
Fast composition of numeric power series
∗

Joris van der Hoeven

CNRS, Département de Mathématiques
Bâtiment 425

Université Paris-Sud
91405 Orsay Cedex

France

Email: joris@texmacs.org
Web: http://www.math.u-psud.fr/~vdhoeven

December 9, 2008

Let f and g be two convergent power series in R[[z]] or C[[z]], whose first n terms are
given numerically with a λ n-bit precision for a fixed constant λ > 0. Assuming that
g0=0, we will show in this paper that the first n coefficients of f ◦ g can be computed
with a λn-bit precision in time Õ(n2). Using Newton iteration, a similar complexity
bound holds for power series reversion of g. Our method relies on fast multi-point
evaluation, which will be recalled and further detailed for numeric polynomials. We
also discuss relaxed variants of our algorithm.

Keywords: power series, composition, FFT, multi-point evaluation, algorithm

A.M.S. subject classification: 40-04, 42-04, 68W40

1. Introduction

Let C be an effective ring of coefficients (i.e. we have algorithms for performing the ring
operations). Let f , g ∈ C[[z]] be two power series with g0 = 0, so that the composition
h= f ◦ g∈C[[z]] is well-defined. We are interested in algorithms for fast composition: given
f0,� , fn−1 and g0,� , gn−1, how much arithmetic operations in C are needed in order to
compute h0,� , hn−1?

A first efficient general purpose algorithm of time complexity O(M(n) n logn
√

) was
given in [BK78, CT65, SS71]. Here M(n) denotes the complexity for the multiplication of
two polynomials of degrees <n and we have M(n)=O(n logn log logn) [CK91]. In the case
when g is polynomial [BK78] or algebraic [vdH02], then this complexity further reduces
to O(M(n) log n). For some very special series g, there even exist O(M(n)) algorithms;
see [BSS08] for an overview. In positive characteristic q > 0, right composition can also be
performed in quasi-linear time O((q/log q) M(n) logn) [Ber98].

In this paper, we are interested in efficient algorithms when C is a ring of numbers,
such as Z, Q or a ring of floating point numbers. In that case, we are interested in the bit
complexity of the composition, which means that we also have to take into account the bit
precision p of the underlying integer arithmetic. In particular, we will denote by I(p) the
time needed for multiplying two p-bit integers. We have I(p) = O(p log p log log p) [SS71]
and even I(p) = O(p log p log∗ p) [Für07], where log∗ satisfies log∗(exp n) = log∗ n + 1.
If all coefficients f0, � , fn−1, g0, � , gn−1 and h0, � , hn−1 correspond to p-bit numbers,
then we will search for a composition algorithm which runs in quasi-linear time Õ(n p) =
O(np (log (np))O(1)). Throughout the paper, we will assume that I(n)/n is increasing and
I(O(n)) =O(I(n)).

∗. This work was partially supported by the ANR Gecko project.

1

In section 2, we start by reviewing multiplication and division of polynomials with
numeric coefficients. Multiplication of two polynomials of degrees < n with p-bit coef-
ficients can be done in time O(I(n p)) using Kronecker’s substitution [Kro82]. Division
essentially requires a higher complexity O(I(n (p + n))) [Sch82], due to the fact that we
may lose n bits of precision when dividing by a polynomial of degree n. Nevertheless, we
will see that a best possible complexity can be achieved in terms of the output precision.

In section 3, we will study multi-point evaluation of a polynomial P = P0 + � +
Pn−1zn−1 at n points z0,� , zn−1 in the case of numeric coefficients. Adapting the classical
binary splitting algorithm [AHU74] of time complexity O(M(n) log n) to the numeric
context, we will prove the complexity bound O(I(n(p+n)) logn). In the case when p=o(n),
this complexity bound is again non-optimal in many cases. It would be nice if a bound of
the form O(I(np) logn) could be achieved and we will present some ideas in this direction
in section 3.2.

In section 4, we turn to the problem of numeric power series composition. Under the
assumptions p = O(n) and n = O(p), we first show that the computation of the first n

coefficients of a convergent power series is essentially equivalent to its evaluation at n

equally spaced points on a given circle (this fact was already used in [Sch82], although
not stated as explicitly). The composition problem can therefore be reduced to one fast
Fourier transform, one multi-point evaluation and one inverse Fourier transform, leading to
a complexity O(I((n+ p)2) log (n+ p)). We first prove this result under certain normaliza-
tion conditions for floating point coefficients. We next extend the result to different types
of numeric coefficients (including integers and rationals) and also consider non-convergent
series. The good complexity of these algorithms should not come as a full surprise: under
the analogy numbers↔ series, it was already known [BK77] how to compose multivariate
power series fast.

In the last section, we conclude by giving relaxed versions [vdH02] of our composition
algorithm. This allows for the resolution of functional equations for numeric power series,
involving composition. Unfortunately, we did not yet achieve a quasi-linear bound, even
though some progress has been made on the exponent. The special case of power series
reversion may be reduced more directly to composition, using Newton’s method [BK75].

2. Fundamental operations

Let V be a normed vector space. Given x, x̃ ∈ V and ε∈Q> = {c∈Q: c > 0}, we say that
x̃ is an ε-approximation of x if |x̃ − x| 6 ε. We will also say that x̃ is an approximation
of x with absolute error ε or an absolute precision of −⌈log2 ε⌉ bits. For polynomials
P = Pd zd + � + P0 ∈ C[z], we will use the norm |P | = |Pd| + � + |P0|, and notice that
|PQ|6 |P | |Q|. For vectors v =(v0,� , vn−1)∈Cn, we will use the norm |v |=max (|v0|,� ,

|vn−1|).

2.1. Multiplication

Given two polynomials P , Q∈Z[z] with degP <n, deg Q<n, |P |6 2p and |Q|6 2p, take
k = 2 p + ⌈log2 n⌉ + 2. Then the product P Q can be read off from the integer product
(PQ)(2k)=P (2k) Q(2k), since the coefficients of the result all fit into k bits. This method
is called Kronecker multiplication [Kro82] and its cost is bounded by O(I(np)). Clearly, the
method generalizes to the case when P ,Q∈Z[i][z] or P ,Q∈Z[i] [z]2Z. A direct consequence
for the computation with floating point polynomials is the following:

Lemma 1. Let A, B ∈C[z] be two polynomials with n =max (degA,degB) + 1. Given a,

b, p∈N with |A|6 2a and |B |6 2b, we may compute a 2−p-approximation of AB in time
O(I((p + a + b) n)).

