
Implementing fast carryless multiplication
JORIS VAN DER HOEVENa, ROBIN LARRIEUb, GRÉGOIRE LECERFc

Laboratoire d'informatique de l'École polytechnique
LIX, UMR 7161 CNRS

Campus de l'École polytechnique
1, rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau, France
a. Email: vdhoeven@lix.polytechnique.fr
b. Email: larrieu@lix.polytechnique.fr
c. Email: lecerf@lix.polytechnique.fr

Preliminary version of October 24, 2017

The efficient multiplication of polynomials over the finite field 𝔽2 is a fundamental
problem in computer science with several applications to geometric error correcting
codes and algebraic crypto-systems. In this paper we report on a new algorithm that
leads to a practical speed-up of about two over previously available implementations.
Our current implementation assumes a modern AVX2 and CLMUL enabled processor.

1. INTRODUCTION

Modern algorithms for fast polynomial multiplication are generally based on evalua-
tion-interpolation strategies and more particularly on the discrete Fourier transform (DFT).
Taking coefficients in the finite field 𝔽2 with two elements, the problem of multiplying
in 𝔽2[x] is also known as carryless integer multiplication (assuming binary notation). The
aim of this paper is to present a practically efficient solution for large degrees.

One major obstruction to evaluation-interpolation strategies over small finite fields
is the potential lack of evaluation points. The customary remedy is to work in suitable
extension fields. Remains the question of how to reduce the incurred overhead as much
as possible.

More specifically, it was shown in [7] that multiplication in 𝔽2[x] can be done effi-
ciently by reducing it to polynomial multiplication over the Babylonian field 𝔽260. Part of
this reduction relied on Kronecker segmentation, which involves an overhead of a factor
two. In this paper, we present a variant of a new algorithm from [11] that removes this
overhead almost entirely. We also report on our MATHEMAGIX implementation that is
roughly twice as efficient as before.

1.1. Related work
For a long time, the best known algorithm for carryless integer multiplication was
Schönhage's triadic variant [16] of Schönhage–Strassen's algorithm [17] for integer mul-
tiplication: it achieves a complexity O(n log n log log n) for the multiplication of two
polynomials of degree n. Recently [8], Harvey, van der Hoeven and Lecerf proved the
sharper bound O(n log n 8log∗n), but also showed that several of the new ideas could
be used for faster practical implementations [7].

1

More specifically, they showed how to reduce multiplication in 𝔽2[x] to DFTs over
𝔽260, which can be computed efficiently due to the existence of many small prime divisors
of 260−1. Their reduction relies on Kronecker segmentation: given two input polynomials
A(x) = ∑0⩽i<n ai x i and B(x) = ∑0⩽i<n ai x i in 𝔽2[x], one cuts them into chunks of 30
bits and forms Ã(y,z) = ∑i=0

m−1 ∑ j=0
29 a30i+ j z j y i and B̃(y, z) = ∑i=0

m−1 ∑ j=0
29 b30i+ j z j y i, where

m = ⌈n/30⌉ (the least integer ⩾n/30). Hence A(x) = Ã(x30, x), B(x) = B̃(x30,x), and the
product C =AB satisfies C(x)= C̃(x30,x), where C̃= Ã B̃. Now Ã and B̃ are multiplied in
𝔽260[x] by reinterpreting z as the generator of 𝔽260. The recovery of C̃ is possible since
its degree in z is bounded by 2 ⋅ 29 = 58 < 60. However, in terms of input size, half of 60
coefficients of Ã(y, z) and B̃(y, z) in z are “left blank”, when reinterpreted inside 𝔽260.
Consequently, this reduction method based on Kronecker segmentation involves a con-
stant overhead of roughly 2. In fact, when considering algorithms with asymptotically
softly linear costs, comparing relative input sizes gives a rough approximation of the
relative costs.

Recently van der Hoeven and Larrieu [11] have proposed a new way to reduce mul-
tiplication of polynomials in 𝔽q[x] to the computation of DFTs over an extension 𝔽q ℓ.
Roughly speaking, they have shown that the DFT of a polynomial in 𝔽q ℓ[x] could be
computed almost ℓ times faster if its coefficients happen to lie in the subfield 𝔽q. Using
their algorithm, called the Frobenius FFT, it is theoretically possible to avoid the overhead
of Kronecker segmentation, and thereby to gain a factor of two with respect to [7]. How-
ever, application of the Frobenius FFT as described in [11] involves computations in all
intermediate fields 𝔽q e between 𝔽q and 𝔽q ℓ. This makes the theoretical speed-up of two
harder to achieve and practical implementations more cumbersome.

Besides Schönhage–Strassen type algorithms, let us mention that other strategies
such as the additive Fourier transform have been developed for 𝔽2k[x] [4, 15]. A compet-
itive implementation based on the latter transform has been achieved very recently by
Chen et al. [2]—notice that their preprint [2] does not take into account our new imple-
mentation. For more historical details on the complexity of polynomial multiplication
we refer the reader to the introductions of [7, 8] and to the book by von zur Gathen
and Gerhard [5].

1.2. Results and outline of the paper
This paper contains two main results. In section 3, we describe a variant of the Frobenius
DFT for the special extension of 𝔽260 over 𝔽2. Using a single rewriting step, this new
algorithm reduces the computation of a Frobenius DFT to the computation of an ordi-
nary DFT over 𝔽260, thereby avoiding computations in any intermediate fields 𝔽2e with
1<e<60 and e ∣ 60.

