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Abstract

In previous work, we have introduced several fast algo-
rithms for relaxed power series multiplication (also known
under the name on-line multiplication) up to a given
order n. The fastest currently known algorithm works
over an e�ective base �eld K with su�ciently many
2p-th roots of unity and has algebraic time complexity
O(n log n e2 log 2

p
log log n

p
). In this paper, we will gen-

eralize this algorithm to the cases when K is replaced by
an e�ective ring of positive characteristic or by an e�ec-
tive ring of characteristic zero, which is also torsion-free
as a Z-module and comes with an additional algorithm for
partial division by integers. In particular, we may take K
to be any e�ective �eld. We will also present an asymptot-
ically faster algorithm for relaxed multiplication of p-adic
numbers.

Keywords: power series, multiplication, on-line algo-
rithm, FFT, computer algebra

A.M.S. subject classi�cation: 68W30, 30B10, 68W25,
33F05, 11Y55, 42-04

1 Introduction

1.1 Relaxed resolution of recursive equations

Let A be an e�ective (possibly non-commutative) ring;
i.e., we assume data structures for representing the ele-
ments of A and algorithms for performing the ring opera-
tions +, ¡ and �. The aim of algebraic complexity theory
is to study the cost of basic or more complex algebraic
operations over A (such as the multiplication of polyno-
mials or matrices) in terms of the number of operations
in A.

The algebraic complexity usually does not coincide
with the bit complexity, which also takes into account
the potential growth of the actual coe�cients in A. Nev-
ertheless, understanding the algebraic complexity usually
constitutes a �rst useful step towards understanding the
bit complexity. Of course, in the special case when A is
a �nite �eld, both complexities coincide up to a constant
factor.

One of the most central operations is polynomial mul-
tiplication. We will denote by MA(n) the number of opera-
tions required to multiply two polynomials of degrees <n
in A[x]. If A admits primitive 2p-th roots of unity for
all p, then we have MA(n)=O(n log n) using FFT multi-
plication, which is based on the fast Fourier transform [12].
In general, it has been shown [28, 10] that MA(n) =
O(n log n log log n). The complexities of most other
operations (division, Taylor shift, extended g.c.d., mul-
tipoint evaluation, interpolation, etc.) can be expressed
in terms of MA(n). Often, the cost of such other oper-
ations is simply O~(MA(n))=O~(n), where O~(T (n)) stands
for O(T (n) (log T (n))O(1)); see [2, 6, 15] for some clas-
sical results along these lines.

The complexity of polynomial multiplication is funda-
mental for studying the cost of operations on formal power
series in A[[z]] up to a given truncation order n. Clearly,
it is possible to perform the multiplication up to order n in
time O(MA(n)): it su�ces to multiply the truncated power
series at order n and truncate the result. Using Newton's
method, and assuming that Q � A, it is also possible to
compute exp, sin, etc. up to order n in time O(MA(n)).
More generally, it has been shown in [9, 17, 29, 23] that the
power series solutions of algebraic di�erential equations
with coe�cients in A[[z]] can be computed up to order n in
time O(MA(n)). However, in this case, the �O� hides a non-
trivial constant factor which depends on the expression
size of the equation that one wants to solve.

The relaxed approach for computations with formal
power series makes it possible to solve equations in quasi-
optimal time with respect to the sparse expression size
of the equations. The idea is to consider power series f 2
A[[z]] as streams of coe�cients f0; f1; ::: and to require
that all operations are performed �without delay� on these
streams. For instance, for a multiplication h= f g of two
power series f ; g 2 A[[z]], we require that hn is com-
puted as soon as f0; g0; :::; fn; gn are known. Any algorithm
which has this property will be called a relaxed or on-
line algorithm for multiplication.

Given a relaxed algorithm for multiplication, it is pos-
sible to let the later coe�cients fn+1; gn+1; fn+2; gn+2; :::
of the input depend on the known coe�cients h0; :::; hn
of the output. For instance, given a power series f 2A[z]
with f0=0, we may compute g= exp f using the formula

g =

Z
f 0 g; (1)

�. This work has been partly supported by the French ANR-
09-JCJC-0098-01 MaGiX project, and by the Digiteo 2009-36HD
grant of the Région Ile-de-France.
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provided that Q�A. Indeed, extraction of the coe�cient
of zn in g and

R
f 0 g yields

gn =
1

n
(f 0 g)n¡1;

and (f 0 g)n¡1 only depends on g0; :::; gn¡1. More gener-
ally, we de�ne an equation of the form

f = �(f) (2)

to be recursive , if �(f)n only depends on f0; :::; fn¡1.
Replacing A by Ar, we notice that the same terminology
applies to systems of r equations. In the case of an implicit
equation, special rewriting techniques can be implied in
order to transform the input equation into a recursive
equation [24, 22, 5].

Let RA(n) denote the cost of performing a relaxed mul-
tiplication up to order n. If � is an expression which
involves s multiplications and t other �linear time� opera-
tions (additions, integrations, etc.), then it follows that (2)
can be solved up to order n in time O(s RA(n) + t n).
If we had RA(n) = O(MA(n)), then this would yield an
optimal algorithm for solving (2) in the sense that the
computation of the solution would essentially require the
same time as its veri�cation.

