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Introduction

This paper regroups several results in the continuation of my D.E.A. report

[VdH 93]. The paper was originally intended to be part of my PhD. thesis. However,

because my thesis has grown in size more than expected, I decided to suppress this

part, which is independent from the rest of my thesis.

The �rst chapter concerns the computation with special functions determined by

algebraic di�erential equations and initial conditions. The second part deals with a

generalization of e�ective di�erential elimination theory to the context of so called

D-rings, introduced by Nichols and Weisfeiler. The last, and most original part deals

with a generalization of the results of chapter 2 to more general mixed di�erential-

di�erence equations.

Joris van der Hoeven

Paris, December 4, 1996
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Chapter 1

Computations with special functions

1.1 Introduction

Transcendental functions like exp; log; sin; }, etc. have been studied since a long

time. In our age of symbolic computation it is natural to ask whether computations

with such functions can be done automatically. Essentially, this question can be

reduced to the following one: given an expression built up from the rationals, a �nite

number of indeterminates and a given set of elementary functions, can we decide

whether the expression is zero? Since the expressions are not necessarily canonically

determined (they usually admit non trivial Riemann surfaces), the problem should

be speci�ed further: can we decide whether the expression is locally zero at a given

point on the Riemann surface? We also have to specify what we mean by elementary

functions: in this chapter, we will consider a very large class of elementary functions,

namely those which can be entirely speci�ed by a �nite number of algebraic partial

di�erential equations with initial conditions. In what follows, such functions will be

called D-algebraic functions.

Let us �rst briey discuss some of the history of the above problem. Initially,

most of the research has been centered around �nding canonical ways for representing

expressions of the above type, based on our experience with polynomials. The study

of functions built up from algebraic functions, exponentiation and logarithm was

started by Liouville (see [Li 1837] and [Li 1838]) and culminated one and a half

century later in the Risch structure theorem (see [Ris 75]). These techniques were

extended to include a few other transcendental functions such as the error function

by Cherry and Caviness (see [Ch 83], [CC 85]). However, for many other special

functions, the desire of having canonical representations seems to be to ambitious.

The emergence of holonomic functions has provided a new way of looking at the

question. Holonomic functions (in one variable) are functions which satisfy a non

trivial linear di�erential equation over the polynomials with rational coe�cients.

They are represented, although not uniquely, by such a di�erential equation and a

number of initial conditions. The basic idea is now to compute with these repres-

6



1.1. INTRODUCTION 7

entations, without searching for canonical ones. Denef and Lipshitz, followed by

others have generalized the holonomic function approach to D-algebraic functions

(see [DL 89], [SH 89]). At this moment, the most promising algorithm for computa-

tions with D-algebraic functions is due to P�eladan-Germa (see [P�el 95]). However,

no implementation of this algorithm is available yet.

We �nally mention that in the above discussion, we implicitly assumed the exist-

ence of an oracle, to perform the necessary computations with constants. Actually,

this is a very strong hypothesis since computations with transcendental numbers

turn out to be even harder than computations with transcendental functions (mod-

ulo a suitable oracle for the constants). Although it is often easy to decide whether

a constant is zero (it su�ces to perform a oating point evaluation at a su�cient

precision), it can be very hard to prove that a constant is zero. Nevertheless, in the

case of constants determined by exp-log equations, an algebraic zero-test does exist

modulo Schanuel's conjecture and we refer to the introduction for more details.

� � �

Let us now comemore particularly to the contents of this chapter. We have chosen

the di�erential algebra with initial conditions setting to study local functions. This

has the disadvantage of restricting the class of functions which can be studied, but

the advantage of being suitable for e�ective computations by its algebraic character.

In section 1.2, we introduce the formalism of D-rings. This formalism is due to

Nichols and Weisfeiler (see [NiWe 82], [Bu 92]) and provides an algebraic setting

for studying p.d.e.'s on curved geometrical objects. Its originality with respect to

the classical theory of di�erential algebra (as developed by Riquier, Janet, Ritt,

Raudenbush, Seidenberg, Kolchin, etc.; see [Riq 10], [Jan 20], [Ritt 50], [Kol 73],

[Kap 76]) is that the derivations do not necessarily commute. Consequently, p.d.e.'s

on non a�ne objects such as spheres can be considered, even though no essentially

new functions are introduced by this. Actually, the formalism of D-rings mainly

allows us to place ourselves in the coordinates, which correspond to the underlying

geometry of the problem. Moreover, we will see in chapter 2 that the main results

from classical di�erential algebra can be generalized without much e�ort.

In section 1.3, we introduce D-rings with initial conditions. We will mainly

consider initial conditions in a point, which correspond to (non di�erential) maximal

ideals of the D-ring.

In section 1.4, we establish the main algorithms for computations with D-algebraic

functions. We start with a generalization of an algorithm due to Shackell and an

optimization of this algorithm using a local pseudo-Buchberger algorithm. This

work was carried out jointly with A. P�eladan-Germa in [PV 96]. For the local

pseudo-Buchberger algorithm, we refer to section 1.6. We proceed with a zero-

equivalence algorithm which is particularly useful when the point in which the zero-

test is performed may be chosen randomly: in that case, virtually all functions which

evaluate to zero are zero, and this property is exploited in the algorithm.
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In section 1.5 we consider some other computations which can be done with

D-algebraic functions. Most importantly, we obtain an implicit function theorem,

which permits to solve e�ectively certain systems of implicit equations determined

by D-algebraic functions. This is a crucial result on which many algorithms in part

B of this thesis rely.

1.2 Basic concepts

1.2.1 De�nition of a D-ring and examples

A D-ring is a couple (A;D) satisfying

DR1. A is a commutative ring.

DR2. D is an A-module of derivations on A satisfying

0

D

a = 0;

(bd)a = b(da);

(d

1

+ d

2

)a = d

1

a+ d

2

a;

for all d; d

1

; d

2

2 D and a; b 2 A.

DR3. D has the structure of a Lie algebra and

[d

1

; d

2

]a = d

1

d

2

a� d

2

d

1

a;

[d

1

; ad

2

] = (d

1

a)d

2

+ a[d

1

; d

2

];

for all d

1

; d

2

2 D and a 2 A.

For simplicity, we often write A instead of (A;D). In practice, (A;D) is �nite

dimensional, i.e. D is a �nitely generated A-module. We notice that D-ring theory

generalizes ring theory, by taking D = 0 for the set of derivations.

Example 1.1. If k is a �eld, then (k[x; y]; (d

x

; d

y

)) is a D-ring. Here d

x

and d

y

denote the partial derivatives with respect to x resp. y and D = (d

x

; d

y

) the k[x; y]-

module generated by d

x

and d

y

. D has a natural Lie algebra structure, given by

[Ad

x

+Bd

y

; A

0

d

x

+B

0

d

y

] = (AA

0

x

+BA

0

y

�A

x

A

0

�A

y

B

0

)d

x

+

(AB

0

x

+BB

0

y

�B

x

A

0

�B

y

B

0

)d

y

:

The D-ring (k[x; y]; (d

x

; d

y

)) corresponds to the plane (over k). In a similar fashion,

one de�nes a�ne n-space (k[x

1

; � � � ; x

n

]; (d

x

1

; � � � ; d

x

n

)).

Example 1.2. If k is a �eld, then (k[x; y]=(x

2

+ y

2

� 1); (yd

x

� xd

y

)) is a D-

ring. This object corresponds to the circle with its natural derivations. Similarly,

(k[x; y; z]=(x

2

+ y

2

+ z

2

� 1); (d

1

; d

2

; d

3

)) is a D-ring, where d

1

= yd

x

� xd

y

; d

2

=

zd

y

� yd

z

and d

3

= xd

z

� zd

x

. We have [d

1

; d

2

] = d

3

; [d

2

; d

3

] = d

1

and [d

3

; d

1

] = d

2

.
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Finally, (k[x; y]=(xy); (xd

x

; yd

y

)) is a non entire D-ring, which corresponds to the

union of two lines.

Example 1.3. Assume that (A;D) is a D-ring and that I is a usual ideal of

A. Then A

jI

= A=I can naturally be given the structure of a D-ring by taking

D

jI

= fd 2 D=IDjdI � Ig for the derivations. Indeed, we have a natural induced

Lie bracket on D

jI

, since dI � I and d

0

I � I imply [d; d

0

]I � I, for all d; d

0

2 D.

The D-ring (A

jI

;D

jI

) is called the restriction of domain of (A;D) by I. If A is

Noetherian and �nite dimensional, then so is A

jI

. The D-rings of example 1.2 are

obtained as restrictions of domain of k[x; y] by x

2

+y

2

�1, of k[x; y; z] by x

2

+y

2

+z

2

�1

and of k[x; y] by xy.

Example 1.4. Let A be an algebra over R. Denote by Der

R

(A) the set of R-

derivations on A (i.e. the set of derivations d : A ! A with dR = 0). Then

(A;Der

R

(A)) is a D-ring. If A is �nitely generated, then this D-ring is �nite dimen-

sional.

1.2.2 Morphisms of D-rings

Let us now show how familiar concepts in di�erential algebra generalize to the context

of D-rings. A morphism of D-rings or D-morphism (A;D)

'; 

�! (A

0

;D

0

) is a

pair of mappings A

'

! A

0

and D

 

! D

0

, preserving all D-ring operations. Clearly,

D-rings with their morphisms form a category. Let us show that each morphism

(A;D)

'; 

�! (A

0

;D

0

) can be factored canonically through (A

0

; A

0




A

D), where we

consider A

0

as an A-algebra, by �a = '(�)a, for � 2 A and a 2 A

0

. Roughly

speaking, this means that we can decompose a morphism in a part which preserves

the structure of the module of derivations, and in a part which preserves the structure

of the ring.

As we have a A-bilinear mapping � : A

0

�D ! D

0

; (a; d) 7! a (d), there exists a

unique A-linear mapping A

0




A

D

�

! D

0

, such that � = � � (1 
 Id). This mapping

induces a canonical operation of A

0




A

D on A

0

by da = �(d)a. This makes it possible

two de�ne a Lie bracket on A

0




A

D by [a
 d; a

0


 d

0

] = aa

0


 [d; d

0

] + a(da

0

)
 d

0

�

a

0

(d

0

a)
 d. Then we have the desired factorization

(A;D)

';1
Id

�! (A

0

; A

0




A

D)

Id;�

�! (A

0

;D

0

):

A D-morphism is said to be pure, if � = Id in the above decomposition. By the

transitivity of base change, D-rings with pure D-morphisms form a category.

Remark 1.1. Consider the D-ring (k[x; y]; (d

x

; d

y

)). Then interchanging x and y

resp. d

x

and d

y

gives a D-automorphism ' of k[x; y]. We remark that this would not

be the case in di�erential algebra, because the derivations d

x

and d

y

are restricted to

remain �xed. Nevertheless, ' is not a k[x; y]-morphism of D-algebras (see below).
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1.2.3 D-ideals, D-A-modules and D-A-algebras

A D-ideal of (A;D) is an ideal, stable under D. We denote by [�] the D-ideal

generated by a subset � of A. If I is such a D-ideal, then A=I has a canonical quo-

tient D-ring structure. If S is a multiplicatively stable subset, we each derivation

d 2 D naturally gives rise to a derivation on S

�1

A by d(a=s) = (da=s) � (a=s

2

).

Therefore, S

�1

A has a canonical D-ring structure and is called a local D-ring of

A. We recall that A ! S

�1

A is injective if and only if S contains no zero divisors.

The total D-ring of fractions is the D-ring Q(A) = S

�1

A, where S is the set of

non zero-divisors. In particular, Q(A) is the quotient D-�eld, if A is entire.

A D-A-module or D-module over A is an A-moduleM , such that each deriv-

ation d 2 D gives rise to a derivation

^

d on M , satisfying

^

d(ax) = (da)x + a

^

dx and

\

[d

1

; d

2

]x =

^

d

1

^

d

2

x �

^

d

2

^

d

1

x, for a 2 A, d; d

1

; d

2

2 D and x 2 M . A morphism of

D-modules over A is an A-linear mapping, which commutes with the derivations

of D.

A D-A-algebra or D-algebra over A is a D-A-module, which is an A-algebra

B, such that

^

d(xy) = x

^

dy + (

^

dx)y, for each x; y 2 B. We remark that (B;D

B

)

is a D-ring in this case (assuming that B has a unit), where D

B

= B 


A

D

A

acts

naturally on B by (x
d)y = xdy. We have a canonical D-morphism of (A;D

A

) into

(B;D

B

). Inversely, given such a morphism, we can consider B as a D-A-algebra in

a natural way. A morphism of D-A-algebras is a morphism of A-algebras, which

commutes with the derivations of D.

1.2.4 D-operator algebras

Let (A;D) be a �nite dimensional Ritt D-ring. One can naturally associate the

free linear D-operator algebra 
 = A[D] to (A;D): this is the free associative

A-algebra, generated by A and D, subject to the relations

a �




d = ad;

d �




a = da;

d

1

�




d

2

� d

2

�




d

1

= [d

1

; d

2

]:

We also de�ne 


0

= A and 


r+1

= 


r

[D


r

, for each r 2 N. These sets are subsets

of 
, with 
 =

S

r2N




r

. If ! 2 
, we de�ne its order to be the smallest r, with

! 2 


r

.

Proposition 1.1. Let d

1

; � � � ; d

r

be in D. Then d

�(1)

� � � d

�(r)

� d

1

� � � d

r

has order

strictly inferior to r, for any permutation �.

Proof. It su�ces to prove this, in the case when � is a transposition of two sub-

sequent indices i and i+ 1. In that case, we have

d

1

� � � d

i+1

d

i

� � � d

n

� d

1

� � � d

i

d

i+1

� � � d

n

= d

1

� � � [d

i+1

; d

i

] � � � d

n

;
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which has order at most n � 1. �

Operators of the form d

1

� � � d

r

are called words. The word operator d

�(1)

� � � d

�(r)

is said to be a shu�e of the word operator d

1

� � � d

r

. Suppose that we have �xed

generators or a basis d

1

; � � � ; d

n

forD. Then we denote � = fd

�

1

1

� � � d

�

n

n

j�

1

; � � � ; �

n

2

Ng and �

r

= fd

�

1

1

� � � d

�

n

n

j�

1

+ � � � + �

n

6 rg, for each r. Then we have

Proposition 1.2. The set � (resp. �

r

) generates 
 (resp. 


r

) as an A-module.

It even forms a basis, if d

1

; � � � ; d

n

form a basis of D.

Proof. Let us show by induction over r that �

r

generates 


r

as an A-module. This

is clear for r = 0. Assume that �

r�1

generates 


r�1

. By linearity, it su�ces to

show that d

i

d

�

1

1

� � � d

�

n

n

2 (�

r

), for each i and d

�

1

1

� � � d

�

n

n

2 �

r�1

. By the previous

proposition, we have d

i

d

�

1

1

� � � d

�

i

i

� � � d

�

n

n

� d

�

1

1

� � � d

�

i

+1

i

� � � d

�

n

n

+ !, with ! 2 


r�1

.

This completes the induction. As 
 =

S

r2N




r

and � =

S

r2N

�

r

, this implies that


 is generated by �.

Suppose now that d

1

; � � � ; d

n

form a basis for D. The free A-module 


0

generated

by �, can naturally be given the structure of an associative A-algebra, and it is easily

checked that this algebra satis�es the universal property of 
. Hence, 


0

is isomorphic

to 
. Therefore, � is linearly independent over A, and so is �

r

, for each r. �

1.2.5 Geometric interpretation of D-rings

The concept of D-rings has a strong geometric appeal: we can interpret A as the

space of functions on a manifold and D as its tangent bundle. In order to let

things correspond properly, assume that A is entire and that D �nitely generated by

d

1

; � � � ; d

n

. Then we remark that D is locally trivial. Indeed, whenever we have a

relation a

1

d

1

+ � � �+a

i

d

i

= 0, with a

i

6= 0, then D is generated by fd

1

; � � � ; d

n

gnfd

i

g,

when localizing with respect to the multiplicative subgroup generated by a

i

. After a

�nite number of such localizations, the tangent bundle becomes trivial.

Now the analogy can be carried out further. Finitely generatedA-modules (which

are locally trivial, by the above argument) correspond to vector bundles. For ex-

ample, we have the cotangent space D

�

= Lin

A

(D;A), the tensor bundles

D


A

n times

� � � 


A

D 


A

D

�




A

m times

� � � 


A

D

�

;

etc. Other geometric structures can be imposed on A such as metrics (which are just

elements of D

�




A

D

�

), connections (which are Z-bilinear maps from D�D into D,

such that

r

ad

d

0

= ar

d

d

0

;

r

d

(ad

0

) = (da)d

0

+ ar

d

d

0

;
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and, optionally, r

d

d

0

�r

d

0

d = [d; d

0

]), etc.

Many di�erential geometric properties admit straightforward algebraic analogues.

This observation, combined with the results of subsequent sections, makes it possible

to perform many di�erential geometrical computations automatically.

1.3 D-rings with initial conditions

In this section we will algebrize the notion of a system of partial di�erential equations

with boundary conditions. In section 1.3.1, we �rst give a very general de�nition,

with arbitrary partial di�erential equations and partially speci�ed boundary con-

ditions. In section 1.3.2, and all what follows, we will restrict ourselves to initial

conditions in a point.

1.3.1 D-boundary value problems

A D-boundary value problem is a chain of triplets (A

n

; J

n

; I

n

); � � � ; (A

1

; J

1

; I

1

),

where the J

i

's are D-ideals of the D-rings A

i

, where the I

i

's are ideals of A

i

=J

i

and

where A

i�1

= (A

i

=J

i

)

jI

i

, for each 2 6 i 6 n. Denote A

0

= (A

1

=J

1

)

jI

1

. We have

canonical mappings

A

n

! A

n

=J

n

! A

n�1

! � � � ! A

1

! A

1

=J

1

! A

0

:

The composite of these mappings is denoted by " and it is called the evaluation

mapping. We de�ne an equivalence relation � on A

n

by

a � b, 8� 2 �

A

n

"(�(a)) = "(�(b));

for all a and b in A

n

.

Remark 1.2. This de�nition of equivalence may appear non natural at a �rst time,

because of the example f = e

�1=x

2

. However, f can not be speci�ed in x = 0, because

1=x

2

would not be de�ned. In fact, the theory of D-rings with initial conditions

somehow generalizes complex function theory, where a function is also determined

by the values of its iterated derivatives in a point.

The zero-equivalent elements form an ideal, which is easily checked to be a D-

ideal. If this ideal is non zero, we say that the D-boundary value problem is non

reduced. In that case we can transform the problem into a reduced D-boundary

value problem (A

0

n

; J

0

n

; I

0

n

); � � � ; (A

0

1

; J

0

1

; I

0

1

), with A

0

i

= A

i

=�; J

0

i

= J

i


 A

0

i

and I

0

i

=

I

i


 (A

0

i

=J

0

i

), for all i. If I

1

is a maximal ideal, then A

0

is a �eld and the D-boundary

value problem is said to be completely speci�ed.

Example 1.5. Suppose that we wish to represent f = e

x+y

as a function which

is equal to e

y

, for x = 0, and which satis�es the di�erential equation f

x

= f . We
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take A

2

= k[x; y]ffg, J

2

= [f

x

� f ] and I

2

= (x). Then A

1

�

=

k[y]ff

jx

g and we take

J

1

= [(f

jx

)

y

� f

jx

] and I

1

= (x; f

jx

� 1). We remark that f can also be speci�ed

by two partial di�erential equations and initial conditions in a point (see the next

example).