Our second main result is a practical implementation of the new algorithm and our
ability to indeed gain a factor that approaches two with respect to our previous work.
We underline that in both cases, DFTs over 𝔽260 represent the bulk of the computation,
but the lengths of the DFTs are halved for the new algorithm. In particular, the observed
acceleration is due to our new algorithm and not the result of ad hoc code tuning or hard-
ware specific optimizations.

In section 4, we present some of the low level implementation details concerning the
new rewriting step. Our timings are presented in section 5. Our implementation out-
performs the reference library GF2X version 1.2 developed by Brent, Gaudry, Thomé and
Zimmermann [1] for multiplying polynomials in 𝔽2[x]. We also outperform the recent
implementation by Chen et al. [2]. Finally, the evaluation-interpolation strategy used by

2 IMPLEMENTING FAST CARRYLESS MULTIPLICATION

our algorithm is particularly well suited for multiplying matrices of polynomials over
𝔽2, as reported in section 5.

2. PREREQUISITES

Discrete Fourier transforms
Let 𝜔 be a primitive root of unity of order n in 𝔽q. The discrete Fourier transform (DFT) of
an n-tuple a=(a0,…,an−1)∈𝔽q

n with respect to 𝜔 is DFT𝜔(a)≔(â0,…, ân−1)∈𝔽q
n, where

âi ≔ a0 +a1𝜔 i +⋯+ an−1 𝜔(n−1)i.

Hence âi is the evaluation of the polynomial A(x) = a0 + a1 x + ⋯ + an−1 xn−1 at 𝜔 i.
For simplicity we often identify A with a and we simply write DFT𝜔(A). The inverse
transform is related to the direct transform via DFT𝜔

−1 = n−1 DFT𝜔−1, which follows from
the well known formula

DFT𝜔−1(DFT𝜔(a)) = na.

If n properly factors as n=n1 n2, then 𝜔n1 is an n2-th primitive root of unity and 𝜔n2 is an
n1-th primitive root of unity. Moreover, for any i1∈{0,…,n1−1} and i2∈{0,…,n2−1}, we
have

âi1n2+i2 = �
0⩽k1<n1

�
0⩽k2<n2

ak2n1+k1 𝜔(k2n1+k1)(i1n2+i2)

= �
0⩽k1<n1

𝜔k1i2(((((�
0⩽k2<n2

ak2n1+k1 (𝜔n1)k2i2)))))(𝜔n2)k1i1. (1)

If 𝒜 1 and 𝒜 2 are algorithms for computing DFTs of length n1 and n2, we may use (1) to
construct an algorithm for computing DFTs of length n as follows. For each k1 ∈ {0, …,
n1 − 1}, the sum inside the brackets corresponds to the i2-th coefficient of a DFT of the
n2-tuple (a0n1+k1, …, a(n2−1)n1+k1) ∈ 𝔽q

n2 with respect to 𝜔n1. Evaluating these inner DFTs
requires n1 calls to 𝒜 2. Next, we multiply by the twiddle factors 𝜔k1i2, at a cost of n oper-
ations in 𝔽q. Finally, for each i2 ∈ {0, …, n2 − 1}, the outer sum corresponds to the i1-th
coefficient of a DFT of an n1-tuple in 𝔽q

n1 with respect to 𝜔n2. These outer DFTs require n2
calls to 𝒜 1. Iterating this decomposition for further factorizations of n1 and n2 yields the
seminal Cooley–Tukey algorithm [3].

Frobenius Fourier transforms
Let A be a polynomial in 𝔽q[x] and let 𝜔 be a primitive root of unity in some extension
𝔽q ℓ of 𝔽q. We write 𝜙q for the Frobenius map a↦aq in 𝔽q ℓ and notice that

A(𝜙q(a))=𝜙q(A(a)), (2)

for any a ∈ 𝔽q ℓ. This formula implies many nontrivial relations for the DFT of A: if 𝜔 i =
𝜙q

∘k(𝜔 j), then we have A(𝜔 i)=𝜙q
∘k(A(𝜔 j)). In other words, some values of the DFT of A

can be deduced from others, and the advantage of the Frobenius transform introduced
in [11] is to restrict the bulk of the evaluations to a minimum number of points.

Let n denote the order of the root 𝜔, and consider the set Ω={1,𝜔,𝜔2,…,𝜔n−1}. This
set is clearly globally stable under 𝜙q, so the group ⟨𝜙q⟩ generated by 𝜙q acts naturally
on it. This action partitions Ω into disjoint orbits. Assume that we have a section Σ of
Ω that contains exactly one element in each orbit. Then formula (2) allows us to recover
DFT𝜔(A) from the evaluations of A at each of the points in Σ. The vector (A(𝜎))𝜎∈Σ is
called the Frobenius DFT of A.

JORIS VAN DER HOEVEN, ROBIN LARRIEU, GRÉGOIRE LECERF 3

3. FAST REDUCTION FROM 𝔽2[x] TO 𝔽260[x]

3.1. Variant of the Frobenius DFT
To efficiently reduce a multiplication in 𝔽2[x] into DFTs over 𝔽260, we use an order n
that divides 260 − 1 and such that n = 61 m for some integer m. We perform the decom-
position (1) with n1 = m and n2 = 61. Let 𝜔 be a primitive n-th root of unity in 𝔽260. The
discrete Fourier transform of A ∈ 𝔽2[x]<n, given by (A(1), A(𝜔), A(𝜔2), …, A(𝜔n−1)) ∈
𝔽260

n , can be reorganized into 61 slices as follows

DFT𝜔(A)=((A(𝜔61i))0⩽i<m, (A(𝜔61i+1))0⩽i<m,…, (A(𝜔61i+60))0⩽i<m).

