Cio1 (),

e ©=3; 1(@),

® X:=Gi_1(X), Wi;_,+1:=Ci—1(Wi;_,41),--., W= G_1(Wy).
Then we have

C(Pi;,<1;p‘_’ ]fDE,<1;p+17)
= RIIO(3DiR (p+ 1) d3) + C(Py,_, <10 Br_y c1,p4,) min (R, p, 1) d.

Proof. Each polynomial in T at precision p of degree <d; has at most min (Ri;_, o, 1) d;
non-zero terms by Lemma 2.3. By means of binary powering and schoolbook products
and divisions with respect to T one sum or product modulo yx takes

O((min (R;,_,p,1)d)?)
operations in E;,_,. Let A € (IP) <1 be written canonically

ki: 41 ki
— E -1 f
A= aki;71+1r~ ki ¢ig,1+l e goi; .

ki w1<di;_ 41,-. ki <di;

ki ki
In order to convert A into () <1, we compute w;, +1 -w;,' rem ) at precision p forall 0<
ki, +1<di;_41,...,0<k;<d;; with ax,. ki +* 0 via ﬂattened arithmetic. By Lemma 2.3,

at most min (R;;_,p,1) d terms of A are non-zero. So we compute the flattened represen-

ki _ ki;
ki of the non-zero . iy then @, ! +1 w ‘rem Y at precision p+7, so

gl

tative a ki st
t—

~ klt 1+1 ~kii -
Z aki;71+1/~ ..,k twlt 1+1 * wlf I'em)(

. . . ki a1<di;_ 41, ki <di;
is obtained using

O((min (R;,_, (0+1),1)dplog Dy)

flattened operations in E;.

i_,» Which corresponds to

th ) O(?)’?_1 f)g_l Ri;_] max (Rl-;_ll,p +17) ) (min (Ri;_l (o+m),1) dg)Slog Dy

= R;} O(3'DiR;,_, (0+1)d?)
R O(3'DiR; (0 +17) d7)
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operations in K, by Proposition 6.7 with t +1=4;_; and D;/=D;_;.
Conversely, given
A=) ¢l

0<k<d;

there are <min (R;;_ (o+17),1) c?; non-zero iy, by Lemma 2.3, so the computation of

Z e

O<k<1§;

takes O(min (R;;_, (0+1),1) J;log 07;) flattened operations in (P;) <. By taking advantage
of the auxiliary data g?-l(qu;_]H)/ ey Ci_1(Py) and é‘;_l(‘ﬂ;_]ﬂ), ..., Ci_1(¥p), each such

flattened operation reduces to

O -1B(dy, .. l, smax (R, 0)) (min (R, p, 1) di,_ 41+ -dp)?)
= O(5'" ' 1B<d1, d;,_;max (R, p)) (min(R;._ p,1)dp)?)
= O(By,.. ;nax (RZE_l],p))min(Rizflp,l)&?) (using 2if_if*1<57;)

lt 1/

operations in K by Proposition 3.11 (with i =i;_;). Thanks to Proposition 6.7 (with f +
1=i;_, and D;l=D;_;), and still for the flattened representation, we may take

By, .. :max (Rl-;ll,p+17)) :R,-;1 (5(32_115;_112-

-1

max (Ri;ll,p+ ).

Zt 1/

Overall, the flattened representation of ) i akco totalizes

0<k<
O(By,...,d;;_;max (R,-;ll,p)) min (R;;_, p,1) 5;5 min (R;_, (o+m),1) d;log d;)
= Ri.~ 1O(3t 1Dt 1Ri;_]max(R;_1l,p+17))min(Ri;_] (p+17),1)d;610gd;

= R; L O(3'DiR;_, (0+ 1) d3)

if_q

= th(3 Dth(p-i'U)d?)

operations in K, which concludes the proof. O

Example 7.7. (Continued from Example 5.4) We take f:=2, i1 =1 and i =3 and relative
precision p=1/4 and defect #=0. The first level of the flattening is trivial:

D1(§1) := P1(P1).

For the second level we add the following flattened level of first type:

Dy (1, 72) = PR+ P19 +3 P19 + 72§34+ 625 + 221 3+ 922

and

Ca(1) == @1

E(@) = 27 P19 +627 11+ 80 +7 P15 +5P1PS + 223 +22 3

E(p3) = 72801034 4728 P12 + 724 920+ 924 3 + 62* p1 ¢S + 424 1 §3 + 2° 93 + 2° o

7.3. Second type of flattening
The second type of flattening concerns the case where

el’]‘,1+1:€ij,1+2: e :€l'j—2:€l'j—1:1' (7'4)



56 CONTACT ARITHMETIC

For all k<! we define the following polynomials by induction:
q)k’\él(goll ooy ?k) = CDZ(Q’L ey q)k/ q’k«»k(@l; vy §0k); vy q’k«»l—l(q’l, o ,§0k) )
Note that ®iui (@1, ..., ¢1) = Pr(@1, ..., @k).

