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We study analytic properties of the Picard-Vessiot closure of ℂ(z). In particular, we
show that analytic functions in this closure do not admit natural boundaries in a strong
sense. As a consequence, certain differentially algebraic equations overℂ like the gen-
erating series of the partition function do not lie in the Picard-Vessiot closure of ℂ(z).

1. INTRODUCTION

Let K be a differential field of characteristic zero whose field of constants is algebraically
closed. We say that K is Picard-Vessiot closed if any differential equation

Lr f (r)+ ⋅ ⋅ ⋅ +L0 f =0

with L0,...,Lr∈K and Lr∉0 has a fundamental system of r linearly independent solutions
over the constant field of K. For any differential field K, and up to isomorphism, there
exists a smallest Picard-Vessiot closed extension Kpv⊇K that contains K and that has
the same constant field as K. We refer to [7] for the algebraic theory of Picard-Vessiot
extensions. In [4], elements of D∞(K)≔Kpv are called differentially definable functions
and algorithms are presented to compute with such functions.

Seidenberg's embedding theorem states that any countably generated differential
field can be embedded into a field of meromorphic functions on some domain [9, 6].
However, this domain can be quite small. If K=ℂ or K=ℂ(z), then the main goal of this
note is to show that elements of Kpv can bematerialized as analytic functions on suitable,
much larger, Riemann surfaces and to investigate analytic properties of these functions.

We first explore the kind of Riemann surfaces on which elements of Kpv are defined.
Intuitively, the only singularities that can occur are isolated ones, or accumulation points
of isolated singularities, or accumulation points of accumulation points of isolated singu-
larities, and so on. This leads to the notion of “recursive discrete ramifications” that will
be formally defined in section 2. For simplicity, we will restrict our attention to simply
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connected Riemann surfaces, but we note that it should not be hard to extend the theory
to arbitrary connected Riemann surfaces.

Let R be a simply connected Riemann surface. The recursively discretely ramified
Riemann surfaces above R give rise to an inductive system of analytic function spaces
on these surfaces. The inductive limit D(R) of these spaces is the space of dendromorphic
functions on R. If R ⊆ℂ, then we will show in section 3 that D(R) is a Picard-Vessiot
closed field. In particular, ℂpv⊆D(ℂ).

In section 4, wewill derive some consequences of the fact that the only singularities of
dendromorphic functions arise as recursive accumulation points of isolated singularities.
In particular, such singularities cannot give rise to natural boundaries in a strong sense.
As a corollary, we shall see that the generating series of the number of partitions of an
integer does not belong to ℂpv. This answers open question 4 from [1].

The set D∞(ℂ) is closed under composition [4]. In section 5, we shall show that this
also holds for D(ℂ) and a suitable class of “boundaryless” functions. We no not know
whether D(ℂ) is closed under functional inversion. Weierstrass ℘ functions are exam-
ples of differentially algebraic dendromorphic functions that are not in D∞(ℂ).

Acknowledgments. We are grateful to Gleb Pogudin for his helpful comments on a first
version of this note.

2. RECURSIVE DISCRETE RAMIFICATIONS

Let R be a connected Riemann surface. A Riemann surface above R is a pair (R′, 𝜋),
where R′ is another Riemann surface R′ and 𝜋:R′⟶R a holomorphic covering: for
every z∈R, there exists an open neighborhood U ⊆R and a countable set Σ such that
𝜋−1(U )=∐𝜎∈Σ V𝜎 and 𝜋|V𝜎:V𝜎⟶U is a homeomorphism for every 𝜎∈Σ.

We recall that there exists a Riemann surface (R̂, 𝜋̂) above R with the property that
for any other Riemann surface (R′, 𝜋′) above R, there exists a unique 𝜋: R̂⟶R′ with
𝜋̂=𝜋′∘𝜋 and such that (R̂,𝜋′) is a Riemann surface above R′. In particular, if (R′,𝜋′)
has the same universal property as (R̂, 𝜋̂), then 𝜋′ is a homeomorphism. In other words,
the space (R̂, 𝜋̂) is unique up to such a homeomorphism and we call it the covering space
of R. We also recall that the covering space of R̂ is (R̂, Id).

