
Polynomial multiplication over finite fields
in time O(n log n)

DAVID HARVEY

School of Mathematics and Statistics
University of New South Wales

Sydney NSW 2052
Australia

Email: d.harvey@unsw.edu.au

JORIS VAN DER HOEVEN

CNRS, Laboratoire d'informatique
École polytechnique

91128 Palaiseau Cedex
France

Email: vdhoeven@lix.polytechnique.fr

March 18, 2019

Assuming a widely-believed hypothesis concerning the least prime in an arithmetic
progression, we show that two n-bit integers can be multiplied in time O(n log n) on
a Turing machine with a finite number of tapes; we also show that polynomials of
degree less than n over a finite field 𝔽q with q elements can be multiplied in time
O(n log q log(n log q)), uniformly in q.

KEYWORDS: Integer multiplication, polynomial multiplication, algorithm, complexity
bound, FFT, finite field
A.C.M. SUBJECT CLASSIFICATION: G.1.0 Computer-arithmetic
A.M.S. SUBJECT CLASSIFICATION: 68W30, 68Q17, 68W40

1. INTRODUCTION

Let I(n) denote the bit complexity of multiplying two integers of at most n bits in the
deterministic multitape Turing model [16]. Similarly, letMq(n) denote the bit complexity
of multiplying two polynomials of degree <n in 𝔽q[x]. Here 𝔽q is the finite field with
q elements, so that q=𝜋𝜅 for some prime number 𝜋 and integer 𝜅>0. For computations
over 𝔽q, we tacitly assume that we are given a monic irreducible polynomial 𝜇∈𝔽𝜋[x] of
degree 𝜅, and that elements of 𝔽q are represented by polynomials in 𝔽𝜋[x] of degree <𝜅.
Notice that multiplication in 𝔽𝜋[x] can also be regarded as “carryless” integer multipli-
cation in base 𝜋.

The best currently known bounds for I(n) and Mq(n) were obtained in [21] and [23].
For constants Kℤ=4 and K𝔽=4, we proved there that

I(n) = O�n log nKℤ
log ∗n� (1.1)

Mq(n) = O�n log q log (n log q)K𝔽
log ∗(nlog q)�, (1.2)

where log x=ln x denotes the natural logarithm of x,

log∗ x ≔ min {k∈ℕ: log∘k x⩽1} (1.3)
log∘k ≔ log∘⋯

k×
∘ log,

and the bound (1.2) holds uniformly in q.

1

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68Q17&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68Q17&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68Q17&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search

For the statement of our new results, we need to recall the concept of a “Linnik con-
stant”. Given two integers k>0 and a∈{1,…,k−1} with gcd(a,k)=1, we define

P(a,k) ≔ min {ck+ a:c∈ℕ, ck+a is prime}
P(k) ≔ max {P(a,k):0<a<k, gcd(a,k)=1}.

We say that a number L>1 is a Linnik constant if P(k)=O(kL). The smallest currently
known Linnik constant L=5.18 is due to Xylouris [57]. It is widely believed that any
number L>1 is actually a Linnik constant; see section 5 for more details.

In this paper, we prove the following two results:

THEOREM 1.1. Assume that there exists a Linnik constant with L<1+ 1
303 . Then

I(n) = O(n log n).

THEOREM 1.2. Assume that there exists a Linnik constant with L<1+2−1162. Then

Mq(n) = O(n log q log(n log q)), uniformly in q.

Theorem 1.2 is our main result. Notice that it impliesMq(n)=O(b log b) in terms of the
bit-size b=O(n log q) of the inputs. In the companion paper [22], we show that the bound
I(n)=O(n logn) actually holds unconditionally, thereby superseding Theorem 1.1. Since
the proof of Theorem 1.1 is a good introduction to the proof of Theorem 1.2 and also
somewhat shorter than the proof of the unconditional bound I(n)=O(n log n) in [22],
we decided to include it in the present paper. The assumption L<1+ /1 303 being sat-
isfied “in practice”, it is also conceivable that variants of the corresponding algorithm
may lead to faster practical implementations.

This companion paper [22] uses some of the techniques from the present paper, as
well as a new ingredient: Gaussian resampling. This technique makes essential use of
properties of real numbers, explaining why we were only able to apply it to integer mul-
tiplication. By contrast, the techniques of the present paper can be used in combination
with both complex and number theoretic Fourier transforms. For our presentation, we
preferred the second option, which is also known to be suitable for practical implemen-
tations [17]. It remains an open question whether Theorem 1.2 can be replaced by an
unconditional bound.

In the sequel, we focus on the study of I(n) and Mq(n) from the purely theoretical
perspective of asymptotic complexity. In view of past experience [17, 26, 32], variants
of our algorithms might actually be relevant for machine implementations, but these
aspects will be left aside for now.

1.1. Brief history and related work

Integer multiplication. The development of efficient methods for integer multiplication
can be traced back to the beginning of mathematical history. Multiplication algorithms
of complexity O(n2) were already known in ancient civilizations, whereas descriptions
of methods close to the ones that we learn at school appeared in Europe during the late
Middle Ages. For historical references, we refer to [54, section II.5] and [41, 6].

2 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

The first more efficient method for integer multiplication was discovered in 1962, by
Karatsuba [34, 33]. His method is also the first in a family of algorithms that are based
on the technique of evaluation-interpolation. The input integers are first cut into pieces,
which are taken to be the coefficients of two integer polynomials. These polynomials are
evaluated at several well-chosen points. The algorithm next recursively multiplies the
obtained integer values at each point. The desired result is finally obtained by pasting
together the coefficients of the product polynomial. This way of reducing integer mul-
tiplication to polynomial multiplication is also known as Kronecker segmentation [27,
section 2.6].

Karatsuba's original algorithm cuts each input integer in two pieces and then uses
three evaluation points. This leads to an algorithm of complexity O(nlog3/log2). Shortly
after the publication of Karatsuba's method, it was shown by Toom [56] that the use of
more evaluation points allowed for even better complexity bounds, with further improve-
ments by Schönhage [47] and Knuth [35].