1.2 Known algorithms for relaxed multiplication

The naive O(n2) algorithm for computing h = f g, based
on the formula

hn = f0 gn+ f1 gn¡1+ ���+ fn g0;

is clearly relaxed. Unfortunately, FFT multiplication is
not relaxed, since h0; :::; hn are computed simultaneously
as a function of f0; g0; :::; fn; gn, in this case.

In [16, 17] it was remarked that Karatsuba's
O(nlog 3/log 2) algorithm [25] for multiplying polynomials
can be rewritten in a relaxed manner. Karatsuba mul-
tiplication and its relaxed version thus require exactly the
same number of operations. In [16, 17], an additional fast
relaxed algorithm was presented with time complexity

RA(n) = O(MA(n) log n): (3)

We were recently made aware of the fact that a sim-
ilar algorithm was �rst published in [13]. However, this
early paper was presented in a di�erent context of on-
line (relaxed) multiplication of integers (instead of power
series), and without the application to the resolution of
recursive equations (which is quite crucial from our per-
spective).

An interesting question remained: can the bound (3)
be lowered further, be it by a constant factor? In [18], it
was �rst noticed that an approximate factor of two can be
gained if one of the multiplicands is known beforehand.
For instance, if we want to compute g= exp f for a known
series f with f0=0, then the coe�cients of f 0 are already
known in the product f 0 g in (1), so only one of the inputs
depends on the output. An algorithm for the computation
of h = f g is said to be semi-relaxed , if hn is written to
the output as soon as f0; :::; fn are known, but all coe�-
cients of g are known beforehand. We will denote by SA(n)
the complexity of semi-relaxed multiplication. We recall
from [21] (see also Section 3) that relaxed multiplication
reduces to semi-relaxed multiplication:

RA(n) = O(SA(n)):

It has recently been pointed out [26] that the factor 2 that
was gained in the case of semi-relaxed multiplication can
also be gained in the general case.

The �rst reduction of (3) by a non-constant factor was
published in [21], and uses the technique of FFT blocking
(which has also been used for the multiplication of multi-
variate polynomials and power series in [17, Section 6.3],
and for speeding up Newton iterations in [3, 23]). Under
the assumption that A admits primitive 2k-th roots of
unity for all k (or at least for all k with 2k6n), we showed
that

RA(n) = O(n log n e2 log 2
p

log log n
p

): (4)

The function e2 log 2
p

log log n
p

has slower growth than any
strictly positive power of log n. It is convenient to write
F (n)=O[(T (n)) whenever F (n)=O(T (n) (logT (n))�) for
all �> 0. In particular, it follows that

RA(n) = O[(n log n):

In Section 3, we will recall the main ideas from [21] which
lead to the complexity bound (4).

In fact, in Section 4, we will see that the complexity
bound from [21] can be further reduced to

RA(n) = O(n log n e 2log 2
p

log log n
p

log log n
p

):

Since such complexity bounds involve rather complex
expressions, it will be convenient to use the following
abbreviations:

R�(n) = n log n e 2log 2
p

log log n
p

log log n
p

R��(n) = R�(n) log log n
R���(n) = R�(n) (log log n)2 log log log n:

Clearly, R�(n)=O(R��(n))=O(R���(n))=O[(n log n).

1.3 Improved complexity bounds

We recall that the characteristic of a ring A is the integer
k2N such that the canonical ring homomorphism Z!A
has kernel k Z. If A is torsion-free as a Z-module (i.e.
k x=0)x=0 for any k2Znf0g and x2A), then we will
say that A admits an e�ective partial division by integers
if there exists an algorithm which takes k 2 Z n f0g and
x 2 k A on input and which returns the unique y 2A
with x= k y on output. We will count a unit cost for such
divisions. The main result of this paper is:

Theorem 1. Assume that one of the following two holds:

� A is an e�ective ring of characteristic zero, which
is torsion-free as a Z-module, and which admits an
e�ective partial division by integers.

� A is an e�ective ring of positive characteristic.

Then we have

RA(n) = O[(n log n): (5)

We notice that the theorem holds in particular if A is
an e�ective �eld. In Section 8, we will also consider the
relaxed multiplication of p-adic numbers, with p2N and
p > 2. If we denote by I(k) the bit complexity of multi-
plying two k-bit integers, then [13] essentially provided an
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algorithm of bit complexity O(I(n) log n) for the relaxed
multiplication of 2-adic numbers at order O(2n). Various
algorithms and benchmarks for more general p were pre-
sented in [4]. It is also well known [33, 11, 28, 14] that
I(n)=O[(n log n). Let Rp(n) denote the bit complexity of
the relaxed multiplication of two p-adic numbers modulo
pn. In Section 8, we will prove the following new result:

Theorem 2. Let p2N with p> 2. Then we have

Rp(n) = O[(n log n log p log log p);

uniformly in n and p.

For comparison, the best previously known bound for
relaxed multiplication in Zp was

Rp(n) = O(I(n (log p+ log n)) log n)

=

(
O[(n log3n) if p=O(n)
O[(n log2n log p) if n=O(p)

We thus improved the previous bound by a factor log n/
log log p at least, up to sublogarithmic terms.