Assume now that R is a simply connected Riemann surface and consider a discrete
subset S ⊆R, i.e. every z∈S has an open neighborhood U ⊆R with U ∩S = {z}.
Let U ≔R∖S and consider the covering space (Û , 𝜋̂) of U . We define RS ≔ Û and
𝜋S ≔𝜄∘𝜋̂, where 𝜄:U ⟶R is the inclusion map, and call (RS ,𝜋S ) a discrete ramification
of R. We will also say that the map 𝜋S is a discrete ramification.

LEMMA 1. Consider two discrete ramifications (RS, 𝜋S) and (RX, 𝜋X) of R. Let S̃ =
𝜋X

−1(S ∖X )⊆RX and X̃ =𝜋S
−1(X ∖S )⊆RS . Then RS ∪X ≅(RS )X̃≅(RX )S̃ and,

after identification of RS ∪X , (RS )X̃, and (RX )S̃ via these isomorphisms, the following dia-
gram commutes

R

RX

𝜋X

RS
𝜋S

RS ∪X𝜋S̃

𝜋X̃
𝜋S ∪X
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Proof. Since ((RS )X̃, 𝜋S ∘𝜋X̃) is a Riemann surface above R ∖(S ∪X ), there exists
a unique 𝜋:RS ∪X ⟶(RS )X̃ with 𝜋S ∪X =𝜋S ∘𝜋X̃∘𝜋. Conversely, (RS ∪X ,𝜋X̃∘𝜋)
is a Riemann surface aboveRS , so there exists a unique𝜋′:(RS )X̃⟶RS ∪X with𝜋X̃=
𝜋X̃ ∘ 𝜋 ∘𝜋′. Next (RS ∪X , 𝜋′ ∘ 𝜋) is a Riemann surface above RS ∪X , so there exists
a unique map 𝜑:RS ∪X ⟶RS ∪X with 𝜋′∘𝜋=Id. This shows that 𝜋′ and 𝜋 are mutual
inverses and RS ∪X ≅(RS )X̃. Identifying RS ∪X and (RS )X̃ via this isomorphism,
we have 𝜋=𝜋′=Id and we already showed above that 𝜋S ∪X =𝜋S ∘𝜋X̃∘𝜋=𝜋S ∘𝜋X̃.
We conclude that the top triangle in the above diagram commutes. The isomorphism
RS ∪X ≅(RX )S̃ and the commutation of the bottom triangle are proved similarly. □

Nowconsider a sequence (Rk,𝜋k)1⩽k⩽hwithR0≔R and (Rk,𝜋k)=((Rk−1)Sk,𝜋Sk) for
k=1,.. .,h, where Sk is a discrete subset of Rk−1. Then we call (Rh,𝜋1∘ ⋅⋅⋅ ∘𝜋h) a recursive
discrete ramification ofR of height h. Wewill also say that themap𝜋1∘⋅⋅⋅∘𝜋h is a recursive
discrete ramification. If 𝜋,𝜋′ are two recursive discrete ramifications, then we will say
that 𝜋′ lies over 𝜋 if there exists a recursive discrete ramification 𝜋′′ with 𝜋′=𝜋∘𝜋′′.

LEMMA 2. Given two recursive discrete ramifications 𝜋 and 𝜋′ of respective heights h and h′,
there exists a recursive discrete ramification𝜋′′ of heightmax(h,h) that lies above both𝜋 and𝜋′.

Proof. Setting R0,0≔R, there exist sequences of discrete ramifications

R0,0 ⟵ R1,0 ⟵ ⋅⋅ ⋅ ⟵ Rh,0
R0,0 ⟵ R0,1 ⟵ ⋅⋅ ⋅ ⟵ R0,h′

whose compositions are 𝜋 and 𝜋′, respectively. Using hh′ applications of Lemma 1, we
can extend these sequences into a commutative diagram

R0,0 ⟵ R0,1 ⟵ ⋅⋅ ⋅ ⟵ R0,h′

⟶ ↖ ⟶ ↖ ↖ ⟶
R1,0 ⟵ R1,1 ⟵ ⋅⋅ ⋅ ⟵ R1,h′

⟶ ↖ ⟶ ↖ ↖ ⟶
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
⟶ ↖ ⟶ ↖ ↖ ⟶

Rh,0 ⟵ Rh,1 ⟵ ⋅⋅ ⋅ ⟵ Rh,h′

where all the arrows are discrete ramifications. The composite map Rh,h′⟶R0,0 is the
desired recursive ramification 𝜋′′. Since we can obtain it by following min(h,h′) diag-
onal arrows andmax(h,h′)−min(h,h′) horizontal or vertical arrows, the height of 𝜋′′ is
max(h,h′), as claimed. □