The variant of the Frobenius DFT of A that we introduce in the present paper corre-
sponds to computing only the second slice:

E𝜔: 𝔽2[x]<60m → 𝔽260
m

A ↦ (A(𝜔61i+1))0⩽i<m.

Let us show that this transform is actually a bijection. The following lemma shows that
the slices (A(𝜔61i+2))0⩽i<m, …, (A(𝜔61i+60))0⩽i<m can be deduced from the second slice
(A(𝜔61i+1))0⩽i<m using the action of the Frobenius map 𝜙2.
LEMMA 1. Let Ω i = {𝜔61 j+i : 0 ⩽ j < m} for 1 ⩽ i < 61. Then the action of ⟨𝜙2⟩ is transitive on
the pairwise disjoint sets Ω1,…,Ω60.
Proof. Let 1 ⩽ i < 61 and 0 ⩽ j< m, we have 𝜙2(𝜔61 j+i) = 𝜔61 j ′+(2i mod61) for some integer
0⩽ j′<m, so the action of ⟨𝜙2⟩ onto Ω1,…,Ω60 is well defined. Notice that 2 is primitive
for the multiplicative group 𝔽61

× . This implies that for any 1⩽ i<61 there exists k such that
2k = i mod 61. Consequently we have 𝜙2

∘k(𝜔61 j+1) = 𝜔61 j′+i for some 0 ⩽ j′ < m, whence
𝜙2

∘k(Ω1)⊆Ω i. Since 𝜙2 is injective the latter inclusion is an equality. □
If we were needed the complete DFT𝜔(A), then we would still have to compute the

first slice (A(𝜔61i))0⩽i<m. The second main new idea with respect to [11] is to discard this
first slice and to restrict ourselves to input polynomials A of degrees <60m. In this way,
E𝜔 can be inverted, as proved in the following proposition.
PROPOSITION 2. E𝜔 is bijective.
Proof. The dimensions of the source and destination spaces of E𝜔 over 𝔽2 being the
same, it suffices to prove that E𝜔 is injective. Let A ∈ 𝔽2[x]<60m be such that E𝜔(A) = 0.
By construction, A vanishes at m distinct values, namely 𝜔61i+1 for 0 ⩽ i < m. Under the
action of ⟨𝜙2⟩ it also vanishes at 60(m−1) other values by Lemma 1, whence A=0. □
Remark 3. The transformation E𝜔 being bijective is due to the fact that 2 is primitive
in the multiplicative group 𝔽61

× . Among the prime divisors of 260 − 1, the factors 3, 5,
11 and 13 also have this property, but taking n2 = 61 allows us to divide the size of the
evaluation-interpolation scheme by 60, which is optimal.

3.2. Frobenius encoding
We decompose the computation of E𝜔 into two routines. The first routine is written F𝜔
and called the Frobenius encoding:

F𝜔: 𝔽2[x]<60m → 𝔽260[x]<m

A= �
0⩽k<60m

ak xk ↦ �
0⩽k<m

𝜔k(((((�
0⩽l<60

ak+ml 𝜃 l)))))xk,where𝜃 =𝜔m. (3)

Below, we will choose 𝜃 in such a way that F𝜔 is essentially a simple reorganization of
the coefficients of A.

4 IMPLEMENTING FAST CARRYLESS MULTIPLICATION

We observe that the coefficients of F𝜔(A) are part of the values of the inner DFTs of
A in the Cooley–Tukey formula (1), applied with n1 = m and n2 = 61. The second task is
the computation of the corresponding outer DFT of order m:

DFT�̃�: 𝔽260[x]<m → 𝔽260
m

Ã ↦ (Ã(�̃� i))0⩽i<m, where �̃�=𝜔61.

PROPOSITION 4. E𝜔=DFT�̃�∘F𝜔.
Proof. This formula follows from (1):

A(𝜔61i+1)= �
0⩽k<m

𝜔k(((((�
0⩽l<61

ak+ml 𝜃 l))))) �̃�ki =F𝜔(A)(�̃� i). □

Summarizing, we have reduced the computation of a DFT of size 60 n/61 over 𝔽2 to
a DFT of size m=n/61 over 𝔽260. This reduction preserves data size.

3.3. Direct transforms
The computation of F𝜔 involves the evaluation of m polynomials in 𝔽2[x]<60 at 𝜃 =𝜔m∈
𝔽260. In order to perform these evaluations fast, we fix the representation of 𝔽260 =𝔽2[z]/
(𝜇(z)) and the primitive root 𝜈 of unity of maximal order 260−1 to be given by

𝜇(z) = (z61−1)/(z−1)
𝜈 = z18+ z6 +1mod𝜇(z).

Setting 𝜔=𝜈 (260−1)/n and 𝜃 =𝜈 (260−1)/61, it can be checked that 𝜃 =zmod𝜇(z). Evaluation
of a polynomial in 𝔽2[x]<60 at 𝜃 can now be done efficiently.
Algorithm 1
Input: A(x)=∑0⩽i<60m ai x i.
Output: F𝜔(A).
Assumption: n=61m divides 260 −1.

1. For i=0,…,m−1, build Pi(z)=∑0⩽ j<60 ai+mj z j mod𝜇(z) ∈ 𝔽260.

2. Return P0 +𝜔P1x+𝜔2 P2x2+⋯+𝜔m−1 Pm−1 xm−1.
PROPOSITION 5. Algorithm 1 is correct.
Proof. This deduces immediately from the definition of F𝜔 in formula (3), using the fact
that 𝜃 =zmod𝜇(z) in our representation. □
Algorithm 2
Input: A∈𝔽2[x]<60m.
Output: E𝜔(A).
Assumption: n=61m divides 260 −1.