Example 7.8. ®1,2(¢1) = Po(@1, P1(¢1)) and P13(@1) = P3(@1, P1(@1), Prv2(@1)).

Again, in order to keep the notation simple, and without loss of generality, we focus
on the case where j=*.

LEMMA 7.9. Let (P;)i<+ be an almost reduced, effectively separable, and regular contact tower at
precision p € RiIN>0 Jet (Pj)j<i-1 be a flattening for (P;);;, , and assume that €;._ 1=---=
€i;-1=1. Then there exists a flattening (Hi’j)jggfor (P)igi; with ip:=t, €=¢€;,

DHP1, -, PD = i1 (Pip_ 410,
G P - Py
Pk~ Ci_1(@k) fork=1,...,i;_1+1
Pk~ CGi1(Dir_ 11ok=1(Q1, -, Qi) fork=iz_1+2,...,0
Pir1 = Pir1
Q:=_1(Q)), where Q) stands for the pre-inverse of D +1~i; in Py, at precision p + i, where

Kfi= Z (i di;— 1) (yk—dg—17%-1)

Lo i;,1+1<k<l‘;
satisfies

det&<det &G +x; and  x<d;p.

Proof. For k=i;_1+2,...,i; the polynomial ®;,  ;1uk(@1,...,@i;_ +1) is monic in ¢;; 41
and its initial in P;,__ is

i e

m( i }Pi;_1>-
It follows that ®;._ 1+, is clustered in P;,_ and that

U(q)igfl+1'\/>i;; ]P)i;fl) = dwzr)/i;71+l'

By [11, Lemma 15] the map

K((Z))[§b1/«~~/§bi—1]<(gl ,,,,, &;71)[gbf]<d5 = (Pt)<l

di-1 dr—1
Z Arf - Z &G AY 9,
k=0 k=0

where A€ K ((2)) (@1 Pi1lcidy . diy is a K((z))-vector space isomorphism, so Prop-
erty F3 of Definition 6.1 holds. Other properties of Definition 6.1 hold by construction.
For
ki: 41 ki
A = Z ak,-;71+],. ..,k,‘; 471;:11 tt gol;t S (Pt)<1l

ki 1<diz_ 41,0 ki <di;

where i1, ki € (Pi;,_)<1, we have

oA Py = min (O, i) i1 Vi1 ki yip)-
i 41<diz_ 41, ki <di;
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Since ®;;  41~;is clustered in P;,_ of valuationd;, ;1---d;;yi;_,+1, the contact polynomial
kip (41 o kiz 42 o q)kz‘z
if_1+1 Fi_+1oip_+1

ir +1~i;—1 I8 clustered in P;,_ of degree

Aki2—1

ek =Kt di ki ot dy g dia kg

in ¢;;_ +1 and of valuation

kii 41 . kic 42 ki
t—1 t—1 t . . — .
v<q)iz-1+1 izt ioig 41 Pl i P’?—1) N Ak"z_ﬁl" ooy Vi 41

It follows that

ki: .v1 _ ki: 42 ki
i-1 P-1 i ..
v(aki;_]-H/~~/ki;gpi;_]+1 ii_q+1lodp_+17 77 q)i;_]+1’\f>l';—1’ Plifl)
kii +1 . kiz 42 ki
L. -1 i-1 . i L.
v(aki;_1+1/ o okig P;_,)+ U(ﬁ”ig,lﬂ i1+ 1o g +1 i+ 1roi—1 Pl;_1>

2
2 U<A/ Pi;) - (ki;,1+l ,)/i;,1+l +---+ ki;’)/i;) + Aki;_]+l/~ . ‘,kizryl’;,1+lr

hence
U(A/ ]Pi;fl) 2 U(AI Pi;) - 77/ (75)
where
= max k;. : + -+ kiyi— Mg, i .
! k"571+1<d1‘;71+1,..A,ki;<df;( fia 1 Vi1 it Vi k’f—l”"“'k';%t—lﬂ)
Note that

YZdi; 1 AoV 41
for I=i;_1+1,...,i; so 12 0. Consequently [where do you need # > 0?], the canonical
representative of A in P;;_, can be written in the canonical form