3. DENDROMORPHIC FUNCTIONS

Given a simply connected Riemann surface R, let A (R) denote the space of analytic
functions on R. For any discrete ramification (RS , 𝜋S ), we have a natural injection
of A (R) into A (R ∖S ) into RS . Consequently, any recursive discrete ramification
𝜋:R′⟶R induces a natural injection A (R)⟶A (R′). By Lemma 2, we know that
these injections form an inductive system. We denote the inductive limit of these injec-
tions by D(R) and call the elements of D(R) dendromorphic functions on R.
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Any dendromorphic function can concretely be represented as an analytic func-
tion f :R′⟶ℂ for some recursive discrete ramification 𝜋:R′⟶R. Now consider two
such representations f1:R1⟶ℂ and f2:R2⟶ℂ for recursive discrete ramifications
𝜋1:R1⟶R and 𝜋2:R2⟶R. Let 𝜋:R′⟶R be a recursive discrete ramification over
both 𝜋1 and 𝜋2, and let 𝜄1:A (R1)⟶A (R′) and 𝜄2:A (R2)⟶A (R′) be the natural
induced injections as above. Then f1 and f2 represent the same dendromorphic function
whenever 𝜄1( f1)=𝜄2( f2).

THEOREM 3. Let U be a simply connected open subset of ℂ. Then the space D(U ) is a Picard-
Vessiot closed field.

Proof. The space D(U ) is clearly a differential ring, since it is the inductive limit of dif-
ferential rings A (R). Consider a non-zero dendromorphic function, represented by an
analytic function f ∈A (R). Then the set S ⊆R of points where f vanishes is discrete,
so 1/ f is defined on R∖S , and 1/ f ∈A (RS ). Since A (RS ) embeds into D(U ), this
shows that D(U ) is a field. Let us next consider a differential equation

Lr(z) f (r)(z)+ ⋅ ⋅ ⋅ +L0(z) f (z)=0, (1)

where L0, . . . ,Lr∈D(U )with Lr≠0. By Lemma 2, we may represent L0, . . . ,Lr by analytic
functions in A (R) for some recursive discrete ramification 𝜋:R⟶U . The set S ⊆R of
points where Lr vanishes is discrete and it is classical that any solution of (1) at a point
z0∈R∖S can be analytically continued along any path on R that avoids S . Doing this
for a fundamental system of solutions at z0, we obtain a fundamental system of solutions
h1, . . . ,hr∈A (RS )↪←→D(U ). We conclude that D(U ) is Picard-Vessiot closed. □

4. BOUNDARYLESS FUNCTIONS

Let U be a simply connected open subset of ℂ and consider a dendromorphic func-
tion f ∈D(U ). We say that f is boundaryless if the following property holds for every
representation f ∈A (R), where 𝜋:R ⟶U is a recursive discrete ramification: given
a continuous path 𝜑:[0,1]⟶U with 𝜑(0)=𝜋(z0) for some z0∈R and 𝜀>0, there exists
a continuous path 𝜓:[0,1]⟶R with 𝜓(0)=z0 and

‖𝜋 ∘𝜓−𝜑‖≔ sup
t∈[0,1]

|𝜋(𝜓(t))−𝜑(t)|<𝜀.

THEOREM 4. Any dendromorphic function in D(U ) is boundaryless above U .

Proof. With f , 𝜋, z0, and 𝜀 as in the above definition of boundaryless, there exist discrete
ramifications 𝜋1:R1⟶R0, . . . ,𝜋h:Rh⟶Rh−1 with R0=U , Rh=R, and 𝜋=𝜋1∘ ⋅ ⋅ ⋅ ∘𝜋h.
We proceed by induction over h. The result is clear for h=0, so assume that h>0 and
let 𝜋′≔𝜋1 ∘ ⋅ ⋅ ⋅ ∘ 𝜋h−1. The induction hypothesis implies the existence of a continuous
path 𝜉:[0,1]⟶Rh−1with 𝜉(0)=𝜋h(z0) and ‖𝜋′∘𝜉−𝜑‖< /𝜀 2. Let S be the discrete subset
of Rh−1 such that Rh=(Rh−1)S .