1. Compute the Frobenius encoding Ã(x)∈𝔽260[x]<m of A by Algorithm 1.
2. Compute the DFT of Ã with respect to �̃�.

PROPOSITION 6. Algorithm 2 is correct.
Proof. The correctness simply follows from Propositions 4 and 5. □

3.4. Inverse transforms
By combining Propositions 2 and 4, the map F𝜔 is invertible and its inverse may be com-
puted by the following algorithm.
Algorithm 3
Input: Ã(x)=∑i⩾0 ãi x i ∈𝔽260[x]<m.
Output: F𝜔

−1(Ã).

JORIS VAN DER HOEVEN, ROBIN LARRIEU, GRÉGOIRE LECERF 5

Assumption: n=61m divides 260 −1.
1. For i=0,…,m−1, build the preimage Pi(z)≔∑0⩽ j<60 pi, j z j of 𝜔−i ãi.

2. Return ∑0⩽i<m ∑0⩽ j<60pi, j x i+mj.

PROPOSITION 7. Algorithm 3 is correct.
Proof. This is a straightforward inversion of Algorithm 1. □
Algorithm 4
Input: â∈𝔽260

m .
Output: E𝜔

−1(â).
Assumption: n=61m divides 260 −1.

1. Compute the inverse DFT Ã∈𝔽260[x]<m of â with respect to �̃�.
2. Compute the Frobenius decoding A of Ã by Algorithm 3 and return A.

PROPOSITION 8. Algorithm 4 is correct.
Proof. The correctness simply follows from Propositions 4 and 7. □

3.5. Multiplication in 𝔽2[x]
Using the standard technique of multiplication by evaluation-interpolation, we may
now compute products in 𝔽2[x] as follows:
Algorithm 5
Input: A,B∈𝔽2[x]<ℓ.
Output: AB

1. Let m⩾(2ℓ−1)/60 be such that n=61m divides 260 −1.

2. Let 𝜔=𝜈 (260−1)/n be the privileged root of unity of order n.
3. Compute E𝜔(A) and E𝜔(B) by Algorithm 2.
4. Compute ĉ as the entry-wise product of E𝜔(A) and E𝜔(B).

5. Compute C(x)=E𝜔
−1(ĉ) by Algorithm 4 and return C.

PROPOSITION 9. Algorithm 4 is correct.
Proof. The correctness simply follows from Propositions 6 and 8 and using the fact that
E𝜔(AB)=E𝜔(A)E𝜔(B), since m⩾(2ℓ−1)/60. □

For step 1, the actual determination of m has been discussed in [7, section 3]. In fact it
is often better not to pick the smallest possible value for m but a slightly larger one that
is also very smooth. Since 260−1 admits many small prime divisors, such smooth values
of m usually indeed exist.

4. IMPLEMENTATION DETAILS

We follow INTEL's terminology and use the term quad word to denote a unit of 64 bits
of data. In the rest of the paper we use the C99 standard for presenting our source
code. In particular a quad word representing an unsigned integer is considered of type
uint64_t.

Our implementations are done for an AVX2-enabled processor and an operating
system compliant to System V Application Binary Interface. The C++ library NUMERIX
of MATHEMAGIX [13] (http://www.mathemagix.org) defines wrappers for AVX types.
In particular, avx_uint64_t represents an SIMD vector of 4 elements of type uint64_t.
Recall that the platform disposes of 16 AVX registers which must be allocated accurately
in order to minimize read and write accesses to the memory.

6 IMPLEMENTING FAST CARRYLESS MULTIPLICATION

http://www.mathemagix.org
http://www.mathemagix.org
http://www.mathemagix.org

Our new polynomial product is implemented in the JUSTINLINE library of MATH-
EMAGIX. The source code is freely available from revision 10681 of our SVN server
(https://gforge.inria.fr/projects/mmx/). Main sources are in justinline/
src/frobenius_encode_f2_60.cpp for the Frobenius encoding and in justinline/
mmx/polynomial_f2_amd64_avx2_clmul.mmx for the top level functions. Related test
and bench files are also available from dedicated directories of the JUSTINLINE library.
Let us further mention here that our MATHEMAGIX functions may be easily exported
to C++ [12].

4.1. Packed representations
Polynomials over 𝔽2 are supposed to be given in packed representation, which means that
coefficients are stored as a vector of contiguous bits in memory. For the implementation
considered in this paper, a polynomial of degree ℓ − 1 is stored into ⌈ℓ/64⌉ quad words,
starting with the low-degree coefficients: the constant term is the least significant bit of
the first word. The last word is suitably padded with zeros.

Reading or writing one coefficient or a range of coefficients of a polynomial in packed
representation must be done carefully to avoid invalid memory access. Let A be such
a polynomial of type uint64_t*. Reading the coefficient ai of degree i in A is obtained
as (A[i >> 6] >> (i & 63)) & 1. However, reading or writing a single coefficient
should be avoided as much as possible for efficiency, so we prefer handling ranges of 256
bits. In the sequel the function of prototype

void load (avx_uint64_t& d, const uint64_t* A,
const uint64_t& ℓ, const uint64_t& i, const uint64_t& e);

returns the e ⩽256 bits of A starting from i into d. Bits beyond position ℓ are considered
to be zero.

For arithmetic operations in 𝔽260 we refer the reader to [7, section 3.1]. In the sequel
we only appeal to the function

uint64_t f2_60_mul (const uint64_t& a, const uint64_t& b);
that multiplies the two elements a and b of 𝔽260 in packed representation.