The development of efficient algorithms for the required evaluations and interpo-
lations at large sets of points then became a major bottleneck. Cooley and Tukey's redis-
covery [9] of the fast Fourier transform (FFT) provided the technical tool to overcome this
problem. The FFT, which was essentially already known to Gauss [29], can be regarded
as a particularly efficient evaluation-interpolation method for special sets of evaluation
points. Consider a ring R with a principal 2k-th root of unity 𝜔∈R (see section 2.2 for
detailed definitions; if R=ℂ, then one may take 𝜔=exp(2π i/2k)). Then the FFT per-
mits evaluation at the points 1,𝜔,…,𝜔2k−1 using only O(k2k) ring operations in R. The
corresponding interpolations can be done with the same complexity, provided that 2
is invertible in R. Given P,Q∈R[X] with deg(P Q)<2k, it follows that the product PQ
can be computed using O(k2k) ring operations as well.

The idea to use fast Fourier transforms for integer multiplication is independently
due to Pollard [45] and Schönhage–Strassen [49]. The simplest way to do this is to take
R=ℂ and 𝜔=exp(2π i/2k), while approximating elements of ℂ with finite precision.
Multiplications inℂ itself are handled recursively, through reduction to integer multipli-
cations. This method corresponds to Schönhage and Strassen's first algorithm from [49]
and they showed that it runs in time O(n log n⋯ log∘(ℓ −1) n (log∘ℓ n)2) for all ℓ . Pol-
lard's algorithm rather works with R=𝔽𝜋, where 𝜋 is a prime of the form 𝜋= a 2k+1.
The field 𝔽𝜋 indeed contains primitive 2k-th roots of unity and FFTs over such fields
are sometimes called number theoretic FFTs. Pollard did not analyze the asymptotic
complexity of his method, but it can be shown that its recursive use for the arithmetic
in 𝔽𝜋 leads to a similar complexity bound as for Schönhage–Strassen's first algorithm.

The paper [49] also contains a second method that achieves the even better com-
plexity bound I(n) = O(n log n log log n). This algorithm is commonly known as the
Schönhage–Strassen algorithm. It works over R=ℤ/mℤ, where m=22k+1 is a Fermat
number, and uses 𝜔=2 as a principal 2k+1-th root of unity in R. The increased speed
is due to the fact that multiplications by powers of 𝜔 can be carried out in linear time,
as they correspond to simple shifts and negations.

The Schönhage–Strassen algorithm remained the champion for more than thirty years,
before being superseded by Fürer's algorithm [12]. In short, Fürer managed to combine
the advantages of the two algorithms from [49], to achieve the bound (1.1) for some

DAVID HARVEY, JORIS VAN DER HOEVEN 3

unspecified constant Kℤ. In [25, section 7], it has been shown that an optimized ver-
sion of Fürer's original algorithm achieves Kℤ= 16. In a succession of works [25, 18,
19, 21], new algorithms were proposed for which Kℤ=8, Kℤ=6, Kℤ=4 2� , and Kℤ=4.
In view of the companion paper [22], we now know that I(n)=O(n log n).

Historically speaking, we also notice that improvements on the lowest possible values
of Kℤ and K𝔽 were often preceded by improvements modulo suitable number theoretic
assumptions. In [25, section 9], we proved that one may take Kℤ=4 under the assump-
tion that there exist “sufficiently many” Mersenne primes [25, Conjecture 9.1]. The same
value Kℤ= 4 was achieved in [10] modulo the existence of sufficiently many general-
ized Fermat primes. In [20], we again reached Kℤ=4 under the assumption that P(k)=
O(𝜑(k) log2 k)=O(k log2 k), where 𝜑 is the Euler totient function.

Polynomial multiplication. To a large extent, the development of more efficient algorithms
for polynomial multiplication went hand in hand with progress on integer multiplication.
The early algorithms by Karatsuba and Toom [34, 56], as well as Schönhage–Strassen's
second algorithm from [49], are all based on increasingly efficient algebraic methods for
polynomial multiplication over more or less general rings R.

More precisely, let MR
alg(n) be the number of ring operations in R that are required

for the multiplication of two polynomials of degree <n in R[x]. A straightforward adap-
tation of Karatsuba's algorithm for integer multiplication gives rise to the algebraic com-
plexity bound MR

alg(n)=O(nlog3/log2).
The subsequent methods typically require mild hypotheses on R: since Toom's algo-

rithm uses more than three evaluation points, its polynomial analogue requires R to
contain sufficiently many points. Similarly, Schönhage–Strassen multiplication is based
on “dyadic” FFTs and therefore requires 2 to be invertible in R. Schönhage subsequently
developed a “triadic” analogue of their method that is suitable for polynomial multi-
plication over fields of characteristic two [48]. The bound MR

alg(n)=O(n log n log log n)
for general (not necessarily commutative) rings R is due to Cantor and Kaltofen [8].

Let us now turn to the bit complexity Mq(n) of polynomial multiplication over a finite
field 𝔽q with q=𝜋𝜅 and where 𝜋 is prime. Using Kronecker substitution, it is not hard to
show that

M𝜋 𝜅(n) ⩽ M𝜋(2n𝜅)+O(nM𝜋(𝜅)),

which allows us to reduce our study to the particular case when q=𝜋 and 𝜅=1.
Now the multiplication of polynomials in 𝔽𝜋[x] of small degree can be reduced to

integer multiplication using Kronecker substitution: the input polynomials are first lifted
into polynomials with integers coefficients in {0, …, 𝜋 − 1}, and then evaluated at x=
2⌈log2(n𝜋 2)⌉. The desired result can finally be read off from the integer product of these
evaluations. If log n=O(log 𝜋), this yields

M𝜋(n) = O(I(n log 𝜋)). (1.4)

On the other hand, for log 𝜋 = o(log n), adaptation of the algebraic complexity bound
MR

alg(n)=O(n log n log log n) to the Turing model yields

M𝜋(n) = O(n log n log log n log 𝜋+n log n I(log 𝜋)), (1.5)