2 Fast composition of numeric power series

Proof. Let k = p+ a+ b+2 and consider polynomials A′, B ′∈Z[i][z] with

|A′− 2k−a A| 6 1

|B ′− 2k−b B | 6 1

By assumption, the bit-sizes of the coefficients of A′ and B ′ are bounded by k. Therefore,
we may compute the exact product A′B ′ in time O(I(kn)), using Kronecker multiplication.
We have

|A B − 2a+b−2k A′B ′| 6 |A (B − 2b−k B ′)|+ |B (A− 2a−k A′)|+
|(A− 2a−k A′) (B − 2b−k B ′)|

6 |A| |B − 2b−k B ′|+ |B | |A− 2a−k A′|+
|A− 2a−k A′| |B − 2b−k B ′|

6 2a+b−k+1 + 2a+b−2k 6 2−p.

This proves that 2a+b−2kA′B ′ is a 2−p-approximation of AB. One may optionally truncate
the mantissas of the coefficients of 2a+b−2k A′B ′ so as to fit into p+ a + b bits. �

Remark 2. In order to increase readability, we will loosely use real and complex numbers
as inputs of our algorithms. In practice, such inputs are really floating point numbers whose
precisions should be clear from the context.

2.2. Inversion

Lemma 3. Let z0,� , zn−1∈C be such that |zi|6 1 for all i and

P =(1− z0 z)� (1− zn−1 z).

Let ϕ=P−1∈C[[z]] and Φ=ϕ0+� + ϕnzn. Let a,b∈N be such that |P |62a and |Φ|62b.
Given p∈N, we may compute a 2−p-approximation of Φ in time O(I((p+ a+ b) n)).

Proof. Assume that we are given an approximation Ψ of Φ. Then we may compute
a better approximation using the classical Newton iteration

Ψ̃= Ψ− (ΨP − 1) Ψ. (1)

If ΨP − 1 is “small”, then

Ψ̃P − 1= (ΨP − 1)− (ΨP − 1) ΨP =−(Ψ P − 1)2 (2)

is about twice as “small”. We will apply the Newton iteration for a polynomial Ψ whose
first n/2 coefficients are good approximations of Φ and the remaining coefficients less good
approximations.

Given a polynomial A∈C[z], we write

Alo = A0 +� + A⌈n/2⌉ z⌈n/2⌉

Ahi = A⌈n/2⌉+1 z⌈n/2⌉+1 +� + An zn

Alo+hi = Alo+ Ahi.

Assume that |(Ψ−Φ)lo|6 2−p and |(Ψ−Φ)hi|6 2−q, with p > q. Setting E = (Ψ P − 1)lo
and R =(ΨP − 1)hi, we have

|E | = |(ΨP − 1)lo|= |((Ψ−Φ)loP)lo|6 2a−p

|R| = |(ΨP − 1)hi|= |((Ψ−Φ)lo+hiP)hi|6 2a−q+1.

Joris van der Hoeven 3

The relation (2) yields

Ψ̃P − 1 =−E2− 2 E R +O(zn+1),

whence

|(Ψ̃P − 1)lo+hi| 6 |E | (|E |+ 2 |R|)6 2a−p (2a−p +2a−q+2) 6 22a−p−q+3

|(Ψ̃−Φ)lo+hi| 6 |(Ψ̃ P − 1)lo+hi| |Φ|6 22a+b−p−q+3.

When starting with Ψ = Ψlo, we may take q =−b. If p > 4 a + 3 b + 6 is sufficiently large,
then one Newton iteration yields |(Ψ̃−Φ)lo+hi|62−2a−b−3. Applying the Newton iteration
once more for q = 2 a + b + 3, we obtain |(Ψ̃ − Φ)lo+hi| 6 2−p. In view of lemma 1 and
the assumption I(O(n)) = O(I(n)), the cost of two such Newton iterations is bounded by
C I((p+ a + b)n) for a suitable constant C.

We are now in a position to prove the lemma. Since an increase of p by O(a+ b) leaves
the desired complexity bound unaltered, we may assume without loss of generality that
p>4a+3 b+6. Then the cost T (n) of the inversion at order n satisfies T (n)6T (⌈n/2⌉)+
C I((p+a+ b)n). We conclude that T (n)6C I((p+a+ b)n)+C I((p+a+ b) ⌈n/2⌉)+� 6

(2 + o(1)) C I((p+ a+ b) n). �

Remark 4. If only P is given, then a constant b for the bound |Φ| 6 2b is not known
a priori . Assume that |Ψ−Φlo|6 2−p and write Ψ P = 1 +∆. Then |∆lo|6 2a−p and

1
P

=
Ψ

P Ψ
=

Ψ
1 +∆

=
Ψ

1 + ∆lo+ ∆hi
+ O(zn+1) =

Ψ
1 +∆lo

(

1− ∆hi

1 +∆lo

)

+ O(zn+1).

Assuming p> a +3, it follows that

|Φ|6 2 |Ψ| (1 + |∆hi|).

We may thus take b = ⌈log2 (2 |Ψ| (1 + |∆hi|))⌉. Inversely, we have

2|Ψ| (1 + |∆hi|)6 2 |Ψ| (2 + |Ψ| |P |)6 2 |Φ|2 |P | (1 + o(1)).

In other words, our choice of b is at most a factor two worse than the optimal value.

Remark 5. The following alternative algorithm for the approximation of Φ is a variant
of the method described in [Sch82, Section 4]:

• Choose r > 0 sufficiently small and N sufficiently large, such that

|ϕN zN + ϕN+1 zN+1 +� |6 2−p rn

2 N
, for |z |6 r. (3)

• Evaluate ϕ = P−1 at r, � , r ωN−1 where ω = e2pi/N, using one direct FFT for the
polynomial P (r z) and N scalar inversions.

• Let Ψ(r z) be the polynomial of degree <N we recover when applying the inverse
FFT on ϕ(r), � , ϕ(r ωN−1). Then (3) implies |ϕ(r z) − Ψ(r z)| 6 2−p−1 rn.
Consequently, |Φ−Ψn zn −� −Ψ0|6 2−p.

Because of (5) below, we may always take r =1/8 and N =O(n), which gives a complexity
bound of the form O(I(p + n) n log n). In fact the FFT of a numeric p-bit polynomial of
degree n can be computed in time O(I(p n)) [Sch82, Section 3], which drops the bound
further down to O(I(n (p +n))).