1.3.2 D-systems

In the rest of this chapter, we will restrict our attention to D-boundary value prob-

lems, with n = 1, J

1

= 0 and where I

1

is maximal. This leads to the notion of a

D-system, which is a pair ((A;D);m), where (A;D) is a D-ring and m a maximal

ideal of A. Again, we often write A instead of ((A;D);m). D-systems correspond to

D-rings with initial conditions in a point. We have an evaluation mappingA! A=m.

A morphism of a D-system ((A;D

A

);m

A

) into a D-system ((B;D

B

);m

B

) is a morph-

ism of D-rings (A;D

A

) ! (B;D

B

), which commutes with the evaluation mappings.

This means that m

A

is the inverse image of m

B

.

Example 1.6. A D-system in which we can represent the function f = e

x+y

is

(k[x; y]ffg=[f

x

� f; f

y

� f ]; (x; y; f � 1));

with the usual partial derivations d

x

and d

y

on k[x; y]. Indeed, f is determined by the

equations f

x

= f

y

= f and the initial condition f(0; 0) = 1. To represent g = e

xe

x+y

,

we build a tower on this D-system. Indeed, it su�ces to consider the D-supersystem

(k[x; y]ff; gg=[f

x

� f; f

y

� f; g

x

� f � xf

x

; g

y

� xf

y

]; (x; y; f � 1; g � 1)):

Example 1.7. An example of a non reduced system is k[x]ff; gg=[f

x

� f; g

x

�

g]; (x; f �1; g�1). Indeed, f 6= g are formally di�erent in k[x]ff; gg=[f

x

�f; g

x

� g],

but they both represent the function e

x

, so that f � g.

Example 1.8. Consider the D-system ((k[x; y]=(xy); (xd

x

; yd

y

)); (x � 1; y)). A

polynomial P (x; y) = c + xP

1

(x) + yP

2

(y) is zero-equivalent, i� "(�(P )) = 0, for

any linear di�erential operator �. Now "(yd

y

Q) = 0, for any Q, so that P � 0 ,

x = P

1

= 0. This means that the behaviour of P on the y-axis is irrelevant for its

zero-equivalence. This should not surprise, since the initial point does not lie on the

y-axis.

More strikingly, if we took (x; y) as our initial condition, then all polynomials

vanishing in 0 would even have been zero-equivalent. This comes from the fact that

0 is a singular point. The same holds true, if we consider ((k[x; y]=(x

2

�y

3

); (3y

2

d

x

+

2xd

y

)); (x; y)).

Proposition 1.3. Let ((A;D);m) be a D-system, such that A=m has characteristic

zero. Then A=� is an entire ring.
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Proof. Suppose that xy � 0, but x 6� 0 and y 6� 0. Let � and �

0

be linear

di�erential operators, of minimal orders k and l, such that "(�x) 6= 0 and "(�

0

y) 6= 0.

Thus, for any � 2 �

k�1

and �

0

2 �

l�1

, we have "(�x) = "(�

0

y) = 0. As d

1

� � � d

k

�

d

�(1)

� � � d

�(k)

has order < k, for any derivations d

1

; � � � ; d

k

and any permutation �,

we have "(d

1

� � � d

k

x) = "(d

�(1)

� � � d

�(k)

x). Similarly, "(d

1

� � � d

l

y) = "(d

�(1)

� � � d

�(l)

y).

Let us �x some well ordering 6 on D. This ordering induces well orderings on

the M

p

(D)'s, the sets of multisets of p elements of D. More precisely, we order the

elements of multisets in increasing order and take the lexicographical orderings. We

also have a well ordering onM(D) = q

p2N

M

p

(D), by ordering �rst on size and then

using the above ordering on each component. We remark that the union operation

is compatible with this ordering, so that M(D) is an ordered commutative monoid.

Now take fd

1

; � � � ; d

k

g 2 M

k

(D) and fd

k+1

; � � � ; d

k+l

g 2 M

l

(D) minimal, such

that "(d

1

� � � d

k

x) 6= 0 and "(d

k+1

� � � d

k+l

y) 6= 0. Then

"(d

1

� � � d

k+l

(xy)) =

X

fi

1

;��� ;i

k

gqfj

1

;��� ;j

l

g=f1;��� ;k+lg

"(d

i

1

� � � d

i

k

x)"(d

j

1

� � � d

j

l

y) = 0:

Now if fd

i

1

; � � � ; d

i

k

g 6= fd

1

; � � � ; d

k

g as a multiset, then either fd

i

1

; � � � ; d

i

k

g <

fd

1

; � � � ; d

k

g, or fd

j

1

; � � � ; d

j

l

g < fd

k+1

; � � � ; d

k+l

g, because of the compatibility of

the union with the ordering. Therefore, either "(d

i

1

� � � d

i

k

x) = 0 or "(d

j

1

� � � d

j

l

y) = 0

from the minimality hypothesis. We conclude that

"(d

1

� � � d

k+l

(xy)) = m"(d

1

� � � d

k

x)"(d

k+1

� � � d

k+l

y) = 0;

for some integer m > 0. This yields a contradiction, since m 6= 0 in A=m. �

We can perform di�erent constructions on a D-system ((A;D);m). First, we

can naturally associate the reduced D-system ((A=�;D=�);m=�) to it, where,

denoting by z the D-ideal of zero-equivalent elements, D=�= D=zD and m=�=

m=zm, with A=z

�

=

A=�.

Secondly, we can associate the local D-system ((A

m

;D

m

);m

m

) to it. Here M

m

denotes the localization of any A-module or ideal M w.r.t. m. We say that A

m

=� is

the local ring of functions at m.

Finally, if I � m, we have the restriction of domain ((A

jI

;D

jI

);m

jI

) of ((A;D);m)

w.r.t. I, where m

jI

= m=Im. The next propositions show how these constructions

are related.

Proposition 1.4. Let ((A;D);m) be a D-system. Then A

m

=�

�

=

(A=�)

m=�

as

D-systems.

Proof. We claim that the mapping from A

m

=� into (A=�)

m=�

de�ned by a=s 7!

a=s is well de�ned and bijective. Indeed, a=s = 0 is equivalent to saying that

"(�(a=s)) = 0, for any � 2 �

A

m

. By induction over the order of �, this is equivalent

to "(�(a)) = 0 for each � 2 �

A

m

, since "(s) 6= 0. Hence, a=s = 0 , a = 0. Next,
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a=s = 0 is equivalent to the existence of an s

0

, with s

0

a = 0. By a similar argument,

one shows that this is also equivalent to a = 0. �

Proposition 1.5. Let I � m be a �nitely generated ideal of a D-system ((A;D);m).

Then (A

m

)

jI

m

�

=

(A

jI

)

m

jI

as D-systems.

Proof. Let M be an A-module. Then we have a natural isomorphism between

M

m

=I

m

M

m

and (M=IM)

m

jI

, which sends x=s to x=s. Therefore, it su�ces to check

that fd=sjdI � Ig = fd=sj(d=s)I

m

� I

m

g, when identifying D

m

=I

m

D

m

with

(D=ID)

m

jI

. If dI � I, then clearly (d=s)I

m

� I

m

. Inversely, suppose that (d=s)I

m

�

I

m

. If a

1

; � � � ; a

n

are generators for I, then we have s

i

((d=s)a

i

) 2 I, for certain s

i

's

and all i. This means that d

0

I � I, where d

0

= s

1

� � � s

n

d, and d=s = d

0

=(ss

1

� � � s

n

).

�

Example 1.9. The restriction of domain operator does not satisfy any simple

commutation rule with the equivalence operator: take A = K[x; y], D = (d

x

), m =

(x; y) and I = (xy). Then y � 0, so that A=�

�

=

K[x] and I=�= 0. However,

Pd

x

(xy) = Py, so that the set of derivations leaving invariant I is generated by xd

x

.

Thus, all elements of A

jI

are zero-equivalent.

Example 1.10. The restriction of domain operator does not necessarily satisfy

A

jIjJ

jI

�

=

A

jJ

for I � J . A counterexample is given by A = K[x; y], D

A

= (d

x

; d

y

),

I = (xy) and J = (x). Similarly, we do not necessarily have ((A= �)

jI=�

= �

)

j(J=�)

jI=�

=�

�

=

(A=�)

jJ=�

.

1.4 Zero-equivalence algorithms

In this and the next section, we shall borrow without further mention some concepts

of the theory of Groebner bases (see for instance [CLO 92]). The sections 1.4.1

and 1.4.2 are the result of a collaboration between A. P�eladan-Germa and the author

(see also [PV 96]).

Let C be an e�ective �eld | i.e. we have algorithms for performing the �eld

operations of C and we have an e�ective zero-test. A simple e�ective D-system

over C is a couple ((A;D);m) which satis�es the following conditions:

ES1. A = C[f

1

; � � � ; f

k

]=i and we have a Groebner basis G

A

for the ideal i.

ES2. D is a free A-module with basis d

1

; � � � ; d

n

.

ES3. (A;D) is an e�ective D-ring | i.e. A, the action of D on A and the Lie

bracket on D are e�ective.

ES4. m is a maximal ideal of A, such that A=m

�

=

C, and the evaluation mapping

" : A! C is e�ective.
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In the remainder of this section, ((A;D);m) is a D-system which satis�es the above

requirements.

The aim of this section is to show how to compute with special functions in A

m

=�.

Such functions are redundantly represented by rational fractions in C[f

1

; � � � ; f

k

],

whose denominators do not evaluate to zero, whence the ring operations in A=�

can be implemented in a straightforward way. However, for the equality test, we

need a zero-equivalence test in A. In this section, we shall provide several of such

zero-equivalence tests.

1.4.1 A naive zero-equivalence algorithm

In what follows, Groebner-basis stands for an algorithm to compute Groebner basis

in C[f

1

; � � � ; f

k

]. Given a polynomial P 2 C[f

1

; � � � ; f

k

], we will abusively denote its

natural projection on A by P as well. The following zero-equivalence algorithm

generalizes the �rst algorithm from [Sh 89] to test zero-equivalence in the context of

ordinary di�erential equations over Q:

Algorithm zero equivalence 1(P ).

Input: A polynomial P 2 C[f

1

; � � � ; f

k

].

Output:The result of the zero-equivalence test for P .

if "(P ) 6= 0 then return false

G := Groebner-basis(G

A

[ fPg)

while 9i 9Q2G d

i

Q mod G 6= 0 do

if "(d

i

Q) 6= 0 then return false

G := Groebner-basis(G [ fd

i

Qg)

return true

Proposition 1.6. The algorithm zero equivalence 1 is correct and terminates.

Proof. Let us �rst prove the correctness. It is clear that if the algorithm returns

false, then P is not zero-equivalent. If the algorithm returns true, then let G be

the Groebner basis at the end of the algorithm. We have (d

i

Q) 2 (G), for each

1 6 i 6 k;Q 2 G. Hence, (G) is stable by �, and "(P ) = 0 for each P 2 (G).

Consequently, all elements of (G) | which contains P | are zero-equivalent.

As to the termination of zero equivalence 1, the heads (see also section 1.6 for

this terminology) of the polynomials in the successive values of G form a strictly

increasing chain of ideals. Now the termination follows from the Noetherianity of

polynomial rings. �

Remark 1.3. A slight modi�cation of the algorithm allows us to exploit previous

computations: since we are interested in A=� rather than A itself, we may turn

G

A

into a global variable. Then setting G

glob

:= G just before we return true in



1.4. ZERO-EQUIVALENCE ALGORITHMS 17

zero equivalence 1 has the e�ect of remembering all non trivial relations we �nd

between the f

i

's in A=�.

Remark 1.4. It is also possible to test several polynomials P

1

; � � � ; P

p

for zero-

equivalence at the same time. This is done by checking �rst whether they evaluate

to zero and then replacing the line G := Groebner-basis(G

A

[ fPg) by G :=

Groebner-basis(G

A

[ fP

1

; � � � ; P

p

g).

Remark 1.5. The algorithm naturally extends to the case when the initial condi-

tions depend on parameters via the automatic case separation strategy (see [VdH 97]).

More precisely, we may take C to be a parameterized constant �eld C = K(�

1

; � � � ; �

p

)

over an e�ective �eld K. This means that the elements in C are rational fractions

in a �nite number of parameters �

1

; � � � ; �

p

. These parameters are subject to poly-

nomial constraints, which are either equations or inequations. The consistency of

such systems of constraints can be checked by Groebner basis techniques. Moreover,

no in�nite loops can arise from the parameterized Groebner basis computations in

zero equivalence 1 (see [GoDi 94], for instance).

1.4.2 An optimized zero-equivalence algorithm

In the naive zero-equivalence algorithm, we do not exploit the local character of our

problem from an algebraic point of view. Now in section 1.6, we show that Buch-

berger's algorithm can be generalized to local rings, although the computed pseudo-

Groebner bases do not possess all of the nice properties of usual Groebner bases.

Nevertheless, this local pseudo-Buchberger algorithm can be used instead of the

usual one in zero equivalence 1, yielding the following optimized zero-equivalence

test:

Algorithm zero equivalence 2(P ).

Input: A polynomial P 2 C[f

1

; � � � ; f

k

].

Output: The result of the zero-equivalence test for P .

if "(P ) 6= 0 then return false

G := Pseudo-Groebner-basis(G

A

[ fPg)

while 9i 9Q2G Red(d

i

Q;G) 6= 0 do

if "(d

i

Q) 6= 0 then return false

G := Pseudo-Groebner-basis(G [ fd

i

Qg)

return true

Proposition 1.7. The algorithm zero equivalence 2 is correct and terminates.

Proof. The termination is proved in a similar way as before. As to the correctness,

it is again clear that if the algorithm returns false, then P is not zero-equivalent. If
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the algorithm returns true, then let G be the pseudo-Groebner basis at the end of

the algorithm. We have Red(d

i

Q;G) = 0, for each 1 6 i 6 k;Q 2 G. In particular,

�G � (G)

A=S

, where (G)

A=S

denotes the ideal in A=S generated by G. This implies

that (G)

A=S

is stable by �. Since all elements of G evaluate to zero, so do all elements

of (G)

A=S

. Hence all elements of (G)

A=S

| which contains P | are zero-equivalent.

�

The interest of this local pseudo-Buchberger algorithm is illustrated on the fol-

lowing example, proposed by Shackell: let A = C[f

1

; f

2

; f

3

; f

4

]; D = Ad

x

; d

x

f

1

=

1; d

x

f

2

= f

2

; d

x

f

3

= 2f

1

f

3

; d

x

f

4

= 2f

1

f

4

; "(f

1

) = 0; "(f

2

) = "(f

3

) = "(f

4

) = 1.

Then the polynomial P = (f

M

1

+ f

2

)(f

3

� f

4

) is zero-equivalent since f

3

� f

4

is.

However, the naive algorithm needs O(M) steps to conclude this, whereas the new

one terminates after one step: d

x

P is pseudo-reduced to zero by P .

1.4.3 A randomized zero-equivalence algorithm

Often, if we want to determine whether some special function | such as an exp-log

function | is zero, then the initial point may be chosen randomly, provided that we

avoid singularities. Now the set of points in which a non zero function vanishes, has

measure zero. In this section, we show how this observation can be used to speed up

the zero-equivalence algorithm, if the initial point may be chosen by the algorithm.

The idea of the algorithm is the following: an initial point is said to be good, if all

polynomials P 2 m considered during the computations are actually zero-equivalent.

Otherwise, the initial point is said to be bad. Under the hypothesis that an initial

point is good, we can insert any polynomial which vanishes under evaluation into

the Groebner basis G

A

. Whenever 1 is in the ideal generated by the Groebner basis

G, this means that the initial point is bad, and an exception is raised. This leads to

the following algorithm:

Algorithm zero equivalence 3(P ).

Input: A polynomial P 2 C[f

1

; � � � ; f

k

].

Output:The result of the zero-equivalence test for P . The algorithm aborts

whenever a bad initial point was chosen.

if "(P ) 6= 0 then return false

G

A

:= Groebner-basis(G

A

[ fPg)

while 9i 9Q2G

A

d

i

Q mod G

A

6= 0 do

if "(d

i

Q) 6= 0 then raise \bad initial point"

G := Groebner-basis(G

A

[ fd

i

Qg)

return true

Remark 1.6. The Groebner basis computations may also be speeded up by inserting

each polynomial P 2M we encounter during these computations into G

A

.
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Let us now sketch in which circumstance the above algorithm applies. Assume

that we are given an analytic function f de�ned on some Riemann surface. Assume

also that we are given a sequence of points z

1

; z

2

; � � � in which f is de�ned, such

that fz

1

; z

2

; � � �g is dense in some open set U . Assume �nally that to each initial

point z

i

corresponds a simple e�ective D-system ((A;D);m

i

), which speci�es f in

z

i

(notice that A and D do not depend on i). Then we claim that we can test the

zero-equivalence of f by the above algorithm, by running it successively in z

1

; z

2

; � � �

until we have found a good initial point.

First, the zero-equivalence algorithm can be aborted due to the vanishing of only

a �nite number of non zero functions at the initial point. Now at least one of the

parts of a �nite partition of U is also dense in some open subset (the measure of

the closure of one of the parts has to be non zero). Therefore, if there were no good

initial point in the sequence z

1

; z

2

; � � � , there would exist an open subset on which a

non zero function would vanish. This is not possible.

1.4.4 Other algorithms and conclusion

A very nice zero-equivalence algorithm | quite di�erent in spirit from those con-

sidered in the previous sections | has been given by P�eladan-Germa in [P�el 95] in

the context of commutating derivations d

1

; � � � ; d

k

. In a nutshell, the idea is to con-

sider both the initial points and the initial conditions to be variable. Then algebraic

conditions on the initial point and the initial conditions are given under which a �xed

function in A is zero-equivalent. These algebraic conditions are obtained via Ritt's

classical di�erential elimination theory. Using the generalization of this theory to the

context of D-rings in chapter 2, we think that P�eladan-Germa's should generalize to

our setting.

Another advantage of P�eladan-Germa's approach is that her algorithm partially

generalizes to the case of more general boundary value problems, where the initial

conditions are no longer speci�ed in a point (see [P�el 96]). However, in its full

generality, this algorithm crucially depends on Kolchin's problem, which will be

discussed in section 2.8. Nevertheless, the algorithm can be applied in several non

trivial and interesting cases.

It should be noticed that certain more general boundary value problems can also

be treated by the approach of this section. This is for instance the case if the quotient

�eld of A=� is taken as the constant �eld w.r.t. a new derivation. We also notice

that the algorithms from this section apply in characteristic p, while P�eladan-Germa's

approach fails in this case.

Another question which can be raised is the following: since the zero-equivalence

elements in A form an ideal, there exists an ideal z with A=�= C[f

1

; � � � ; f

k

]=z. Now

can we compute a Groebner basis for z? This question is very hard in general, and

algorithms are only known in the case of exp-log functions, using the Risch structure
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theorem (see [Ris 75]), and in a few other cases (see [Ch 93], [CC 85]).

� � �

After all the theoretical considerations made up till here, the reader might wonder

how to implement an e�cient zero-equivalence algorithm. For this purpose, several

remarks of a more heuristic nature should be made.

1. In the zero-equivalence problem the hard thing is to prove that a function

is zero-equivalent, whenever this is the case. On the contrary, it is usually easy to

prove that a function is not zero-equivalent, either by evaluating some terms of the

power series expansion, or by choosing a suitable initial point (when we are allowed

to do so).

2. Following the previous remark, two types of zero-equivalence problems should

be distinguished: those in which the initial point is �xed, and those in which the

initial point may be chosen by the algorithm. In the �rst case, only power series

expansions can be used to prove that a function is not zero-equivalent | and many

terms may need be evaluated. In the second case, we would rather search for a

point in which the function does not vanish; such a point is chosen at random with

probability 1.