4 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

where the first term corresponds to additions/subtractions in 𝔽𝜋 and the second one to
multiplications. Notice that the first term dominates for large n. The combination of (1.4)
and (1.5) also implies

M𝜋(n) = O(n log 𝜋 (log(n log 𝜋))1+o(1)). (1.6)

For almost forty years, the bound (1.5) remained unbeaten. Since Fürer's algorithm
(alike Schönhage–Strassen's first algorithm from [49]) essentially relies on the availability
of suitable roots of unity in the base field R, it admits no direct algebraic analogue. In
particular, the existence of a Fürer-type bound of the form (1.2) remained open for sev-
eral years. This problem got first solved in [27] for K𝔽=8, but using an algorithm that is
very different from Fürer's algorithm for integer multiplication. Under suitable number
theoretic assumptions, it was also shown in the preprint version [24] that one may take
K𝔽=4, a result that was achieved subsequently without these assumptions [23].

Let us finally notice that it usually a matter of routine to derive better polynomial
multiplication algorithms over ℤ/mℤ for integers m>0 from better multiplication algo-
rithms over 𝔽𝜋. These techniques are detailed in [27, sections 8.1–8.3]. Denoting by
Mℤ/mℤ(n) the bit complexity of multiplying two polynomials of degree <n over ℤ/mℤ,
it is shown there that

Mℤ/mℤ(n) = O�n logm log (n log m)K𝔽
log ∗(nlogm)�, (1.7)

uniformly in m, and for K𝔽=8. Exploiting the fact that finite fields only contain a finite
number of elements, it is also a matter of routine to derive algebraic complexity bounds
forMR

alg(n) in the case when R is a ring of finite characteristic. We refer to [27, sections 8.4
and 8.5] for more details.

Related tools. In order to prove Theorems 1.1 and 1.2, we will make use of several other
tools from the theory of discrete Fourier transforms (DFTs). First of all, given a ring R
and a composite integer n=n1⋯nd such that the ni are mutually coprime, the Chinese
remainder theorem gives rise to an isomorphism

R[x]/(xn −1) ≅ R[x1,…,xd]/(x1
n1−1,…,xd

nd −1).

This was first observed in [1] and we will call the corresponding conversions CRT trans-
forms. The above isomorphism also allows for the reduction of a univariate DFT of
length n to a multivariate DFT of length n1×⋯×nd. This observation is older and due
to Good [15] and independently to Thomas [55].

Another classical tool from the theory of discrete Fourier transforms is Rader reduc-
tion [46]: a DFT of prime length p over a ring R can be reduced to the computation of
a cyclic convolution of length p−1, i.e. a product in the ring R[x]/(xp−1−1). In section 4,
we will also present a multivariate version of this reduction. In a similar way, one may
use Bluestein's chirp transform [4] to reduce a DFT of general length n over R to a cyclic
convolution of the same length. Whereas FFT-multiplication is a technique that reduces
polynomial multiplications to the computation of DFTs, Bluestein's algorithm (as well as
Rader's algorithm for prime lengths) can be used for reductions in the opposite direction.
In particular, Theorem 1.2 implies that a DFT of length n over a finite field 𝔽q can be
computed in time O(Mq(n))=O(n log q log(n log q)) on a Turing machine.

DAVID HARVEY, JORIS VAN DER HOEVEN 5

Nussbaumer polynomial transforms [42, 43] constitute yet another essential tool for
our new results. In a similar way as in Schönhage–Strassen's second algorithm from [49],
the idea is to use DFTs over a ring R=C[u]/(uN +1) with N ∈2ℕ. This ring has the
property that u is a 2N-th principal root of unity and that multiplications by powers
of u can be computed in linear time. In particular, DFTs of length n | 2N can be com-
puted very efficiently using only additions and subtractions. Nussbaumer's important
observation is that such transforms are especially interesting for the computation of mul-
tidimensional DFTs (in [49] they are only used for univariate DFTs). Now the lengths
of these multidimensional DFTs should divide 2N in each direction. Following a sug-
gestion by Nussbaumer and Quandalle in [44, p. 141], this situation can be forced using
Rader reduction and CRT transforms.

1.2. Overview of the new results
In order to prove Theorems 1.1 and 1.2, we make use of a combination of well-known
techniques from the theory of fast Fourier transforms. We just surveyed these related
tools; more details are provided in sections 2, 3 and 4. Notice that part of section 2
contains material that we adapted from previous papers [25, 27] and included for con-
venience of the reader. In section 5, the assumption on the existence of small Linnik
constants L will also be discussed in more detail, together with a few consequences.
Throughout this paper, all computations are done in the deterministic multitape Turing
model [16] and execution times are analyzed in terms of bit complexity. The appendix
covers technical details about the cost of data rearrangements when using this model.

Integer multiplication. We prove Theorem 1.1 in section 6. The main idea of our new
algorithm is to reduce integer multiplication to the computation of multivariate cyclic
convolutions in a suitable algebra of the form

ℛ = 𝔸[x1,…,xd]/(x1
p1−1,…,xd

pd −1)
𝔸 = (ℤ/mℤ)[u]/(us+1).

Here s is a power of two and p1, …, pd are the first d prime numbers in the arithmetic
progression ℓ +1,3 ℓ +1, 5 ℓ +1,…, where ℓ is another power of two with s1/3⩽ℓ ⩽ s2/3.
Setting 𝜈=lcm(ℓ 3,p1−1,…,pd −1)p1⋯pd, we choose m such that there exists a principal
𝜈-th root of unity in ℤ/mℤ that makes it possible to compute products in the algebra ℛ
using fast Fourier multiplication. Concerning the dimension d, it turns out that we may
take d=O(1), although larger dimensions may allow for speed-ups by a constant factor
as long as lcm(ℓ 3,p1−1,…,pd −1) can be kept small.

Using multivariate Rader transforms, the required discrete Fourier transforms in ℛ
essentially reduce to the computation of multivariate cyclic convolutions in the algebra

𝒮 = 𝔸[z1,…,zd]/�z1
p1−1−1,…,zd

pd−1−1�.