The main idea which allows for the present generaliza-
tions is quite straightforward. In our original algorithm
from [21], the presence of su�ciently many primitive 2k-th
roots of unity in A gives rise to a quasi-optimal evaluation-
interpolation strategy for the multiplication of polyno-
mials. More precisely, given two polynomials of degrees
<n, their FFT-multiplication only requires O(n) evalua-
tion and interpolation points, and both the evaluation and
interpolation steps can be performed e�ciently, using only
O(n log n) operations. Now it has recently been shown [8]
that quasi-optimal evaluation-interpolation strategies still
exist if we evaluate and interpolate at points in geometric
progressions instead of roots of unity. This result is the
key to our new complexity bounds, although further tech-
nical details have to be dealt with in order to make things
work for various types of e�ective rings A. We also notice
that the main novelty of [8] concerns the interpolation
step. Fast evaluation at geometric progressions was pos-
sible before using the so called chirp transform [27, 7].
For e�ective rings A of positive characteristic, this would
actually have been su�cient for the proving the bound (5).

Our paper is structured as follows. Since the algo-
rithms of [8] were presented in the case when A is an
e�ective �eld, Section 2 starts with their generalization
to more general e�ective rings A. These generalizations
are purely formal and contain no essentially new ideas. In
Section 3, we give a short survey of the algorithm from [21],
but we recommend reading the original paper for full tech-
nical details. In Section 4, we sharpen the complexity
analysis for the algorithm from [21]. In Section 5, we prove
Theorem 1 in the case when A has characteristic zero.
In Section 6, we turn our attention to the case when A
has prime characteristic p. If the characteristic is su�-
ciently large, then we may �nd su�ciently large geometric
progressions in A \ Z in order to generalize the results
from Section 5. Otherwise, we have to work over A 

Fpk for some su�ciently large k. In Section 7, we complete
the proof of Theorem 1; the case when the characteristic is
a prime power is a re�nement of the result from Section 6.
The remaining case is done via Chinese remaindering. In
Section 8, we will prove Theorem 2.

Acknowledgments. I am grateful to the referees for
their detailed comments and suggestions. A special thanks
goes to the referee who made a crucial suggestion for the
improved complexity analysis in Section 4.

2 Multipoint evaluation and interpolation

Let D be a (commutative) e�ective integral domain and let
K be its quotient �eld. Assume that K has characteristic
zero. Let M be an e�ective torsion-free D-module and
V=K
DM. Elements of K and V are fractions x/s with
x2D (resp. x2M) and s2D nf0g, and the operations ¡;
+;� on such fractions are as usual:

¡x
s

=
¡x
s

x
s
+
y
t
=

t x+ s y
s t

x
s
y
t
=

x y
s t

For x/s 2 K�, we also have (x/s)¡1 = s/x. It follows
that K is an e�etive �eld and V an e�ective K-vector
space. Moreover, all �eld operations in K (and all vector
space operations in V) can be performed using only O(1)
operations in D (resp. D or M).

We will say that M admits an e�ective partial division,
if for every s 2D n f0g and x 2 sM, we can compute the
unique y2M with x= s y. In that case, and we will count
any division of the above kind as one operation in M.
Similarly, given a �xed s2D nf0g, we say that M admits
an e�ective partial division by sx2 sM, we can compute
the unique y 2M with x= s y. Given n2N, we de�ne

M[z]n = fP 2M[z]: deg P <ng:

Given P 2D[z]n and Q2M[z]n, we will denote by MM(n)
the number of operations in D and M which are needed
in order to compute the product PQ2M[z].

Lemma 3. Let D be an e�ective integral domain and
M an e�ective torsion-free D-module. There exists a con-
stant K, such that the following holds: for any n > 0,
P 2M[z]n and q2D nf0g such that 1; q; :::; qn¡1 are pair-
wise distinct, and such that D admits e�ective divisions
by q and q¡ 1; q2¡ 1; :::; qn¡1¡ 1, we have:

a) We may compute P (1); :::; P(qn¡1) from P using
KMM(n) operations in D and M.

b) We may reconstruct P from P (1); :::; P (qn¡1) using
KMM(n) operations in D and M.

Proof. In the case when D = K is a �eld and M =
V = K, this result was �rst proven in [8]. More pre-
cisely, the conversions can be done using the algorithms
NewtonEvalGeom , NewtonInterpGeom, Newton-
ToMonomialGeom and MonomialToNewtonGeom
in that paper. Examining these algorithms, we observe
that general elements in D are only multiplied with ele-
ments in Z[q] and divided by elements of the set fq; q ¡
1; q2¡ 1; :::; qn¡1 ¡ 1g. In particular, the algorithms can
still be applied in the more general case when D = K
is a �eld and M=V a vector space.
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If D is only an e�ective integral domain and M an
e�ective torsion-free D-module with an e�ective partial
division, then we de�ne the e�ective �eld K and the e�ec-
tive vector space V as above, and we may still apply the
generalized algorithms for multipoint evaluation and inter-
polation in V. In particular, both multipoint evaluation
and interpolation can still be done using O(MV(n)) opera-
tions in K and V, whence O(MM(n)) operations in D and
M. If we know that the end-results of these algorithms
are really in the subspace Mn of Vn (or in the submodule
M[z]n of V[z]n), then we use the partial division in M to
replace their representations in Vn (or V[z]n) by represen-
tations in Mn (or M[z]n). �

3 Survey of blockwise relaxed multiplication

Let A be an e�ective (possibly non-commutative) ring and
recall that

A[z]n = fP 2A[z]: deg P <ng:

Given a power series f 2A[[z]] and i < j, we will also use
the notations

fi;j = fi z
i+ ���+ fj¡1 z

j¡1

f;j = f0+ ���+ fj¡1 z
j¡1

fi; = fi zi+ fi+1 zi+1+ ���:

The fast relaxed algorithms from [21] are all based on two
main changes of representation: �blocking� and the fast
Fourier transform. Let us brie�y recall these transforma-
tions and how to use them for the design of fast algorithms
for relaxed multiplication.