3. Many di�erent (partial) methods may be used to prove or disprove a function

to be zero-equivalent. A good �nal algorithm should start with cheap tests for zero-

equivalence and non zero-equivalence and proceed with the more expensive ones,

whenever these tests fail to decide. In particular, the time spent on tries to prove

zero-equivalence should be proportional to the time spent on tries to disprove zero-

equivalence.

4. In some circumstances, it is not reasonable to demand an immediate answer

to a zero-equivalence quest, but we rather postpone a decision to a later moment

and temporarily perform a case separation (see [VdH 97]).

5. In relation to 4. it should be noticed that the e�ciency of successive zero-

equivalence tests may crucially depend on the order in which we perform them (when

applying remark 1.3).
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1.5 Implicit functions

1.5.1 Inversion of regular matrices

Let (A;m) be a simple e�ective D-system and let (M

i;j

) be a matrix with 1 6 i 6 p,

1 6 j 6 n and p 6 n. We say that M is regular matrix, if its evaluation

"(M) =

0

B

B

@

"(M

1;1

) � � � "(M

1;n

)

.

.

.

.

.

.

"(M

p;1

) � � � "(M

p;n

):

1

C

C

A

has rank p. Given such a matrix, we will now show how to compute an invertible

square matrix U with entries in A

m

, such that

MU = I

n;p

=

0

B

B

@

1 � � � 0 0 : : : 0

.

.

. 1

.

.

.

.

.

.

.

.

.

0 � � � 1 0 : : : 0

1

C

C

A

(1.1)

in A

m

=�. The algorithm proceeds by swapping rows and columns in a straightfor-

ward manner:

Algorithm invert(M)

Input: A regular n by p matrixM with entries in A.

Output:An invertible n by n matrix U with entries in A

m

satisfying (1.1).

U := Id

for i := 1 to p do

let j > i be such that "(M

i;j

) 6= 0

swap(M

i;�

;M

j;�

)

swap(U

i;�

; U

j;�

)

M

i;�

:= (d

i

g

i

)

�1

M

i;�

U

i;�

:= (d

i

g

i

)

�1

U

i;�

for j 2 f1; � � � ; ngnfig do

M

�;j

:=M

�;j

�M

i;j

M

�;i

U

�;j

:= U

�;j

�M

i;j

U

�;i

1.5.2 Restriction of domain and resolution of implicit equa-

tions

Let (A;m) be a simple e�ective D-system of characteristic zero, such that D

A

admits

d

1

; � � � ; d

n

as a basis. Let j = (g

1

; � � � ; g

p

) be a �nitely generated ideal of A, such

that "(g

1

) = � � � = "(g

p

) = 0. The Jacobian matrix of g

1

; � � � ; g

p

is de�ned by

J =

0

B

B

@

d

1

g

1

� � � d

n

g

1

.

.

.

.

.

.

d

1

g

p

� � � d

n

g

p

1

C

C

A

:
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We say that the ideal j is regular, if rank("(J)) = p. Under this assumption, we

will now show how to compute a simple e�ective D-system (B; n), such that

B

n

=�

�

=

(A

m

=�)

jj

m

=�

=� :

We take B = C[f

1

; � � � ; f

k

]=(i; j), so that we start by computing a Groebner basis

for (i; j). In order to compute a basis for D

B

, we �rst compute a matrix U with

JU = I

n;p

by invert. Performing the base change

0

B

B

@

d

1

.

.

.

d

n

1

C

C

A

:=

t

U

0

B

B

@

d

1

.

.

.

d

n

1

C

C

A

;

we then reduce the general case to the case when J = I

n;p

. In this case, d

p+1

; � � � ; d

n

leave j invariant and it is easily seen that their natural images in (A

m

=�)

jj

m

=�

=� form

a basis for (A

m

=�)

jj

m

=�

=�.

In practice, when we solve the equations g

1

= � � � = g

p

, we often want to express

the solutions w.r.t. given coordinates g

p+1

; � � � ; g

n

2 A. In order to make this

possible, we need assume that the evaluation

"(J) =

0

B

B

@

"(d

1

g

1

) � � � "(d

n

g

1

)

.

.

.

.

.

.

"(d

1

g

n

) � � � "(d

n

g

n

):

1

C

C

A

of the Jacobian matrix of g

1

; � � � ; g

n

is invertible. Now compute a matrix U with

JU = Id by invert. We again reduce the general case to the case when J = 1 via

the base change

0

B

B

@

d

1

.

.

.

d

n

1

C

C

A

:=

t

U

0

B

B

@

d

1

.

.

.

d

n

1

C

C

A

:

Then the natural images of d

p+1

; � � � ; d

n

in B

n

=� have the desired property that

0

B

B

@

d

p+1

g

p+1

� � � d

n

g

p+1

.

.

.

.

.

.

d

p+1

g

n

� � � d

n

g

n

:

1

C

C

A

= Id:

Remark 1.7. As in remark 1.5, the above computations generalize in a straightfor-

ward way to the case when the initial conditions depend on parameters, using the

automatic case separation strategy (see [VdH 97]).
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1.5.3 D-algebraic power series

In this section, all D-systems (A;m) we consider have characteristic zero; i.e. A=m

has characteristic zero.

Let ((A;D);m) be a reduced D-system, such that A is a �nitely generated algebra

over C = A=m, and D is a free A-module, which is �nitely generated by pairwise

commuting derivations @=@z

1

; � � � ; @=@z

n

. Then A admits a natural di�erential em-

bedding � into the ring C[[z

1

; � � � ; z

n

]] of formal power series by

f 7! �(f) =

X

i

1

;��� ;i

n

1

i

1

! � � � i

n

!

"

 

@

i

1

+���+i

n

@

i

1

z

1

� � � @

i

n

z

n

!

z

i

1

1

� � � z

i

n

n

:

A power series of the form �(f) (for some D-system ((A;D);m) which satis�es the

above hypotheses) is called a regular D-algebraic power series.

Remark 1.8. In characteristic p > 0, the above embedding does not exist. Actually,

we may interpret elements in A as formal Borel transforms of power series in this

case.

From our de�nition, it follows immediately that the regular D-algebraic power

series form a local ring, which is stable under the partial derivations, and permutation

of coordinates. Moreover, if we are given a regular D-algebraic power series f 2

C[[z

1

; � � � ; z

n+1

]], such that f(0; � � � ; 0) = 0 and (@f=@z

n+1

)(0; � � � ; 0) 6= 0, then by

what has been said in the previous section, there exist derivations d

1

; � � � ; d

n+1

, such

that the Jacobian matrix of z

1

; � � � ; z

n

; f is the identity (assuming that z

1

; � � � ; z

n

2

A). It is easily checked that d

1

; � � � ; d

n

commute for the Lie bracket, whence we have

the natural embedding

g 7!

X

i

1

;��� ;i

n

1

i

1

! � � � i

n

!

"(d

i

1

z

1

� � � d

i

n

z

n

g)z

i

1

1

� � � z

i

n

n

:

from A

j(f)

=� into C[[z

1

; � � � ; z

n

]]. This mapping sends f to zero and �xes z

1

; � � � ; z

n

.

In other words, the mapping corresponds to the implicit de�nition of z

n+1

by f = 0.

Consequently, the regular D-algebraic power series form a local community (see

[VdH 97]).

If (A;m) is a simple e�ective D-system with a basis of pairwise commuting deriv-

ations, the above passage from functions in A

m

=� to power series yields an e�ective

way to compute with regular D-algebraic power series over C = A=m. In view of the

algorithm from the previous section to solve implicit equation, it follows that the set

of regular D-algebraic power series over C forms an e�ective local community.

A regular D-algebraic Laurent series is a Laurent series f , such that z

�

1

1

� � � z

�

n

n

f

is a D-algebraic power series for suitable �

1

; � � � ; �

n

2 N. Unfortunately, we did not

solve the following problem: prove or disprove that if z

i

is a power series in z

1

; � � � ; z

n

and z

1

f is D-algebraic, then so is f . Consequently, we have no proof that the set
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of D-algebraic Laurent series forms a local community. Nevertheless, we will now

de�ne D-algebraic power and Laurent series, which do have the desired property.

Let A be as in the beginning of this section and denote by

~

A the set of those

fractions f=s in Q(A), such that there exists a power series g with �(f) = g�(s). We

extend the evaluation mapping on A to

~

A by "(f=s) = g(0; � � � ; 0), where �(f) =

g�(s). Clearly,

~

A forms a reduced local D-system over C. The natural inclusion of A

into C[[z

1

; � � � ; z

n

]] also extends to

~

A by �(f=s) = g, where �(f) = g�(s). A power

series g of the form �(f=s) (for some A) is said to be D-algebraic. A Laurent series

f is said to be D-algebraic, if fz

�

1

1

� � � z

�

n

n

is a D-algebraic power series for certain

�

1

; � � � ; �

n

2 N.

Now let (A;m) again be a simple e�ective D-system with a basis of pairwise

commuting derivations. The set

~

A =

^

A

m

=� is clearly an e�ective D-algebra, since it

is a sub�eld of the �eld of fractions of A

m

=�. Notice however, that we do not claim

that we can test whether a given fraction f=s 2 A

m

=� is in

~

A.

Given an element f=s 2

~

A, we can also compute its evaluation: we �rst compute

a dominant monomial z

�

1

1

� � � z

�

n

n

for �(s) by idm (see [VdH 97]). Then "(f=s) =

[z

�

1

1

� � � z

�

n

n

]f=[z

�

1

1

� � � z

�

n

n

]s.

Having shown that all D-system operations in

~

A can be carried out e�ectively,

the algorithm to solve implicit equations from section 1.5.2 naturally generalizes, if

we replace A

m

=� by

~

A. In particular, the sets of D-algebraic power series resp.

Laurent series over C are both e�ective local communities.

1.6 A local pseudo-Buchberger algorithm

This section is the result of a collaboration between A. P�eladan-Germa and the

author (see also [PV 96]).

Let A = C[x

1

; : : : ; x

n

] be the ring of polynomials in n indeterminates over an

e�ective �eld C of constants, and S be an e�ective multiplicative subset of A| that

is, provided with an e�ective membership test. We present here a method to test

whether a given polynomial P 2 A belongs to the ideal generated by polynomials

Q

1

; : : : ; Q

s

in the quotient ring A=S. We only give a weak membership test in the

sense that P 2 (Q

1

; : : : ; Q

s

)

A=S

, whenever the algorithm returns true. However, in

the case of a negative response, P might still be in (Q

1

; : : : ; Q

s

)

A=S

. Nevertheless,

for the application in section 1.4.2 such a weak membership test is su�cient.

Actually, our algorithm is based on the heuristic idea that the exploitation of local

information should accelerate Buchberger's algorithm. Unfortunately, the pseudo-

Groebner bases we compute does not have all the theoretical properties of classical

Groebner bases. However, up to our knowledge, no complete membership test has

been given yet in the case of a general e�ective multiplicative set S. Only in some

particular cases, Mora's tangent cone algorithm, and A. Logar's algorithms give

complete membership tests (see [MPT 92], [Lo 87]).
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1.6.1 Pseudo-reduction

Let A = C[x

1

; : : : ; x

n

] be the ring of polynomials in n indeterminates over an e�ective

�eld C. We use the pure lexicographical order on monomials, with x

1

< � � � < x

n

.

Let S � C

?

be a multiplicative subset of C with an e�ective membership test.

In order to compute \pseudo-bases" of ideals of A=S, we use a classical reduction-

completion approach. The keystone of our method lies in the non-classical de�nitions

of the head H(P ) and the leading-coe�cient C(P ) of non-zero polynomials P : they

are inspired both by Ritt-Wu's work and Buchberger's terminology.

Each non constant polynomial P in A can be written P = I

P

x

d

P

P

+ R

P

, where

x

P

is the greatest indeterminate involved in P , and d

P

the highest order of P with

respect to x

P

. I

P

is usually called the initial of P . Now we de�ne H(P ) and C(P )

for non-zero polynomials:

� if P 2 S then H(P ) = 1 and C(P ) = P ;

� if P 62 S and I

P

2 S then H(P ) = x

d

P

P

and C(P ) = I

P

;

� if P 62 S and I

P

62 S then H(P ) = x

d

P

P

H(I

P

) and C(P ) = C(I

P

).

Example 1.11. Let S be the set of polynomials that do not vanish at x

1

= : : : =

x

n

= 0. If P = (x

1

+ 1)x

2

+ x

1

, then H(P ) = x

2

and C(P ) = x

1

+ 1. Now if

P = ((x

1

+ 1)x

2

+ x

1

)x

2

3

+ x

3

x

2

, then H(P ) = x

2

x

2

3

and C(P ) = x

1

+ 1.

Suppose Q 6= 0, Q 62 S and P 6= 0. We say that P is reducible with respect to Q

if H(P ) is divisible by H(Q). In this case, write P = UH(Q) + V , where U; V 2 A,

and no monomial appearing in V is divisible by H(Q). P is then elementary

reduced to red(P;Q) = C(Q)P � UQ by Q. If Q 2 S, then P is reducible with

respect to Q and red(P;Q) = 0. It can be easily checked, although this is a little

technical, that H(red(P;Q)) < H(P ) (H(0) = �1 by convention). Repeating the

elementary reduction of P by Q, that is

P ! P

1

= red(P;Q)! red(P

1

; Q)! � � � ;

we end up with a polynomialR such thatH(Q) does not divide H(R) or R = 0. This

process stops because the heads of the intermediate polynomials strictly decrease.

This polynomial R is called the reduction of P by Q and is denoted by Red(P;Q).

More generally, we can reduce P by a set E of polynomials by reducing P by Q 2 E

as long as we can. Although the result R of this procedure is not necessarily unique,

we will abusively denote R = Red(P;E). Note that R belongs to the ideal (P;E)

A=S

generated by P and E in A=S and if R = 0, then P 2 (E)

A=S

.

Let P;Q be nonzero elements of C[x

1

; : : : ; x

n

]. Let i be the highest index such that

C(P ) and C(Q) are both in A

i

= C[x

1

; � � � ; x

i�1

]. We write P = C

i

(P )H

i

(P )+R(P ),

where H

i

(P ) is highest monomial occurring in P , when considered as a polynomial
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in x

i

; � � � ; x

n

with coe�cients in A

i

. Similarly, we write Q = C

i

(Q)H

i

(Q) + R(Q).

Then the S-polynomial of P and Q is de�ned by

SPol(P;Q) :=

C

i

(Q)H

i

(Q)

gcd(H

i

(P );H

i

(Q))

P �

C

i

(P )H

i

(P )

gcd(H

i

(P );H

i

(Q))

Q:

This de�nition enables us to assert that H(SPol(P;Q)) < scm(H(P );H(Q)). Note

also that Spol(P;Q) 2 (P;Q) and a fortiori Spol(P;Q) 2 (P;Q)

A=S

.

1.6.2 The algorithm

We now apply Buchberger's algorithm (see [CLO 92], [Buch 65]) with our alternative

de�nitions of heads, leading coe�cients, reduction, and S-polynomials. We recall

hereafter a compact but non optimized version of this algorithm.

Algorithm Pseudo-Groebner-basis(E)

Input: A �nite set E of non zero polynomials in A.

Output:A pseudo-Groebner basis G of the ideal generated by E in A=S.

G := E

repeat

G

0

:= G

for each P 2 G

0

do

P := Red(P;G � fPg)

if R 6= 0 then G := G [ fRg

for each pair P 6= Q in G

0

do

R := Red(SPol(P;Q); G

0

)

if R 6= 0 then G := G [ fRg

until G = G

0

The ideals generated by the heads of the elements of the successive values of

G form a strictly increasing sequence of ideals, whence the algorithm terminates.

The subsets E and G of A=S generate the same ideal I

A=S

. Indeed, we only insert

elements that are already in (E)

A=S

into G. G is not a Groebner basis, but has the

property that if P is in A and Red(P;G) = 0, then P 2 I

A=S

. The computation of

G enables us to quickly extract much information about I

A=S

, without obtaining a

complete description of I

A=S

. Notice that if G contains a polynomial in S, then I

A=S

is trivial, and every polynomial in A is reduced to zero by G.

Our algorithm reduces to the usual Buchberger algorithm if S = C

?

; that is the

reason why we call G a pseudo-Groebner basis rather than a pseudo-Ritt basis.
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Chapter 2

Di�erential elimination theory

2.1 Introduction

In classical treatments of di�erential algebra, such as [Ritt 50] and [Kol 73], one

considers ordinary di�erential equations or partial di�erential equations, where the

partial derivations commute. As stressed already in the previous chapter, this setting

is not completely satisfactory if one wants to perform di�erential calculus on curved

geometrical objects, such as spheres. Di�erent generalizations of di�erential and

di�erence algebra have been considered since (for instance, see [Krei 64], [NiWe 82]

and [Bu 92]). The concept of a ring, with a non commutative operator algebra acting

on it is fundamental for these generalizations.

The purpose of this chapter is to generalize some of the most important results

from Ritt's classical reduction theory and its applications to the setting of �nite

dimensional Ritt D-rings. Here a �nite dimensional D-ring is a ring A, with a

�nitely generated A-module D of derivations operating on A, such that D is also a

Lie-algebra, compatible with this operation. A Ritt ring is a ring which contains the

�eld Q of rational numbers; in other words, we restrict our attention to characteristic

zero. Extensions to the di�erence case will be developed in chapter 3.

When taking commuting derivations, our theory reduces to the classical theory.

Hence, section 1.2 together with this chapter can be used as a quick but self-contained

introduction to di�erential elimination theory. In the non commutative case, our

reduction theory is more general than the classical one, although much of the theory

carries over easily. Furthermore, we will see in section 2.2.2 that the generalized

theory admits some surprising additional non commutative features.

� � �

Let us briey indicate the contents of the di�erent sections. In section 2.2, we

introduce D-polynomials. In section 2.3, we study perfect D-ideals, which are the

natural analogues of radical ideals. We will establish some of their main properties,

29
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and their relationship with models for systems of D-equations and D-inequations. In

section 2.4, we introduce the concepts of admissible orderings and Ritt reduction.

In section 2.5 we give a �rst application of the Ritt reduction theory: a gener-

alization of the Ritt-Raudenbush theorem. This is the di�erential counterpart for

Hilbert's theorem that a �nitely generated polynomial ring over a Noetherian ring is

again Noetherian. In the di�erential case, we have to restrict our attention to perfect

D-ideals (which are anyway the only ones with a direct geometrical interpretation).

The main tools for the Ritt-Raudenbush theorem are autoreduced and characteristic

sets, which are introduced in section 2.5.1.

In section 2.7, we give an important e�ective application of the reduction theory:

the Boulier-Seidenberg-Ritt algorithm. This algorithm is the di�erential analogue of

Buchberger's algorithm, although it reduces to the Wu-Ritt algorithm (see [Wu 87])

in the algebraic case (i.e. when we take an empty set of derivations).

In the last section, we discuss the problem of e�ective prime decomposition. We

will see that this problem is equivalent to one of the major unsolved problems in

di�erential algebra: Kolchin's problem. We will conclude this section by giving

some equivalent problems to Kolchin's problem.

2.2 Polynomial D-algebras

2.2.1 Polynomial D-algebras

Let F be some set of variables. Free polynomial D-algebras can be introduced in

several ways. We �rst give an abstract de�nition. Consider the category of pairs

(A! B;F ! B), whereB is a D-A-algebra, determined byA! B. The morphisms

are morphisms of D-algebras B ! B

0

, which observe the natural commutations.

Then the free polynomial D-A-algebra AfFg in F is a universal object in this

category. The existence of such an object is a direct result of universal algebra, and

it is determined uniquely up to isomorphism. The ring A is said to be the ground

ring. Considered as a D-ring, we call AfFg the free polynomial D-ring over A

in F .