By construction, we may factor pi −1=ℓ qi, where qi is an odd number that is small due
the hypothesis on the Linnik constant. Since qi | 𝜈, we notice that ℤ/mℤ contains a prim-
itive qi-th root of unity. CRT transforms allow us to rewrite the algebra 𝒮 as

𝒮 ≅ 𝔹[y1,…,yd]/�y1
ℓ −1,…,yd

ℓ −1�
𝔹 = 𝔸[v1,…,vd]/(v1

q1−1,…,vd
qd −1).

6 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

Now the important observation is that u can be considered as a “fast” principal (2 s)-th
root of unity in both 𝔸 and 𝔹. This means that products in 𝒮 can be computed using
multivariate Fourier multiplication with the special property that the discrete Fourier
transforms become Nussbaumer polynomial transforms. Since s is a power of two, these
transforms can be computed in time O(n log n). Moreover, for sufficiently small Linnik
constants L, the cost of the “inner multiplications” in 𝔹 can be mastered so that it only
marginally contributes to the overall cost.

Polynomial multiplication. In order to prove Theorem 1.2, we proceed in a similar manner;
see sections 7 and 8. It suffices to consider the case that q=𝜋 is prime. In section 7,
we first focus on ground fields of characteristic 𝜋>2. This time, the ring ℤ/mℤ needs
to be replaced by a suitable extension field 𝔽𝜋 𝜅 of 𝔽𝜋; in particular, we define 𝔸=
𝔽𝜋 𝜅[u]/(us + 1). More precisely, we take 𝜅 = lcm (p1 − 1,…, pd − 1), which ensures the
existence of primitive (p1⋯pd)-th roots of unity in 𝔽π𝜅 and 𝔸.

The finite field case gives rise to a few additional technical difficulties. First of
all, the bit size of an element of 𝔽𝜋 𝜅 is exponentially larger than the bit size of an
element of ℤ/mℤ. This makes the FFT-approach for multiplying elements in 𝔹 not effi-
cient enough. Instead, we impose the additional requirement that q1,…, qd be pairwise
coprime. This allows us to reduce multiplications in 𝔹 to univariate multiplications in
𝔸[v]/(vq1⋯qd −1), but at the expense of the much stronger hypothesis L<1+2−1162 on L.

A second technical difficulty concerns the computation of a defining polynomial
for 𝔽𝜋 𝜅 (i.e. an irreducible polynomial 𝜇 in 𝔽𝜋[x] of degree 𝜅), together with a prim-
itive (p1⋯pd)-th root of unity 𝜔∈𝔽𝜋 𝜅. For our choice of 𝜅 as a function of n, and thanks
to work by Shoup [51, 52], it turns out that both 𝜇 and 𝜔 can be precomputed in linear
time O(n lg 𝜋).

The case when 𝜋 =2 finally comes with its own particular difficulties, so we treat
it separately in section 8. Since 2 is no longer invertible, we cannot use DFT lengths ℓ
that are powers of two. Following Schönhage [48], we instead resort to “triadic” FFTs,
for which ℓ becomes a power of three. More annoyingly, since pi −1 is necessarily even
for i=1,…,d, this also means that we now have to take pi −1=2ℓ qi. In a addition to the
multivariate cyclic convolutions of lengths �ℓ ,…d×, ℓ � and (q1,…,qd) from before, this gives
rise to multivariate cyclic convolutions of length �2, …d×, 2�, which need to be handled
separately. Although the proof of Theorem 1.2 in the case when 𝜋=2 is very similar
to the case when 𝜋≠2, the above complications lead to subtle changes in the choices
of parameters and coefficient rings. For convenience of the reader, we therefore repro-
duced most of the proof from section 7 in section 8, with the required adaptations.

Variants. The constants 1+ /1 303 and 2−1162 in Theorems 1.1 and 1.2 are not optimal: we
have rather attempted to keep the proofs as simple as possible. Nevertheless, our proofs
do admit two properties that deserve to be highlighted:

• The hypothesis that there exists a Linnik constant that is sufficiently close to one
is enough for obtaining our main complexity bounds.

• The dimension d of the multivariate Fourier transforms can be kept bounded and
does not need to grow with n.

DAVID HARVEY, JORIS VAN DER HOEVEN 7

We refer to Remarks 6.1 and 7.1 for some ideas on how to optimize the thresholds for
acceptable Linnik constants.

Our main algorithms admit several variants. It should for instance be relatively
straightforward to use approximate complex arithmetic in section 6 instead of modular
arithmetic. Due to the fact that primitive roots of unity in ℂ are particularly simple,
the Linnik constants may also become somewhat better, but additional care is needed
for the numerical error analysis. Using similar ideas as in [27, section 8], our multipli-
cation algorithm for polynomials over finite fields can also be adapted to polynomials
over finite rings and more general effective rings of positive characteristic.

Another interesting question is whether there exist practically efficient variants that
might outperform existing implementations. Obviously, this would require further fine-
tuning, since the “crazy” constants in our proofs were not motivated by practical appli-
cations. Nevertheless, our approach combines several ideas from existing algorithms
that have proven to be efficient in practice. In the case of integer multiplication, this
makes us more optimistic than for the previous post-Fürer algorithms [12, 13, 11, 25, 10,
18, 19, 21]. In the finite field case, the situation is even better, since similar ideas have
already been validated in practice [26, 32].

Applications. Assume that there exist Linnik constants that are sufficiently close to 1.
Then Theorems 1.1 and 1.2 have many immediate consequences, as many computational
problems may be reduced to integer or polynomial multiplication.

For example, Theorem 1.1 implies that the Euclidean division of two n-bit integers
can be performed in time O(I(n)) = O(n log n), whereas the gcd can be computed in
time O(I(n) log n)=O(n log2 n). Many transcendental functions and constants can also
be approximated faster. For instance, n binary digits of π can be computed in time
O(I(n) log n)= O(n log2 n) and the result can be converted into decimal notation in
time O(I(n) log n/log log n)=O(n log2 n/log log n). For details and more examples, we
refer to [7, 31].