In practice, we may also start with r≈ 1 and double 1− r until the computed approxi-
mation Ψ of Φ satisfies the equation P Ψ=1 up to a sufficient precision. This leads to the
same complexity bound O(I((p+ a + b)n)) as in the lemma.

4 Fast composition of numeric power series

It is not clear which of the two methods is most efficient: Newton’s method performs
a certain amount of recomputations, whereas the alternative method requires us to work
at a sufficiently large degree N >n for which (3) holds.

Given power series a ∈C[[z]] and b ∈R>[[z]], where R> = {x ∈R: x > 0}, we will say
that b majorates a and write aP b if |ai|6 bi for all coefficients of a. This notation applies
in particular to polynomials.

Lemma 6. For Ψ and p as in lemma 3, we may compute a 2−p-approximation of Ψ in
time O(I(n (p+n))).

Proof. Then P P (1 + z)n and ΦP
1

(1− z)n , whence

|P | 6 2n (4)

|Φ| 6

(

1

(1− z)n+1

)

n

=
(

2 n

n

)

6 4n. (5)

We conclude by applying lemma 3 for a =n and b =2 n. �

2.3. Euclidean division

The following result was first proved in [Sch82, Section 4].

Lemma 7. Let A,B ∈C[z] be polynomials with |A|6 1, degA < 2 n and

B =(z − z0)� (z − zn−1)

for z0,� , zn−1∈C with |zi|6 1 for all i. Consider the Euclidean division

A = QB +R,

with deg R < n. Given p ∈ N, we may compute a 2−p-approximations of Q and R in
time O(I(n (p+n))).

Proof. Setting z = 1/t and m =degA, we may write

A(z) = zm Â(t) = zm (Am +Am−1 t+� +A0 tm)

B(z) = zn B̂ (t) = zn (Bn +Bn−1 t+� +B0 tn).

Setting Q̂ = Â/B̂ ∈C[[t]], we then have

Q(z) = zm−n (Q̂0 + Q̂1 t+� + Q̂m−n tm−n)

R = A−Q B.

Our lemma now follows from lemmas 6 and 1. �

Remark 8. Assuming that |A|6 2a, |B | 6 2b, |Q|6 2q and |R| 6 2r, it is again possible
to prove the improved estimate O(I((p + a + b + q + r) n)). However, the proof relies on
Schönhage’s original method, using the same doubling strategy as in remark 5. Indeed,
when using Newton’s method for inverting B̂ , nice bounds |Q| 6 2q and |R| 6 2r do not

necessarily imply a nice bound for |Φ|, where Φ is the truncated inverse of B̂ . Using a

relaxed division algorithm [vdH02] for Â/B̂ , one may still achieve the improved bound,
up to an additional O(logn) overhead.

For applications where Euclidean division is used as a subalgorithm, it is necessary to
investigate the effect of small perturbations of the inputs A and B on the outputs Q and R.

Joris van der Hoeven 5

Lemma 9. Consider two Euclidean divisions

A = Q B +R

Ã = Q̃ B̃ + R̃ ,

with similar hypotheses as in lemma 7. Then

|R̃ −R|6 23n+1 |Ã −A|+25n+1 |A| |B̃ −B |.

Proof. With the notations of the proof of lemma 7, let Φ and Φ̃ be the truncations of

the power series B̂
−1 and B̃̂

−1
at order n. Let us first consider the case when B̃ =B, so that

Ã −A =(Q̃ − Q) B + R̃−R.

Then |Q̃ − Q|6 |Ã −A| |Φ| and

|R̃ −R|6 |Ã −A| (1 + |B | |Φ|).

Let us next consider the case when Ã = A. Then

1

B̃̂
− 1

B̂
=

B̃
ˆ − B̂

B̂ B̃̂
,

whence |Q̃ −Q|6 |A| |B̃ −B | |Φ| |Φ̃| and

|R̃ −R|= |Q (B − B̃) + B̃ (Q̃ − Q)|6 |A| |Φ| |B̃ −B | (1+ |B̃ | |Φ̃|).
In general, the successive application of the second and the first case yield

|R̃ −R|6 (|Ã −A|+ |A| |Φ| |B̃ −B |) (1 + |B̃ | |Φ̃|)

We have also seen in the proof of lemma 6 that |B̃ |6 2n, |Φ|6 4n and |Φ̃|6 4n. �

Lemma 10. Let A and B be as in lemma 7, while allowing for the case when m=degA>

2 n. Then

|R|6
(

4 m

n

)n

|A|.

Proof. With the notations from the proof of lemma 7, we have

Â P |A| (1− t)−1

B̂
−1

P (1− t)−n

Q̂ P |A| (1− t)−n−1,

whence

|Q|6 |A|
(

n+ m

n

)

and

|R|6 |B | |Q|+ |A|6
(

2n
(

n+ m

n

)

+1
)

|A|6
(

4 m

n

)n

|A|.
�

3. Multi-point evaluation

Consider a complex polynomial

P =P0 +� + Pn−1 zn−1∈C[z],

6 Fast composition of numeric power series

which has been normalized so that |P |6 1. Let

z0,� , zn−1∈C

be pairwise distinct points with |zi| 6 1 for all i. The problem of multi-point evaluation
is to find an efficient algorithm for the simultaneous evaluations of P at z0, � , zn−1.
A 2−p-approximation of P (zi) will also be called a 2−p-evaluation of P at zi. In order to
simplify our exposition, we will assume that n=2l is a power of two; this assumption only
affects the complexity analysis by a constant factor.

3.1. The binary splitting algorithm

An efficient and classical algorithm for multi-point evaluation [AHU74] relies on binary
splitting: let Qlo = (z − z0) � (z − zn/2−1), Qhi = (z − zn/2) � (z − zn−1). Denoting by
AmodB the remainder of the Euclidean division of A by B, we compute

Plo = P mod Qlo

Phi = P mod Qhi

Then

P (zi) =

{

Plo(zi), for 0 6 i < n/2
Phi(zi), for n/2 6 i <n

In other words, we have reduced the original problem to two problems of the same type,
but of size n/2.

For the above algorithm to be fast, the partial products Qlo and Qhi are also computed
using binary splitting, but in the opposite direction. In order to avoid recomputations, the
partial products are stored in a binary tree of depth h = log2 n. At depth k, we have 2k

nodes, labeled by polynomials Qh−k,0,� , Qh−k,2h−k−1, where

Qk,i =(z − z2ki)� (z − z2k(i+1)−1).