We also use a packed column-major representation for matrices over 𝔽2. For instance,
an 8 × 8 bit matrix (Mi, j)0⩽i<8, 0⩽ j<8 is encoded as a quad word whose (8 j+ i)-th bit is
Mi, j. Similarly, a 256 × ℓ matrix (Mi, j)0⩽i<256, 0⩽ j<ℓ may be seen as a vector v of type
avx_uint64_t*, so Mi, j corresponds to the i-th bit of v[j].

4.2. Matrix transposition
The Frobenius encoding essentially boils down to matrix transpositions. Our main
building block is 256 × 64 bit matrix transposition. We decompose this transposition
in a suitable way with regards to data locality, register allocation and vectorization.

For the computation of general transpositions, we repeatedly make use of the well-
known divide and conquer strategy: to transpose an n × ℓ matrix M, where n and ℓ are
even, we decompose M = ((((((((((((A B

C D)))))))))))), where A, B, C, D are n/2 × ℓ/2 matrices; we swap the
anti-diagonal blocks B and C and recursively transpose each block A,B,C,D.

4.2.1. Transposing packed 8×8 bit matrices

The basic task we begin with is the transposition of a packed 8×8 bit matrix. The solution
used here is borrowed from [18, Chapter 7, section 3].
Function 1

JORIS VAN DER HOEVEN, ROBIN LARRIEU, GRÉGOIRE LECERF 7

https://gforge.inria.fr/projects/mmx/
https://gforge.inria.fr/projects/mmx/
https://gforge.inria.fr/projects/mmx/
https://gforge.inria.fr/projects/mmx/
https://gforge.inria.fr/projects/mmx/
https://gforge.inria.fr/projects/mmx/
https://gforge.inria.fr/projects/mmx/
https://gforge.inria.fr/projects/mmx/

Input: (Mi, j)0⩽i<8, 0⩽ j<8 in packed representation.
Output: The transpose (Ni, j)0⩽i<8, 0⩽ j<8 of M in packed representation.

uint64_t
packed_matrix_bit_8x8_transpose (const uint64_t& M) {
1. uint64_t N = M;
2. static const uint64_t mask_4 = 0x00000000f0f0f0f0;
3. static const uint64_t mask_2 = 0x0000cccc0000cccc;
4. static const uint64_t mask_1 = 0x00aa00aa00aa00aa;
5. uint64_t a;
6. a = ((N >> 28) ^ N) & mask_4; N = N ^ a;
7. a = a << 28; N = N ^ a;
8. a = ((N >> 14) ^ N) & mask_2; N = N ^ a;
9. a = a << 14; N = N ^ a;

10. a = ((N >> 7) ^ N) & mask_1; N = N ^ a;
11. a = a << 7; N = N ^ a;
12. return N; }

In steps 6 and 7, the anti-diagonal 4 × 4 blocks are swapped. In steps 8 and 9, the
matrix N is seen as four 4 × 4 matrices whose anti-diagonal 2 × 2 blocks are swapped.
In steps 10 and 11, the matrix N is seen as sixteen 2 × 2 matrices whose anti-diagonal
elements are swapped. All in all, 18 instructions, 3 constants and one auxiliary variable
are needed to transpose a packed 8×8 bit matrix in this way.

One advantage of the above algorithm is that it admits a straightforward AVX vec-
torization that we will denote by

avx_uint64_t
avx_packed_matrix_bit_8x8_transpose (const avx_uint64_t& M);

This routine transposes four 8 × 8 bit matrices M0, M1, M2, M3 that are packed succes-
sively into an AVX register of type avx_uint64_t. We emphasize that this task is not
the same as transposing a 32×8 or 8×32 bit matrices.
Remark 10. The BMI2 technology gives another method for transposing 8 × 8 bit
matrices:

uint64_t mask = 0x0101010101010101;
uint64_t N= 0;
for (unsigned i = 0; i < 8; i++)

N ∣= _pext_u64 (M, mask << i) << (8 * i);
The loop can be unrolled while precompting the shift amounts and masks, which leads
to a faster sequential implementation. Unfortunately this approach cannot be vectorized
with the AVX2 technology. Other sequential solutions even exist, based on lookup tables
or integer arithmetic, but their vectorization is again problematic. Practical efficiencies
are reported in section 5.

4.2.2. Transposing four 8×8 byte matrices simultaneously

Our next task is to design a transposition algorithm of four packed 8 × 8 byte matrices
simultaneously. More precisely, it performs the following operation on a packed 32 × 8
byte matrix:

((((((((((((((((((
((((((((((((((((((
(((
(
(M0

M1
M2
M3))))))))))))))))))

))))))))))))))))))
)))
)
)

⟶

(((((((((((((((((
(((((((((((((((((
((((((((((((

(

(M0
⊤

M1
⊤

M2
⊤

M3
⊤)))))))))))))))))

)))))))))))))))))
))))))))))))

)

)
,

8 IMPLEMENTING FAST CARRYLESS MULTIPLICATION

where the Mi are 8×8 blocks. This operation has the following prototype in the sequel:
void avx_packed_matrix_byte_8x8_transpose
(avx_uint64_t* dest, const avx_uint64_t* src);

This function works as follows. First the input src is loaded into eight AVX registers
r0, …, r7. Each ri is seen as a vector of four uint64_t: for j ∈ {0, …, 3}, r0[j], …, r7[j] thus
represent the 8×8 byte matrix M j. Then we transpose these four matrices simultaneously
in-register by means of AVX shift and blend operations over 32, 16 and 8 bits entries in
the spirit of the aforementioned divide and conquer strategy.