In a similar way, Theorem 1.2 implies that the Euclidean division of two poly-
nomials in 𝔽q with q = 𝜋 𝜅 of degree n can be performed in time O(Mq(n)) =
O(n log q log(n log q)), whereas the extended gcd admits bit-complexity O(Mq(n) logn)=
O(n log n log q log(n log q)). Since inversion of a non-zero element of 𝔽q boils down to
an extended gcd computation of degree 𝜅 over 𝔽q, this operation admits bit complexity
O(𝜅 log 𝜅 log 𝜋 log (𝜅 log 𝜋)). The complexities of many operations on formal power
series over 𝔽q can also be expressed in terms of Mq(n). We refer to [14, 30] for details
and more applications.

2. UNIVARIATE ARITHMETIC

2.1. Basic notations

Let R be a commutative ring with identity. Given n∈ℕ>, we define

R[x]n ≔ {P∈R[x]:deg P<n}
R[x]n

⊙⊙⊙⊙ ≔ R[x]/(xn −1)
R[x]n

⊖ ≔ R[x]/(xn+1).

8 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

Elements of R[x]n
⊙⊙⊙⊙ and R[x]n

⊖ will be called cyclic polynomials and negacyclic polynomials,
respectively. For subsets S⊆R, it will be convenient to write S[x]≔{adxd+⋯+a0∈R[x] :
a0,…,ad∈S}, and extend the above notations likewise. This is typically useful in the case
when R=A[u] for some other ring A and S=A[u]k for some k∈ℕ>.

In our algorithms, we will only consider effective rings R, whose elements can be rep-
resented using data structures of a fixed bitsize sR and such that algorithms are available
for the ring operations. We will always assume that additions and subtractions can be
computed in linear time O(sR) and we denote by mR the bit complexity of multiplication
in R. For some fixed invertible integer n, we sometimes need to divide elements of R
by n; we define dR,ℤ to be the cost of such a division (assuming that a pre-inverse of n
has been precomputed). If R=ℤ/mℤ with m=𝜋𝜆 and 𝜋 prime, then we have sR=lgm⩽
𝜆lg 𝜋, mR=O(I(lgm)), and dR,ℤ=O(I(lgm)), where lg x≔⌈log x/log 2⌉.

We write MR(n) for the bit complexity of multiplying two polynomials in R[x]n. We
also define MR

⊙⊙⊙⊙(n)≔mR[x]n
⊙⊙⊙⊙ and MR

⊖(n)≔mR[x]n
⊖. Multiplications in R[x]n

⊙⊙⊙⊙ and R[x]n
⊖ are

also called cyclic convolutions and negacyclic convolutions. Since reduction modulo xn±1
can be performed using n additions, we clearly have

MR
⊙⊙⊙⊙(n) ⩽ MR(n)+O(n sR) (2.1)

MR
⊖(n) ⩽ MR(n)+O(n sR). (2.2)

We also have

MR(n) ⩽ MR
⊙⊙⊙⊙(2n) (2.3)

MR(n) ⩽ MR
⊖(2n), (2.4)

since PQ∈R[x]2n for all P,Q∈R[x]n.
In this paper we will frequently convert between various representations. Given

a computable ring morphism 𝜑 between two effective rings R and S, we will write C(𝜑)
for the cost of applying 𝜑 to an element of R. If 𝜑 is an embedding of R into S that
is clear from the context, then we will also write C(R→S) instead of C(𝜑). If R and S
are isomorphic, with morphisms 𝜑 and 𝜑−1 for performing the conversions that are clear
from context, then we define C(R↔S)≔max(C(R→S),C(S→R)).

2.2. Discrete Fourier transforms and fast Fourier multiplication

Let R be a ring with identity and let 𝜔∈R be such that 𝜔n=1 for some n∈ℕ>. Given
a vector a=(a0,…,an−1)∈Rn, we may form the polynomial A=a0+⋯+an−1xn−1∈R[x]n,
and we define the discrete Fourier transform of a with respect to 𝜔 to be the vector â=
DFT𝜔(a)∈Rn with âi=A(𝜔 i) for all i∈ℕn≔{0,…,n−1}.

Assume now that 𝜔 is a principal n-th root of unity, meaning that

�
k=0

n−1

(𝜔i)k=0 (2.5)

for all i∈{1,…,n−1}. Then 𝜔−1=𝜔n−1 is again a principal n-th root of unity, and we have

DFT𝜔−1(DFT𝜔(a)) = na. (2.6)

DAVID HARVEY, JORIS VAN DER HOEVEN 9

Indeed, writing b=DFT𝜔−1(DFT𝜔(a)), the relation (2.5) implies that

bi=�
j=0

n−1

âj𝜔−ji=�
j=0

n−1

�
k=0

n−1

ak𝜔 j(k−i)=�
k=0

n−1

ak�
j=0

n−1

𝜔 j(k−i)=�
k=0

n−1

ak(n𝛿i,k)=nai,

where 𝛿i,k=1 if i=k and 𝛿i,k=0 otherwise.
Consider any n-th root of unity 𝜔i. Given a cyclic polynomial A∈R[x]n

⊙⊙⊙⊙ that is pre-
sented as the class of a polynomial Ã∈R[x] modulo xn − 1, the value Ã(𝜔i) does not
depend on the choice of Ã. It is therefore natural to consider A(𝜔 i)≔ Ã(𝜔 i) as the eval-
uation of A at 𝜔 i. It is now convenient to extend the definition of the discrete Fourier
transform and set DFT𝜔(A)≔(A(1),A(𝜔),…,A(𝜔n−1))∈Rn. If n is invertible in R, then
DFT𝜔 becomes a ring isomorphism between the rings R[x]n

⊙⊙⊙⊙ and Rn. Indeed, for any A,
B∈R[x]n

⊙⊙⊙⊙ and i∈{0,…,n − 1}, we have (A B)(𝜔i)=A(𝜔i)B(𝜔i). Furthermore, the rela-
tion (2.6) provides us with a way to compute the inverse transform DFT𝜔−1.