Let us now give a more concrete de�nition, using the free linear D-operator

algebra 
. Let B = A[
F ] be the free polynomial algebra in 
F over A. Here


F has to be interpreted as 
 � F . Let I be the ideal generated by the elements

(! + !

0

)f � (!f)� (!

0

f), where !; !

0

2 
 and f 2 F . Consider the A-algebra B=I.

The derivations d 2 D are naturally de�ned on 
F by d(!f) = (d!)f . Hence they

extend uniquely to derivations on B, and it is easily checked that I is stable under

these derivations. Hence B=I is a D-A-algebra and B=I satis�es the above universal

property, so that B=I

�

=

AfFg.

If D admits a basis d

1

; � � � ; d

n

, then we claim that A[�F ] can naturally be given

the structure of a D-A-algebra, which is isomorphic to AfFg. Indeed, by propos-

ition 1.2 above, 
 admits � as a basis, so that 
F admits �F as a basis. The
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derivations on A can naturally be extended to A[�F ], by d(!f) = (d!)f , where

d! can be expressed as a unique linear combination of elements of �. Finally, it is

easily checked that A[�F ] satis�es the above universal property. Hence A[�F ] is

isomorphic to AfFg.

2.2.2 Quasi-polynomial D-algebras

The Lie bracket on the free polynomial D-ring AfFg extends the Lie bracket on A.

It is often useful, to allow more general commutation rules for polynomial D-rings.

However, this section can be skipped at a �rst reading.

Consider another D-ring structure (

^

AfFg;D

^

AfFg

) on

^

AfFg

def

= AfFg, where

D

^

AfFg

is isomorphic to D

AfFg

as an AfFg-module, but di�erent as a Lie algebra op-

erating on AfFg. Denote by

~

d the canonical image inD

^

AfFg

of an element d inD

AfFg

.

We say that

^

AfFg is a quasi-polynomial D-ring, if for each d 2 D

A

� D

AfFg

and

P 2 A resp. P 2 A[


r

F ], we have

~

dP = dP , resp.

~

dP = dP +Q, with Q 2 A[


r

F ].

Considered as a D-A-algebra, we call

^

AfFg a quasi-polynomial D-algebra in this

case.

Let us assume from now on that

^

AfFg is a quasi-polynomial D-algebra. The ring

A[


r

F ] is the A-algebra of D-polynomials of order at most r. The above de�nition

implies that A[


r+1

F ] is generated by the

~

da's as an A-algebra, where d 2 D

A

and

a 2 A[


r

F ]. This suggests to de�ne the order of a D-polynomial in

^

AfFg to be the

order of the same D-polynomial considered as an element of AfFg.

Let us again assume that d

1

; � � � ; d

n

form a basis forD. We wish to investigate the

structure of

^

AfFg. Denote as before

~

�

r

= f

~

d

1

�

1

� � �

~

d

n

�

n

j�

1

+ � � �+�

n

6 rg. Denote

also

~

� =

S

r2N

~

�

r

. We will also denote

~

� =

~

d

1

�

1

� � �

~

d

n

�

n

2

~

�, if � = d

�

1

1

� � � d

�

n

n

2 �.

Proposition 2.1. We have A[�F ]

�

=

A[

~

�F ] as an A-algebra.

Proof. Let us prove by induction on r that A[�F ]

r

�

=

A[

~

�

r

F ]. The case r = 0 is

trivial. Now assume that A[�F ]

r�1

�

=

A[

~

�

r�1

F ]. Let P be in A[�F ]

r

. We interpret

P as a polynomial in (�

r

n�

r�1

)F , with coe�cients in A[�F ]

r�1

. Then we can write

�f =

~

�f + g

�

, for all �f 2 (�

r

n�

r�1

)f , and some g

�

2 A[�F ]

r�1

. This induces

an isomorphism between A[�F ]

r�1

[(�

r

n�

r�1

)F ] and A[�F ]

r�1

[(

~

�

r

n

~

�

r�1

)F ], thus

completing the induction. We observe that the isomorphism between A[�F ]

r

and

A[

~

�

r

F ] extends the isomorphism between A[�F ]

r�1

and A[

~

�

r�1

F ], when applying

the above construction. Therefore these isomorphisms can be glued together into an

isomorphism between A[�F ] and A[

~

�F ]. �

This proposition shows that modulo renaming variables, we do not loose in gen-

erality, if we assume that �f =

~

�f , for all �f 2 �F . Having made this assump-
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tion, we claim that the structure of the quasi-polynomial D-algebra

^

AfFg is com-

pletely determined by the values of the commutators [

~

d

i

;

~

d

j

]

^

AfFg

, with i < j. Indeed,

~

d

i

~

d

1

�

1

� � �

~

d

n

�

n

f can easily be computed using these values, for all �

1

; � � � ; �

n

and f .

Inversely, we can ask ourselves whether given values for the [

~

d

i

;

~

d

j

]

^

AfFg

's give rise

to a quasi-polynomial D-algebra. In fact, this is the case, if and only if all Jacobi

identities between the

~

d

i

;

~

d

j

and

~

d

k

's are veri�ed and [

~

d

i

;

~

d

j

]

^

AfFg

a =

~

d

i

~

d

j

a �

~

d

j

~

d

i

a,

for each i; j and a 2 A. The second relation is in particular satis�ed, if d

i

a = 0, for

all i and a 2 A.

Remark 2.1. The Jacobi identities are not necessarily veri�ed, if we choose arbit-

rary [

~

d

i

;

~

d

j

]

^

AfFg

's. Nevertheless, the Jacobi identities give us relations by which we

can divide out to obtain a D-A-algebra. The reader may check, after having read the

rest of this chapter, that our theory may still be applied to this case, by including

the relations determined by the Jacobi identities in each system of equations being

considered.

In what follows, we will suppose that we have renamed variables, so that �f =

~

�f ,

for all �f 2 �F , whenever we deal with quasi-polynomial D-algebras, such that D

admits a basis. Moreover, we will omit all tildes, hoping that no confusion will arise

from this.

2.3 Perfect D-ideals

2.3.1 Elementary properties

Let (A;D) be a D-ring. In this section we will establish some basic features of radical

D-ideals, which are also called perfect D-ideals. Clearly, the set of such ideals is

stable under arbitrary intersections and unions of totally ordered sets for inclusion.

If � is a subset of A, then we denote by f�g the smallest perfect D-ideal containing

�. Any prime D-ideal is perfect. A prime D-ideal containing a D-ideal is called a

prime component of the D-ideal, if it is minimal (for inclusion) with this property.

Let us recall that for any ideal I and subset S of an arbitrary ring, one de�nes

the ideals I : S = faj8s2 S as 2 Ig =

T

s2S

I : s and I : S

1

=

S

n2N

I : S

n

. It

is readily veri�ed that if I is a perfect D-ideal, then so are I : S and I : S

1

. The

following properties of perfect D-ideals will be used in the subsequent sections.

Proposition 2.2. Let E, � and T be subsets of A. Then fE;�Tg = fE;�g \

fE;Tg.

Proof. It su�ces to prove the lemma in the case when E =



=, since this would

imply fE;�g \ fE;Tg = fE

2

; E�; ET;�Tg = fE;�Tg.
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The perfect D-ideal f�Tg : � contains T . Therefore, fTg � f�Tg : � ,

fTg� � f�Tg , � � f�Tg : fTg. Since f�Tg : fTg is also a perfect D-ideal,

we have f�g � f�Tg : fTg. Consequently, f�gfTg � f�Tg ) (f�g \ fTg)

2

�

f�Tg ) f�g \ fTg � f�Tg. The inclusion in the opposite direction is obvious. �

Proposition 2.3. Every perfect D-ideal is the intersection of its prime components.

Proof. Let I be a perfect D-ideal and suppose that x 2 AnI. By Zorn's lemma,

there exists a maximal perfect D-idealm, containing I and not containing x. Suppose

that a; b 2 Anm. We have x 2 fm; ag \ fm; bg = fm; abg, by proposition 2.2,

so that ab 62 m. Therefore, m is prime. Now let p

x

be a minimal prime D-ideal,

containing I but not x, for each x (the existence follows from Zorn's lemma, because

the intersection of a totally ordered set of prime D-ideals is prime). Thus, p

x

is a

prime component of I. Denoting the intersection of the prime components of I by

J , we have J � \

x2AnI

p

x

= I � J . �

2.3.2 Prime decompositions and Lazard's lemma

The converse of proposition 2.3 also holds: every D-ideal which is equal to the

intersection of its prime components, is perfect. Sometimes, the number of prime

components of a perfect D-ideal is �nite. In that case, we say that the perfect D-ideal

admits a prime decomposition.

Proposition 2.4. Let I be a perfect D-ideal, such that I is a �nite intersection

of prime D-ideals. Then I is the intersection of a �nite set of prime D-ideals,

one of which does not contain another. This set is unique, being the set of prime

components of I.

Proof. We can write I = p

1

\ � � � \ p

p

, for some prime D-ideals p

1

; � � � ; p

p

. We

may assume without loss of generality that we discarded each p

i

, which contains a

p

j

, with j 6= i. This proves the �rst part of the proposition. Let p be any prime

component of I. Then p � p

1

\ � � � \ p

n

, whence p � p

i

, for some i, and p = p

i

.

Therefore, all prime components �gure among the p

i

's. Finally, each prime D-ideal

containing I contains a prime component of I, so that all p

i

's are prime components

of I. �

The prime decomposable D-ideals I can be characterized as follows, by looking

at the total rings Q(A=I) of fractions they induce:

Proposition 2.5. Let I be a perfect D-ideal. Then I admits a prime decomposition

if and only if Q(A=I) is isomorphic to a �nite product of D-�elds.
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Proof. Suppose that I admits a prime decomposition I = p

1

\ � � � \ p

p

. Let s be

such that s

I

= s 2 A=I is a non zero divisor. Then s does not belong to any of the

p

i

's. Now let a; s 2 A be such that a

I

=s

I

= 0 in Q(A=I). Then (as

0

)

I

= 0, for some

non zero divisor s

0

I

, so that a 2 I. Hence the mapping

Q(A=I)

'

�! Q(A=p

1

)� � � � �Q(A=p

p

)

a

I

s

I

7�!

 

a

p

1

s

p

1

; � � �

a

p

p

s

p

p

!

is well de�ned. It is easily checked that the kernel of ' is trivial.

As the p

i

's mutually do not contain one another, there exist x

1

; � � � ; x

p

, such that

x

i

2 p

i

, but x

i

62 p

j

, for all i and j 6= i. Setting y

i

= x

1

� � �x

i�1

x

i+1

� � � x

p

, we observe

that y

i

62 p

i

, but y

i

2 p

j

, for all i and j 6= i. Now let a

1

; � � � ; a

p

; s

1

; � � � ; s

p

2 A

be such that s

i

62 p

i

, for all i. Then t

i

= s

i

y

i

+

P

jjs

i

y

i

2p

j

y

j

is a non zero di-

visor and t

i

� s

i

y

i

, for all i. Hence, '((a

1

y

1

=t

1

)

Q(A=I)

+ � � � + (a

p

y

p

=t

p

)

Q(A=I)

) =

((a

1

y

1

=t

1

)

Q(A=p

1

)

; � � � ; (a

p

y

p

=t

p

)

Q(A=p

p

)

), which proves the surjectivity of '.

Conversely, suppose that we have an isomorphism

Q(A=I)

'

! K

1

� � � � �K

p

;

where K

1

; � � � ;K

p

are D-�elds. Let J

i

= f(b

1

; � � � ; b

p

) 2 K

1

� � � � � K

p

jb

i

= 0g,

for each i. Then p

i

= '

�1

(J

i

) \ A is a prime D-ideal, for each i, and none of

the p

i

's contains another. Furthermore, I = p

1

\ � � � \ p

p

so that we have a prime

decomposition of I. Actually, ' coincides with the previously de�ned mapping. �

The following algebraic lemma is a reformulation of a lemma due to Lazard (see

[BLOP 95]). The lemma describes how prime decomposability is related to algebraic

extensions, and it will be used in section 2.5.1.

Lemma 2.1. (Lazard's lemma) Let A be a ring, such that the zero-ideal of A

admits a prime decomposition. Let P 2 A[x]nA be a non constant polynomial. Then

the ideal (P ) : (@P=@x) of A[x] admits a prime decomposition.

Proof. Let S = @P=@x. By proposition 2.5, we have

Q(A=I)

�

=

K

1

� � � � �K

p

;

for certain �elds K

1

; � � � ;K

p

. Then

Q(A[x]=(P ))

�

=

S

�1

A[x]=(P )

�

=

S

�1

K

1

[x]=(P )� � � � � S

�1

K

p

[x]=(P ):

Hence, it su�ces to show that S

�1

K

j

[x]=(P ) is isomorphic to a product of �elds for

each j, by proposition 2.5.
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Let us �x j, and decompose P = �

�

1

1

� � ��

�

h

h

in irreducible factors in K

j

[x]. By

the Chinese remainder theorem, we have

K

j

[x]=(P )

�

=

K

j

[x]=(�

�

1

1

)� � � � �K

j

[x]=(�

�

h

h

):

Since S divides all multiple factors of P , S

�1

K

j

[x]=(P ) is isomorphic to the product

of those K

j

[x]=(�

m

)'s, with �

m

= 1. This completes the proof. �

2.3.3 Models for systems of D-equations

The study of perfect D-ideals is closely related to the study of solutions to systems

of D-equations and D-inequations. Suppose that A is a D-algebra over a D-�eld K.

Let � � A be a set of D-equations and let T � A be a set of D-inequations. We

will always assume that � and T are �nite. A model for (�; T ) is a D-morphism '

over K of A into a D-over�eld L of K, such that '(�) = 0 and '(Q)\ f0g =



=. We

remark that the D-�eld L can be �xed once and for all in the de�nition, by taking

a universal extension of K. We will not use this viewpoint any further; for details,

see [Kol 73]. We have:

Proposition 2.6. Let (�; T ) be a system of D-equations and D-inequations. De-

note by P the product of the elements of T . Then (�; T ) admits a model, if and only

if P 62 f�g.

Proof. Suppose that we have a model ' : A ! L. Then ker' is a perfect D-ideal

containing � (indeed: a

n

2 ker') '(a

n

) = 0 ) '(a) = 0), which does not contain

P . Inversely, suppose that P 62 f�g. By proposition 2.3, there exists a prime D-ideal

p

P

, containing �, which does not contain P . Then p

P

does not contain any of the

elements of T either, because p

P

is prime. Consequently, the canonical D-morphism

A! Q(A=p

P

) is a model. �

Corollary. Let (�; T ) be a system of D-equations and D-inequations, and let P

be a D-equation in A. Then '(P ) = 0 for each model ' of (�; T ), if and only if

P 2 f�g : T

1

. �

Let us �nally introduce some more terminology about models for later use. Two

systems are said to be equivalent, if they admit the same models. We say that a

D-equation P is implied by a system (�; T ), if '(P ) = 0 for each model ' of (�; T ).

A �nite number (�

1

; T

1

); � � � ; (�

k

; T

k

) of systems are said to form a decomposition

of a system (�; T ), if a D-morphism ' : A! L over K is a model for (�; T ), if and

only if it is a model for one of the (�

i

; T

i

)'s.
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2.4 Ritt reduction

Let (A;D) be a �nite dimensional D-ring, such that d

1

; � � � ; d

n

form a basis for D,

and let F be a �nite set of variables. Let AfFg be the free polynomial D-A-algebra

in F , or any other quasi-polynomial D-A-algebra in F . We recall that

� = fd

�

1

1

� � � d

�

n

n

j�

1

; � � � ; �

n

2 Ng;

and that we have AfFg = A[�F ].

2.4.1 Admissible orderings

Assume that we dispose of some total ordering 6 on �F . If P is a D-polynomial in

A[�F ], then we denote by V

P

� �F the set of variables occurring in P . If V

P

6=



=,

then V

P

has a maximal element for 6, which we denote by v

P

or v(P ), and which is

called the leading variable or leader of P . By convention, we take v

P

= �1, if

V

P

=



=; that is, if P 2 A. We say that 6 is an admissible ordering on �F (or a

ranking, following Ritt), if

A1. v(�f) < v(d

i

�f), for any i and �f 2 �F .

A2. v(d

i

�f) 6 v(d

i

�

0

f

0

), for any i and �f 6 �

0

f

0

in �F .

A3. v(d

i

d

j

�f) = v(d

j

d

i

�f), for any i; j and �f 2 �F .

The main point about admissible orderings is that they exist. For example, enu-

merating F = ff

1

; � � � ; f

k

g, the ordering on the d

�

1

1

� � � d

�

n

n

f

i

's, which is obtained by

ordering lexicographically on �

1

+ � � � + �

n

, �

1

; � � � ; �

n�1

and i, is an admissible

ordering. Moreover this ordering is an orderly admissible ordering , that is,

�f < �

0

f

0

, whenever the order of � is strictly inferior to the order of �

0

.

Remark 2.2. In the a�ne case (the d

i

's commute), the third condition is automat-

ically veri�ed and our de�nition of admissible orderings coincides with the classical

de�nition by Ritt. We also remark that an admissible ordering de�nes derivations

d

1

; � � � ; d

n

on �F by d

i

! = v(d

i

!). Then the de�nition of admissible orderings is

intrinsic to �F with these derivations. From this point of view, an admissible order-

ing in our sense is necessarily an admissible ordering in Ritt's sense. In particular,

admissible orderings are well orderings. The converse is only true in the a�ne case,

although all orderly admissible orderings in Ritt's sense are admissible in our sense.

Suppose that we �xed some admissible ordering 6 and let P be some D-polyno-

mial in AfFgnA. Considering P as a polynomial in v

P

, we denote by degP =

deg

v

P

P its degree. We call initial I

P

of P the coe�cient of its highest power in v

P

and separant S

P

of P the polynomial @P=@v

P

. We remark that if P is linear (in

v

P

), then S

P

= I

P

. Moreover, any proper derivative �P of P is linear, and we have

v

�P

= v

�v

P

and I

�P

= S

P

. We also claim that v

!P

= v

�P

, if ! is any shu�e of an
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element � in �. Indeed, it su�ces to prove our claim when P = f 2 F , in which

case it follows from A2 and A3, by using induction over r.

One de�nes a natural partial ordering � on �F by d

�

1

1

� � � d

�

n

n

f � d

�

1

1

� � � d

�

n

n

f

0

, if

�

1

6 �

1

; � � � ; �

n

6 �

n

and f = f

0

. It is not hard to see that any admissible ordering

6 on �F extends � and that

�f � �

0

f

0

, 9� 2 � v(��f) = v(�

0

f

0

):

We also remark that � is a well-quasi-ordering, that is, 6 is well founded and

admits no in�nite antichains. Indeed, the partial ordering is isomorphic to k disjoint

copies the product ordering on N

n

and we use Dickson's lemma. The fact that � is a

well-quasi-ordering implies that the set of minimal elements of each �nal segment

of �F (i.e. a subset E � �F , such that x 2 E ^ x � y ) y 2 E) is an antichain

and thereby �nite.

2.4.2 The reduction procedure

We will need some more notations. Let E be a �nite subset of AfFg. If ! is a

mapping from E into 
, then we denote !E =

P

P2E

!(P )P . If � is a mapping

from E into N, then we denote E

�

=

Q

P2E

P

�(P )

. In particular, denoting by 1 the

constant mapping P 7! 1, E

1

equals the product of the elements of H

�

. Denoting

by �

P

the mapping with �

P

(P ) = 1 and �

P

(Q) = 0, for Q 6= P , we have E

�

P

= P .