A, k
— fp_q g
A= Z bki;71+1/~~,ki;¢i;,1+l s

ki w1<diz_ 41, ki <di

with
v(bkiLlH/ .. "kif; Pi;_l) = U(A/ ]P)i;_l) - Akizil+1,...,kf;’yi;_1+1
2 U(A/ ]Pig) - 17_Akif_1+1,..,,ki;’yi;_1+1r (76)
using (7.5). Therefore
Bk ki
gZ(A) = Z g{—l(bkizifrln-wki;) (% ! "
ki;_1+1<di;_1+1/ .. ~/kiz<di;

is the canonical representative of ¢;(A) and

valj(&i(A)) = min (valioa (G (B neeki) ) F 8%ty Vi +1)

i 1<diz_ 41,.- 0 ki <di;
since 7;;_,+1=val; ¢;. Then, combining (7.6) with
0(br,_ kg Pipy) —det Gy <valy 1 (51 (De_ oo, k)
yields
v(A;Pi) —n—dct 1 < Vali_1(€f_1(bk,-zil+1,“.,k,-;)) FDk ek Vi a4l

t
whence

valy(gi(A)) Zv(A; Pi) —np—dct g_.
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Next, we verify that
n = max ki(yi—di;_y1++-di—17i;_+1)

k,‘;_]+1<d,‘;_]+1 ,,,,, ki;<diz i;lélgii t-1 -1

= Z (di=1) (yi—di_ 417 di-1Yi_+1)
i 1 +1<I<iz

= > @d=-1 )Y dedis(r—dee17k-1)
ir_1+1<I<i; if_1+1<k<l

= > m—damen) Y diedisg (d=1)
i;_]+1<k$i; kglgi;

= > Ukdi=1) (= die1 k1)
i;_]+1<k<l’;

= x7.

In our setting, we recall that €;,_1 =1 holds whenever y; —d;_1yi—1 < p. Therefore (7.4)
implies that yx —di—17%—1<p for all i;_; +1 <k <i; By using dx>2 for k>i;_1+1, we
obtain d; > 2k~ (it g, .. d;,, hence the bound

K<), (edi=1)p

if_1+1<k<i;
1 ~
< Z k=G +1) drp
i571+1<k<i;
< dip. 0O

Fori=1,...,t we introduce

Hii Pi i Pi_1
A~ A((Pl/---/q)i/qu)-

For k' >k, we also define
Hpsp=Igo - olly.

Let us now study flattenings of the second type from a complexity perspective. We will
not optimize the complexity of our algorithms as a function d;, because d; will always be
taken relatively small in the next section.

LEMMA 7.10. Let 1€ 1441 N0 let A€ (P;)<; be given at relative precision p € R;}l N>0 and let
n2U=1) (yiv1—diye). Then

[T1:(A); Pio1loa;py —mp+n = [TLH(A); Pr_1]o04;B0) +p
can be computed using
O(B(dy, ..., di—1;max (Riy, p+ 1)) (min (Re—q (0 +17),1) de 1)

operations in K.

Proof. Let ) A]'(p{ +1 denote the contact representation of A. We obtain

j<l

].
[A]' CI)t, Pt—l]v(A,’Pt)—ﬂ;P+’7
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forall j=0,...,I—1, using
O(B(dy,...,d;—1;max (Ri’y, o+ 1)) (min (Ri_1 (0 +17),1) d;1)1)

operations in K by Proposition 3.5, whence the claimed cost. O

LEMMA 7.11. Let [ €744 N>Y, let F € P; be monic of degree  in @;11 and given in contact rep-
resentation ZKZ Fi @iy, and let 141+ G denote the pre inverse of @1+ Fj_1. Then, (@11 +

G) quog,, 4’t+1 is the pre-inverse of F/ quog,, g0t+1 forall j>1.

Proof. Expanding the terms of highest degrees of the product of two monic contact poly-
nomials F and H yields

(Pl +Fo1 @il + Fia@iid+ ) (@1 + Hyo1 '3 + Hya @32+ - )
(/’1{171’1+(Fl—1+Hm—1) ¢£i7111_1+(F1_1H _1+Fi 2+ H,_») (pfi’l” 2

Consequently, the sub-dominant coefficient F;_1+H;,—1 + F;—1 Hy;—1 quog, @ in this pro-
duct only depend on the sub-dominant coefficients F;_; and H,,,_1 of F and H. [Not clear

how this yields the desired result. The change from O quo,,,, go{;ll to O quoy, ¥ is also
confusing. | a

LEMMA 7.12. Let [ €141 N>, let A € (Py) o be of valuation >0, let p € Rih N0, and let
n2A=1) (yre1—diye). Given B:=[11;(A); Pi_1]o— 04y and [¥s; Pr_1]y,04y we can compute
[A; Py, using