In particular, denoting by FR(n,𝜔) the cost of computing a discrete Fourier transform
of length n with respect to 𝜔, we get

C(R[x]n
⊙⊙⊙⊙→Rn) ⩽ FR(n,𝜔)

C(Rn→R[x]n
⊙⊙⊙⊙) ⩽ FR(n,𝜔−1)+ndR,ℤ.

Since DFT𝜔 and DFT𝜔−1 coincide up to a simple permutation, we also notice that
FR(n,𝜔−1) ⩽ FR(n, 𝜔) + O(n sR). Setting FR(n) ≔ FR(n, 𝜔) for some “privileged” prin-
cipal n-th root of unity 𝜔∈R (that will always be clear from the context), it follows that
C(R[x]n

⊙⊙⊙⊙↔Rn)⩽FR(n)+ndR,ℤ+O(n sR).
A well known application of this isomorphism is to compute cyclic convolutions AB

for A,B∈R[x]n
⊙⊙⊙⊙ in Rn using the formula

AB = DFT𝜔−1(DFT𝜔(A)DFT𝜔(B)).

It follows that

MR
⊙⊙⊙⊙(n) ⩽ 2C(R[x]n

⊙⊙⊙⊙→Rn)+mRn+C(Rn→R[x]n
⊙⊙⊙⊙)

⩽ 3FR(n)+n (mR+dR,ℤ)+O(nsR).

Computing cyclic convolutions in this way is called fast Fourier multiplication.

2.3. The Cooley–Tukey FFT
Let 𝜔 be a principal n-th root of unity and let n= n1 n2 where 1< n1< n. Then 𝜔n1 is
a principal n2-th root of unity and 𝜔n2 is a principal n1-th root of unity. Moreover, for any
i1∈{0,…,n1−1} and i2∈{0,…,n2−1}, we have

âi1n2+i2 = �
k1=0

n1−1

�
k2=0

n2−1

ak2n1+k1𝜔(k2n1+k1)(i1n2+i2)

= �
k1=0

n1−1

𝜔k1i2(((((((((((((((((((�k2=0

n2−1

ak2n1+k1 (𝜔n1)k2i2))))))))))))))))))) (𝜔n2)k1i1. (2.7)

If 𝒜1 and 𝒜2 are algorithms for computing DFTs of length n1 and n2, then we may
use (2.7) to construct an algorithm for computing DFTs of length n as follows.

10 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

For each k1∈{0,…,n1−1}, the sum inside the brackets corresponds to the i2-th coeffi-
cient of a DFT of the n2-tuple (a0n1+k1,…,a(n2−1)n1+k1)∈Rn2 with respect to 𝜔n1. Evaluating
these inner DFTs requires n1 calls to 𝒜2. Next, we multiply by the twiddle factors 𝜔k1i2, at
a cost of n operations in R. Finally, for each i2∈{0,…,n2−1}, the outer sum corresponds
to the i1-th coefficient of a DFT of an n1-tuple in Rn1 with respect to 𝜔n2. These outer DFTs
require n2 calls to 𝒜 1. On a Turing machine, the application of the n1 inner DFTs also
requires us to reorganize a into n1 consecutive vectors of size n2, and vice versa. This can
be done in time O(n lgmin(n1,n2)sR) using matrix transpositions (see section A.1 in the
appendix).

Let FR
∗(n) denote the cost of performing a DFT of length n, while assuming that the

twiddle factors 𝜔0,𝜔1,…,𝜔n−1 have been precomputed. Then computing the DFT using
the above Cooley–Tukey algorithm yields the bound

FR
∗(n1n2) ⩽ n1FR

∗(n2)+n2FR
∗(n1)+nmR+O(n lgmin(n1,n2)sR).

For a factorization n=n1⋯nd, an easy induction over d then yields

FR
∗(n) ⩽ �

i=1

d n
ni
FR
∗(ni)+(d−1)nmR+O(n lg n sR).

The twiddle factors can obviously be computed in time nmR+O(n sR). Altogether, we
obtain

FR(n) ⩽ �
i=1

d n
ni
FR(ni)+dnmR+O(n lg n sR). (2.8)

2.4. Nussbaumer polynomial transforms
In the case that R=C[u]N

⊖ for some effective ring C and power of two N∈2ℕ, the indeter-
minate u is itself a principal (2N)-th root of unity. Moreover, multiplications by powers
of u can be computed in linear time O(sR)=O(N sC) since

(a0+⋯+aN−1uN−1)uk = −aN−k −⋯−aN−1uk−1+a0uk+⋯+ aN−k−1uN−1

for all a0+⋯+ aN−1uN−1∈R and 0⩽k<N. For this reason, u is sometimes called a fast
principal root of unity.

Now assume that we wish to compute a discrete Fourier transform of size n | 2N
over R. Then we may use the Cooley–Tukey algorithm from the previous subsection
with 𝜔=u2N/n, d=lg n, and n1=⋯=nd=2. When using our faster algorithm for mul-
tiplications by twiddle factors, the term d nmR in (2.8) can be replaced by O(d n N sC)=
O(dnsR)=O(n lgn sR). Moreover, discrete Fourier transforms of length 2 just map pairs
(a, b)∈R2 to pairs (a+ b, a − b)∈R2, so they can also be computed in linear time O(sR).
Altogether, the bound (2.8) thus simplifies into

FR(n) = O(n lg nsR).

In terms of scalar operations in C, this yields

FC[u]N
⊖ (n) = O(Nn lg nsC).

Discrete Fourier transforms over rings R of the type considered in this subsection are
sometimes qualified as Nussbaumer polynomial transforms.

DAVID HARVEY, JORIS VAN DER HOEVEN 11

2.5. Triadic Nussbaumer polynomial transforms
If 2 is invertible in the effective ring C from the previous subsection, then so is n, and we
can compute the inverse DFT of length n using

DFTu2N/n
−1 (a) = 1

n DFTu−2N/n(a).