Now suppose that � is a �nite subset of AfFgnA. We denote I

�

= fI

P

jP 2 �g,

S

�

= fS

P

jP 2 �g, H

�

= I

�

[ S

�

, v

�

= fv

P

jP 2 �g and V

�

=

S

P2�

V

P

. Finally, we

denote [�]

v

= (f�P j�2� ^ P 2� ^ v

�P

6 vg), for any v 2 �F .

Let � still be a �nite subset of AfFgnA. A D-polynomial P 2 AfFg is said

to be partially reduced w.r.t. � if we do not have v

Q

� w for some Q 2 �

and w 2 V

P

. We say that P is reduced w.r.t. �, if, moreover, deg

v

Q

P < degQ,

whenever v

Q

= v

P

for some i. We claim that for any P 2 AfFg, we can write

S

�

�

P = !� +R; (2.1)

for some �;! and R, where !� 2 [�]

v

P

and where R is partially reduced w.r.t. �.

Here Q and R are called a quotient and a partial remainder of partial division of

P w.r.t. � and S

�

�

is said to be the corresponding multiplier. We also claim that

we can write

H

�

�

P = !� +R; (2.2)

for some �;! and R, where !� 2 [�]

v

P

and where R is reduced w.r.t. �. Here Q

and R are called a quotient and a remainder of division of P w.r.t. � and S

�

�

is

said to be the corresponding multiplier. If R = 0, this relation implies that H

�

C

P

is in [�], so that P is in [�] : H

1

C

. Our claims are summarized in

Proposition 2.7. Let � and P be as above. Then there exist �;!; R verifying (2.1)

resp. (2.2), where R is partially reduced resp. reduced w.r.t. �, and where !� 2

[�]

v

P

.
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Proof. We will give algorithms to compute such �;! and R. If � and 	 are D-

polynomials, considered as polynomials in v

	

, then we will use the Euclidean division

algorithm to compute the rest R := Euclidean division(�;	) of the division of

I

deg

v

	

��deg 	+1

	

� by 	.

Algorithm P part-rem �.

Input: A D-polynomial P and a �nite set of non ground D-polynomials �.

Output:A partially reduced R w.r.t. � satisfying (2.1), for some � and !, with

!� 2 [�]

v

P

.

R := P

while 9�2�9w2V

R

v

�

� w do

� Choose w maximal verifying the above relation.

� Let � 2 � be such that v

��

= w.

R := Euclidean division(R; ��)

return R

The algorithm clearly terminates, since w strictly decreases during the loop. Let

us prove the correctness. At the start of the loop, (2.1) is veri�ed, when we take

� = ! = 0. Now suppose that (2.1) is veri�ed for some �;! and R, with v

R

6 v

P

and with !� 2 [�]

v

P

. If there exist � 2 � and w 2 V

R

, with v

�

� w, let Q resp.

R

0

denote the quotient and the rest of the Euclidean division of R by ��, with the

notations of the algorithm. Taking �

0

:= �+ (deg

w

Q+ 1)�

S

P

and !

0

:= ! +Q��

�

,

we observe that H

�

0

�

P = �

0

�+R

0

, with !

0

� 2 [�]

v

P

. Hence, the property that (2.1)

be satis�ed, for some � and !, with !� 2 [�]

v

P

, is conserved during the execution.

By de�nition, R is partially reduced w.r.t. � at the end of the loop.

Algorithm P rem �.

Input: A D-polynomial P and a �nite set of non ground D-polynomials �.

Output:We return a reduced R w.r.t. � satisfying (2.2), for some � and !� 2

[�]

v

P

.

R := P part-rem �

while 9�2� deg�6deg

v

�

R do

R := Euclidean division(R;�)

R := R part-rem �

return R

The termination and correctness proofs of ' rem ' are analogous to the termination

and correctness proofs of ' part-rem '; this time one should consider the Euclidean

division of R by � and take �

0

:= � + (deg

v

P

Q + 1)�

I

P

and !

0

:= ! + Q��

�

. We

remark that the correctness argument shows that we can even compute �;! and R,

satisfying the conditions of the proposition. �
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2.5 Finite basis theorems for D-rings

We will now generalize the classical Ritt-Raudenbush theorem (for characteristic

zero) to the context of D-rings. A D-ring (A;D) is said to be a Ritt-Raudenbush

D-ring, if A contains Q and if each perfect D-ideal of A is �nitely generated as

a perfect D-ideal. The Ritt-Raudenbush theorem states that a �nitely generated

quasi-polynomial D-algebra over such a ring is again a Ritt-Raudenbush ring. We

�rst need some preliminaries.

2.5.1 Characteristic sets

A subset � � AfFgnA is said to be autoreduced, if each P 2 � is reduced w.r.t.

�nfPg. This implies that the v

P

's form an antichain for �. In particular, � must

be �nite. The following proposition is an easy consequence of Lazard's lemma:

Proposition 2.8. Let � be an autoreduced subset of AfFg and assume that the

zero-ideal of A admits an algebraic (i.e. non di�erential) prime decomposition. Then

(�) : S

�

admits an algebraic prime decomposition.

Proof. Recall that V

�

denotes the set of variables occurring in the D-polynomials

in �, and v

�

the set of their leaders. By hypothesis, the zero-ideal of A admits a

prime decomposition, and so does the zero-ideal of A[V

�

nv

�

].

Now enumerate � = fP

1

; � � � ; P

p

g and put v

i

= v

P

i

, for each i. Denote by I

i

the ideal (P

1

; � � � ; P

i

) : S

fP

1

;��� ;P

i

g

of A

i

= A[V

�

nfv

i+1

; � � � ; v

p

g]. We will prove by

induction over i that I

i

admits a prime decomposition. If p = 0, then we are already

done. Furthermore, assuming that I

i�1

admits a prime decomposition, then so does

I

i

, by applying Lazard's lemma to the base ring A

i�1

=I

i�1

with x = v

i

and P = P

i

.

�

Let � = fP

1

; � � � ; P

p

g and T = fQ

1

; � � � ; Q

q

g be autoreduced subsets of AfFg,

with v

P

1

< � � � < v

P

p

and v

Q

1

< � � � < v

Q

q

. Then we de�ne a partial ordering 6 on

autoreduced sets by fP

1

; � � � ; P

p

g < fQ

1

; � � � ; Q

q

g, if v

P

i

= v

Q

i

and degP

i

= degQ

i

,

for i strictly inferior to a certain j, and either v

P

j

< v

Q

j

, or v

P

j

= v

Q

j

and degP

j

<

degQ

j

, or j = q + 1 6 p. It is readily veri�ed that 6 is a well founded.

Let I be a D-ideal of KfFg and let E be the set of autoreduced subsets � of I,

such that none of the separants S

P

is in I, where P runs over �. We have



= 2 E. As

6 is a well founded, E admits a minimal element, which is called a characteristic

set of I.

Proposition 2.9. Let C be a characteristic set of a D-ideal I � AfFg. Then

(a) If P 2 InA is reduced w.r.t. C, then S

P

2 I.

(b) If P 2 I is reduced w.r.t. C, then P 2 (I \A).

(c) For any P 2 C, we have I

P

62 I and S

P

62 I.

(d) If I is prime, then H

1

C

62 I.
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Proof. Suppose that P 2 InA is reduced w.r.t C, with S

P

62 I. Then the set

C

0

= fQ 2 Cjv

Q

< v

P

g [ fPg would be an autoreduced set of I, strictly smaller

than C. This proves (a).

Next, assume that (b) is false, and let P 2 I be reduced w.r.t. C, such that v

P

and deg P are minimal. Then S

P

2 (I \ A), by (a) and the minimality hypothesis.

Writing P = P

degP

v

degP

P

+ � � �+P

0

, we have S

P

= (degP )P

degP

v

degP�1

P

+ � � �+P

1

. As

S

P

2 (I \ A), we have P

1

; � � � ; (degP )P

degP

2 (I \ A). Therefore, P

1

; � � � ; P

degP

2

(I\A), sinceA containsQ. Consequently, P

0

2 I and P

0

2 (I\A), by the minimality

hypothesis. But this implies that P 2 (I \ A).

Now let P be in C. Then S

P

62 I, by de�nition. Suppose that I

P

is in I.

Then P

0

= P � I

P

v

degP

P

is in I and reduced w.r.t. C. If degP = 0, we have

@P

0

=@v

P

= 0 2 I. In the other case, we also have S

P

0

= @P

0

=@v

P

2 I, by (a).

Therefore, S

P

� (degP )I

P

v

degP�1

P

is in I, so that S

P

is in I. This contradiction

proves (c).

The implication (c) ) (d) is trivial. �

2.5.2 Some lemmas

Lemma 2.2. Let (A;D

A

) be a D-ring and B a D-algebra over (A;D

A

). Then

there exists another D-ring structure (A;D

0

A

) on A and another D-algebra structure

over (A;D

0

A

) on B, such that D

0

A

admits a basis, and such that A and B have the

same D-ideals for both structures.

Proof. Let D

A

be �nitely generated by d

1

; � � � ; d

n

. Let D

0

A

be the free A-module

generated by d

1

; � � � ; d

n

. We de�ne a Lie bracket on D

0

A

by

2

4

X

i

a

i

d

i

;

X

j

b

j

d

j

3

5

=

X

i;j;k

a

i

b

j

c

k

d

k

+

X

i;j

a

i

(d

i

b

j

)d

j

� b

j

(d

j

a

i

)d

i

;

where [d

i

; d

j

] =

P

k

c

k

d

k

. We have a natural action of D

0

A

on A resp. B by (a

1

d

1

+

� � �+ a

n

d

n

)b = a

1

d

1

b+ � � �+ a

n

d

n

b, which is compatible with the Lie bracket on D

0

A

.

Clearly, a subset of A resp. B is stable by D

A

, if and only if it is stable by D

0

A

. �

Lemma 2.3. Let A be a D-ring, so that there exists a non �nitely generated perfect

D-ideal. Then the set of non �nitely generated perfect D-ideals admits a maximal

element, and every such a maximal element is prime.

Proof. The union of a totally ordered set of non �nitely generated perfect D-ideals

is again a non �nitely generated perfect D-ideal. The existence of a maximal element
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follows therefore by Zorn's lemma. Now let m be any such maximal element. Clearly

m 6= A. Chose a; b 2 Anm. Then fm; ag and fm; bg, are �nitely generated, say by �,

resp. T . Thus, fm; abg = f�g \ fTg, by applying proposition 2.2, so that ab 62 m.

Hence m is prime. �

Lemma 2.4. Let E be any subset of a D-ring A and let P be in fEg. Then there

exists a �nite subset � of E, such that P 2 f�g.

Proof. We have fEg =

S

n2N

E

n

, where E

n

is recursively de�ned by E

0

= E and

E

n+1

= rad[E

n

]. Thus, we have P 2 E

n

for some n. Let us prove the lemma by

induction on n. The case n = 0 is trivial. Assume that we have proved the lemma

up to n � 1. We have P

k

2 [E

n�1

], for some k. Hence, P

k

2 [Q

1

; � � � ; Q

q

] for some

Q

1

; � � � ; Q

q

in E

n�1

. For each 1 6 i 6 q, there exists a �nite subset �

i

of E, such

that Q

i

2 f�

i

g, by the induction hypothesis. Then we can take � = �

1

[ � � � [ �

k

.

�

2.5.3 The Ritt-Raudenbush theorem

Theorem 2.1. (Ritt-Raudenbush's theorem) Let A be a Ritt-Raudenbush

D-ring and F a �nite set. Then any quasi-polynomial D-ring AfFg over A in F is

Ritt-Raudenbush.

Proof. By lemma 2.2, we may assume without loss of generality that D

A

admits

a basis, so that we can �x some admissible ordering on �

A

F . Suppose that the

conclusion of the theorem is false. By lemma 2.3, there exists a maximal non �nitely

generated perfect D-ideal p, which is prime. Let C be a characteristic set for p. Since

A is a Ritt-Raudenbush D-ring, there exists a �nite set �, such that (p \A) = f�g.

Let P be in p. We can write H

�

C

P = !C +R, for some �;! and R, where R is

reduced w.r.t. C. By proposition 2.9(b), we haveR 2 (p\A). Hence,H

�

C

P 2 [C;�],

whence H

1

C

P 2 rad[C;�] � fC;�g. This proves that H

1

C

p � fC;�g.

Now H

1

C

62 p, by proposition 2.9(d), so that the perfect D-ideal fH

1

C

; pg strictly

contains p. Therefore, fH

1

C

; pg is �nitely generated by the minimality hypothesis.

Applying lemma2.4, each generator is in a perfect D-ideal generated by a �nite subset

of p[fH

1

C

g. Hence, we can write fH

1

C

; pg = fH

1

C

; Tg, for some �nite T � p. Finally,

p is �nitely generated, since p = p\fH

1

C

; pg = p\fH

1

C

; Tg = fH

1

C

p; Tg � fC;�; Tg.

�

Having established the Ritt-Raudenbush theorem, let us now come to some im-

portant properties of Ritt-Raudenbush D-rings. In fact, these properties are analog-

ous to the properties of Noetherian rings. First, we have the three classical equivalent

conditions for a D-ring to be Ritt-Raudenbush:
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(a) Each perfect D-ideal is �nitely generated.

(b) Each strictly ascending sequence of perfect D-ideals is �nite.

(c) Each set of perfect D-ideals admits a maximal element.

The equivalence proof is left to the reader. We also have the usual prime decompos-

ition theorem:

Proposition 2.10. Any perfect D-ideal of a Ritt-Raudenbush D-ring A admits a

prime decomposition.

Proof. If the set of perfect D-ideals of A, which are not �nite intersections of prime

D-ideals were not empty, this set would have a maximal element I, by the condition

(c) above. Now I is clearly not prime and not equal to R. Let a; b 2 A be such

that ab 2 I and a; b 62 I. Then fI; ag and fI; bg would be �nite intersections of

prime D-ideals, and so would I = fI; abg = fI; ag \ fI; bg, by proposition 2.2. We

conclude by proposition 2.4. �

2.6 Coherent autoreduced sets

If we want to solve a system of D-equations, the �rst step is to search for some more

canonical equivalent system of equations. For theoretical purposes, characteristic sets

are very useful; for example, they are used to prove the Ritt-Raudenbush theorem.

However, as characteristic sets are hard to compute, we will introduce the weaker,

but more e�ective concept of coherent autoreduced sets. We then prove Rosenfeld's

lemma, which is a key result for later applications.

Let � be an autoreduced set. Let P;Q 2 � be such that v

P

= �f and v

Q

= �f .

Writing � = d

�

1

1

� � � d

�

n

n

and � = d

�

1

1

� � � d

�

n

n

, we denote

� ^ � = d

max(�

1

;�

1

)

1

� � � d

max(�

n

;�

n

)

n

;

�

0

= d

max(�

1

;�

1

)��

1

1

� � � d

max(�

n

;�

n

)��

n

n

;

�

0

= d

max(�

1

;�

1

)��

1

1

� � � d

max(�

n

;�

n

)��

n

n

:

We will also denote (� ^ �)f = v

P

^ v

Q

. The �-polynomial of P and Q is de�ned

by �(P;Q) = S

Q

�

0

P � S

P

�

0

Q. We remark that v

�(P;Q)

< (� ^ �)f . We say that �

is coherent if all �-polynomials �(P;Q) are reduced w.r.t. �.

We need some preliminaries in order to prove Rosenfeld's lemma. If Q is any D-

polynomial in AfFgnA, then we denote [�]

Q

= (f�P j�2� ^ P 2� ^ v

�P

6 v

Q

g)

and [�]

<Q

= (f�P j� 2 � ^ P 2 � ^ v

�P

< v

Q

g), for any Q 2 AfFgnF . The

following proposition follows trivially from proposition 1.1, if 6 is orderly; its proof

in the general case is left as an exercise to the reader.

Proposition 2.11. Let ! be a shu�e of � 2 �. Then for any P 2 �, we have

(! � �)P 2 [�]

<�P

. �
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Lemma 2.5. Let C be a coherent autoreduced set. Then for any P;Q in C and

�; � 2 �, with v

�P

= v

�Q

, we have S

Q

�P � S

P

�Q 2 [C]

<�P

: H

1

C

.

Proof. Let �

0

; �

0

2 � be such that w = v

P

^ v

Q

= v

�

0

P

= v

�

0

Q

. We claim that

�

�

= S

Q

��

0

P � S

P

��

0

Q 2 [C]

<�w

: H

1

C

;

for any � 2 �. We proceed by induction over the order of �. By proposition 2.7, we

have �(P;Q) 2 [C]

<w

: H

1

C

. This gives �

1

= �(P;Q) 2 [C]

<w

: H

1

C

, for � = 1.

Now suppose that � 6= 1, and write � = d

i

�

0

, for some i. By the induction

hypothesis, H

�

C

�

�

0

2 [C]

<�

0

w

, for some �. Hence, d

i

(H

�

C

�

�

0

) 2 [C]

<�w

, by proposi-

tion 2.11. Moreover,

d

i

(H

�

C

�

�

0

) = d

i

(H

�

C

)�

�

0

+H

�

C

d

i

�

�

0

;

where d

i

(H

�

C

)�

�

0

2 [C]

<�w

. Therefore, d

i

�

�

0

2 [C]

<�w

: H

1

C

and

�

�

= d

i

�

�

0

� (d

i

S

Q

)�

0

�

0

P + (d

i

S

P

)��

0

Q 2 [C]

<�w

: H

1

C

:

This proves our claim; to conclude, take � such that v

�w

= v

�P

= v

�Q

. Then

S

Q

�P � S

P

�Q = �

�

+ S

Q

(� � ��

0

)P � S

P

(� � ��

0

)Q 2 [C]

<�P

: H

1

C

;

by proposition 2.11. �

Lemma 2.6. (Rosenfeld's lemma) Let C be a coherent autoreduced subset of

AfFg, such that H

C

has no zero divisors. Then any D-polynomial in [C] : H

1

C

,

which is partially reduced w.r.t. C belongs to (C) : H

1

C

.

Proof. Let Q be a D-polynomial in [C] : H

1

C

, which is partially reduced w.r.t. C.

We may write

H

�

C

Q =

r

X

i=1

�

i

�

i

P

i

+

s

X

j=1

�

0

j

�

0

j

P

0

j

+

t

X

k=1

�

00

k

P

00

k

; (2.3)

where �

i

;�

0

j

;�

00

k

2 AfFg, �

i

; �

0

j

2 � and P

i

; P

0

j

; P

00

k

2 C, for all i; j; k. Moreover, we

assume that there exists some v, so that v

�

i

P

i

= v, for each i and such that v > v

�

0

j

P

0

j

,

for each j. We also assume that the �

i

's and the �

0

j

's have non zero order. If there

exists an equation (2.3) for Q, such that r = s = 0, then we clearly do have nothing

to prove. In the other case, we may assume that among possible equations (2.3) for

Q, we chose one, such that v is minimal, and we search for a contradiction.

We claim that without loss of generality, we may assume that r = 1. Clearly, r = 0

would contradict the minimality hypothesis for v. Assume that r > 1. Multiplying
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both sides of (2.3) by S

P

1

, we have

H

�

C

S

P

1

Q =

 

r

X

i=1

�

i

S

P

i

!

�

1

P

1

+

s

X

j=1

�

0

j

S

P

1

�

0

j

P

0

j

+

t

X

k=1

�

00

k

S

P

1

P

00

k

+

r

X

i=1

�

i

(S

P

1

�

i

P

i

� S

P

i

�

1

P

1

):

By the previous lemma, the last term of the right hand member of this equation is

in [C]

<v

: H

1

C

. Therefore, multiplying through both sides of the equation by H

�

C

, for

some �, we can rewrite this last term as a linear combination of �P 's with �P < v.

This proves our claim.