Since im 𝜉 is compact, there exists an 𝜂< /𝜀 2 such that for every t∈[0, 1], the closed
ball B(𝜉(t), 𝜂)⊆Rh−1 with center 𝜉(t) and radius 𝜂 is an isomorphic lift of the ball
B(𝜋′(𝜉(t)), 𝜂). Then the thickened image K≔⋃t∈[0,1] (𝜉(t), 𝜂) of 𝜉 is also compact,
so the set S ∩K is finite, since S is discrete. Modulo taking a smaller 𝜂, we may
therefore assume that B(s, 𝜂)∩S ={s} and 𝜋h(z0)∉B(s, 𝜂) for all s∈S ∩K, and that
B(s, 𝜂)∩im 𝜉 =∅ whenever s∉im 𝜉 .
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Let 0< t1< ⋅ ⋅ ⋅ < tl⩽1 be the values of t∈[0, 1] for which 𝜉(t)∈S . For some suffi-
ciently small 𝛿>0 with 𝛿< t1, the intervals [ti− 𝛿, ti+𝛿] are pairwise disjoint and 𝜉(t)∈
B�𝜉(ti), /𝜂 2� whenever t∈[ti− 𝛿, ti+𝛿]∩[ti, 1]. Now consider any path 𝜉: [0, 1]⟶Rh−1
with the following properties:

• If t∈[0,1]∖⋃1⩽i⩽l [ti−𝛿, ti+𝛿], then 𝜉(t)=𝜉(t).

• If ti+𝛿<1, then 𝜉 restricted to [ti− 𝛿, ti+𝛿] is any path from 𝜉(ti− 𝛿) to 𝜉(ti+𝛿)
inside the punctured disk B�𝜉(ti), /𝜂 2�∖{𝜉(ti)}⊆Rh−1∖S .

• If tl+𝛿⩾1, then 𝜉(t)=𝜉(tl−𝛿) for all t∈[tl−𝛿,1].
By construction, we have im 𝜉 ⊆Rh−1∖S , 𝜉(0) =𝜋h(z0) and ‖𝜋′ ∘ 𝜉 −𝜋′ ∘ 𝜉‖⩽ 𝜂⩽ /𝜀 2.
Consequently, there exists a unique lift 𝜓:[0,1]⟶Rh with 𝜓(0)=z0 and 𝜋h∘𝜓=𝜉 . This
lift satisfies ‖𝜋 ∘𝜓−𝜋′∘𝜉‖⩽ /𝜀 2 and ‖𝜋 ∘𝜓−𝜑‖⩽‖𝜋∘𝜓−𝜋′∘𝜉‖+‖𝜋′∘𝜉−𝜑‖<𝜀. □

Recall that the generating function for the number pn of partitions of an integer n is
given by the explicit formula

p(z)=�
n⩾0

pnzn=�
k⩾1

1
1−zk

. (2)

It is well known [10, 5] that p(z) has a natural boundary on the unit circle and that it
satisfies an algebraic differential over ℂ. Consequently, if U contains the closed unit
disk, then p(z) cannot be boundaryless above U .

COROLLARY 5. If U contains the closed unit disk, then the function p(z) from (2) is not den-
dromorphic on U .

COROLLARY 6. The function p(z) does not belong to ℂpv=ℂ(z)pv.

5. COMPOSITION

Given a simply connected Riemann surface, we say that a local analytic function f defined
at z0∈R is dendromorphic on R if it lifts and extends into an analytic function on R′
for some recursive discrete ramification R′ of R.

THEOREM 7. Let f and g be two local analytic functions above 0, which are both dendromorphic.
If f (0)=0 (after the natural identification of 0 with its lift), then g∘ f is dendromorphic.

Proof. The result is clear if f =0, so assume that f is non-constant. There exist sequences
of discrete ramifications

R0 ⟵ R1 ⟵ ⋅⋅ ⋅ ⟵ Rh
R0′ ⟵ R1′ ⟵ ⋅ ⋅ ⋅ ⟵ Rh′′

of R0=R0′ =ℂ and distinguished points 0Rh and 0Rh′′ above 0 that we identify with 0,
such that the local functions f and g extend analytically to Rh and Rh′′ , respectively. Let
us show how to extend the first sequence of discrete ramifications into a sequence