However, if C has characteristic 2 (i.e. 1+1=0 in C), then this is no longer possible, and
we need to adapt the method if we want to use it for polynomial multiplication.

Following Schönhage [48], the remedy is to use triadic DFTs. More precisely, assuming
that N∈2⋅3ℕ, we now work over the ring R=C[u]N

⊘ instead of R=C[u]N
⊖ , where

C[u]N
⊘ ≔ C[u]/(uN+uN/2+1).

It is easily verified that u is a principal (3N/2)-th root of unity in C[u]N
⊘ . Moreover,

multiplications of elements in C[u]N
⊘ with powers of u can still be computed in linear

time O(N sC). Indeed, given a= a0+⋯+ aN−1uN−1 and k∈{0,…,N/2}, we have

auk = (aN−k+⋯+ aN−1uk−1+ a0uk+⋯+aN−1−k uN−1)+(aN−k uN/2+⋯+aN−1uN/2+k−1).

Multiplications with uk+N/2 (resp. uk+N) can be reduced to this case, by regarding them as
two multiplications with uk and uN/2 (resp. three multiplications with uk, uN/2, and uN/2).
Using similar formulas, polynomials in C[u] of degree <d can be reduced in linear
time O(d sC) modulo uN+uN/2+1.

Now assume that we wish to compute a discrete Fourier transform of size n | (3N/2)
over R. Discrete Fourier transforms of length 3 now map triples (a, b, c)∈R3 to triples
(a + b+ c, a + b uN/2+ c uN, a + b uN + c uN/2)∈R3, so they can be computed in linear
time O(sR). Using the Cooley–Tukey algorithm with 𝜔= u3N/(2n), d = log3 n, and
n1=⋯=nd=3, similar considerations as in the previous subsection again allows us to
conclude that

FR(n) = O(n lg n sR)
FC[u]N

⊘ (n) = O(Nn lg nsC).

We will qualify discrete Fourier transforms over rings R of this type as triadic Nussbaumer
polynomial transforms.

2.6. Bluestein's chirp transform
We have shown above how to multiply polynomials using DFTs. Inversely, it is possible
to reduce the computation of DFTs — of arbitrary length, not necessarily a power of
two — to polynomial multiplication [4], as follows.

Let 𝜔 be a principal n-th root of unity. If n is even, then we assume that there exists
some 𝜂∈R with 𝜂2=𝜔. If n is odd, then we take 𝜂=𝜔(n+1)/2, so that 𝜂2=𝜔 and 𝜂n=1.
Consider the sequences

fi=𝜂 i2, gi=𝜂−i2.

Then 𝜔 ij= fi fj gi− j, so for any a∈Rn we have

âi=�
j=0

n−1

aj𝜔ij= fi�
j=0

n−1

(aj fj)gi− j. (2.9)

12 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

If n is even, then we have

gi+n=𝜂−(i+n)2=𝜂−i2−n2−2ni=𝜂−i2𝜔−�n
2+i�n=gi.

If n is odd, then we also have

gi+n=𝜂−(i+n)2=𝜂−i2−n2−2ni=𝜂−i2 (𝜂n)−n−2i=gi.

Now let F= f0a0+⋯+ fn−1an−1Xn−1, G=g0+⋯+gn−1Xn−1 and C=c0+⋯+cn−1Xn−1≡FG
modulo Xn−1. Then (2.9) implies that âi= fi ci for all i∈{0,…,n−1}. In other words, the
computation of a DFT of even length n reduces to a cyclic convolution product of the
same length, together with O(n) additional operations in R:

FR(n) ⩽ MR
⊙⊙⊙⊙(n)+O(nmR). (2.10)

Notice that the polynomial G is fixed and independent of a in this product. The fi (and gi)
can be computed in time O(nmR) via the identity fi+1=𝜂2i+1 fi.

3. MULTIVARIATE ARITHMETIC

3.1. Tensor products
It is well known that multivariate Fourier transforms can be interpreted as tensor prod-
ucts of univariate Fourier transforms. Since we will also need another type of multivariate
“Rader transform” in the next section, it will be useful to recall this point of view. We
refer to [37, Chapter XVI] for an abstract introduction to tensor products.

Let R be a commutative ring and let A and B be two R-modules. The tensor product
A⊗B of A and B is an R-module together with a bilinear mapping ⊗:A×B→A⊗B. This
bilinear mapping satisfies the universal property that for any other R-module C together
with a bilinear mapping 𝜑:A×B→C, there exists a unique linear mapping 𝜉:A⊗B→C
with 𝜑= 𝜉 ∘⊗. Up to natural isomorphisms, it can be shown that the tensor product
operation ⊗ is associative and distributive with respect to the direct sum operation ⊕.

Besides modules, it is also possible to tensor linear mappings. More precisely, given
two linear mappings 𝜑:A→M and 𝜓:B→N, the mapping that sends (a, b)∈A×B to
𝜑(a)⊗𝜓(b) is clearly bilinear. This means that there exists a unique mapping 𝜉:A⊗B→
M⊗N such that 𝜑(a)⊗𝜓(b)=𝜉(a⊗ b) for all (a, b)∈A×B. We call 𝜑⊗𝜓≔𝜉 the tensor
product of 𝜑 and 𝜓.

Assume now that A and B are free R-modules of finite rank, say A=Ra and B=Rb.
Then A⊗B is again a free R-module that can be identified with the set Ra×b of bidimen-
sional arrays of size a×b and with coefficients in R. The tensor product of two vectors x=
(x1,…,xa)∈A and y=(y1,…,yb)∈B is given by the array x⊗y with entries (x⊗y)i, j=xiyj.