Blocking and unblocking. Given a block size b>0, the
�rst operation of blocking rewrites a power series f 2A[[z]]
as a series in y= zb with coe�cients in A[z]b

Bb(f) =
X
i

X
06j<b

fib+j zj yi 2 A[z]b[[y]]:

Given f ; g 2A[[z]], we may then compute f g using

f g = Bb
¡1(Bb(f) Bb(g));

where Bb(f) Bb(g)2A[z]2b[[y]] and

Bb
¡1:A[z]2b[[y]] ! A[[z]]X

i

Pi(z) y
i 7!

X
i

Pi(z) z
bi:

Discrete Fourier transforms. Assume now that A 3
1/2, that b2f1; 2; 4; 8; :::g, and that A admits a primitive
(2 b)-th root of unity ! = !2b. Then the discrete Fourier
transform provides us with an isomorphism

FFT!:A[z]2b ! A2b

P 7! (P (1); P (!); :::; P (!2b¡1));

and it is classical [12] that both FFT! and FFT!
¡1 can be

computed using O(b log b) operations in A. The operations
FFT! and FFT!

¡1 extend naturally to A[z]2b[[y]] via

FFT!

�X
i

fi yi
�

=
X
i

FFT!(fi) yi:

Given f ; g2A[[z]], this allows us to compute f g using the
formula

f g=Bb
¡1(FFT!

¡1(FFT!(Bb(f))FFT!(Bb(g)))); (6)

where FFT!(Bb(f)) FFT!(Bb(g)) is a pointwise product
in A2b. The �rst m b coe�cients of f g can be computed
using at most 2 bMA(m)+O(mb log b) operations in A.

Relaxed multiplication. In formula (6) the m-th coef-
�cient of the right hand side may depend on the (m +
b¡ 1)-th coe�cients of f and g. In order to make (6) suit-
able for relaxed multiplication, we have to treat the �rst b
coe�cients of f and g separately. Indeed, the formula

f g = f;b g;b+ f;b gb;+ fb; g;b+

Bb
¡1(FFT!

¡1(FFT!(Bb(fb;))FFT!(Bb(gb;))))

allows for the relaxed computation of f g at order m b
using at most

RA(mb) 6 RA(b)+ 2m SA(b)+ 2 bRA(m)+

O(mb log b)

operations in A. Similarly, the formula

f g = f;b g+Bb
¡1(FFT!

¡1(�)) (7)
� = FFT!(Bb(fb;))FFT!(Bb(g))

allows for the semi-relaxed computation of f g at order m b
using at most

SA(mb) 6 m SA(b)+ 2 b SA(m)+O(mb log b) (8)

operations in A. For a given expansion order n, one may
take b � n

p
, and use the above formula in a recursive

manner. This yields [21, Theorem 11]

RA(n) = O(n (log n)log 3/log 2):

Remark 4. Since the block size b is chosen as a func-
tion of n, the above method really describes a relaxed
algorithm for computing the product up to an order n�
which is speci�ed in advance. In fact, such an algorithm
automatically yields a genuine relaxed algorithm with the
same complexity (up to a constant factor), by doubling the
order n� each time when needed.

Reduction to semi-relaxed multiplication. In the
above discussion, we both provided bounds for RA(n) and
SA(n). In fact, there exists a straightforward reduction
of relaxed multiplication to semi-relaxed multiplication.
First of all, the relaxed multiplication of two power series
f ; g 2 A[[z]] up to order O(zn) clearly reduces to the
relaxed multiplication of the two polynomials f;n and g;n
up to order O(z2n). Now the formula

f;2n g;2n = f;n g;n+ fn;2n g;n+ f;n gn;2n+ fn;2n gn;2n

shows that a relaxed product of two polynomials f;2n
and g;2n of degrees <(2 n) reduces to a relaxed product
f;n g;n of half the size, two semi-relaxed products fn;2n g;n,
f;n gn;2n, and one non-relaxed product fn;2n gn;2n.
Under the assumptions that MA(n)/n and SA(n)/n are
increasing, a routine calculation thus yields

RA(n) = O(SA(n)):

Multiple block sizes. Instead of using a single block
size b, one may use several block sizes. Applying this tech-
nique, we proved in [21, Theorem 12] that

RA(n) = O(SA(n))

= O(n log n e2 log 2
p

log log n
p

): (9)
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4 Improved complexity analysis

One of the referees suggested to take b � n2/3 instead of
b� n
p

in (8). As a matter of fact, it is even better to take
b�exp (logn/exp ( 2 log 2

p
log log n
p

)). In this section, we
will show that this leads to the bound

RA(n) = O(R�(n));

which further improves on (9). We will prove a slightly
more general result, which is useful for the analysis of algo-
rithms which satisfy complexity bounds similar to (8).