So let us assume that r = 1. We can write �

1

P

1

= S

P

1

v + R, where v does not

occur in R. Then

P

s

j=1

�

0

j

�

0

j

P

0

j

+

P

t

k=1

�

00

k

P

00

k

can be considered as a polynomial in v

of degree . Multiplying it by S



P

1

, and replacing S

P

1

v systematically by �

1

P

1

�R,

we obtain a polynomial, which depends on �

1

P

1

, but not on v. Thus, multiplying

both sides of (2.3) by S



P

1

and applying this transformation we get an equation

H

�

C

S



P

1

Q =

f

�

1

�

1

P

1

+

s

0

X

j=1

f

�

0

j

�

0

j

P

0

j

+

t

0

X

k=1

f

�

00

k

P

00

k

;

with similar notations as in (2.3), and where the

f

�

0

j

's and the

f

�

00

k

's do not depend

on v. Here we recall that the �

0

j

P

0

j

's and the P

00

k

's do not depend on v (because the

P

00

k

's are partially reduced w.r.t. C). Now H

�

C

S



P

1

Q does not depend on v (since Q is

partially reduced w.r.t. C) so that

f

�

1

is necessarily zero (recall that S

P

1

is not a zero

divisor). Hence, Q is in [C]

<v

: H

1

C

, which contradicts the minimality hypothesis of

v. �

Corollary I. The D-ideal [C] : H

1

C

is perfect resp. prime, if the ideal (C) : H

1

C

is

radical resp. prime.

Proof. Suppose that P and Q are in AfFgn[C] : H

1

C

. Then P part-rem C and

Q part-rem C are not in [C] : H

1

C

, and neither in (C) : H

1

C

. If (C) : H

1

C

is prime,

then (P part-rem C)(Q part-rem C) 62 (C) : H

1

C

. By Rosenfeld's lemma, this

implies (P part-rem C)(Q part-rem C) 62 [C] : H

1

C

. Hence PQ 62 [C] : H

1

C

. The

proof for radical ideals is similar, by reasoning on P

�

, instead of PQ. �

Corollary II. The D-ideal [C] : H

1

C

is perfect.

Proof. By the previous corollary, it su�ces to prove that (C) : H

1

C

is a radical

ideal. But this follows immediately from the fact that (C) : S

C

is a radical ideal,

by proposition 2.8. �
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2.7 The Boulier-Seidenberg-Ritt algorithm

In this section we present a membership test for �nitely generated perfect D-ideals,

due to Boulier (see [Boul 94], [BLOP 95]). Similar ideas were used by Seidenberg in

order to establish a di�erential elimination theory (see [Seid 56], [Boul 94]). We will

restrict our attention to �nitely generated quasi-polynomial D-algebras over a �eld.

More precisely, we will suppose that KfFg is an algorithmic quasi-polynomial

D-K-algebra. This means that all relevant operations are e�ective. Moreover,

we assume that we dispose of an e�ective admissible ordering on �. Now testing

whether P 2 f�g is equivalent to testing whether (�; fPg) admits a model, by

proposition 2.6. We will use the second criterion for the membership test. .

In fact, we will give an algorithm, which we call the Boulier-Seidenberg-Ritt

algorithm (Boulier calls it the Rosenfeld-Gr�obner algorithm), which decomposes any

system (�; T ) of D-equations and D-inequations in a �nite list of equivalent, more

canonical systems. More precisely, we de�ne a system (�; T ) to be regular, if � is

a coherent autoreduced set, such that H

�

� T , and such that �nH

�

= fRg, where

R is partially reduced w.r.t. �. If (�; T ) is a regular, then we say that f�g : T

1

is a regular D-ideal. Whenever we speak about a regular D-ideal, we assume that

we can represent it by a regular system.

We claim that a regular system (�; T ) admits a model, if and only if (�; T )

admits an algebraic model, that is, if the ideal (�) : T

1

of K[V

�

[ V

T

] does not

contain 1. Indeed, this is an easy consequence of Rosenfeld's lemma combined with

proposition 2.6. Moreover, f�g : T

1

is a radical ideal, by corollary II to Rosenfeld's

lemma. Let P be any D-polynomial. We have P 2 f�g : T

1

, if and only if

P part-rem � is in (�) : T

1

, using Rosenfeld's lemma. By the usual Buchberger

algorithm, we can compute a Gr�obner base for (�) : T

1

� K[V

�

[ V

T

]. This is done

by introducing a new formal variable w

Q

for each Q in T . We then use an ordering

such that each variable in V

�

[ V

T

is smaller than each w

Q

. Finally, we compute a

Gr�obner base for (�; fv

Q

Q� 1g

Q2T

) and take the intersection with K[V

�

[ V

T

]. The

obtained Gr�obner base gives a membership test for (�) : T

1

, and in particular we

can decide whether (�) : T

1

contains 1.

As its name suggests, the Boulier-Seidenberg-Ritt algorithm has two main sub-

algorithms. The �rst subalgorithm reduces a system (�; T ) of D-equations and

D-inequations into an equivalent semiregular system, which is a system (�; T )

to which is associated a coherent autoreduced subset C of �, such that all elements

of � reduce to zero w.r.t. C. The second subalgorithm splits a semiregular system

(�; T ) up into a �nite number (�

1

; T

1

); � � � ; (�

�

; T

�

) of simpler systems, which form

a decomposition for (�; T ). Repeating these two subalgorithms, we ultimately end

up with a decomposition of the initial system into a �nite number of regular systems.
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Subalgorithm reduce(�; T ).

Input: A �nite system of D-equalities � � KfFg and D-inequalities T � KfFg.

Output:A triple (�

0

; T; C), where (�

0

; T ) is an equivalent semiregular system, with

C as associated coherent autoreduced set.

�

0

:= �

repeat

� Let C be a minimal coherent autoreduced subset of �

0

.

E := (�

0

[ f�(P;Q)jP;Q 2 Cg)nC, ag:=true

for P 2 E do

R := P rem C

if R 6= 0 then �

0

:= �

0

[ fRg, ag:=false

until ag

return (�

0

; T; C)

The termination of this subalgorithm follows from the fact that the ordering on

autoreduced subsets of KfFg is well founded. As to the correctness, it is clear that

all new elements which are inserted into �

0

are in f�g and at the end of the program,

the set C is a coherent autoreduced subset of �

0

, which reduces all elements of �

0

to zero. We remark that whenever P reduces to zero w.r.t. C, that is H

�

C

= �C,

for some computable � and �, then P can optionally be eliminated from �

0

, if

fHj�(H) 6= 0g � T .

Subalgorithm split(�; T; C).

Input: On input we have a semiregular system (�; T ), with associated coherent

autoreduced set C.

Output:A decomposition of (�; T ), given by a list of systems. Moreover, the �rst

element in this list is a regular system.

� Enumerate H

C

= fH

1

; � � � ;H

�

g.

�

0

:= C

T

0

:= H

C

[ f(

Q

P2TnH

C

P ) part-rem Cg

for i := 1 to � do

�

i

:= � [ fH

i

g

T

i

:= T [ fH

i+1

; � � � ;H

�

g

return ((�

0

; T

0

); � � � ; (�

�

; T

�

))

The correctness of this algorithm relies on the simple fact that an element of a

�eld is either zero or non zero. Hence, if ' is any morphism over K of KfFg into a

D-super�eld L, then we have either '(H

1

) 6= 0; � � � ; '(H

�

) 6= 0, or '(H

i

) = 0 and

'(H

i+1

) 6= 0; � � � ; '(H

�

) 6= 0, for exactly one index i. The system (�

0

; T

0

) is regular,

by de�nition. We remark that for each system (�

i

; T

i

), with i > 0, there exists an

autoreduced subset of �

i

, which is smaller than C.
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Algorithm B-S-R(�; T ).

Input: A system (�; T ) of D-equalities and D-inequalities.

Output:A list ((�

0

; T

0

); � � � ; (�

�

; T

�

)) of non contradictory regular systems, whose

elements form a decomposition of (�; T ).

L := (), M := ((�; T ))

while M 6= () do

(�

0

; T

0

) := first(M)

M := concat(split(reduce(�

0

; T

0

));M)

(�

0

; T

0

) := first(M)

if consistent(�

0

; T

0

) then insert(L; (�

0

; T

0

))

return L

Remark 2.3. The subalgorithm first takes out the �rst element of a list, the

subalgorithm insert inserts a new element at the end of a list, and the subalgorithm

concat concatenates two lists. Finally, the subalgorithm consistent(�

0

; T

0

) checks

whether (�

0

; T

0

) is algebraically consistent. It starts by checking whether �

0

contains

an element of K, which would trivially yield a contradiction.

Let us now prove the termination of B-S-R. Encode the reduce and splitting

process by a tree labeled by systems of D-equalities and D-inequalities; the root of

this tree is the initial system, and the children of a node are the systems we obtain

by applying reduce and then split on it. None of the branches of this tree may be

in�nite, because the ordering on autoreduced sets is well founded. By K�onigs lemma,

we conclude that the tree is �nite (see also [Boul 94], p 44, p 71). The correctness of

B-S-R follows trivially from the correctness' of the subalgorithms reduce and split.

Let ((�

1

; T

1

); � � � ; (�

k

; T

k

)) be the output of the algorithm. By the corollary to

proposition 2.6, a D-polynomial P is in f�g : T

1

, i� '(P ) = 0 for every model '

for (�; T ). Now ' is a model for (�; T ), i� ' is a model for one of the (�

i

; T

i

)'s.

Therefore, '(P ) = 0 for every model ' for (�; T ), i� for each i we have '(P ) = 0,

for every model ' for (�

i

; T

i

). Applying the corollary to proposition 2.6 once again,

we have proved

f�g : T

1

= f�

1

g : T

1

1

\ � � � \ f�

k

g : T

1

k

:

As we have an e�ective membership test for each f�

i

g : T

1

i

, we have one for f�g :

T

1

. The perfect D-ideals f�

i

g : T

1

i

in this decomposition are regular.

2.8 On e�ective prime decomposition

Considering the Ritt-Raudenbush theorem and proposition 2.10, it would be nice to

have an algorithm, which performs the prime decomposition of a �nitely generated

perfect D-ideal automatically. Clearly, in order to answer this question, we have

to be able to deal with the algebraic case. Now it is known (see [VdW 30]), that
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the problem of e�ective algebraic prime decomposition can be solved, if we have a

factorization algorithm for univariate polynomials over K. From now on, we assume

that this is the case.

Under the above assumption, the e�ective prime decomposition problem remains

open. Nevertheless, we will show that there is an algorithm for \semi prime de-

composition". By this, we mean, that given a �nitely generated perfect D-ideal I,

we can compute prime D-ideals p

1

; � � � ; p

n

, such that I = p

1

\ � � � \ p

p

, where each

p

i

is a regular ideal. The harder question is which terms are superuous in this

decomposition, because no test is known to decide whether p

i

� p

j

, even if the p

i

's

are given by characteristic sets; this problem was raised by Kolchin (see [Kol 73], p.

166, problem 3). In this section we will give a list of equivalent problems.

Let us start by sketching a semi prime decomposition algorithm. This is done by

adding a third subalgorithm decompose to the Boulier-Seidenberg-Ritt algorithm.

This subalgorithm takes a regular system (�; T ) on input, and returns (�; T ), if

f�g : T

1

is prime, and a �nite list of systems ((�

1

; T ); � � � ; (�

�

; T )), such that

(�

1

) : T

1

; � � � ; (�

�

) : T

1

forms a prime decomposition of (�) : T

1

in K[V

�

[ V

T

].

Here we have a prime decomposition algorithm in K[V

�

[ V

T

], by the above hy-

pothesis. Finally, we modify the Boulier-Seidenberg-Ritt algorithm by inserting the

linesM := concat(decompose(�

0

; T

0

)) and (�

0

; T

0

) := first(M) into the algorithm.

The termination of this modi�ed algorithm is still assured by K�onig's lemma and it

returns a semi prime decomposition of (�; T ).

Let us now discuss two interesting properties of the Boulier-Seidenberg-Ritt al-

gorithm, due to Boulier, in the case that we have a prime D-ideal on input (i.e. a

system (�; T ), where f�g : T is prime). First, we claim that the �rst element of the

returned list is a system, which is equivalent to (�; T ). Inspection shows, that it

su�ces to prove this for the subalgorithm split; we will adopt its notations. Let i be

maximal, such that H

i

2 f�g : T

1

, allowing i to be �1. Then (�

1

; T

1

); � � � ; (�

i

; T

i

)

admit no models. Hence, i < �, because f�g 6= KfFg, and T 62 f�g : T

1

. There-

fore, �

i+1

� � ��

�

T 62 f�g : T

1

, since f�g : T

1

is prime, so that (�

i+1

; T

i+1

) admits

a model. Moreover, P 2 f�

i+1

g : T

i+1

implies PT

i+1

2 f�

i+1

g � f�g : T

1

, and

P 2 f�g : T

1

, since f�g : T

1

is prime. This proves our claim.

A second, interesting property is that we can extract a characteristic set of a

regular prime D-ideal, represented by a regular system. For this procedure, we refer

to [Boul 94] and [BLOP 95]. We also remark that a prime D-ideal p, given by a

characteristic set C, i.e. p = fCg : H

1

C

, is a regular D-ideal; indeed, we have

H

1

C

62 p, by proposition 2.9(d). This shows, that it is equivalent to represent a prime

D-ideal by a characteristic set or by a regular system. As we will see below, it is

not known whether there exists an algorithm to extract a �nite set of generators for

a prime D-ideal, given by a characteristic set or a regular system.

We are now in a position to discuss e�ective prime decomposition and related

problems. Recall that whenever we speak about regular D-ideals, we will always
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assume that they are represented by a regular system. In the case of regular prime

D-ideals, we may equivalently represent them by characteristic sets. Similarly, we

assume that any usual perfect D-ideal (i.e. without the regularity hypothesis) is

given by a �nite set of generators.

Theorem 2.2. The following problems are equivalent to Kolchin's problem,

whenever K is an algorithmic �eld, such that we have a factorization algorithm

for univariate polynomials over K:

(a) Testing whether p � q, for regular prime D-ideals.

(b) Finding the prime decomposition of a perfect D-ideal.

(c) Testing whether a perfect D-ideal is prime.

(d) Testing whether a regular prime D-ideal f�g : T

1

is generated by a �nite

subset �

0

.

(e) Finding generators of a regular prime D-ideal.

(f) Finding generators of the intersection I \ KfEg of a perfect D-ideal I and

a polynomial D-subalgebra KfEg, where E is a strict subset of F .

Proof. By de�nition, (a) is equivalent to Kolchin's problem. The implication (a)

) (b), follows from the semi prime decomposition algorithm. A perfect D-ideal is

prime, i� its prime decomposition contains only one prime D-ideal; this proves (b)

) (c).

Now suppose that we have can solve (c) and let show how to solve (d). We can

test whether f�

0

g is prime. If this is not the case, then we certainly do not have

f�g : T

1

= f�

0

g. Assume that f�g is prime and let P be in f�g : T

1

, that is,

PT

�

2 f�g � f�

0

g for some �. As f�g : T

1

is prime, we have T \ f�g : T

1

=



=,

whence P 2 f�

0

g, since f�

0

g is prime. Hence f�g : T

1

= f�

0

g, and we are done.

Let us now assume (d) and let f�g : T be a regular prime D-ideal. For each

r, we can compute generators for the radical ideal rad(�

r

�) : T

1

� K[V

�

r

�

[ V

T

].

For r su�ciently large, these generators also generate f�g : T

1

as a perfect D-ideal

(here we use the fact the radical of a D-ideal in characteristic zero is perfect; for an

easy to generalize proof, see for example [Kol 73], p 62, lemma 2). Because of (d),

we have an e�ective test, for knowing whether r is su�ciently large. This proves (d)

) (e). We remark that more e�cient algorithms can be given here.

Let us now prove (e) ) (a). Let p and q be two regular prime D-ideals. If (e)

holds, then we can �nd a generating set � for p. In this case, p � q, if and only if

� � q. We notice, that we have an e�ective membership test for q, since q is regular.

We �nally give the idea of the equivalence proof of (e) and (f). Seidenberg's

elimination algorithm (see [Seid 56]) can be generalized in a straightforward way

to our context, following the lines of Boulier (see [Boul 94]). In particular, given

I and E like in (f), we can write the radical ideal I \ KfEg of KfEg as a �nite

intersection of regular D-ideals. From this, we trivially deduce (e) ) (f). Inversely,
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a regular D-ideal f�g : T

1

can be interpreted as the intersection of KfFg with

f�; s

1

Q

1

� 1; � � � ; s

k

Q

k

� 1g, where s

1

; � � � ; s

k

are formal inverses of the elements

Q

1

; � � � ; Q

k

of T . �

Remark 2.4. It should be emphasized that in the case of linear D-equations, none

of the above problems arise; in this case, all initials and separants are constants, and

all regular ideals are of the form f�g : T

1

, with T =



=.
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Chapter 3

Generalized elimination theory

3.1 Introduction

Although the previous two chapters were exclusively concerned with di�erential equa-

tions, many of the techniques we have used can be generalized to the case of di�erence

equations, mixed di�erential di�erence equations, and even more general equations.

This raises the question what is the most general setting in which a systematic elim-

ination theory exists.

From a theoretical point of view, the generalization of Ritt-reduction to di�erence

and mixed di�erential-di�erence equations started shortly after the appearance of

the Ritt-Raudenbush theorem (e.g. see [Herz 34]). More general types of operator

algebras have been considered by Kreimer (see [Krei 64]), although the emphasize

rather lies on extensions of Picard-Vessiot theory than reduction theory in his work.

The e�ective elimination theory for di�erential and di�erence equations started

only much later: Galligo was the �rst to consider Buchberger's algorithm in the con-

text of linear di�erential operator rings (see [Gal 85]). Kandry-Rodi and Weispfennig

gave conditions under which Buchberger's classical algorithm naturally extends to

the non-commutative case (see [KRW 86]). These conditions were weakened by the

author in his D.E.A. report (see [VdH 93]). The linear case has given rise to several

implementations (see [KRW 86], [SZ 92], [Tak 93], [BrP 93], [Chyz 95]).

As to algebraic di�erential and di�erence equations, only the classical setting of

di�erential equations with commutative derivations has been considered until now

(see [Ol 90], [Mans 91], [Boul 94], [BLOP 95]). Moreover, Boulier's algorithm has

been implemented (see [Boul 94]). In this chapter, we generalize the theory from the

previous chapter to a setting as general as possible. However, no implementations

are available yet.

Despite the e�orts to generalize elimination theory to the case of mixed di�erential-

di�erence equations, most functional equations involving composition | even linear

equations | can not be treated by the generalized theory. For instance, equations

52
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like

a(x)f(x+ 1) + b(x)f(x

2

+ x

3

) + c(x)f(x) = d(x);

which involve non-commutative di�erence operators, cannot usually be treated. Es-

sentially, mixed di�erential-di�erence elimination theory mainly applies to shift- and

q-operators.

� � �

Let us now describe the contents of this chapter. In section 3.2, we sketch a setting

as general yet simple as possible for dealing with non commutative linear operators,

to which the usual Buchberger algorithm can be extended naturally. Essentially,

we restate the main results from [VdH 93] in a slightly simpler nomenclature. We

intend to rework the proofs of these results in a forthcoming paper. Our setting

incorporates most of the previous settings, such as the algebras of solvable type (see

[KRW 86]) and Ore algebras (see [Chyz 95]). However, contrary to Kandry-Rodi

and Weispfennig we only consider left ideals, although it should be possible to treat

bilateral ideals as well, following the approach in [KRW 86].