For instance, for n=4, the tree is given by

Q2,0

Q1,0

Q0,0 Q0,1

Q1,1

Q0,2 Q0,3
We have

Q0,i = z − zi

Qk,i = Qk−1,2i Qk−1,2i+1 (6)

For a given polynomial P of degree < n we may now compute

Ph,0 = P

Pk,i = Pk+1,⌊i/2⌋mod Qk,i (7)

This second computation can be carried out in place. At the last stage, we obtain

P0,i = P (zi).

More generally,

Pk,i =P mod Qk,i, (8)

Joris van der Hoeven 7

for all k and i.

Lemma 11. Let P ∈ C[z] and z0, � , zn−1 ∈ C be such that |P | 6 1, deg P < n and
|zi| 6 1 for all i. Given p ∈ N, we may compute 2−p-evaluate P at z0, � , zn−1 in time
O(I(n (p+n)) logn).

Proof. In the algorithm, let q = p + 5 n + 4 = p + O(n) and assume that all multiplica-
tions (6) and all euclidean divisions (7) are computed up to an absolute error 6 2−q. Let
P̃k,i and Q̃k,i denote the results of these approximate computations. We have

|Q̃k,i − Qk,i|6 |Q̃k−1,2i| |Q̃k−1,2i+1− Qk−1,2i+1|+ |Qk−1,2i+1| |Q̃k−1,2i − Qk−1,2i|+2−q.

It follows by induction that

|Qk,i| 6 22k

|Q̃k,i| 6 22k+1 (9)

|Q̃k,i − Qk,i| 6 22k+2−q. (10)

From (8) and lemma 10, we have

|Pk,i|6
(

4 n

2k

)2k

6 4n. (11)

In view of (7) and lemma 9, we also have

|P̃k,i −Pk,i|6 23·2k+1 |P̃k+1,⌊i/2⌋−Pk+1,⌊i/2⌋|+ 25·2k+1 |Pk+1,⌊i/2⌋| |Q̃k,i − Qk,i|+ 2−q.

By induction over h− k, we obtain

|P̃k,i −Pk,i|6 (h− k) 25n+4−q.

Using our choice of q, we conclude that

|P̃0,i −P (zi)|6 2−p (0 6 i <n).

Let us now estimate the complexity of the algorithm. In view of (9) and lemma 1, we
may compute Q̃k,i in time O(I(2k (q + O(2k)))) = O(I(2k (q + n))). In view of (11) and
lemma 7, the computation of P̃k,i takes a time O(I(2k (q + 2 n + 2k))) = O(I(2k (q + n))).

For fixed k, the computation of all Q̃k,i and P̃k,i thus takes a time O(I(2k (q +n))n 2−k)=
O(I(n (q + n))). Since there are h = log2 n stages, the time complexity of the complete
algorithm is bounded by O(I(n (q + n)) logn) = O(I(n (p+ n)) logn). �

3.2. Low precision methods

If p = o(n), then the bound from lemma 11 reduces to O(I(n2) log n), which is not very

satisfactory. Indeed, in the very special case when zj =e2pij/n for 06 j <n, we may achieve
the complexity O(I(p) n log n), by using the fast Fourier transform. In general, we may
strive for a bound of the form O(I(p n) log n). We have not yet been able to obtain this
complexity, but we will now describe some partial results in this direction. Throughout
the section, we assume that p= o(n).

Proposition 12. With the notations of proposition 11, assume that |z0|=� = |zn−1|=1.
Then we may 2−p-evaluate P at z0,� , zn−1 in time O(I(p log3 n) pn).

8 Fast composition of numeric power series

Proof. Let N = 4 n, D = p + 2 and ωj = e2pij/N for all 0 6 j < N . Each of the points zk

is at the distance of at most 1/(2n) to one of the points ωj. We will compute P (zk) using
a Taylor series expansion of P at ωj. We first observe that

|P (i)(ωj)|
i!

6

(

n

i

)

|P |6
(

n

i

)

6ni. (12)

Using D fast Fourier transforms of size N , we first compute ni 2−D-approximations of
P (i)(ωj) for all i <D and j < N . This can be done in time

O(I(D logn) (D logn) N logN)= O(I(p log3 n) pn).

From (12) it follows that
∣

∣

∣

∣

∣

P (zk)−
∑

i<D

P (i)(ωj)

i!
(zk −ωj)

i

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

i>D

P (i)(ωj)

i!
(zk −ωj)

i

∣

∣

∣

∣

∣

6
∑

i>D

2−i 6 21−D 6 2−p−1.

The 2−p-evaluation of n sums of the form
∑

i<D

P (i)(ωj)

i!
(zk−ωj)

i using Horner’s rule takes
a time O(n I(p logn) D) =O(I(p logn) pn). �

Proposition 13. With the notations of proposition 11, we may 2−p-evaluate P at z0,� ,

zn−1 in time O(I(n3/2 p3/2 log3 n)).

Proof. The proof of the above proposition adapts to the case when 1− 1

n
< |zk|6 1 for

all k. Let us now subdivide the unit disk into T annuli 1− t + 1

n
< |z |61− t

n
and the disk of

radius 1− T

n
. For a fixed annulus, we may evaluate P at each of the zk inside the annulus

in time O(I(p log3 n) pn). For |z |6 1− T

n
, we have

∣

∣

∣

∣

∣

∑

i>V

Pi z
i

∣

∣

∣

∣

∣

6
n

T

(

1− T

n

)V

6 2−p−1,

provided that T V ≫ n p log 2. Consequently, taking V > p, we may evaluate P at the
remaining points in time O((n/V) I(V 2) log V). Under the condition T V ≫ n p log 2, and
up to logarithmic terms, the sum

T I(p log3 n) pn + (n/V) I(V 2) logV

becomes minimal for T =O(n1/2 p−1/2) and V =O(n1/2 p3/2). �

Proposition 14. With the notations of proposition 11, assume that there exists an ω∈C

with |ω |6 1 and |zi − ω |6 1/(2 n) for all i. Then we may 2−p-evaluate P at z0,� , zn−1

in time O(I(n p logn)).