Lemma 5. Let  :R>!R> be an increasing function with
 (k)=O(log k) and let

�(k) = k ea log k
p

log k
p

 (k);

where a= 2 log 2
p

. Then there exist constants A>0 and k0
such that for all k>k0, "1; "22 (¡1;1), and �=k/ea log k

p
,

we have

�(k¡ �+ "1)+ 2�(�+ "2) 6 �(k)¡Ak (k):

Proof. Notice that k ¡ � + "1 6 k and � + "2 6 k for
su�ciently large k. We have

ea log(k¡�+"1)
p

= e
a log k¡e¡a log k

p
(1+O(1))

q

= ea log k
p

 
1¡ a+O(1)

2 log k
p

ea log k
p

!
:

For a suitable constant A > 0 and all su�ciently large k,
it follows that

�(k¡�+"1)6 ((k¡�) ea log k
p

log k
p

¡A k)  (k): (10)

We also have

a log (�+ "2)
p

6 a log k¡a log k
p

+O(1/log k)
p

= a log k
p

¡ a
2

2
+

a3

8 log k
p +O

�
1

log k

�
;

whence

ea log (�+"2)
p

log (�+ "2)
p

=
ea log k
p

2
log k
p �

1¡ 4 a¡ a3
8 log k
p +O

�
1

log k

��
For all su�ciently large k, it follows that

ea log (�+"2)
p

log (�+ "2)
p

6 ea log k
p

2
log k
p

:

Consequently,

2�(�+ "2) 6 � ea log k
p

log k
p

 (k): (11)

Adding up (10) and (11), we obtain

�(k¡ �+ "1)+ 2�(�+ "2) 6 (ea log k
p

log k¡A) k (k)
= �(k)¡Ak (k);

for all su�ciently large k. �

Theorem 6. Let T; �:N�!R> be an increasing function
with �(n)=O(log log n). Assume that

T(n) 6 mT(b)+ 2 bT(m)+mb log b �(b); (12)

for all su�ciently large n, where

m = dexp (log n/ea log log n
p

)e
b = dn/me:

Then

T(n) = O(R�(n) �(n)):

Proof. We de�ne functions U;  :R>!R> by

U(k) =
T(dexp (k)e)

exp (k)
 (k) = �(dexp (k)e)

and let �, A and k0 be as in Lemma 5. Without loss of
generality, we may pick k0 su�ciently large such that k0>
exp (9) and such that (12) holds for n> n0 := dexp (k0)e.
Let n 2 N� be such that n > n0 and denote k = log n
and � = k/ea log k

p
. For certain "1; "2 2 (¡1; 1), we have

log m = log dexp (log n/ea log log n
p

)e = � + "2 and log b =
log dn/me= k¡ �+ "1. Now (12) implies

U(k) 6 U(k¡ �+ "1)+ 2U(�+ "2)+ 2 k (k):

Let K = log N� and C = max fsupk2K;k6k0 U(k)/�(k);
2/Ag. Let us prove by induction that U(k) 6 C �(k) for
all k2K. This is clear for k6 k0. Assume now that k> k0
and U(k 0) 6 C �(k 0) for all k 0< k. Then, with the above
notations, k0> exp (9) implies k¡�+"1<k and �+"2<k,
whence

U(k) 6 U(k¡ �+ "1)+ 2U(�+ "2)+ 2 k (k);

6 C (�(k¡ �+ "1)+ 2�(�+ "2))+ 2 k (k)

6 C �(k)+ (2¡CA) k (k)
6 C �(k);

as desired. For all n2N�, we have thus shown that T(n)6
Cn�(log n)=C R�(n) �(n). �

5 Relaxed multiplication in characteristic zero

Let us now consider the less favourable case when A is an
e�ective ring which does not necessarily contain primitive
2k-th roots of unity for arbitrarily high k. In this section,
we will �rst consider the case when A is torsion-free as
a Z-module and also admits a partial algorithm for divi-
sion by integers.

Given a block size b 2 N and q 2 Z n f¡1; 0; 1g
(say q=2), we will replace the discrete Fourier transform
FFT! at a (2 b)-th primitive root of unity by multipoint
evaluation at 1; :::; q2b¡1. More precisely, we de�ne

Eq;2b:A[z]2b ! A2b

P 7! (P (1); P (q); :::; P (q2b¡1))

and the inverse transform Eq;2b
¡1 : im Eq;2b ! A[z]2b. By

Lemma 3, these transforms can both be computed using
O(MA(b)) operations in A. In a similar way as for FFT!

and FFT!
¡1, we extend Eq;2b and Eq;2b

¡1 to power series in y.

Theorem 7. Let A both be an e�ective ring and an e�ec-
tive torsion-free Z-module with an e�ective partial division
by elements in Z n f0g. Then

RA(n) = O(R��(n)):

Proof. It su�ces to prove the complexity bound for semi-
relaxed multiplication. Instead of (7), we now compute f g
using

f g = f;b g+Bb
¡1(Eq;2b

¡1 (�)); (13)
� = Eq;2b(Bb(fb;)) Eq;2b(Bb(g)):
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The bound (8) then has to be replaced by

SA(mb) 6 mSA(b)+ 2 b SA(m)+O(mMA(b)): (14)

Plugging in the bound MA(b)=O(b log b log log b) from [10]
and applying Theorem 6, the result follows. �

6 Relaxed multiplication in prime characteristic

Let A now be an e�ective ring of prime characteristic p.
For expansion orders n> p, the ring A does not necessarily
contain n distinct points in geometric progression. There-
fore, in order to apply Lemma 3, we will �rst replace A
by a suitable extension, in which we can �nd su�ciently
large geometric progressions.