In section 3.3, we study the generalization of the results from chapter 2 to the case

of certain types of DD-rings. DD-rings are rings with a mixed di�erential-di�erence

structure. For reduction purposes, the di�erence operators need to commute up

to some �nite non commutative group. Because of the high degree of generality,

this section has become quite technical. We intend to treat the special case of

commutative di�erence operators in a forthcoming paper.

3.2 Linear non commutative reduction theory

3.2.1 Reduction algebras of �nite type

In all what follows, rings A are not necessarily commutative, but always unitary, and

by ideals we will always mean left ideals. Furthermore, A always acts on modules

and algebras on the left, and A-algebras are always assumed to be unitary. We say

that a ring resp. module is Noetherian, if its ideals resp. sub-modules verify the

ascending chain condition.

Let B be an A-algebra, which admits a basis � 3 1, when considered as an

A-module. Fix a total ordering on X. Then the support (w.r.t. X) of any non zero

element P 2 B admits a unique maximal element l

P

, which is called the leading

monomial of P . The coe�cient c

P

= P

l

P

of this monomial is called the leading

coe�cient of P . By convention, we take l

0

= �1 and c

0

= 0.

We say that B is a reduction algebra over A, if the ordering 6 is admissible

in the following sense:
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A0. For all x; y 2 B, there exists a unit u 2 B

�

with c

xy

= uc

x

c

y

.

A1. 1 6 � for all � 2 �.

A2. � 6 � ^ �

0

6 �

0

) l

��

0

6 l

��

0

, for all �; �

0

; �; �

0

2 �.

Equality holds if and only if � = � and �

0

= �

0

.

We notice that A0 is in particular satis�ed if A is a �eld. Furthermore, if 6 is

admissible, then the operator �

�

: A ! A; a 7! c

�a

is a di�erence operator for all

� 2 �. If the additional condition

A3. l

��

0

= l

�

0

�

, for all �; �

0

2 �.

is satis�ed, then we say that B is a quasi-commutative algebra. Most of the

natural examples of reduction algebras are actually quasi-commutative.

To the ordering 6 on � we can naturally associate a partial ordering 4 by

� 4 �

0

, 9�2� �

0

= l

��

:

We call 4 the divisibility ordering on �. If 6 is admissible, and if 4 is a Noeth-

erian ordering, then we say that B is a quasi-commutative algebra of �nite type

over A. Usually, the ordering 4 is isomorphic to a power N

n

of N.

The usual reduction theory from commutative algebra generalizes to reduction

algebras of �nite type. In particular, we have the following generalization of Hilbert's

basis theorem:

Theorem 3.1. Let A be a Noetherian ring and B a reduction algebra of �nite type

over A. Then B is Noetherian.

Let us now give some examples of reduction algebras of �nite type.

Example 3.1. Let (A;D) be a (�nite dimensional) D-ring. Then the free linear

D-operator algebra 
 = A[D] from section 1.2.4 is a quasi-commutative algebra of

�nite type over A.

Example 3.2. Let (A;�) be a (classical) di�erence ring, such that �a 2 aA

�

for

each � 2 � and a 2 A. Then the free linear di�erence operator algebra 
 = A[�]

(which is constructed in a similar fashion as free linear D-operator algebras) is a

quasi-commutative algebra of �nite type over A.

We recall that (A;�) is a di�erence ring, if � = f�

1

; � � � ; �

n

g is a �nite set

of pairwise commutating di�erence operators (i.e. injective ring homomorphisms)

acting on A. Geometrically, di�erence operators correspond to right compositions

with a �xed function. The most classical di�erence operators are the shift operator

S

x

: f(x) 7! f(x + 1), the q-operator Q

x;q

: f(x) 7! f(qx) and the Mahlerian

operator M

x;p

: f(x) 7! f(x

p

).
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Example 3.3. A univariate Ore-extension of A is a ring B = A[�], where � satis�es

the following commutation rule w.r.t. elements a 2 A:

�a = �(a)�+ d(a):

Here � is a di�erence operator and d a �-derivation:

d(ab) = �(a)db+ bda;

for all a; b 2 A. An Ore-algebra overA is an algebra obtained fromA by a �nite num-

ber of univariate Ore-extensions. Ore-algebras are in particular quasi-commutative

algebras of �nite type.

Example 3.4. Let K be a �eld and q 2 K

�

. The quantum plane is an abstract

object with coordinate functions x and y that commute via the law yx = qxy (see

[Man 88]). Those linear transformations which respect this commutation law, can

be represented by q-matrices, which are 2 � 2 matrices

 

a b

c d

!

;

whose entries satisfy the following commutation laws:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ba = qab;

dc = qcd;

ca = qac;

bd = qdb;

cb = bc;

da = ad+ (q � q

�1

)bc:

Taking � = a

N

b

N

c

N

d

N

, we have the following (orderly) admissible ordering on �:

1 < b < c < a < d < � � � < bc < � � � < ad < � � � :

In particular, K[a; b; c; d] is a quasi-commutative algebra of �nite type over K.

Example 3.5. Not all reduction algebras of �nite type are quasi-commutative.

Consider for instance the algebra K[x; y] over a commutative �eld, with yx = xy

2

and the lexicographical admissible ordering on x

N

y

N

:

1 < x < x

2

< � � � < y < xy < � � � :

Then K[x; y] is a reduction algebra of �nite type over K, which is clearly not quasi-

commutative.

Example 3.6. The partial ordering 4 on � is not necessarily isomorphic to N

n

for

some n, as the above example shows already. Other interesting partial orderings are
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obtained, even in the fully commutative case, by considering polynomial algebras in

�nitely generated submonoids of N, such as B = K[x

2

; xy; y

2

]. In such cases, two

elements in B may admit a set of S-polynomials instead of a unique S-polynomial

in Buchberger's algorithm (see also [Ol 90]).

Example 3.7. The setting of reduction algebras allows to construct towers of

extensions in several ways. First, we may consider reduction algebras over reduction

algebras, and construct towers like

A � A[x] � A[x; @

x

] � A[x; @

x

; S

x

]:

Secondly, in the case of D-equations for instance, we may enrich A with the solutions

of a system of D-equations. In this case, we obtain towers like

A[x] � A[x; sinx] � A[x; sinx; e

sinx

]:

3.2.2 Groebner algebras

Now let A be an e�ective (not necessarily commutative) ring. We will say that A is

an e�ective Noetherian ring, if A is Noetherian and the following conditions are

satis�ed:

NR1. There exists an algorithm which given a

1

; � � � ; a

k

; b 2 A tests whether b 2

(a

1

; � � � ; a

k

) and determines elements c

1

; � � � ; c

k

with b = c

1

a

1

+ � � �+ c

k

a

k

if

this is the case.

NR2. Each prime component of the zero ideal of A is given explicitly.

NR3. There exists an algorithm to compute the intersection of any two ideals i; j

of A.

In conditions NR2 and NR3, we understand that ideals are e�ectively represented

by sets of generators. (Left) Noetherian A-modules M resp. e�ective Noetherian

A-modulesM are de�ned in a similar way, by considering A-submodules instead of

ideals.

The following property of e�ective Noetherian rings is equivalent to NR3:

Proposition 3.1. Let A be an e�ective Noetherian ring. Then there exists an

algorithm to compute the kernel of any linear form A

n

! A.

E�ective Noetherian rings are precisely those objects which allow the most com-

mon algebraic operations to be carried out e�ectively. For instance, we have:

Proposition 3.2. Let A and B be e�ective Noetherian rings. Then:

(a) A�B is an e�ective Noetherian ring.

(b) If i is an ideal of A, then A=i is an e�ective Noetherian ring.

(c) If ' : A! B is an e�ective morphism, then there are algorithms to compute

'(i) and '

�1

(j), for ideals i � A resp. j � B.
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Let A be an e�ective Noetherian ring and let B be a reduction algebra of �nite

type over A. We say that B is a Groebner algebra, if each element in B can be

e�ectively decomposed w.r.t. �, if 6 is e�ective, and if 4 is an e�ective Noetherian

ordering. Here an e�ective Noetherian ordering is a Noetherian ordering, such that

there exists an algorithm to compute intersections of �nal segments (actually, we

also require that there exist algorithms to compute the minimal elements and the

successor of each element, but this is not of importance to us here).

We were not able to prove the following conjecture in [VdH 93]:

Conjecture 3.1. Let (A; �) be a Noetherian di�erence ring and let ' : A

n

! A be

a linear form. If G generates ker', then �(G) generates ker' � (�; � � � ; �).

The conjecture obviously holds, if � is invertible, or A is a commutative �eld.

Now if B is a Groebner algebra over A, such that the conjecture holds for all �

�

's

with � 2 �, then Buchberger's algorithm generalizes to the present setting. This

yields:

Theorem 3.2. Let B be a Groebner algebra over A. With the above notations,

assume that for each linear form ' : A

n

! A and each � 2 �, the set �

�

(G) generates

ker' � (�

�

; � � � ; �

�

), whenever G generates ker'. Then B is an e�ective Noetherian

ring.

3.3 DD-rings

In this section we will generalize Ritt reduction to systems of mixed di�erential

di�erence equations of a certain type. Assume that (A;D) is a D-ring, endowed

with a semigroup � of di�erence operators acting on A, and with an additional

commutation mapping D � � ! D; (d; �) 7! d

�

, which has a inverse d 7! d

�

�1
for

�xed � and which satis�es

d

�

�a = �da;

d

Id

= d;

d

��

0

= (d

�

0

)

�

;

[d; d

0

]

�

= [d

�

; d

0

�

];

(ad)

�

= (�a)d

�

for each d; d

0

2 D, �; �

0

2 � and a 2 A. A triple (A;D;�), verifying the above

conditions is said to be a DD-ring. We will again denote by 
 the corresponding

DD-operator algebra; that is, the free associative generated by A;D and �, subject

to the natural laws. Finally, for convenience, D and � are always assumed to be

�nitely generated.
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Example 3.8. Geometrically, di�erence operators correspond to right compositions

with a �xed function. It is easily veri�ed that the commutation conditions from above

are satis�ed for such di�erence operators. The di�erence operators of main interest

are the shift operator S

x

: f(x) 7! f(x+ 1), the q-operator Q

x;q

: f(x) 7! f(qx)

and the Mahlerian operator M

x;p

: f(x) 7! f(x

p

).

3.3.1 Perfect DD-ideals and Ritt DD-rings

There are two main problems if we want to extend our results to this new context.

First, we have to extend our results about perfect ideals, and secondly we have to

establish an appropriate reduction theory. Now ordinary radical DD-ideals, do not

satisfy the properties from section 2.3 in general. Therefore, a DD-ideal I is de�ned

to be perfect, if

Q

�2�

(�a)

k

�

2 I ) a 2 I, for each a in A and all families of

natural numbers fk

�

g, with �nite support. An equivalent condition is that a

2

s 2

I ) (!a)s 2 I, for every a; s 2 I and ! 2 D [ �. This second condition shows us

at once that if I is a perfect DD-ideal, then so is A : s, for any s 2 A. Hence, all

results from section 2.3 generalize to the present context.

Unfortunately, in order to generalize Ritt's reduction theory, one is forced to make

some additional hypothesis on the DD-ring A. We say that A is a Ritt DD-ring, if

there are subsets �

g

and �

c

of �, such that the following conditions are satis�ed:

R1. If D 6= f0g, then A contains Q.

R2. �

g

is a �nite group.

R3. �

c

is a commutative monoid.

R4. For any �

c

2 �

c

we have �

c

�

g

= �

g

�

c

.

R5. Any � 2 � can be uniquely decomposed as � = �

g

�

c

2 �

g

�

c

.

From now on we will assume that A is a Ritt DD-ring. As before, we will assume

that D is freely generated by d

1

; � � � ; d

n

. We will also assume that �

c

is freely

generated, say by �

1

; � � � ; �

m

. For simplicity, we will only study the case in which

�

g

= f1g, although some brief indications about to treat the general case will be

made in section 3.3.7

Remark 3.1. Our study will not loose in generality, if we assume that �

c

is freely

generated by �

1

; � � � ; �

m

. Indeed, we will be considering systems of DD-equations

in AfFg below. If we have a relation �

�

1

1

� � � �

�

m

m

= �

�

1

1

� � � �

�

m

m

, if su�ces to add

the equations �

�

1

1

� � � �

�

m

m

f = �

�

1

1

� � � �

�

m

m

f to the system we are considering, for each

f 2 F .

3.3.2 Polynomial DD-algebras

We need to introduce polynomial DD-algebras. We denote

� = f�

�

1

1

� � � �

�

m

m

d

�

1

1

� � � d

�

n

n

j�

1

; � � � ; �

m

; �

1

; � � � ; �

n

2 Ng:
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If F is a �nite set, then A[�F ] can naturally be given the structure of a poly-

nomial DD-algebra. Again it is possible to impose alternative commutation rules

[d

i

; d

j

]; (d

i

)

�

j

; (d

i

)

�

�1

j

2 A[F ](d

1

; � � � ; d

n

), assuming that they extend the commuta-

tion rules de�ned on A. Doing this, we obtain quasi polynomial DD-algebras. As

before the orders of DD-polynomials and DD-operators are de�ned in a natural way.

An important change with respect to the di�erential case is that shu�es are a bit

more tricky to de�ne. In fact, a shu�e of a word with letters in D [� is obtained

by repeated transpositions of adjacent letters, except in the case of a derivation d

and a di�erence operator �, which commute following the law d

�

� = �d. Hence, the

letters of a shu�e of a word may be distinct from the original letters. If ! is a word

of length r and !

0

a shu�e of !, then !

0

� ! has order at most r � 1.

As we will be shu�ing elements of � a lot, it will be convenient to introduce

some more notations. We �rst de�ne the partial ordering � on � by

� = �

�

1

1

� � � �

�

m

m

d

�

1

1

� � � d

�

n

n

� �

�

0

1

1

� � � �

�

0

m

m

d

�

0

1

1

� � � d

�

0

n

n

= �

0

;

if and only if �

1

6 �

0

1

; � � � ; �

m

6 �

0

m

and �

1

6 �

0

1

; � � � ; �

n

6 �

0

n

. If this is the case,

putting � = �

�

1

1

� � � �

�

m

m

, we denote

�

0

=� = �

�

0

1

��

i

1

� � � �

�

0

m

��

m

m

d

�

0

1

��

1

1;�

� � � d

�

0

n

��

n

n;�

:

Then (�

0

=�)� is a shu�e of �

0

. The set of words �

0

=� so obtained will be denoted

by

�

�. Whenever we will write ���, with �� 2

�

�, we implicitly assume that �� is of

the form �

0

=�, so that ��� is a shu�e of an element of �. In case of ambiguity, we

will also write �� = �

�

. We remark that to any � = �

�

1

1

� � � �

�

m

m

d

�

1

1

� � � d

�

n

n

in � there

corresponds a �� = �

�

1

1

� � � �

�

m

m

d

�

1

1;�

� � � d

�

n

n;�

in

�

�, such that ��� is in �.

3.3.3 Admissible orderings

Let �F be totally ordered by 6 and de�ne leaders as before. Then 6 is said to be

admissible, if

A1. v(�f) < v(

�

d

i

�f), for any i and �f 2 �F ;

v(�f) < v(�

i

�f), for any i and �f 2 �F .

A2. v(d

i;�

0

�f) 6 v(d

i;�

0

�

0

f

0

), for any i and �f 6 �

0

f

0

in �F ;

v(�

i

�f) 6 v(�

i

�

0

f

0

), for any i and �f 6 �

0

f

0

in �F .

A3. v(

�

d

i

�

d

j

�f) = v(

�

d

j

�

d

i

�f), for any i; j and �f 2 �F .

Again, admissible orderings exist. For instance, enumerating F = ff

1

; � � � ; f

k

g, one

can take the lexicographical ordering on the �

�

1

1

� � � �

�

m

m

d

�

1

1

� � � d

�

n

n

f

i

's, by ordering

successively on order, �

1

; � � � ; �

m

; �

1

; � � � ; �

n�1

and i.

The next problem we have to handle is the fact that deg �P = degP , for di�erence

operators �. Hence if P and Q are DD-polynomials with v

P

� v

Q

, then P can



60 CHAPTER 3. GENERALIZED ELIMINATION THEORY

not necessarily be reduced w.r.t. Q. This makes the usual partial ordering on �F

inadequate for our purposes. The solution to this dilemma is to take into account the

leaders of DD-polynomials, together with their degrees. This leads to the notion of

an extended variable, which is an element of �F raised to some strictly positive

power. The set of such variables will be denoted by (�F )

�

, and we use letters

with star exponents v

�

to denote extended variables. The extended leader of a

non ground DD-polynomial P is denoted by v

�

P

= v

�

(P ) = v

degP

P

. Finally, we

introduce extended operators as being operators of the form v

�

��, which act on

DD-polynomials P , with v = ��v

P

. The set of such operators is denoted by

�

�

�

, and

we use names like ��

�

to denote such operators themselves.

We de�ne a partial ordering � on extended variables by v

�

= (�f

i

)



� (�

0

f

i

0

)



0

=

(v

0

)

�

, if and only if i = i

0

, � � �

0

and either  6 

0

, or �

0

=� is not a pure dif-

ference operator. If this is the case, we denote by (v

0

)

�

=v

�

the extended operator

v



0

�deg(�

0

=�)v

�

(�

0

=�). Then the extended leader of ((v

0

)

�

=v

�

)v

�

is (v

0

)

�

. We remark

that � is still a well-quasi-ordering. We also extend the admissible ordering 6 on

variables to extended variables by v



6 (v

0

)



0

, if and only if either v < v

0

, or v = v

0

and  6 

0

. Finally, let � be a set of non ground polynomials and v

�

an extended

variable. Then we de�ne

[�]

v

�

=

(

X

i

�

i

�

�

i

P

i

�

�

�

�

�

�

�

i

2

�

� ^ P

i

2 � ^ �

i

2 A[�Fnfv

�

�

i

P

i

g] ^ v

�

(

�

�

i

P

i

) 6 v

�

)

:

3.3.4 Ritt reduction

Before introducing the generalization of Ritt reduction, let us de�ne H

�

= �

�

H

�

,

where

�

H

�

= I

�

[ S

�

, for any �nite set � of non ground DD-polynomials. In the

pure di�erence case, i.e. D = f0g, one may even take

�

H

�

= I

�

, and the hypothesis

that Q � A becomes superuous. However, there is no equivalent for corollary II of

Rosenfeld's lemma in this case. For simplicity, we assume from now on that Q � A,

and we take

�

H

�

= I

�

[ S

�

. We also remark that although H

�

is in�nite in general,

�

H

�

is �nite. The key reason why Ritt's reduction theory extends to the DD-case, is

that H

�

�

2 I )

�

H

1

�

2 I, for any perfect DD-ideal I and all �.

Using the notion of extended leaders, Ritt's reduction principles can now be

stated quite elegantly. A DD-polynomial P is said to be reduced w.r.t. a �nite

subset � of AfFgnA, if there exists no Q 2 � and w

�

2 V

�

P

, with v

�

Q

� w

�

. Here

V

�

P

denotes the set of extended variables occurring in P . We claim that in general,

there exist �;! and R verifying (2.2), such that R is reduced w.r.t. �, and such

that !P 2 [�]

v

�

P

. This is proved in the same way as before, by replacing the main

loop of the reduction procedure by the following:

while 9�2�9w

�

2V

�

R

v

�

�

� w do

� Choose w

�

for 6.

R := Euclidean division(R; (w=v

�

)�)
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Remark 3.2. In the case when �

g

6= f1g, we de�ne

^

� = �

g

�. Shu�es are de�ned

in a similar way as before, but for the partial ordering � we demand that

^

�

0

=

^

� 2

�

�,

whenever

^

� �

^

�

0

. For example, if �

g

= fId; �g and �

c

= (�

1

) commute, then

Id � �

1

, but � 6� �

1

. The admissible ordering is �xed on

^

�F , and the admissibility

conditions are the same, modulo putting hats on the �'s.