Proof. We will only provide a sketch of the proof. As in the proof of proposition 12, we
first compute the Taylor series expansion of P at ω up to order D= p+2. This task can be
performed in time O(I(n (p+ p logn))) via a division of P by (z−ω)D followed by a Taylor
shift. We next evaluate this expansion at zi−ω for all i. According to proposition 16, this
can be done in time O(I(n p) log p). �

Proposition 15. Let c > 0 be a fixed constant. With the notations of proposition 11,
assume that |zj − e2pij/n|< c/n for all j. Then we may 2−p-evaluate P at z0,� , zn−1 in

time O(I(p+ log2 n) n log2 n).

Joris van der Hoeven 9

Proof. Again, we will only provide a sketch of the proof. The main idea is to use the binary
splitting algorithm from the previous subsection. Let ω = e2pi/n. If zi = ωi for all i, then

we obtain Qk,i = z2k −ωi2k

and the algorithm reduces to a fast Fourier transform. If each
zi is a slight perturbation of ωi, then Qk,i becomes a slight perturbation of z2k −ωi2k

. In

particular, the Taylor coefficients (Q̂k,i
−1)N of Q̂k,i

−1 only have a polynomial growth O(NO(c))
in N . Consequently, the Euclidean division by Qk,i accounts for a loss of at most O(logn)
instead of O(n) bits of precision. The binary splitting algorithm can therefore be carried
out using a fixed precision of p+O(log2 n) bits. �

Sometimes, it is possible to decompose n = n1 + � + nk, such that a fast multi-point
evaluation algorithm is available for each set of points {zn1+�+ni−1,� , zn1+�+ni−1}. This
leads to the question of evaluating P at m < n points.

Proposition 16. Let P = P0 + � + Pn−1 zn−1 ∈ C[z] and z1, � , zm ∈ C be such that
m < n, |P |6 1 and |zi|6 1 for all i. Let E(m, p) be the time needed in order to compute

2−p-evaluations of polynomials Q=Q0+� +Qm−1zm−1∈C[z] with |Q|61 at z0,� ,zm−1.
Then 2−p-evaluations of P at z0,� , zm−1 can be computed in time O(E(m, p)n/p+ I(p)n).

Proof. Without loss of generality, we may assume that m and n are powers of two. We
decompose P as follows:

P = Π0 + Π1 zm +� +Πn/m−1 z(n/m−1)m

Πi = Pim +� + P(i+1)m−1 zm−1.

We may compute 2−p−2-evaluations of the Πi at z0,� , zm−1 in time O(E(m, p)n/m). We
may also 2−p−2-approximate z0

m,� , zn/m−1
m in time O(I(p) n logm/m) = O(I(p) n), using

binary powering. Using Horner’s rule, we may finally 2−p-evaluate

P (zi) =Π0(zi) +Π1(zi) zi
m +� + Πn/m−1(zi) (zi

m)n/m−1

for i= 0,� , m− 1 in time O(m I(p) n/m) =O(I(p) n). �

4. Composition of power series

4.1. Evaluation of truncated power series

Let f = f0+ f1z +� be a convergent power series with radius of convergence ρf >0. Given
R < ρf, we denote

‖f ‖R = sup
|z |6R

|f(z)|.
Using Cauchy’s formula, we have

|fn|=
∣

∣

∣

∣

∣

1
2 p i

∫

|z |=R

f(t) dt

tn+1

∣

∣

∣

∣

∣

6
‖f ‖R

Rn
, (13)

For z ∈C with |z |6 r <R, it follows that

|fn zn + fn+1 zn+1 +� |6 ‖f ‖R

1− r/R

(

r

R

)n
. (14)

Let T1(n, p) be the time needed to compute 2−p-approximations of f0, � , fn−1. Given
r <R, let T2(n, p) be the time needed to 2−p-evaluate f at r e2pik/n for k ∈{0,� , n− 1}.

10 Fast composition of numeric power series

Lemma 17.

a) We have T2(n, p) =T1(O(p), O(p))+ O(n I(p) log p).

b) We have T1(n, p) =T2(O(p), O(p))+ O(I(p) p log p+n).

Proof. We first consider the case when r =1. Let N be the smallest power of two with

N >
p+ log2

(

2 ‖f ‖R

1− 1/R

)

logR
. (15)

For all |z |6 1, the bound (14) implies

|f(z)− f0−� − fN−1 zN−1|6 2−p−1. (16)

The computation of 2−p−log2 N−2-approximations of f0, � , fN−1 takes a time T1(N,

p + O(log p)). The 2−p−1-evaluation of f0 + � + fN−1 zN−1 at N primitive roots of
unity can be done using ⌈n/N ⌉ fast Fourier transforms of size N . This requires a time
O(n I(p) log p). If r = 1, we thus obtain the bound

T2(n, p) =T1(O(p), p+O(log p)) +O(n I(p) log p).

The general case is reduced to the case r=1 via a change of variables z =r z ′. This requires
computations to be carried out with an additional precision of −N log2 r = O(N) = O(p)
bits, leading to the complexity bound in (a).

As to (b), we again start with the case when r = 1. Taking N to be the smallest
power of two with (15), we again obtain (16) for all |z |6 1. If N <n, then we also notice
that |fi| 6 2−p−1 for all i > N . We may 2−p−2-evaluate f0 + � + fN−1 zN−1 at the
primitive N -th roots of unity in time T2(N, p + 2). We next retrieve the coefficients of
the polynomialf0 +� + fN−1 zN−1 up to precision 6 2−p−1 using one inverse fast Fourier
transform of size N . In the case when r = 1, we thus obtain

T1(n, p) =T2(O(p), p+ O(1)) + O(I(p) p log p+n).

In general, replacing p by p+ O(N)= O(p) yields the bound in (b). �

4.2. Composition of power series

Let us now consider two convergent power series f , g ∈C[[z]] with g0 = 0, ‖f ‖1 6 1 and
‖g‖1 6 1. Then h = f ◦ g is well-defined and ‖h‖1 6 1. In fact, the series f , g and h still
converge on a compact disc of radius R> 1. Let B ∈R> be such that ‖f ‖R 6B, ‖g‖R 6B

and ‖h‖R 6B. Then (14) becomes

|fN zN + fN+1 zN+1 +� |6 B

1− 1/R
R−N (17)

and similarly for g and h. In view of lemma 17, it is natural to use an evaluation-interpo-
lation scheme for the computation of 2−p-approximations of h0,� , hn−1.