Given n, let k=2
l
log (n+1)

2 log p

m
be even with pk>n. Let

P 2Fp[z] be such that the �nite �eld Fpk is isomorphic to
Fp[z]/(P ). Then the ring

B := A[z]/(P )

has dimension k over A as a vector space, so we have
a natural A-linear bijection

�:A[z]k ! B

A 7! AmodP :

The ring B is an e�ective ring and one addition or sub-
traction in B corresponds to k additions or subtractions
in A. Similarly, one multiplication in B can be done using
O(MA(k)) operations in A.

In order to multiply two series f ; g2A[[z]] up to order
O(zn), the idea is now to rewrite f and g as series in B[[u]]
with u= zk/2. If we want to compute the relaxed product,
then we also have to treat the �rst k/2 coe�cients apart,
as we did before for the blocking strategy. More precisely,
we will compute the semi-relaxed product f g using the
formula

f g = f;k/2 g+Bk/2
¡1 (�¡1(�));

� = �(Bk/2(fk/2;))�(Bk/2(g));

where we extended � to A[z]k[[u]] in the natural way:

�

 X
i>0

fiu
i

!
=
X
i>0

�(fi)u
i:

From the complexity point of view, we get

SA(n) 6 2n
k

SA

�
k
2

�
+ SB

�
2n
k

�
O(MA(k)): (15)

Since B contains a copy of Fpk, it also contains at least
pk¡ 1>n points in geometric progression. For the multi-
plication up to order 2 n/k of two series with coe�cients
in B, we may thus use the blocking strategy combined with
multipoint evaluation and interpolation.

Theorem 8. Let A be an e�ective ring of prime charac-
teristic p. Then

RA(n) = O(R���(n)):

Proof. With the notations from above, we may �nd
a primitive (pk ¡ 1)-th root of unity q in Fpk � B. We
may thus use formula (13) for the semi-relaxed multipli-
cation of two series in B[[z]] up to order 2 n/k 6 n. In
a similar way as in the proof of Theorem 7, we thus get

SB

�
2n

k

�
= O

�
R��

�
2n

k

��
= O

�
R��(n)
k

�
:

Using classical fast relaxed multiplication [16, 17, 13], we
also have

SA

�
k

2

�
= O(k log2 k log log k);

whence (15) simpli�es to

SA(n) = O
�
R��(n)

MA(k)

k

�
: (16)

Since MA(k)/k =O(log k log log k) and k =O(log n), the
result follows. �

Remark 9. As long as log n=O(log p), then MA(k)/k=
O(1) in (16), so the bound further reduces into

RA(n) = O(R��(n)):

Remark 10. In our complexity analysis, we have not
taken into account the computation of the polynomial
P 2 Fp[z] with Fpk = Fp[z]/(P ). Using a randomized
algorithm, such a polynomial can be computed in time
O~(k2 log p); see [15, Corollary 14.44]. If k = O(log n),
then this is really a precomputation of negligible cost
O~(log2n log p).

If we insist on computing P in a deterministic way,
then one may use [30, Theorem 3.2], which provides us
with an algorithm of time complexity O~( p

p
k4+").

Similarly, there both exist randomized and determin-
istic algorithms [32, 31] for the e�cient computation of
primitive (pk ¡ 1)-th roots of unity in Fpk. In partic-
ular, thanks to [31, Theorem 1] such a primitive root of
unity can always be computed in time O~(pk/2), when using
a naive algorithm for factoring pk¡ 1.

7 Relaxed multiplication in positive characteristic

Let us now show that the technique from the previous
section actually extends to the case when A is an arbitrary
e�ective ring of positive characteristic. We �rst show that
the algorithm still applies when the characteristic of A is
a prime power. We then conclude by showing how to apply
Chinese remaindering in our setting.

Theorem 11. Let A be an e�ective ring of prime power
characteristic s= pr. Then

RA(n) = O(R���(n)):

Proof. Taking k=2
l
log (n+1)

2 log p

m
, let P of degree k be as

in the previous section and pick a monic polynomial P~ of
degree k in (Z/sZ)[z] such that the reduction �(P~) of P~
modulo p yields P . Then we get a natural commutative
diagram

(Z/sZ)[z]/(P~) ,¡! A[z]/(P~)

 
¡�  
¡�

Fp[z]/(P ) ,¡! (A/pA)[z]/(P );

where � stands for reduction modulo p. In particular, we
have an epimorphism

�: (Z/sZ)[z]/(P~) ! Fp[z]/(P )=�Fpk;

with ker �=(p).
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Now let q be an element in Fpk of order pk ¡ 1. Then
any lift q~ 2 (Z/s Z)[z]/

¡
P~
�
of q with �(q~) = q has order

at least pk ¡ 1. Moreover, q ¡ 1; :::; qp
k¡2 ¡ 1 and q are

all invertible. Consequently, q~¡ 1; :::; q~pk¡2¡ 1 and q~ do
not lie in ker�=(p), whence they are invertible as well. It
follows that we may still apply multipoint evaluation and
interpolation in A[z]/(P~) at the sequence 1; q~; :::; q~pk¡2,
whence Theorem 8 generalizes to the present case. �

Remark 12. For a �xed prime number p, we notice
that the complexity bound is uniform in the following
sense: there exists a constant K such that for all e�ec-
tive rings of characteristic pr with r 2 f1; 2; :::g, we have
RA(n)6K R���(n). Indeed, the choice of k only depends
on n and p, and any operation in Fpk or A[z]/(P ) in the
case r = 1 corresponds to exactly one lifted operation
in (Z/sZ)[z]/(P~) or A[z]/(P~) in the general case.