O(B(dy, ..., di—1;max (RiZy, p+ 1)) (min (Re—q (0 +17),1) d¢ 1)
operations in K.
Proof. Let A=) i<14j go{ mand B=3%,_; Bx ¢f denote the contact representations of A

and B. We compute C;:=[®];P;_1]
using

jdiyip+y A0 [¥/ quog, @} P oy forj=0,...,1-1,

O(B(dy,...,d;—y;max (RiZy, o+ 1)) (min (Ri_1 (0 +7),1) d;1)1)

operations in K by Proposition 3.5. Then, we set H;_1:=B and for j from /-1 down to 0,
we recursively compute

D] :
H]’—l :

[H; quog, Cj; Pt—1lo—y—jdryip+y
[Hjremy, C;; Pr1]o— 044

In this way, we obtain the following approximation of the ®;-adic expansion of B:

B= [Z D] (I)g, Pt—l

) j<l jltr—r];p+11
Since

oc—n—jdim+p+n=0—jdiyi+pZ20+p—jri11,

we can read off [Aj; P;_1],; o from D;. From Lemma 7.11, we know that ‘I’t] quoy, (p{_l is

the pre-inverse of <I>t quog, qot . Taking advantage of these pre-inverses, this sequence
of divisions costs

OBy, ...,di_1;max (R, p+ 7)) (min (Re_1 (0 +17),1) d:1)21),



60 CONTACT ARITHMETIC

in total, thanks to Proposition 3.6. a

LEMMA 7.13. Let h<t, let p € Rz N0, let

n=2(=1) (yee1—deye) + ([del=1) (yi—di—1ve—1) + -+ @pg2- - del = 1) (Y2 —dps1Yn41),

and assume that ¥y,...,¥; are known at precision p + 1. One evaluation of 11,1 with relative
precision p at an element of degree <l €11 N> in ¢;,1 at precision p +1, and one evaluation
of T2 ;,,1 with relative precision p + 1 at a polynomial of degree <dj1---d;l in @y41, both cost

O('™"B(dy,...,dimax (R, p+ 1)) min (R, (0 +1),1) (dy - - di1)*)
operations in K.

Proof. Recall that 1,41 =110 oI1;. We apply Lemma 7.10 for I'l; (resp. Lemma 7.12
for IT; ) recursively for i from t down to 1+ 1. The total cost is

O( Z B(d,...,dsmax (Ri !, p+#)) (min (Rymax (Rit2, 0+ 1), 1) diy1 - "dtl)zdi+2"'dtl)/

h<i<t

which is bounded by

O( > B<d1,...,dl-;max<R;1,p+:7>><min<Ri<p+n>,1>di+1---dtl>2(di+z---dtl>2),

h<i<t
Fori=h,...,t—1, Proposition 3.11 gives us

B(dy,...,d;max (Ri_l,p+ 7))
< 57"B(dy, ..., dymax (Ri ', p+ 1)) (min (Rymax (R, p+ 1), 1) dyg1 - - dp)*

Consequently,

OBy, ..., dzmax (Ri, p+ 1)) (min (R; (0 + 1), D) diz1 -+ di)* (disp -+ di)?)
< 57"B(dy,...,dmax (R L, 0+ 7)) min (R; (0 +1),1)
x min (Rhmax(Rfl,p+17),1)(dh+1 edih)?
< 57"Bdy, ..., dmax (R, o+ 1) min (R, (o +1),1) (dy, - - - d )*,

using Lemma 3.10. The total cost for IT;,,+1 and Htﬂ)hﬂ directly follows by taking the
sum of the latter bound fori=h,...,t—1. |

PROPOSITION 7.14. Given an almost reduced effectively separable and regular contact tower
(P1)igt, given p eR;7 N> and aflattening (]ij)jgf—l for (Py)i<;._, at precision p and defect N/
Assume that €;, 1=---=¢€;_1=1and that ¥;_ 11,...,¥; are known at precision p + ;.
Then we can compute a flattening (Pj);<; for (P;)i<t of second type at level t, precision p, and
defect <n:=n"+ x; using

OB 1By, ...,d;,_;max(Ri\, p+n)min(R;_ (o+1),1)d?)
+ I(dy,...,d;;_;max (Rl-;ll,p +17))
+ O(C(P;,_, <104k Piog <1p) Min Ry, (0+177),1) dy)

operations in K.
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Proof. We use Lemma 7.13 with  =i;_; in conjunction with Lemma 7.9 in order to com-
pute ®;, 1ok =ITk-1wi;_,+1(Py) at precision p+17 for k=i;_;+1,...,i;. This costs

O™ 1B(d,, .. ;max (R7!, p+m)min (R;_ (o+1),1)d3).