For a sufficiently large N and ω = e2pi/N, we evaluate g on the N -th roots of unity
1, ω, � , ωN−1 using one direct FFT on g0, � , gN−1. Using the fact that |g(ωi)| 6 1 for
all i and the algorithm for multi-point evaluation from the previous section, we next
compute h(1), � , h(ωN−1). Using one inverse FFT, we finally recover the coefficients of
the polynomial H =H0 +� +HN−1 zN−1 with H(ωi)=h(ωi) for all i <N . Using the tail
bound (17) for f , g, h and a sufficiently large N = O(p), the differences |Hi − hi| can be
made as small as needed. More precisely, the algorithm goes as follows:

Algorithm compose(f , g, n, p)

Joris van der Hoeven 11

Input: f , g ∈C[[z]] with g0 =0 and n, p∈N,
such that we have bounds ‖f ‖1 6 1, ‖g‖1 6 1 and
‖f ‖R 6 B, ‖g‖R 6B and ‖f ◦ g‖R 6B for certain B, R > 1

Output: 2−p-approximations for (f ◦ g)0,� , (f ◦ g)n−1

Step 1. [Determine auxiliary degree and precision]

Let N ∈ 2N be smallest with N >

(

p+ 2+ log2
B n

1− 1/R

)

/log2 R and N > n

Let q4 N log2 R− log2
B

R − 1
, so that 2−q =

B R−N

1− 1/R

Step 2. [Evaluate g on roots of unity 1,� , ωN−1]
Let ω4 e2pi/N

Compute a 2−q-approximation (z0,� , zN−1)≈FFTω(g0,� , gN−1) with |zi|6 1

We will show that |zi − g(ωi)|6 21−q for all i

Step 3. [Evaluate f on g(1),� , g(ωN−1)]
Let F 4 f0 +� + fN−1 zN−1

Compute a 2−q-approximation (v0,� , vN−1)≈ (F (z0),� , F (zN−1))

We will show that |vi − f(g(ωi))|6 (2 +2 n) 2−q for all i

Step 4. [Interpolate]
Compute a 2−q-approximation (u0,� , uN−1)≈FFTω

−1(v0,� , vN−1)
We will show that |ui − (f ◦ g)i|6 (4 +2 n) 2−q for all i <n

Return (u0,� , un−1)

Theorem 18. Let f , g, h∈C[[z]] be power series with g0 = 0 and h = f ◦ g. Assume that
‖f ‖161 and ‖g‖161. Given p∈N, we may compute 2−p-approximations for h0,� , hn−1

(as a function of f0,� , fn−1 and g0,� , gn−1) in time O(I((n+ p)2) log(n + p)).

Proof. Let us first prove the correctness of the algorithm. The choice of q and the tail
bound (17) for g imply |gN zN + gN+1 zN+1 +� |6 2−q. This ensures that we indeed have
|zi − g(ωi)|6 21−q for all i at the end of step 2. For i < N , we also have

|vi − h(ωi)| 6 |vi −F (zi)|+ |F (zi)−F (g(ωi))|+ |F (g(ωi))− f(g(ωi))|

6 2−q + ‖F ′‖1 |zi − g(ωi)|+ ‖f ‖R R−N

1− 1/R

6 (2 +2 n) 2−q.

This proves the bound stated at the end of step 3. As to the last bound, let H =h0 +� +
hN−1 zN−1. Then |H(ωi)− h(ωi)|6 2−q and (h0,� , hN−1) =FFTω

−1(H(1),� , H(ωN−1)).
Using the fact that |FFTω

−1(a)|6 |a| for all vectors a of length N , we obtain

|ui − hi| 6 |FFTω
−1(H(1)− h(1),� , H(ωn−1)− h(ωn−1))i|+

|FFTω
−1(v0− h(1),� , vn−1− h(ωn−1))i|+

|ui −FFTω
−1(v0,� , vn−1)i|

6 (4 +4 n) 2−q.

This proves the second bound. Our choice of N implies the correctness of the algorithm.
As to the complexity bound, the FFT transform in step 2 can be done in time

O(I(q) N logN)= O(I(p +O(logN)) N logN) = O(I(N (p+N)) logN).

By lemma 11, the multi-point evaluation in step 3 can be performed in time

O(I(N (q +N)) logN) = O(I(N (p+O(N))) logN) =O(I(N (p +N)) logN).

12 Fast composition of numeric power series

The inverse FFT transform in step 4 can be performed within the same time as a direct
FFT transform. This leads to the overall complexity bound

O (I(N (p+N)) logN) = O(I((n + p)2) log(n+ p)),

since N = O(n+ p). �

4.3. Variants of the main theorem

Corollary 19. Let f , g, h∈C[[z]] be convergent power series with g0 = 0 and h = f ◦ g.

Given p∈N, we may compute 2−p-approximations for h0,� , hn−1(as a function of f0,� ,

fn−1 and g0,� , gn−1) in time O(I((n+ p)2) log(n + p)).

Proof. Let R > 0 be sufficiently small such that S = ‖g‖R < +∞ and T = ‖f ‖S < +∞.
Consider the series G(z) = g(Rz)/S and F (z)= f(S z)/T , so that

(f ◦ g)(z) = T (F ◦G)(z/R).

Let k = ⌈p−n log2min (1,R)+ log2max (T ,1)+1⌉. By the theorem, we may compute 2−k-
approximations H̃0,� , H̃n−1 of (F ◦G)0,� , (F ◦G)n−1 in time O(I((n+k)2) log(n+k))=
O(I((n + p)2) log(n+ p)). Using O(n) additional k-bit multiplications, we may compute

h̃0 = T H̃0,� , h̃n−1 = T
H̃n−1

Rn−1

with |h̃i − hi| 6 21−k T/min (1, R)n−1 6 2−p for all i. This can again be done in time
O(n I(k)) =O(I((n+ p)2)). �

Corollary 20. Let f , g ∈ C[[z]] be convergent power series with g0 = 0, such that
h = f ◦ g ∈N[[z]] is an ordinary generating function. Then we may compute h0, � , hn−1

(as a function of f0,� , fn−1 and g0,� , gn−1) in time O(I(n2) logn).

Proof. It suffices to take p =2 in corollary 19 and round the results. �

Corollary 21. Let f , g ∈ C[[z]] be convergent power series with g0 = 0 such that

h= f ◦ g =
∑

n∈N

hn

n!
zn is an exponential generating function. Then we may compute h0,� ,

hn−1∈N (as a function of f0,� , fn−1 and g0,� , gn−1) in time O(I(n2 log2 n)).