Remark 13. Similarly as in Remark 9, the hypothesis
log n=O(log p) leads to the improved bound

RA(n) = O(R��(n)):

This bound is uniform in a similar way as in Remark 12.

Theorem 14. Let A be an e�ective ring of non-zero char-
acteristic s. Then

RA(n) = O(R���(n)):

Proof. We will prove the theorem by induction on the
number of prime divisors of s. If s is a prime power, then
we are done. So assume that s= s1 s2, where s1 and s2 are
relatively prime, and let k1; k22Z be such that

k1 s1+ k2 s2 = 1:

Then we may consider the rings

A1 = A/s1A

A2 = A/s2A:

These rings are e�ective, when representing their elements
by elements of A and transporting the operations from A.
Of course, the representation of an element x of A1 (or
A2) is not unique, since we may replace it by x + y for
any y 2 s1 A (or y 2 s2 A). But this is not a problem,
since our de�nition of e�ective ring did not require unique
representability or the existence of an equality test.

Now let f ; g2A[[z]] and let �i(f);�i(g) be their projec-
tions in Ai[[z]], for i=1; 2. Consider the relaxed products
�i(f) �i(g), for i = 1; 2. These products are represented
by relaxed series h1; h22A[[z]] via �i(hi)=�i(f) �i(g), for
i=1; 2. By the induction hypotheses, we may compute h1

and h2 at order n using O(R���(n)) operations in A. The
linear combination h= k2 s2 h1+ k1 s1 h2 2A[[z]] can still
be expanded up to order n with the same complexity. We
claim that h= f g. Indeed,

k2 s2 h
1¡ k2 s2 f g 2 k2 s2 s1A= f0g

k1 s1 h
2¡ k1 s1 f g 2 k1 s1 s2A= f0g:

Summing both relations, our claim follows. �

Remark 15. A uniform bound interms of s can be given
along similar lines as in Remark 12. This time, such
a bound depends linearly on the number of prime fac-
tors of s.

8 Relaxed multiplication of p-adic numbers

Let p > 1 be an integer, not necessarily a prime number,
and denote Np = f0; :::; p ¡ 1g. We will regard p-adic
numbers a2Zp as series a0+a1 p+a2 p2+ ��� with ai2Np,
and such that the basic ring operations +, ¡ and � require
an additional carry treatment.

In order to multiply two relaxed p-adic numbers a;
b 2 Zp, we may rewrite them as series â ; b̂ 2 Z[[z]], mul-
tiply these series ĉ = â b̂ , and recover the product c 2 Zp

from the result. Of course, the coe�cients of ĉ may exceed
p, so some relaxed carry handling is required in order to
recover c from ĉ . We refer to [4, Section 2.7] for details.
In particular, we prove there that c can be computed up
to order O(pn) using O(RZ(n)) ring operations in Z of bit
size O(log p+ log n).

Given k > 0, let Zk = fi 2 Z: jij < 2k¡1g, and con-
sider two power series f ; g 2 Zk[[z]]. We will denote by
RZ(n; k) (resp. SZ(n; k)) the bit complexity of multiplying
f and g up to order O(zn) using a relaxed (resp. semi-
relaxed) algorithm.

Lemma 16. We have

RZ(n; k)=O(R��(n) I(k+ log n)):

Proof. Let � be a prime number with log �� log n. Such
a prime � can be computed in time O(n) using the poly-
nomial time polynomial primality test from [1], together
with the Bertrand-Chebychev theorem.

Let f ; g 2Zk[[z]] and consider r= d2 k log (2n)/log �e
such that n 22k 6 (2 n)2k < �r. Let f̂ ; ĝ 2 (Z/�r Z)[[z]]
be the reductions of f ; g modulo �r. Then f g may be
reconstructed up to order O(zn) from the product f̂ ĝ . We
thus get

RZ(n; k) = O(I(log2 (�r))RZ/�rZ(n)):

By Theorem 11 and Remarks 12 and 13, while using the
fact that log n=O(log �), we have

RZ/�rZ(n) = O(R��(n));

and this bound is uniform in r. Since �r�n 22k, the result
follows. �

For the above strategy to be e�cient, it is important
that log n = O(k). This can be achieved by combining
it with the technique of p-adic blocking. More precisely,
given a p-adic block size b> 1, then any p-adic number in
Zp can naturally be considered as a pb-adic number in Zpb,
and vice versa . Assuming that numbers in Np are written
in base 2, the conversion is trivial if p is a power of two.
Otherwise, the conversion involves base conversions and
we refer to [4, Section 4] for more details. In particular,
the conversions in both directions up to order O(pn) can
be done in time O

¡ n
b
I(b log p) log (b log p)

�
.

Let Rp(n) (resp. Sp(n)) the complexity of relaxed (resp.
semi-relaxed) multiplication in Zp up to order O(pn).