4.2.3. Transposing 256×64 bit matrices
Having the above subroutines at our disposal, we can now present our algorithm to
transpose a packed 256 × 64 bit matrix. The input bit matrix of type avx_int64_t* is
written (Mi, j)0⩽i<256, 0⩽ j<64. The transposed output matrix is written (Ni, j)0⩽i<64, 0⩽ j<256
and has type uint64_t*. We first compute the auxiliary byte matrix T as follows:

static avx_uint64_t T[64];
for (int i= 0; i < 8; i++) {
avx_packed_matrix_byte_8x8_transpose (T + 8*i, M + 8*i);
for (int k= 0; k < 8; k++)
T[8*i+k]= avx_packed_matrix_bit_8x8_transpose(T[8*i+k]); }

If we write Mi,k:l for the byte representing the packed bit vector (Mi,k, …, Mi,l), then T
contains the following 32×64 byte matrix:

(((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
(((((((((((((((((
((((((((((((((((((
((

(

(M0,0:7 … M56,0:7 M0,8:15 … M56,8:15 … M0,56:63 … M56,56:63
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

M7,0:7 … M63,0:7 M7,8:15 … M63,8:15 … M7,56:63 … M63,56:63
M64,0:7 … M120,0:7 M64,8:15 … M120,8:15 … M64,56:63 … M120,56:63

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
M71,0:7 … M127,0:7 M71,8:15 … M127,8:15 … M71,56:63 … M127,56:63
M128,0:7 … M184,0:7 M128,8:15 … M184,8:15 … M128,56:63 … M184,56:63

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
M135,0:7 … M191,0:7 M135,8:15 … M191,8:15 … M135,56:63 … M191,56:63
M192,0:7 … M248,0:7 M192,8:15 … M248,8:15 … M192,56:63 … M248,56:63

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
M199,0:7 … M255,0:7 M199,8:15 … M255,8:15 … M199,56:63 … M255,56:63)))))))))))))))))

)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
))))))))))))))))))
)))))))))))))))))
))))))))))))))))))
))

)

)

.

First, for all 0 ⩽ i ⩽ 7, we load column 8 i into the AVX register ri. We interpret these
registers as forming a 32×8 byte matrix that we transpose in-registers. This transposition
is again performed in the spirit of the aforementioned divide and conquer strategy and
makes use of various specific AVX2 instructions. We obtain

((((((((((((((((((
((((((((((((((((((
(((
(
(M0,0:7 M1,0:7 … M7,0:7 M64,0:7 M65,0:7 … M71,0:7 …

M0,8:15 M1,8:15 … M7,8:15 M64,8:15 M65,8:15 … M71,8:15 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

M0,56:63 M1,56:63 … M7,56:63 M64,56:63 M65,56:63 … M71,56:63 …))))))))))))))))))
))))))))))))))))))
)))
)
)

.

More precisely, for i=0,…,7, the group of four consecutive columns from 4 i until 4 i+3
is in the register ri. We save the registers r0,…,r7 at the addresses N,N +4,N +64,N +68,
N +128,N +132,N +192 and N +196.

For each k=1,…,7, we build a similar 32×8 byte matrix from the columns k, 8+k,…,
56 + k of T, and transpose this matrix using the same algorithm. This time the result
is saved at the addresses N ′, N ′ + 4, N ′ + 64, N ′ + 68, N ′ + 128, N ′ + 132, N ′ + 192 and
N ′ + 196, where N ′ = N + 8 k. This yields an efficient routine for transposing M into N,
whose prototype is given by

JORIS VAN DER HOEVEN, ROBIN LARRIEU, GRÉGOIRE LECERF 9

void packed_matrix_bit_256x64_transpose
(uint64_t* N, (const avx_uint64_t*) M);

4.3. Frobenius encoding
If the input polynomial A has degree less than ℓ ⩽ 60 m and is in packed representation,
then it can also be seen as a m × 60 matrix in packed representation (except a padding
with zeros could be necessary to adjust the size).

In this setting, the polynomials Pi of Algorithm 1 are simply read as the rows of the
matrix. Therefore, to compute the Frobenius encoding F𝜔(A), we only need to transpose
this matrix, then add 4 rows of zeros for alignment (because we store one element of 𝔽260

per quad word) and multiply by twiddle factors. This leads to the following implemen-
tation:
Function 2
Input: A(x)=∑0⩽i<ℓ ai x i ∈𝔽2[x].
Output: F𝜔(A) stored from pointer d to m allocated quad words.
Assumptions: n=61m divides 260 −1 and ℓ⩽60m.

void encode (uint64_t* d, const uint64_t& m,
const uint64_t* A, const uint64_t& ℓ) {

1. uint64_t c = 1, i = 0, e = 0;
2. avx_uint64_t v[64]; uint64_t w[256];
3. while (i < m) {
4. e = min (m - i, 256);
5. for (int j = 0; j < 64; j++)

load (v[j], A, ℓ, i + m * j, e);
6. packed_matrix_bit_256x64_transpose (w, v);
7. for (int j = 0; j < e; j++) {

d[i + j] = f2_60_mul (w[j], c);
c = f2_60_mul (c, 𝜔); }

8. i += e; }

Remark. To optimize read accesses, it is better to run loop 5 for j<⌈l/m⌉ and to initialize
the remaining v[j] to zero. Indeed, for a product of degree d, we typically multiply
two polynomials of degree ≃d / 2, which means ℓ < 30 m when computing the direct
transform.