Proof. Applying corollary 19 for p = ⌈log2 n!⌉ + 2 = O(n log n), we obtain (2 n!)−1-
approximations ϕ̃0, � , ϕ̃n−1 of h0,� , hn−1/(n− 1)! in time O(I(n2 log2 n)). Using O(n)

additional p-bit multiplications of total cost O(n I(n log n)) = O(I(n2 log n)), we may
compute

h̃0 =0! ϕ̃0,� , h̃n−1 =(n− 1)! ϕ̃n−1,

with |h̃i−hi|< 1

2
for all i. The hi are obtained by rounding the h̃i to the nearest integers. �

Corollary 22. Let f , g, h ∈ C[[z]] be power series with g0 = 0 and h = f ◦ g. Let un

and vn be positive increasing functions with |fn| 6 2un and |gn| 6 2nvn. Given p ∈N, we
may compute 2−p-approximations for h0,� , hn−1 (as a function of f0,� , fn−1 and g0,� ,

gn−1) in time O(I((n+un +n vn + p)2) log(n+un +n vn + p)).

Proof. Without loss of generality, we may assume that fi = gi =0 for i>n. In the proof
of corollary 19, we may therefore choose R=2−vn−1, which yields S 6 2 and T 6 2un+n. It
follows that k = ⌈p−n log2min (1, R) + log2max (T , 1)+1⌉6 p+un +nvn +O(n) and we
conclude in a similar way as in the proof of corollary 19. �

Joris van der Hoeven 13

5. Relaxed composition

Let f , g, h∈C[[z]] be such that g0=0 and h= f ◦ g. Given an order n∈N, we have shown
in the previous section how to compute h0,� , hn−1 efficiently, as a function of f0,� , fn−1

and g0, � , gn−1. Since hi only depends on f0, � , fi and g0, � , gi, we may consider the
relaxed composition problem in which f0, � , fn−1 and g0, � , gi are given progressively,
and where we require each coefficient hi to be output as soon as f0,� , fi and g0,� , gi are
known. Similarly, in the semi-relaxed composition problem, the coefficients g0, � , gn−1

are known beforehand, but f0, � , fn−1 are given progressively. In that case, we require
hi to be output as soon as f0,� , fi are known. The relaxed and semi-relaxed settings are
particularly useful for the resolution of implicit equations involving functional composition.
We refer to [vdH02, vdH07] for more details about relaxed computations with power series.

5.1. Semi-relaxed composition

Let n ∈ 2N. In this section, we consider the problem of computing the semi-relaxed com-
position h= f ◦ g up to order n. If n=1, then we simply have h0= f0. For n>2, we denote

flo = f0 +� + fn/2−1 zn/2−1

fhi = fn/2 +� + fn−1 zn/2−1,

and similarly for g and h. Our algorithm relies on the identity

h= flo◦ g +(fhi◦ g) (g/z)n/2 zn/2 + O(zn). (18)

The first part hlo of h is computed recursively, using one semi-relaxed composition at
order n/2:

hlo= flo◦ glo+O(zn/2).

As soon as flo is completely known, we compute flo ◦ g at order n/2, using one of the
algorithms for composition from the previous section. We also compute (g/z)n/2 at order
n/2 using binary powering. We are now allowed to recursively compute the second part
hhi of h, using

hhi=(flo◦ g)hi+(fhi◦ glo) (g/z)n/2 + O(zn/2).

This involves one semi-relaxed composition fhi ◦ glo at order n/2 and one semi-relaxed
multiplication (fhi◦ glo) (g/z)n/2 at order n/2.

Assume now that |fi| 6 1 for all i and ‖g‖1 6 1. Consider the problem of computing
2−p-approximations of h0,� , hn−1. In our algorithm, it will suffice to conduct the various
computations with the following precisions:

• We recursively compute 2−p-approximations of (flo◦ glo)0,� , (flo◦ glo)n/2−1.

• We compute 2−p−1-approximations of (flo◦ g)n/2,� , (flo◦ g)n−1.

• We recursively compute 2−p−n−2-approximations of (fhi◦ glo)0,� , (fhi◦ glo)n/2−1.

• We compute 2−p−⌈log2 n⌉−2-approximations of the coefficients of ((g/z)n/2)lo.

• We compute 2−p−1-approximations of the coefficients of ((fhi◦ g) (g/z)n/2)lo.

Let us show that this indeed enables us to obtain the desired 2−p-approximations for h0,� ,

hn/2−1. This is clear for the coefficients of hlo. As to the second half, we have the bounds

‖fhi‖1 6 (n/2) |fhi|6n/2

‖fhi◦ g‖1 6 ‖fhi‖‖g‖1
6 n/2

|(fhi◦ g)lo| 6 ‖fhi◦ g‖1 6n/2

14 Fast composition of numeric power series

and

(glo/z)n/2
P

1

(1− z)n/2

|((glo/z)n/2)lo| 6 2n.

These bounds justify the extra number of bits needed in the computations of (g/z)n/2 and
(fhi◦ glo)lo respectively.

Let us finally analyze the complexity of the above algorithm. We will denote by M(n, p)
the complexity of multiplying two p-bit integer polynomials of degrees < n. Using Kro-
necker multiplication, we have M(n, p) = O(I(n p)). We denote by Msemi(n, p) the
cost of a semi-relaxed multiplication of two p-bit integer polynomials of degrees < n.
Using the fast relaxed multiplication algorithm from [vdH02], we have Msemi(n, p) =
O(M(n, p) log n). We will denote by C(n, p) and Csemi(n, p) the cost of classical and
semi-relaxed composition for f , g, n and p as described above. By theorem 18, we have
C(n, p) = O (I((n + p)2) log(n + p)). The complexity of the semi-relaxed composi-
tion satisfies the following recursive bound:

Csemi(n, p) 6 Csemi(n/2, p+1) +Csemi(n/2, p+ n+2) +C(n, p) +

M(n, p+ n+2) log2 n+ Msemi(n/2, p +n+ 2) + O(n (p+ n))

6 2Csemi(n/2, p +n+ 2)+ C(n, p)+ O(I(n (p+ n)) logn).