zt 1

We compute the pre-inverse Q); of ®;._ ,1.,;; at relative precision p + xj, using
OoMWy,...,d;;_ ],dt,max (er 410+ ) logdn) +1(dy, ... d;;_;max (le sO+1)

operations in K, thanks to Proposition 3.14. By Proposition 3.11 we have

M(dll Zf ]/dtlmax (th 1+1/|0 + 17))

= O<B<d1, zt smax (R;! v (p+m))) (min (R;,_ max (R 11,0+1),1)dp?)
= O(B(dy,. .. zt smax (Ri! . (p+m)))min (R;,_ max (Ri* 41,0 +1),1)dF)
= O(B(d,...,d;, ;max(R;’, (p+m))min(R;_ (o+1n),1)d3).

We deduce ®;and Q; using O(min (R;

i1

(o+m,1) c?;) evaluations of ;_; by Lemma2.3. O
[Where is the complexity of the precomputations analyzed? |

PROPOSITION 7.15. With the notation of Proposition 7.14, assume that the following auxiliary
data are given at precision p + 1:
o i 1(Pii_ 1), Ci_1(Dy) (here &5y is applied coefficient-wise),
o 5i1(Yi_41),---,Ci—1(¥y), where ¥ still denotes the pre-inverse of ¢;+ D, 4,1 at precision
0+ K.
Then we have

C(Pj <10 ]fj’i,<1;p+17)
= R'O(3'DiR (p+1)) d¢

+C(Py;, <tiprr;© Pry crpe) Min Ry, (04757, 1) dy.

-1

Proof. Let A € (P;;) <1 be written canonically

kl +1 ki-
_ -1 7
A= Z Aki;fﬁ—] ///// ki q)zt +1 0 q)i; .

ki 1<di;_ 41, kip<di

At relative precision p, the number of non-zero Ay, ek is
t— t

<min (Ri;_] o, 1) d;

by Lemma 2.3. We first convert these non-zero coefficients into (]fo—l)<1 at relative preci-
sion p +7. For the arithmetic operations in (IP;;_,) <1 we then use the flattened representa-
tion, so Proposition 6.7 allows us to take

B(dy, ..., di;_;max (R 1,p+Kt))—Ri;_1lé(32f)g_1R'

-1

max (Rl-?_ll,p + 17)).
Using 2l g lig, we have 57 f-1g 53’, so the cost bound given in Lemma 7.13 becomes
R’ 1o(3 D; ;R max (R;!, p+m) min (R;,_, (p+1),1)d7)
= RO DiR (p+ 1)) de.
For the reverse conversion from (]f’;)<1 to (P;;) <1 the complexity is the same, again by
Lemma 7.13. O
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8. ACCELERATED TOWER ARITHMETIC

We carry on with the notation of Definition 6.1 for flattenings and we recall that ci]» =
di;_ 41+ d;. We aim at constructing flattenings of sufficiently small height in order to
obtain a fast product in the given contact tower: this will be achieved by merging con-
secutive levels of small degree. All contact towers in this section will be almost reduced,
effectively separable, and regular.

8.1. J-flattening

Given 6 < Dy, we can construct a sequence I for k=0, ...,s with Ip=0, Ip=1, and

s<3 lfog—g.i; +2 (8.1)
such that if 7 > I}_1 + 1, then dx < 6. We originally developed this construction for alge-
braic towers [9, section 4.2]. In this section we will refine it for contact towers. For a slice
between Iy and 741 — 1, we will construct at most four consecutive flattening steps, either
trivial, or of first or second types.

We define (ij)jo,... i recursively from ip:=0 to i;=t. We recall that the first level must
be trivial, so i;:=1. For j>2, assume that i;_; has been defined and that i;_; = ;1 for
somek€{l,...,s}. If [y=1Ix_1+1 then we set i;:= [y and introduce a trivial flattening step
at level i;. Otherwise, we distinguish the following cases.

Case 1. If €;,_,+1=1, then we distinguish the following sub-cases.

a.If €;_,11="--=€;-1=1, then we set i;:= [y and introduce a single flattening of
second type between i;_; and i;.

b. Otherwise, there exists a largest integer i; < Ix such that €i 1 +1= """ = €;-1= 1. By
construction #; < Iy and €i;= 0, so we still use a flattening of second type between
ij—1 and i;, but beyond i;, we distinguish two cases:

i. If €;, =0 then we set i;;1:= I} and a flattening of first type is used between i;
and 7j41.

ii. Otherwise, €;, =1 and there exists a smallest integer i;,1 < I such that
€i,,+1= =€, =1. Betweeni;and ij, a flattening of first type is used. Between
ij+1 and ij,7:= Iy a flattening of second type is used.