Theorem 17. Setting `= log (log n+ log p), we have

Rp(n) = O((R��(n) log p) ` log `)
= O[(n log n log p log log p):

Proof. Let r= dlog n/log pe, so that

r log p 6 log n+ log p
I(r log p) = O((r log p) ` log `)

I(r (log p+ log r)) = O(r (log p+ log n) ` log `):
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Using the strategy of p-adic blocking, a semi-relaxed pro-
duct in Zp may then be reduced to one semi-relaxed
product in Zpr and one relaxed multiplication with an
integer in f0; :::; pr¡ 1g. In other words,

Sp(n) 6 n

r
Sp(r)+Spr

�l
n

r

m�
+O(n log p);

where Sp(n) stands for the cost of semi-relaxed multipli-
cation of two p-adic numbers in Zp up to order O(pn). By
[4, Proposition 4], we have

Sp(r) = O(I(r (log p+ log r)) log r)
= O(r log n (log n+ log p) ` log `):

By Lemma 16, we also have

Spr
¡� n

r

��
= O

¡
RZ

¡ n
r
; log2 (pr)

��
= O

¡
I(r log p+ log n) n

r
log n

e 2log 2
p

log log n
p

(log log n)3/2
�

= O
¡
I(r log p) 1

r
R��(n)

�
= O((log p) ` log `R��(n))

Notice that
n

r
Sp(r) = O

�
Spr
�l

n

r

m��
;

which completes the proof of the theorem. �

9 Final remarks

For the moment, we have not implemented any of the new
algorithms in practice. Nevertheless, our old implemen-
tation of the algorithm from [21] allowed us to gain some
insight on the practical usefulness of blockwise relaxed
multiplication. Let us brie�y discuss the potential impact
of the new results for practical purposes.

Characteristic zero. In characteristic zero, our focus
on algebraic complexity makes the complexity bounds
more or less irrelevant from a practical point of view. In
practice, two cases are of particular interest: �oating point
coe�cients (which were already considered in [21]) and
integer coe�cients (rational coe�cients can be dealt with
similarly after multiplying by the common denominator).

In the case of integer coe�cients, it is best to re-encode
the integers as polynomials in Fp[x] for a prime number
which �ts into a machine word and such that Fp admits
many 2k-th roots of unity (it is also possible to take several
primes p and use Chinese remaindering). After that, one
may again use the old algorithm from [21]. Also, integer
coe�cients usually grow in size with n, so one really should
see the power series as a bivariate power series in Fp[[x;
z]] with a triangular support. One may then want to use
TFT-style multiplication [19, 20] in order to gain another
constant factor.

Finite �elds. For large �nite �elds, it is easy to �nd large
geometric progressions, so the algorithms of this paper
can be applied without the need to consider �eld exten-
sions. Moreover, for �nite �elds of the form Fpk with p
su�ciently large and k > 1, it is possible to choose q 2
Fp, thereby speeding up evaluation and interpolation. For
small �nite �elds of the form Fpk, it is generally necessary
to make the initial investment of working in a larger ring
with su�ciently large geometric progressions. Of course,
instead of the ring extensions considered in Section 6, we
may directly use �eld extensions of the form Fpl with k j l.

Semi-relaxed multiplication. In principle, a factor 2
can be gained in the semi-relaxed (resp. general) case using
the technique from [18] (resp. [26]). Unfortunately, the
middle product (resp. the FFT-trick used in [26]) is not
always easy to implement. For instance, if we rely on Kro-
necker substitution for multiplications in Z[z], then we
will need to implement an ad hoc analogue for the middle
product. Since we did not use a fast algorithm for middle
products for our benchmarks in [21, Section 5], the tim-
ings for the semi-relaxed product in were only about 25%
instead of 50% better than the timings for the fully relaxed
product. Nevertheless, modulo increased implementation
e�orts, we stress that a 50% gain should be achievable.

Cache friendliness. So far, we have not investigated the
cache friendliness of blockwise relaxed multiplication, and
it can be feared that a lot of additional work is required
in order to make our algorithms really e�cient from this
point of view.

Bilinear maps. In order to keep the presentation rea-
sonably simple, we have focussed on the case when A is an
e�ective ring. In fact, a more general setting for relaxed
multiplication is to consider a bilinear mapping �:M1 �
M2!M3, where M1, M2 and M3 are e�ective A-modules,
and extend it into a mapping �̂:M1[[z]]�M2[[z]]!M3[[z]]
by �̂(f ; g) =

P
i; j

�(fi; gj) zi+j. Under suitable hypoth-
esis, the algorithms in this paper generalize to this setting.

Skew series. The relaxed approach can also be general-
ized to the case when the coe�cients of the power series
are operators which commute with monomials zi in a non-
trivial way. More precisely, assume that we have an e�ec-
tive ring homomorphism �:A!A such that z a= (�a) z
for all a2K. For instance, one may take A=Q[�] with �=
z @/@z, so that P (�) z= z P (�+1). Given a commutation
rule of this kind, we de�ne a skew multiplication on A[[z]]
by "X

i>0
fi z

i

#"X
j>0

gj z
j

#
=

X
i; j>0

fi (�
i gj) z

i+j:

If MA(n) denotes the cost of multiplying two polyno-
mials P zi and Q zj in A[z] with deg P ; deg Q < n,
then the classical fast relaxed multiplication algorithm
from [17, 13] generalizes and still admits the time com-
plexity O(MA(n) logn). However, the blockwise algorithm
from this paper does not generalize to this setting, at least
not in a straightforward way.
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