Using theorem 18, it follows by induction that

Csemi(n, p) 6 2k Csemi(n 2−k, p +O(n)) +O(2k I((n + p)2) log(n+ p)). (19)

From [BK75, vdH02], we also have

Csemi(n, p) =O(I(n (p +n)) n log3 n
√

)). (20)

Applying (19) for 2k ≈n1/5 and (20) on Csemi(n 2−k, p+O(n)), we obtain

Csemi(n, p) = O(n1/5
I((n+ p)2) log(n+ p)) +O(I(n4/5 (n+ p)) n2/5 log3/2 n))

= O(I((n+ p)11/5) log3/2 (n+ p)).

We have proved the following theorem:

Theorem 23. Let f , g, h ∈ C[[z]] be power series with g0 = 0 and p ∈ N. Assume that
‖f ‖161 and ‖g‖161. The computation of the semi-relaxed composition h= f ◦ g at order

n and up to an absolute error 6 2−p can be done in time O(I((n+ p)11/5) log3/2(n+ p)).

5.2. Relaxed composition

Let f , g∈C[[z]] be as in the previous section and n∈2N. Assume also that g1� 0. In order
to compute the relaxed composition h= f ◦ g, we again use the formula (18), in combination
with

flo◦ g = flo◦ glo+
(flo◦ glo)

′

glo
′ ghi z

n/2 + O(zn)

The first n/2 coefficients of f ◦ g are still computed recursively, by performing a relaxed
composition flo ◦ glo at order n/2. As soon as flo and glo are completely known, we
may compute the composition flo ◦ glo at order n using the algorithm from section 4.
Differentiation and division by glo

′ also yields (flo ◦ glo)
′/glo

′ at order n/2. The product
((flo◦ glo)

′/glo
′) ghi can therefore be computed using one semi-relaxed multiplication.

Joris van der Hoeven 15

Let q = p + 2 n + 2 ⌈log2 n⌉ + 2. This time, the intermediate computations should be
conducted with the following precisions:

• We recursively compute 2−q-approximations of the coefficients of hlo.

• We compute 2−q−1-approximations of the coefficients of ghi.

• We compute 2−p−3-approximations of the coefficients of ((flo◦ glo)
′/glo

′)lo.

• We compute 2−p−2-approximations of the coefficients of (((flo◦ glo)
′/glo

′) ghi)lo.

Indeed, we have

glo
′

P (1− z)−2

((glo
′)−1)lo P (1− z)−n

|((glo′)−1)lo| 6 4n

|((flo◦ glo)
′)lo| 6 (n/2) |(f ◦ g)lo|6 n/2

|((flo◦ glo)
′/glo

′)lo| 6 n2 4n 6 2q−p−2.

Denoting by Crel(n, p) the complexity of relaxed composition, we obtain

Crel(n, p) 6 Crel(n/2, p)+ Csemi(n/2, p+n +2) +C(n, q) +

O(M(n/2, q)) + Msemi(n/2, q) +

M(n, p+ n+2) log2 n+Msemi(n/2, p+n +2) +O(n (p +n))

6 Crel(n/2, p)+ O(I((n+ p)11/5) log3/2 (n+ p))

It follows that

Crel(n, p) =O(I((n+ p)11/5) log5/2 (n + p)).

Theorem 24. Let f , g, h∈C[[z]] be power series with g0 = 0, g1� 0 and p ∈N. Assume
that ‖f ‖161 and ‖g‖161. The computation of the relaxed composition h= f ◦ g at order n

and up to an absolute error 6 2−p can be done in time O(I((n+ p)11/5) log5/2(n+ p)).

Remark 25. From [BK75, vdH02], we have

Crel(n, p) =O(I(n (p +n)) n log3 n
√

)) =O(I((n+ p)5/2) log3 (n+ p)).

Theorem 24 improves on this bound in the frequent case when n ≍ p. Unfortunately, we
have not yet been able to prove a quasi-linear bound Crel(n, p) = Õ((n+ p)2).

Remark 26. For certain types of functional equations, one may avoid to apply theorem 24.
For instance, power series reversion can directly be reduced to composition using Newton’s
method [BK75]. The solutions of certain other equations, such as

f(z) = ez + f(z5 f(z7)),

can be evaluated efficiently on small disks. Consequently, the Taylor coefficients of f can
be computed efficiently using lemma 17.

Bibliography

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms .
Addison-Wesley, Reading, Massachusetts, 1974.

[Ber98] D.J. Bernstein. Composing power series over a finite ring in essentially linear time. JSC ,
26(3):339–341, 1998.

16 Fast composition of numeric power series

[BK75] R.P. Brent and H.T. Kung. O((n log n)3/2) algorithms for composition and reversion of
power series. In J.F. Traub, editor, Analytic Computational Complexity , Pittsburg, 1975. Proc. of
a symposium on analytic computational complexity held by Carnegie-Mellon University.

[BK77] R.P. Brent and H.T. Kung. Fast algorithms for composition and reversion of multivariate
power series. In Proc. Conf. Th. Comp. Sc., pages 149–158, Waterloo, Ontario, Canada, August
1977. University of Waterloo.

[BK78] R.P. Brent and H.T. Kung. Fast algorithms for manipulating formal power series. Journal
of the ACM , 25:581–595, 1978.

[BSS08] Alin Bostan, Bruno Salvy, and Éric Schost. Power series composition and change of basis.
In J. Rafael Sendra and Laureano González-Vega, editors, ISSAC , pages 269–276, Linz/Hagenberg,
Austria, July 2008. ACM.

[CK91] D.G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.
Acta Informatica , 28:693–701, 1991.

[CT65] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Math. Computat., 19:297–301, 1965.

[Für07] M. Fürer. Faster integer multiplication. In Proceedings of the Thirty-Ninth ACM Symposium
on Theory of Computing (STOC 2007), pages 57–66, San Diego, California, 2007.

[Kro82] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen Grössen. Jour. für
die reine und ang. Math., 92:1–122, 1882.

[Sch82] A. Schönhage. Asymptotically fast algorithms for the numerical multiplication and division
of polynomials with complex coefficients. In J. Calmet, editor, EUROCAM ’82: European Computer
Algebra Conference , volume 144 of Lect. Notes Comp. Sci., pages 3–15, Marseille, France, April
1982. Springer.

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing , 7:281–292,
1971.

[vdH02] J. van der Hoeven. Relax, but don’t be too lazy. JSC , 34:479–542, 2002.

[vdH07] Joris van der Hoeven. New algorithms for relaxed multiplication. JSC , 42(8):792–802, 2007.

Joris van der Hoeven 17