Case 2. If €;,_,+1=0, then we distinguish the following sub-cases.

a.If e;,_, =0, then we set i; to the largest integer <Ij such that €= 0, so we use a
flattening of first type between i;_; and ;. If i; <y then we add another flattening
of second type between i; and i1 := Ix.

b. Otherwise €;,_, =1, and we set i;:=i;_1+1=1I;_1+1. Then we repeat the construc-
tion from case 1 at position 7;_1 + 1 instead of 7j_;.

A flattening constructed in this way will be called a J-flattening for the contact
tower (P;);<;. The maximum length of a subsequence of (i)) i< between I;_1 and Iy is
at most 4. This maximum is reached in case 2b, when the recursive construction falls
in case 1bii, as illustrated below (where '+' stands for O or 1):

iim= e (=t L=+ 1| oo a2 — o o+ 1| oo Vs | s+ 1| - | G4 = Tk
ol 1 0 T [ 1 [0l = [=[0] 1T [ 1
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LEMMA 8.1. There exists a 6-flattening with the following properties:
e i<12 li)th +8,

og o _ ~

o ifij 1>ij+1thend; <4, forj=1,...,t,

o dctg;<dpj forj=1,...,1t

Proof. The existence of the flattening and the bound on dct ¢;is a consequence of the above
construction, Lemmas 7.1, 7.4, and 7.9. The first bound follows from (8.1) and f<4s. O

8.2. Conversion cost

Now we assume that a J-flattening is at our disposal and we study the cost of the con-
versions between (IP;;) <1 and ( ]1~3’g)<1. By definition of dct ¢;, any element A in (P;;) <
can be recovered at precision p from its image ¢;(A) at relative precision p + 17 whenever
n=dct gy

LEMMA 8.2. Given an almost reduced effectively separable and reqular contact tower (P;);<;, and
e 0ER7INY, y>06pt, a 6-flattening (]13’]-)]'@ of (P;)ig: at precision p,

e the auxiliary data of Proposition 7.3 (resp. 7.6 and 7.15), if the flattening at level j is trivial
(resp. of first and second type), for j=1,...,F.

Then we have
C(Pi,<t;p = Pier,piry) =R7TTO(3'DiR; (0 +17) 6°).

Proof. If the flattening at level f is trivial or of first type, then we set x;:=0. The upper
bound 5= 5 pt on the defect comes from Lemma 8.1. In case of a non-trivial flattening at
level {, we have d;< 6, and Propositions 7.6 and 7.15 yield
C(]P)z';,<1;f7 < ]fpf,<1;p+i7)
= Rf_l O(3thRt (p+1) d?) + C(Pi571,<1;p+1€; « PZ—1,<1;p+;7) min (R;;,_ (p+1),1) di
= Ri'O(3'DiRs (0 +17) 6°) + C(Pi;_, <1005 Pioy c1,pey) min (Riy, (0 +17),1) dy.

Otherwise, in case of a trivial flattening, we have i;=i;_; + 1 and Proposition 7.3 gives

C(Pi;,<l;p « ]f))?,<1;p+r]) = C(Piz,1,<l;p « ]155—1,<1;p+r;) min (Rig,lpr 1) &E-
It follows that
C<Pib<1;p‘_’ ]fDZ,<1;p+q)
= RO(3 DR (p+17) 6%) + C(Py,_, <141, Pr_y c1,p4,) min (R, p, 1) df
= R7TO(3'DiR; (0 +17) 69)
+R;:LO(3 D4R
+ C(Pi_, <t04x145;, < ]f”;_2/<1,.p+,7) min (R;;_,max (Rl-;ll,p), 1) min (R;;_, p,1) d;_l (1;
R O((3'+31) DR (0 +17) 6°)
+C(Pi_,, <tp4x:455_, € ]15;_2/<1;p+,7) min (R;,_,0,1) dr_,d: (by Lemma 3.10)

max (R, p+17) 6®) min (R;_, p,1) d;

f-1

= R O(3' DR, (p+1) 6°),

which concludes the proof. O
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8.3. Fast product and division

We still assume that a J-flattening is at our disposal. Now we assess the cost of the mul-
tiplications and divisions in P;.

LEMMA 8.3. Let (P;) i<+ be an almost reduced effectively separable and regular contact tower. Let
1<6<d, 1er 1N, pe RN N>, and > 6 pt. Given a 5-flattening for (P;)«; at precision p
and defect <1, together with the auxiliary data needed in Lemma 8.2, we have

B(dy -+~ dy,l;0) = Riz1O(3'DilRsr (p+17) 8°)

Iy, ..., di, ;o) = RizhO(3'DilRi11 (p+17) 6°).