The Frobenius decoding consists in inverting the encoding. The implementation
issues are the same, so we refer to our source code for further details.

5. TIMINGS

The platform considered in this paper is equipped with an INTEL(R) CORE(TM) i7-6700
CPU at 3.40 GHz and 32 GB of 2133 MHz DDR4 memory. This CPU features AVX2,
BMI2 and CLMUL technologies (family number 6 and model number 94). The platform
runs the STRETCH GNU DEBIAN operating system with a 64 bit LINUX kernel version 4.3.
We compile with GCC [6] version 5.4.

We use version 1.2 of the GF2X library (https://gforge.inria.fr/projects/
gf2x/, released in July 2017)—it makes use of the CLMUL features of the platform.
We tuned it to our platform during the installation process up to 32 000000 input quad
words. We also compare to the implementation of the additive Fourier transform by
Chen et al. [2], using the GIT version of 2017, September, 1.

10 IMPLEMENTING FAST CARRYLESS MULTIPLICATION

https://gforge.inria.fr/projects/gf2x/
https://gforge.inria.fr/projects/gf2x/
https://gforge.inria.fr/projects/gf2x/
https://gforge.inria.fr/projects/gf2x/
https://gforge.inria.fr/projects/gf2x/
https://gforge.inria.fr/projects/gf2x/
https://gforge.inria.fr/projects/gf2x/
https://gforge.inria.fr/projects/gf2x/

10×1060

8000

0

Old implementation of [7]

GF2X version 1.2

New implementation

timings in ms

size in quad words

Chen et al. [2]

Figure 1. Products in 𝔽2[x]<ℓ, input size ⌈ℓ/64⌉ quad words, timings in milliseconds.

Frobenius encoding
Concerning the cost of the Frobenius encoding and decoding, Function 1 takes about
20 CPU cycles when compiled with the sole -O3 option. With the additional options -
mtune=native -mavx2 -mbmi2, the BMI2 version of Remark 10 takes about 16 CPU
cycles. The vectorized version of Function 1 transposes four packed 8 × 8 bit matrices
simultaneously in about 20 cycles, which makes an average of 5 cycles per matrix.

It it interesting to examine the performance of the sole transpositions made during
the Frobenius encoding and decoding (that is discarding products by twiddle factors in
𝔽260). From sizes of a few kilobytes this average cost per quad word is about 8 cycles with
the AVX2 technology, and it is about 23 cycles without. Unfortunately the vectorization
speed-up is not as close to 4 as we would have liked.

Since the encoding and decoding costs are linear, their relative contribution to the
total computation time of polynomial products decreases for large sizes. For two input
polynomials in 𝔽2[x] of 216 quad words, the contribution is about 15%; for 222 quad
words, it is about 10%.

Polynomial product
In Figure 1 we report timings in milliseconds for multiplying two polynomials in
𝔽2[x]<ℓ, hence each of input size ⌈ℓ/64⌉ quad words—indicated in abscissa and obtained
from justinline/bench/polynomial_f2_bench.mmx. Notice that our implementa-
tion in [7] was faster than version 1.1 of GF2X, but is now of similar speed as version 1.2.
The additive FFT strategy of [2] achieves a noticeable speed-up in favorable cases, but
because of its staircase-effect its runtime is roughly similar to the one of GF2X in average.
With respect to our old implementation, the new one finally achieves a speed-up that is
not far from the factor 2 predicted by the asymptotic complexity analysis. Let us mention
that our new implementation becomes faster than GF2X when ⌈ℓ/64⌉ is larger than 2048.

Polynomial matrix product
As in [7], one major advantage of DFTs over the Babylonian field 𝔽260 is the compact-
ness of the evaluated FFT-representation of polynomials. This makes linear algebra over
𝔽2[x] particularly efficient: instead of multiplying r × r matrices over 𝔽2[x]<ℓ naively by
means of r3 polynomial products of degree <ℓ, we use the standard evaluation-interpo-
lation approach. In our context, this comes down to: (a) computing the 2 r2 Frobenius
encodings, (b) the 2 r2 direct DFTs of all entries of the two matrices to be multiplied, (c)
performing the ≈2ℓ/60 products of r×r matrices over 𝔽260, (d) computing the r2 inverse
DFTs and Frobenius decodings of the so-computed matrix products.

JORIS VAN DER HOEVEN, ROBIN LARRIEU, GRÉGOIRE LECERF 11

r 1 2 4 8 16 32
this paper 12 51 212 896 3969 18953
GF2X 22 182 1457 11856 92858 745586

Table 1. Products of r× r matrices over 𝔽2[x], for degree 64 ⋅216, in milliseconds.

Timings for matrices over 𝔽2[x] are obatined from justinline/bench/
matrix_polynomial_f2_bench.mmx and are reported in Table 1. The row “this paper”
confirms the practical gain of this fast approach within our implementation. For com-
parison, the row “GF2X” shows the cost of computing the product naively, by doing r3

polynomial multiplications using GF2X. More efficient evaluation-interpolation based
approaches [10, Section 2] for matrix multiplication can in principle be combined with
Schönhage's triadic polynomial multiplication [16] as implemented in GF2X. However,
this would require an additional implementation effort and also lead to an extra con-
stant overhead with respect to our approach.

6. CONCLUSION

The present paper describes a major new approach for the efficient computation of large
carryless products. It confirms the excellent arithmetic properties of the Babylonian field
𝔽260 for practical purposes, when compared to the fastest previously available strategies.