3.3.5 The Ritt-Raudenbush theorem

As before, a subset � � AfFgnA is said to be autoreduced, if each P 2 � is

reduced w.r.t. �nfPg. Let � = fP

1

; � � � ; P

p

g and T = fQ

1

; � � � ; Q

q

g be autoreduced

subsets of AfFg, with v

P

1

< � � � < v

P

p

and v

Q

1

< � � � < v

Q

q

. We de�ne a partial

ordering 6 on autoreduced sets by fP

1

; � � � ; P

p

g < fQ

1

; � � � ; Q

q

g, if v

�

P

i

= v

�

Q

i

, for

i strictly inferior to a certain j, and either v

�

P

j

< v

�

Q

j

, or j = q + 1 6 p. It is

readily veri�ed that 6 is a well founded. Characteristic sets are de�ned in the same

way as before, and we have the analogue of proposition 2.9, when replacing H

C

by

�

H

C

in statement (d). Consequently, the proof of the Ritt-Raudenbush theorem goes

through modulo some trivial changes.

3.3.6 The Boulier-Seidenberg-Ritt algorithm

In order to generalize the Boulier-Seidenberg-Ritt algorithm, we now have to gener-

alize Rosenfeld's lemma. Supposing that we have done this, the only change we will

have to make in Boulier's algorithm, is to perform the splittings on the elements of

�

H

C

instead of H

C

. Our results on prime decomposition also go through modulo a

generalization of Rosenfeld's lemma.

Let � be an autoreduced set, let P 6= Q be in �, and let v

�

be an extended

variable, with v

�

P

� v

�

and v

�

Q

� v

�

. We de�ne the �-polynomial of P and Q

relative to v

�

by

�

v

�

(P;Q) = I

(v=v

Q

)Q

(v

�

=v

�

P

)P � I

(v=v

P

)P

(v

�

=v

�

A

)Q

We de�ne v

�

P

^ v

�

Q

to be the smallest extended variable v

�

, with v

�

P

� v

�

and

v

�

Q

� v

�

. We say that �

v

�

is a principal �-polynomial, if either v

�

= v

�

P

^ v

�

Q

,

or v

�

=

�

d

i

(v

P

^ v

Q

), for some i, and (v

�

P

^ v

�

Q

)=v

�

P

or (v

�

P

^ v

�

Q

)=v

�

Q

is an extended

di�erence operator. In the pure di�erential or di�erence case, we remark that there

is only one principal �-polynomial. Now � is said to be coherent, if all principal

�-polynomials of elements of � reduce to zero with respect to �.

We will again need some preliminaries in order to prove the generalization of

Rosenfeld's lemma. If Q is any D-polynomial in AfFgnA, then we denote

[�]

Q

=

n

P

i

�

i

�

�

i

P

i

�

�

�

�

�

i

2

�

� ^ P

i

2 � ^ �

i

2 A[�Fnfv

�

�

i

P

i

g] ^ v

�

(

�

�

i

P

i

) 6 v

�

Q

o

;

[�]

<Q

=

n

P

i

�

i

�

�

i

P

i

�

�

�

�

�

i

2

�

� ^ P

i

2 � ^ �

i

2 A[�Fnfv

�

�

i

P

i

g] ^ v

�

(

�

�

i

P

i

) < v

�

Q

o

:
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We observe that proposition 2.11 generalizes to the present context. We also have

the following generalization of lemma 2.5:

Lemma 3.1. Let C be a coherent autoreduced set. Then �

v

�

(P;Q) 2 [C]

<v

�

: H

1

C

,

for any �-polynomial of elements P 6= Q in C.

Proof. Let us �rst consider the case in which

�

�

�

= v

�

=(v

�

P

^ v

�

Q

) is an extended

di�erence operator. Then we have �

v

�

=

�

�

�

�

v

�

P

^ v

�

Q

and

�

�

�

[C]

<(v

�

P

^ v

�

Q

)

� [C]

<v

�

,

from which the lemma follows easily. In the other case, we may assume without loss

of generality that v

�

= v. Indeed, we have �

vv

�

(P;Q) = v�

v

�

(P;Q), for any P and

Q, and deg(v=v

P

)P = deg(v=v

Q

)Q = 1. Now let w

�

= v

�

P

^ v

�

Q

, if (v

�

P

^ v

�

Q

)=v

�

P

or (v

�

P

^ v

�

Q

)=v

�

P

are not both extended di�erence operators. In the other case, we

may factor

�

� = ��

�

d

i

, for some i, and we take w

�

=

�

d

i

(v

�

P

^ v

�

Q

).

Now let �� = v=w. Using induction over ��, we may assume without loss of

generality, that we proved the lemma for all smaller ��'s. Now we may either factorize

�� = �

i

��

0

, or �� =

�

d

i

��

0

, for some i. In the �rst case, we apply a similar argument as

above. In the second case, the choice of w assures us that I

(v=v

P

)P

= I

(v

��

0

w

=v

P

)P

and

I

(v=v

Q

)Q

= I

(v

��

0

w

=v

Q

)Q

, and a similar argument as at the end of the proof of lemma 2.5

can be applied to conclude. �

Lemma 3.2. Let C be a coherent autoreduced subset of AfFg, such that H

C

has

no zero divisors. Then any DD-polynomial in [C] : H

1

C

, which is reduced w.r.t. C

belongs to (C) : H

1

C

.

Proof. The proof runs along the same lines as the proof of Rosenfeld's lemma.

Therefore, we will content ourselves to indicate at which points the two proofs di�er.

Instead of (2.3), we write

H

�

C

Q =

r

X

i=1

�

i

�

�

�

i

P

i

+

s

X

j=1

�

0

j

(

�

�

0

j

)

�

P

0

j

+

t

X

k=1

�

00

k

P

00

k

; (3.2)

with similar notations as before, and where v

�

�

�

i

does not occur in �

i

, for any i, and

similarly for the �

0

j

's. Next, the variable v is replaced by an extended variable v

�

; it

is assumed that v

�

(

�

�

�

i

P

i

) = v, for each i, and v

�

((

�

�

0

j

)

�

P

0

j

) < v, for each j.

Again, we may assume without loss of generality that r = 1, using the previous

lemma, as can be seen by multiplying both sides of (3.2) by I

�

�

�

1

P

1

, yielding

H

�

C

I

�

�

�

1

P

1

Q =

 

r

X

i=1

�

i

I

�

�

�

i

P

i

!

�

1

P

1

+

s

X

j=1

�

0

j

I

�

�

�

1

P

1

�

0

j

P

0

j

+

t

X

k=1

�

00

k

I

�

�

�

1

P

1

P

00

k

+

r

X

i=1

�

i

�

v

�

(P

i

; P

1

):
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So assume that r = 1. We can interpret

�

�

�

1

P

1

and

P

s

j=1

�

0

j

(

�

�

0

j

)

�

P

0

j

+

P

t

k=1

�

00

k

P

00

k

as polynomials in v. Performing the Euclidean division of the second polynomial by

the �rst, transforms (2.3) in an equation of the form

H

�

C

I



�

�

�

1

P

1

Q =

f

�

1

�

�

�

1

P

1

+

s

0

X

j=1

f

�

0

j

(

�

�

0

j

)

�

P

0

j

+

t

0

X

k=1

f

�

00

k

P

00

k

;

where the degrees in v of all terms except of

f

�

1

�

�

�

1

P

1

are strictly inferior to deg

�

�

�

1

P

1

.

Consequently, the degree of

f

�

1

�

�

�

1

P

1

in v must also strictly inferior to deg

�

�

�

1

P

1

, whence

f

�

1

= 0 and Q is in [C]

<v

�

: H

1

C

. This contradicts the minimality hypothesis of v

�

.

�

Remark 3.3. In the case when �

g

6= f1g, we de�ne a subset � of AfFgnA to be �

g

-

invariant, if �P 2 �, for all � 2 �

g

and P 2 �. We remark that if Q 2 [�], where

� is �

g

-invariant, then Q is a linear combination of elements of the form �

�

�P , with

�

� 2

�

� and P in �. In the de�nitions of characteristic sets and coherent autoreduced

sets, we add the condition that the set be �

g

-invariant. Modulo these modi�cations,

the results of this section extend to the general case. In the subalgorithm 'reduce' of

the reduce-and-split algorithm, we make �

0

stable under �

g

at the end of the main

loop.

3.3.7 Conclusion

We have shown that e�ective elimination theory extends to a setting which is far more

general than the classical setting of di�erential algebra. Actually, we feel that the Ritt

DD-ring setting is the most general one, which admits both a natural interpretation

and an e�ective elimination theory.

In particular, there exist reduction bialgebras, which do not give rise to e�ective

algebraic elimination theories. An example of this situation is obtained by consid-

ering the quantum matrices from example 3.4: the algebra K[a; b; c; d] is actually a

bialgebra (and even a Hopf algebra) for the following coproduct:

8

>

>

>

<

>

>

>

:

a 7! a
 a+ b
 c;

b 7! a
 b+ b
 d;

c 7! c
 a+ d 
 c;

d 7! c
 b+ d
 d:

However, no ordering on � = a

N

b

N

c

N

d

N

is both compatible with the product and

the coproduct. Hence, it seems that no algebraic elimination theory exists for the

entries of q-matrices, although a linear elimination theory does. Maybe this situation

is \explained" by the fact that no convincing geometrical interpretation is available,

contrary to the case of Ritt DD-algebras.



64 CHAPTER 3. GENERALIZED ELIMINATION THEORY

3.4 References

[BLOP 95] F. Boulier, D. Lazard, F. Ollivier, M. Petitot. Repr�esentation du radical

d'un id�eal di��erentiel de type �ni. Proc. ISSAC 1995, Montreal.

[Boul 94] F. Boulier. Etude et implantation de quelques algorithmes en alg�ebre di��erentielle.

PhD. Thesis, University of Lille I, France.

[BrP 93] M. Bronstein, M. Petrov

�

sek. On Ore rings, linear operators and factorization.

Technical Report 200, ETH Z�urich.

[Chyz 95] F. Chyzac. Formal manipulations of linear operators and holonomic calculations.

D.E.A. report.

[Herz 34] F. Herzog. Systems of algebraic mixed di�erence equations. Proc. A.M.S. (p

286-300).

[Krei 64] H.F. Kreimer. The foundations for an extension of di�erential algebra. Transactions

A.M.S. 111 (p 482-492).

[Lip 89] L. Lipshitz. D-�nite power series. Journal of algebra 122, p 353-373.

[Man 88] Yu. I. Manin. Quantum groups and non-commutative geometry. Centre de

Recherches Math�ematiques, Montr�eal.

[Mans 91] E. Mansfield. Di�erential Gr�obner bases. PhD. Thesis, University of Sydney,

Australia.

[Mora 86] T. Mora. Groebner bases for non-commutative polynomial rings. Proc. AAECC-3,

Lect. Notes Comp. Sc., Springer 229 (p. 353-362).

[Ol 90] F. Ollivier. Le probl�eme de l'identi�abilit�e structurelle globale: approche th�eo-

rique, m�ethodes e�ectives et bornes de complexit�e. PhD. Thesis,

�

Ecole Polytechnique,

France.

[Ore 33] O. Ore. Theory of non-commutative polynomials. Annals of Math. 34 (p 480-508).

[SZ 92] B. Salvy, P. Zimmermann. Gfun: a Maple package for the manipulation of gener-

ating and holonomiac functions in one variable. A.C.M. transactions on mathematical

software.

[Tak 92] N. Takayama. An approach to the zero recognition problem by Buchberger's al-

gorithm. Journal of Symbolic Computation 14, p 265-282.

[Tak 93] N. Takayama. Kan-library reference manual. Oct. 1993.

[VdH 93] J. van der Hoeven. Th�eorie des bases standard et s�eries Mahl�eriennes g�en�eralis�ees.

Unpublished D.E.A. report, Ecole Polytechnique, France.

[Zeil 82] D. Zeilberger. Sister Celine's technique and its generalizations. Journal of math-

ematical analysis and applications 82, p 114-145.

[Zeil 90] D. Zeilberger. A holonomic systems approach to special functions identities.

Journal of computational and applied mathematics 32, p 321-368.



Glossary

Conventions

f

i;j

= (f

i

)

j

index convention

6

E

;+

E

; � � � the implicit ordering, sum, etc. on a set E

E + F sum of two sets: E + F = fx + yjx 2 E; y 2 Fg. A similar notation

is often used for other operations

(x

i

)

i2I

sequence or family notation

Id

E

the identity mapping E ! E

E q F the disjoint union or direct sum of A and B

EnF the set elements in E which are not in F

E 4 F the set EnF [ FnE

jxj; jEj absolute value of x or cardinality of E

N the natural numbers including zero

N

k

the set f1; � � � ; kg

Z;Q;R;C the integers, rationals, reals and complex numbers

R

�

the set of invertible (resp. non zero) elements of a ring (resp. a �eld)

R

+

positive elements of an ordered ring

R

+

�

positive invertible elements of an ordered ring

Main notations

A a D-ring, 8

D the Lie algebra of derivations on A, 8

[�] D-ideal generated by a set �, 10

Q(A) quotient �eld or total ring of fractions of A, 10


 free linear D-operator algebra 
 = A[D], 10

� basis for A[D], 11

" evaluation mapping, 12

A e�ective D-ring of the form C[f

1

; � � � ; f

k

]=i, 16

G

A

Groebner basis for i, 16

D e�ective Lie-algebra of derivations on A, 16

m maximal ideal of A, which determines ", 16

AfFg free polynomial D-ring, 30

^

AfFg quasi-polynomial D-algebra, 31

f�g perfect D-ideal generated by a set �, 32

I : S; I : S

1

ideal quotient, 32
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66 GLOSSARY

v

P

leader of D-polynomial P , 36

I

P

initial of D-polynomial P , 37

S

P

initial of D-polynomial P , 37

� �nite subset of AfFgnA, 37

P part-rem � partial remainder of P after Ritt division by �, 37

P rem � remainder of P after Ritt division by �, 37

d

�

\pull-back" of d by �: d

�

� = �d, 57

v

�

(P ) extended leader of P , 60
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A

admissible, ordering 53

admissible ordering 36, 59

orderly 36

algebra

DD-operator 57

Groebner 57

quasi-commutative 54

reduction 53

of �nite type 54

algorithm, Boulier-Seidenberg-Ritt 47

algorithmic, quasi-polynomialD-K-algebra 45

autoreduced 39, 61

B

B-S-R 47

bad, initial point 18

Boulier-Seidenberg-Ritt, algorithm 47

bundle, tangent 11

C

characteristic set 39

coe�cient, leading 53

coherent

autoreduced set 42, 61

commutation, derivations and di�erence oper-

ators 57

connection 11

cotangent space 11

D

D-algebra 10

quasi-polynomial 31

D-algebraic

Laurent series 24

regular 24

power series 24

regular 23

D-boundary value problem 12

completely speci�ed 12

reduced 12

D-�eld, quotient 10

D-ideal 10

perfect 32

regular 45

D-module 10

morphism of 10

D-morphism 9

pure 9

D-operator algebra, free linear 10

D-polynomial, order 31

D-ring 8

�nite dimensional 8

free polynomial 30

local 10

morphism of 9

quasi-polynomial 31

quotient 10

D-system 13

e�ective, simple 15

local 14

reduced 14

restriction of domain 14

D-A-algebra 10

free polynomial 30

morphism of 10

D-A-module 10

DD-algebra

polynomial 58

quasi polynomial 59

DD-ideal, perfect 58

DD-operator 57

algebra 57

DD-ring 57

Ritt 58

decomposition 35

divisibility, ordering 54

E

e�ective

67



68 INDEX

D-system, simple 15

Noetherian ordering 57

Noetherian ring 56

Noetherian A-module 56

e�ective prime decomposition 48

elementary, reduced 25

equation, implied 35

equivalent system 35

evaluation, mapping 12

extended

leader 60

operator 60

variable 60

extension, universal 35

F

factorization algorithm 48

�nal segment 37

�nite dimensional, D-ring 8

free linear D-operator algebra 10

free polynomial D-ring 30

free polynomial D-A-algebra 30

G

geometry 11

good, initial point 18

Groebner, algebra 57

ground ring 30

I

ideal, regular 22

implied equation 35

initial 25, 36

�

g

-invariant 63

J

Jacobian, matrix 21

K

Kolchin's problem 49

L

Lazard, lemma 34

leader 36

extended 60

leading

coe�cient 53

monomial 53

leading variable 36

lemma

Lazard 34

Rosenfeld 43

Zorn 33

linear D-operator 10

order 10

local, D-system 14

local D-ring 10

locally trivial vector bundle 11

M

Mahlerian

operator 54, 58

manifold 11

mapping, evaluation 12

matrix

Jacobian 21

regular 21

q-matrix 55

metric 11

model 35

A-module

Noetherian 56

e�ective 56

monomial, leading 53

morphism of

D-module 10

D-ring 9

D-A-algebra 10

multiplier 37

N

Noetherian

A-module 56

e�ective 56

ordering, e�ective 57

ring 53

e�ective 56

O

operator

extended 60

Mahlerian 54, 58

shift 54, 58

word 11

q- 54, 58

q-operator 54, 58



INDEX 69

order

D-polynomial 31

linear D-operator 10

ordering

admissible 36, 53, 59

orderly 36

divisibility 54

Noetherian, e�ective 57

orderly admissible ordering 36

P

partial remainder 37

partially reduced 37

part rem 38

perfect D-ideal 32

perfect DD-ideal 58

plane, quantum 55

polynomial, reducible 25

polynomial DD-algebra 58

�-polynomial 42

principal 61

relative to v

�

61

prime component 32

prime decomposition 33, 42

e�ective 48

semi 48

principal �-polynomial 61

Pseudo-Groebner-basis 26

pure, morphism of D-rings 9

pure D-morphism 9

Q

quantum, plane 55

quasi-commutative, algebra 54

quasi-polynomial D-algebra 31

quasi-polynomial D-ring 31

quasi-polynomialD-K-algebra, algorithmic 45

quasi polynomial DD-algebra 59

quotient 37

quotient D-�eld 10

quotient D-ring 10

R

ranking 36

reduced 37

D-boundary value problem 12

D-system 14

elementary 25

partially 37

reduce 46

reducible, polynomial 25

reduction 25

algebra 53

of �nite type 54

regular

D-algebraic Laurent series 23

D-algebraic power series 23

ideal 22

matrix 21

regular D-ideal 45

regular system 45

remainder 37

partial 37

rem 38

restriction of domain 9

D-system 14

ring

Noetherian 53

e�ective 56

Ritt-Raudenbush, theorem 41

Ritt-Raudenbush D-ring 39

Ritt DD-ring 58

Rosenfeld, lemma 43

S

S-polynomial 26

Seidenberg's elimination algorithm 49

semi prime decomposition 48

semiregular system 45

separant 36

series

D-algebraic Laurent | 24

regular 24

D-algebraic power | 24

regular 23

shift operator 54, 58

shu�e 11, 59

simple, e�ective D-system 15

split 46

system

decomposition 35

equivalent 35

regular 45

semiregular 45

T

tangent bundle 11

theorem, Ritt-Raudenbush 41
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total D-ring of fractions 10

type, reduction algebra of �nite | 54

U

universal algebra 30

universal extension 35

V

variable, leading 36

variables 36

vector bundle 11

locally trivial 11

W

well-quasi-ordering 37

word operator 11

Z

zero equivalence 16

zero equiv 17, 18

Zorn, lemma 33