Proof. In order to multiply two elements of (IP;);<;, we convert them into the flattened
representation, multiply them, and convert them back. The number of the conversions is
given by Lemma 2.2, their cost by Lemma 8.2, whereas the cost of the products is stated
in Proposition 6.7, whence

M(dy, ...,dy 1 p)
O(C(Py, <1, = Py oypy ) min (Rep, 1) 1) +RiZ O(3 Dyl Res1 (o +1p))

= RO(3'DyRymax (Ri L, p+ 1) 6°min (R, 1) 1) + Rz O(3 DR, 1 (0 + 1))
= RO DR, (0 +1) 8°1) + Riz1 O(B Dy IR 41 (0 +1p)

= R4 O(3'DilRys1 (p+1) 6°).

For computing a pre-inverse in degree | we apply Proposition 3.14 with the latter bound
for M and achieve

R OB DR 11 (0 +1) 8%) +1(dy, ..., dymax (R, ).
Thanks to Proposition 3.16 we deduce
D(dy,...,d, L) =R O(3 Dy Re11 (0 +17) 6%) +1(dy, ..., di;max (Ri ™, o).
Finally, Proposition 3.14 leads to

(dy, ..., ds, ;)
= R71O0(3' Dyl Rys1 (0 +1) 8°) +1(dy, ..., dymax (Ri L, p))
= Ri1O(3'DiIR 41 (0 + 1) 6%) + R O(31 Dy Rymax (R, p +17) 69)
+ |(d1,~. ..,d;_1;max (Rt__ll,p)) ]
= Ri10(3'DilR 41 (0 +1) 6%) + Riz1 O (3" DiI Ry 11 (0 +17) 6°)
+1(dy,...,di—1;max (R[_ll,,o)) (since max (Rt_l,p +1) <t (p+1))

= RihO(3 DiIRsy1 (0+ 1) 89). O

8.4. Fast o-flattening

It remains to compute J-flattenings. For level j, we recursively use the preceding fast
conversions, multiplications and divisions over ]15]'_1. In case of a trivial flattening, or
one of first type, at level j, recall that we set x;:= 0. For the second type «; is defined in
Lemma 7.9. Let us now show how to compute the auxiliary data for each level.



JORIS VAN DER HOEVEN, GREGOIRE LECERF 65

Algorithm 8.1

Input. An almost reduced effectively separable and regular contact tower (P;);<; over
K ((2)) at precision p € Rt_l N>0 4 positive integer 6 <d.

Output. A é-flattening for (P;);<; at precision p and defect <dp f, along with the auxiliary
data needed in Lemma 8.2.

Assumption. We are given >42 distinct elements in K.
1. Determine the integer sequence 0 =iy < - -- <i;=t described before Lemma 8.1,
along with the flattening types for each level. Let #:=dpt.
2. Forj:l,...,fdo:
a. According to the type of the flattening at level j, use Proposition7.2,7.5, or 7.14
to increase the flattening for P; over Pj_1.

b. Compute Yi,_y+1,..., ¥ at precision p + x; for a non-trival flattening. If the
flattening at level j is of first or second type, then compute the auxiliary data
needed in Proposition 7.6 or 7.15.

3. Return (]f”]-) j<i along with the auxiliary data.
PROPOSITION 8.4. Algorithm 8.1 is correct and performs

O(D}*6%nt ;) + R O(3' DR, 06')

operations in K.

Proof. The correctness of Algorithm 8.1 is ensured by Lemmas 7.1, 7.4 and 7.9. We begin
with the following technical upper bound:

R;' O3/ DjR;max (Rj;}, 0+ 1))

= R,-?l(?(3]:DjRini71Rt(p+17)) (since max (Rl-]_.l,p+17) <Rl-]_,1Rt (p+1m)
= R,-;l(?<3f_DtRij<p+;7>)
= RO/ DR p ). (8.2)

From Lemma 8.3 and (8.2), we obtain

Bd,,.. .,dl-jfl;max (R;_ll,p +17))

= R} @(3{-115]-_1121-/._1 max (R;.",, p+1) 6°)
= RO/ DiR;pd7), (8.3)
and
l(dy, ..., di_;max (R;\, p+ 1) =R OB/ DRp 7). (8.4)

For a trivial flattening, Proposition 7.2 gives the following cost for step 2.a:
O(M(d;, .. .,dij;max (R;l,p) )log di,-)
+ C(Pij_],<1;p « j—1,<l;p+17) O(mln (Ri]'_] maXx (Ri71/ P); 1) di]-)
+1(dy,.. .,di]._];max (Ri;ll,p))