Improvements are still possible for our implementation of DFTs over 𝔽260. First,
taking advantage of the more recent AVX-512 technologies is an important challenge.
This is difficult due to the current lack of 256 or 512 bit SIMD counterparts for the
vpclmulqdq assembly instruction (carryless multiplication of two quad words). How-
ever, larger vector instruction would be beneficial for matrix transposition, and even
more taking into account that there are twice as many 512 bit registers as 256 bit registers;
so we can expect a significant speed-up for the Frobenius encoding/decoding stages.
The second expected improvement concerns the use of truncated Fourier transforms [9,
14] in order to smoothen the graph from Figure 1. Finally we expect that our new ideas
around the Frobenius transform might be applicable to other small finite fields.

BIBLIOGRAPHY

[1] R. P. Brent, P. Gaudry, E. Thomé, and P. Zimmermann. Faster multiplication in GF(2)[x]. In A. van der
Poorten and A. Stein, editors, Algorithmic Number Theory, volume 5011 of Lect. Notes Comput. Sci., pages
153–166. Springer Berlin Heidelberg, 2008.

[2] Ming-Shing Chen, Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and Bo-Yin Yang. Faster multiplica-
tion for long binary polynomials. https://arxiv.org/abs/1708.09746, 2017.

[3] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier series.
Math. Computat., 19:297–301, 1965.

[4] S. Gao and T. Mateer. Additive fast Fourier transforms over finite fields. IEEE Trans. Inform. Theory,
56(12):6265–6272, 2010.

[5] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 3rd edition,
2013.

[6] GCC, the GNU Compiler Collection. Software available at http://gcc.gnu.org, from 1987.
[7] D. Harvey, J. van der Hoeven, and G. Lecerf. Fast polynomial multiplication over F260. In

M. Rosenkranz, editor, Proceedings of the ACM on International Symposium on Symbolic and Algebraic Com-
putation, ISSAC '16, pages 255–262. ACM, 2016.

[8] D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over finite fields. J. ACM,
63(6), 2017. Article 52.

12 IMPLEMENTING FAST CARRYLESS MULTIPLICATION

https://arxiv.org/abs/1708.09746
https://arxiv.org/abs/1708.09746
https://arxiv.org/abs/1708.09746
https://arxiv.org/abs/1708.09746
https://arxiv.org/abs/1708.09746
https://arxiv.org/abs/1708.09746
https://arxiv.org/abs/1708.09746
http://gcc.gnu.org
http://gcc.gnu.org
http://gcc.gnu.org

[9] J. van der Hoeven. The truncated Fourier transform and applications. In J. Schicho, editor, Proceedings of
the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC '04, pages 290–296. ACM,
2004.

[10] J. van der Hoeven. Newton's method and FFT trading. J. Symbolic Comput., 45(8):857–878, 2010.
[11] J. van der Hoeven and R. Larrieu. The Frobenius FFT. In M. Burr, editor, Proceedings of the 2017 ACM

on International Symposium on Symbolic and Algebraic Computation, ISSAC '17, pages 437–444. ACM, 2017.
[12] J. van der Hoeven and G. Lecerf. Interfacing Mathemagix with C++. In M. Monagan, G. Cooperman,

and M. Giesbrecht, editors, Proceedings of the 2013 ACM on International Symposium on Symbolic and Alge-
braic Computation, ISSAC '13, pages 363–370. ACM, 2013.

[13] J. van der Hoeven and G. Lecerf. Mathemagix User Guide. https://hal.archives-ouvertes.fr/
hal-00785549, 2013.

[14] R. Larrieu. The truncated Fourier transform for mixed radices. In M. Burr, editor, Proceedings of the 2017
ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC '17, pages 261–268. ACM,
2017.

[15] Sian-Jheng Lin, Wei-Ho Chung, and S. Yunghsiang Han. Novel polynomial basis and its application
to Reed-Solomon erasure codes. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science
(FOCS), pages 316–325. IEEE, 2014.

[16] A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Infor.,
7:395–398, 1977.

[17] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292, 1971.
[18] H. S. Warren. Hacker's Delight. Addison-Wesley, 2nd edition, 2012.

JORIS VAN DER HOEVEN, ROBIN LARRIEU, GRÉGOIRE LECERF 13

https://hal.archives-ouvertes.fr/hal-00785549
https://hal.archives-ouvertes.fr/hal-00785549
https://hal.archives-ouvertes.fr/hal-00785549
https://hal.archives-ouvertes.fr/hal-00785549
https://hal.archives-ouvertes.fr/hal-00785549
https://hal.archives-ouvertes.fr/hal-00785549
https://hal.archives-ouvertes.fr/hal-00785549
https://hal.archives-ouvertes.fr/hal-00785549
https://hal.archives-ouvertes.fr/hal-00785549

	1. Introduction
	1.1. Related work
	1.2. Results and outline of the paper

	2. Prerequisites
	Discrete Fourier transforms
	Frobenius Fourier transforms

	3. Fast reduction from 𝔽_2[x] to 𝔽_�⠀㈀帀㘀　)[x]
	3.1. Variant of the Frobenius DFT
	3.2. Frobenius encoding
	3.3. Direct transforms
	3.4. Inverse transforms
	3.5. Multiplication in 𝔽_2[x]

	4. Implementation details
	4.1. Packed representations
	4.2. Matrix transposition
	4.2.1. Transposing packed 8×8 bit matrices
	4.2.2. Transposing four 8×8 byte matrices simultaneously
	4.2.3. Transposing 256×64 bit matrices

	4.3. Frobenius encoding

	5. Timings
	Frobenius encoding
	Polynomial product
	Polynomial matrix product

	6. Conclusion
	Bibliography