R0 ⟵ R1 ⟵ ⋅⋅ ⋅ ⟵ Rh+h′ ,

where Rh+h′ again comes with a distinguished lift of 0, and such that f can be lifted into
an analytic map Rh+h′⟶Rh′′ that we will also denote by f . Consequently, the composi-
tion g∘ f will be naturally defined on Rh+h′.
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We proceed by induction and note that the inductive property is trivially satisfied
if h′ = 0. So assume that h′ > 0 and that Rh+h′−1 has been constructed. Let S ′ ⊆Rh′−1′
be such that Rh′′ = (Rh′−1′ )S ′. By the induction hypothesis, we may regard f as an ana-
lytic function from Rh+h′−1 into Rh′−1′ . Since f is non-constant, the set S ≔ f −1(S ′)
is discrete. We take Rh+h′≔(Rh+h′−1)S and also pick any lift 0Rh+h′ of 0Rh+h′−1 to be
our distinguished point above zero. By our choice of S , the function f :Rh+h′−1∖S ⟶
Rh′−1′ ∖S ′ has a unique lift f̃ :Rh+h′⟶Rh′′ with f̃ (0Rh+h′) = 0Rh′′ . This completes our
inductive construction of Rh+h′ and thereby also the proof. □

We say that a local analytic function f defined at z0 is boundaryless above an open set
U ⊆ℂ if for every path 𝜑: [0, 1]⟶U with 𝜑(0)= z0 and every 𝜀>0, there exists a path
𝜑̃: [0, 1]⟶U with 𝜑̃(0)= z0 and ‖𝜑̃−𝜑‖<𝜀, such that f can be continued analytically
along 𝜑̃. We simply say that f is boundaryless if it is boundaryless above ℂ.

THEOREM 8. Let f and g be two local analytic functions at z0=0, which are both boundaryless.
If f (0)=0 (after the natural identification of 0 with its lift), then g∘ f is again boundaryless.

Proof. The result is clear if f =0, so assume that f ≠0. Modulo replacing f by f 1/v( f ),
where v( f ) is the valuation of f at zero, we may assume without loss of generality
that f ′(0)≠0.

Let 𝜀>0 and consider a path 𝜑: [0, 1]⟶ℂ with 𝜑(0)= z0. Since f is boundaryless,
there exists a path 𝜑̃: [0, 1]⟶ℂ with 𝜑̃(0)=0 and ‖𝜑̃−𝜑‖< /𝜀 2, such that f ∘ 𝜑̃ is defined
on [0,1]. Since the image of 𝜑̃ is compact, it contains only a finite number of zeros of f ′.
By applying Theorem 4 to 1/ f ′, we may also arrange that f ′ does not vanish on im 𝜑̃.
Consequently, the local functional inverse f inv of f at zero can be continued analytically
on im 𝜑̃. Let 𝜂>0 with 𝜂< /𝜀 2 be such that f is defined on the compact set

K≔ �
t∈[0,1]

B(𝜑̃(t),𝜂)⊇im 𝜑̃

and such that f inv is defined on f (K). Let

𝜆≔ sup
z∈ f (K)

|( f inv)′(z)|.

Since g is boundaryless, there exists a path 𝜉: [0, 1]⟶ℂ with 𝜉(0)=0 and ‖𝜉 − f ∘ 𝜑̃‖<
𝜂/𝜆, such that g ∘ 𝜉 is defined on [0, 1]. But then ( f inv ∘ 𝜉)(0)=0, ‖ f inv ∘ 𝜉 − 𝜑̃‖<𝜂, and
(g∘ f )∘( f inv∘𝜉) is defined on [0,1]. We finally observe that ‖ f inv∘𝜉−𝜑‖<𝜂+ /𝜀 2<𝜀. □

It would be interesting to know whether D(ℂ) is also closed under functional inver-
sion. The functional inverse of any entire function is easily seen to be in D(ℂ). Any
Weierstrass elliptic function P is also in D(ℂ), since it is meromorphic onℂ. The func-
tion P is not holonomic, but it is the functional inverse of a holonomic function. In fact,
℘ is differentially algebraic, but not in ℂpv. This is due to the fact that ℂpv embeds into
any differentially valued field and Picard-Vessiot closed field 𝕋 of complex transseries
from [2], but such a field 𝕋 never contains ℘ (see also [8, Example 9]).

The functional inverse of p(z) from (2) might be a candidate for a dendromorphic
functionD(ℂ)whose functional inverse is not. We expect this functional inverse to have
a very dendromorphic-like structure, although it might necessitate a non-finite number
of discrete ramifications in the required global sense. Variations on the concept of den-
dromorphic functions might therefore be another topic for further investigations.
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