= R;'OB/D;R;max (R, p+1) 5% (by Lemma 8.3)
+R;! O(3/Dj_1R;_ max (R;}, p+ 1) 6°) O(min (R;,_,max (R}, 0), 1) d;))
(by Lemma 8.2)

= R71OB/ DR p6%). (using (8.2))
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For a flattening of first type, Proposition 7.5 gives the following cost for step 2.a:
O(D}*€6°ht )
+O(B(dy, .. -rdij,l) max (R,-?_ll,p)) (min (R;;_, max (Rl-]',l,p), 1)6)?6ht plog4 D))
+O(C(Py;_, <150 ~]'_1,<1;p+,7) min (R;,_, max (R,-]'.l,p), 1) élog D))

= O(Dj*¢5%ht )
+R;7 OB/ DR p51) (using (8.3))
+R;7TOB DR, 06 (by Lemma 8.2)

= O(D/*5%ht 7)) + R O3/ DiR;p 6'9).
For a flattening of second type, Proposition 7.14 gives the following cost for step 2.a:
O(5""'B(dy,...,d;_;max (R;, p+ 1)) min (R;_ max (R;",p+m),1) §%)
+1(dq,.. .,di]._];max (Rl?_ll,p)) )
+O(C(Ps <150 Pj1,<1;0+p) min (R;,_, 0, 1) d))

= R7'OB/ DR p M) (using (8.3))
+R;7TOB DR, 067) (using (8.4))
+R;7 OB DR (0 + 1) 89) (by Lemma 8.2)

= R71O@/ DR p M.
If the flattening at level j is non-trivial, then Proposition 3.11 applied to h=i;_1 and t =j;
gives the following cost bound for step 2.b:

< 5By, .,y ymax (R, p+ 1K) (min (R;_ max (R, p +)),1) §)°

+1(dy, ..., di_;max (R, p+7)) (ij—ij_1)

= 5if_if’1+1Rt_1O(Bj_lDthpég) (using (8.3) and (8.4))

= Rt_lé(Sj_lDthpélz). (using 5ili-1g 5%)
The rest of step 2.b reduces to O(J]-) =O(9) evaluations of ¢j—1, which totalize

C(P;,_, <1;p< Pj_1,<1;049) O8) = R OB/ DRy (0 +17) 6%

by Lemma 8.2. We conclude by summing the costs of steps 2.a and 2.b for j=1,...,,
simplifying with (2.2). O

8.5. Proof of Theorem 1.4

We finally combine the preceding algorithms in order to prove our main result, first in
terms of the parameter J, and then only in terms of D;.

THEOREM 8.5. Let (IP;);<; be an almost reduced effectively separable and regular contact tower,
l€r:11N>° and let 5< Dy. For all p€ R34 N0, after precomputations (that only depend on the
tower and p) of cost

R O(3'Dyri41R1p6"2) + O(D}+€ 5% ht ),
the following holds:
o Given A € [Pt <iloa;py);pr and B € [Py <i]uB;py);pr we can compute the truncated product
[AB; Ptloca;py+0(B;Py;p USING
R OB DR 4106°)

operations in K.
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o Given A€ [Py «21loca;py;pr and BE [Pt <1]o(8;p,);p monic of degree |, we can compute the trun-
cated quotient and remainder [A quoy,,, B; Ptloa;p,)—o(B;py;p and [Aremy, B; Pi]pa;p));0
using

R OB DR 4106°)

operations in K.

Proof. First we assume that we are given >4 distinct elements in K. The cost for obtaining
a d-accelerated tower representation of (IP;);<; is given in Proposition 8.4. Then in order
to multiply two elements in (IP;);<;, we convert them into the flattening, multiply them,
and convert them back. The cost of the conversions is given in Lemma 8.2, and the costs
of the product and the division are stated in Propositions 6.7 and 6.8.

Finally if we are not given sufficiently many elements in K, we appeal to [12, Propo-
sition A.2]: the overhead only induces logarithmic factors in the complexity bound. O

Proof of Theorem 1.4. It is important to notice that constants hidden in the “O” of The-
orem 8.5 are independent of the value for J, so we may freely choose ¢ in terms of D;.
From Lemma 8.1 we know that

log D¢
log é

<12 +8

In order to balance the contributions of 3! and 5° in the complexity bound of Theorem 8.5,
we take 6 [hmm, recall that 6 was assumed to be an integer in [9]] such that

log D
6log5:(12%+8)log3,
~ log ¢ 1
so t= O(logl/Z Dy), loogth = O(logl/th>’ and 5:Dto(1)' =

[In the references, it should be Mac Lane. |
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