Let M=Rm and N=Rn be two more free R-modules of finite rank. Assume that we
are given two linear mappings 𝜑:A→M and 𝜓:B→N that can be computed by an algo-
rithm. Then 𝜑⊗𝜓 can be computed as follows. Given x=(xi, j)∈Ra×b=A⊗B, we first
apply 𝜓 to each of the rows xi,⋅∈B. This yields a new array y=(yi, j)∈Ra×n=A⊗N with
yi,⋅=𝜓(xi,⋅) for all i. We next apply 𝜑 to each of the columns y⋅, j∈A. This yields an array
z=(zi, j)∈Rm×n=M⊗N with z⋅, j=𝜑(y⋅, j) for all j. We claim that z=(𝜑∘𝜓)(x). Indeed, if
x=u⊗v, then y=u⊗𝜓(v) and z=𝜑(u)⊗𝜓(v), whence the claim follows by linearity.

Given x∈A⊗B, the above algorithm then allows us to compute (𝜑⊗𝜓)(x) in time

C(𝜑⊗𝜓) ⩽ aC(𝜓)+nC(𝜑)+O(an lg min (a,n) sR+mn lg min (m,n) sR). (3.1)

DAVID HARVEY, JORIS VAN DER HOEVEN 13

More generally, given d linear mappings 𝜑1:Ra1→Rb1, …, 𝜑d:Rad →Rbd, a similar com-
plexity analysis as in the case of the Cooley–Tukey algorithm yields

C(𝜑1⊗⋯⊗𝜑d) ⩽ n1⋯nd�
i=1

d
C(𝜑i)

ni
+O(n1⋯nd lg (n1⋯nd) sR), (3.2)

where ni=max(ai,bi) for i=1,…,d.

3.2. Vector notation and multivariate polynomials
For working with multivariate polynomials, it is convenient to introduce a few nota-
tions. Let 𝒊=(i1,…, id) and 𝒏=(n1,…,nd) be d-tuples in ℕd. We define

R𝒏 ≔ Rn1⋯nd ≅ Rn1⊗⋯⊗Rnd

|𝒏| ≔ n1⋯nd

ℕ𝒏 ≔ {𝒊∈ℕd : i1<n1,…, id<nd}.

Notice that dimR𝒏=|𝒏|. Elements in R𝒏 can be regarded as n1×⋯×nd arrays. On a Turing
tape, we recursively represent them as vectors of size nd with entries in Rn1⊗⋯⊗Rnd−1.

Given a d-tuple of indeterminates 𝒙=(x1,…,xd), we define

R[𝒙]𝒏 ≔ R[x1]n1⋯[xd]nd ≅ R[x1]n1⊗⋯⊗R[xd]nd (3.3)
R[𝒙]𝒏⊙⊙⊙⊙ ≔ R[x1]n1

⊙⊙⊙⊙ ⋯[xd]nd
⊙⊙⊙⊙ ≅ R[x1]n1

⊙⊙⊙⊙ ⊗⋯⊗R[xd]nd
⊙⊙⊙⊙ . (3.4)

The first tensor product is understood in the sense of R-modules and we regard R[𝒙]𝒏
as a subset of R[𝒙]. The second tensor product is understood in the sense of R-algebras.
Any polynomial A in R[𝒙]𝒏 (or cyclic polynomial in R[𝒙]𝒏⊙⊙⊙⊙) can uniquely be written as
a sum

A = �
𝒊∈ℕ𝒏

a𝒊x1
i1⋯xd

id,

where (a𝒊)𝒊∈ℕ𝒏∈R𝒏 is the vector of coefficients of A. We write MR(𝒏) for the complexity
of multiplying two polynomials in R[𝒙]𝒏 and also define MR

⊙⊙⊙⊙(𝒏)≔mR[𝒙]𝒏⊙⊙⊙⊙.

3.3. Multivariate Fourier transforms
Assume now that 𝝎∈Rd is such that 𝜔i is a principal ni-th root of unity for i=1,…, d
and invertible positive integers n1,…,nd. As in the univariate case, cyclic polynomials
A∈R[𝒙]𝒏⊙⊙⊙⊙ can naturally be evaluated at points of the form �𝜔1

i1,…,𝜔d
id�. We now define

the discrete Fourier transform of A to be the vector DFT𝜔(A)∈R𝒏 with

DFT𝝎(A)𝒊 ≔ A�𝜔1
i1,…,𝜔d

id�

for all 𝒊 ∈ℕ𝒏. Multivariate Fourier transforms again provide us with an isomorphism
between R[𝒙]𝒏⊙⊙⊙⊙ and R𝒏. Writing FR(𝒏) for the cost to compute such a transform with
respect to a most suitable 𝝎, we thus have C(R[𝒙]𝒏⊙⊙⊙⊙↔R𝒏)⩽FR(𝒏)+ |𝒏|dR,ℤ+O(|𝒏| sR).

We claim that multivariate Fourier transforms can be regarded as the tensor product
of univariate Fourier transforms with respect to each of the variables, that is,

DFT𝝎 = DFT𝜔1⊗⋯⊗DFT𝜔d. (3.5)

Indeed, given a vector a∈R𝒏 of the form a=a1⊗⋯⊗ad with ak∈Rnk for each k, we have

DFT𝝎(a)𝒊 = A�𝜔1
i1,…,𝜔d

id� = A1(𝜔1
i1)⋯Ad�𝜔d

id�, (3.6)

14 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

where Ak=(ak)0+⋯+(ak)nk−1xk
nk−1 for each k, and A is as above. The relation (3.5) fol-

lows from (3.6) by linearity, since the a of the form a1⊗⋯⊗ad span R𝒏.
In particular, in order to compute a multivariate Fourier transform, it suffices to com-

pute univariate Fourier transforms with respect to each of the variables, as described in
section 3.1. It follows that

FR(𝒏) ⩽ |𝒏|�
i=1

d
FR(ni)

ni
+O(|𝒏| lg |𝒏|sR). (3.7)

The technique of FFT-multiplication from section 2.2 also naturally generalizes to multi-
variate polynomials in R[𝒙]𝒏⊙⊙⊙⊙. This yields the bound

MR
⊙⊙⊙⊙(𝒏) ⩽ 3FR(𝒏)+ |𝒏| (mR+dR,ℤ)+O(|𝒏| sR). (3.8)

If R=C[u]N
⊖ , as in section 2.4, and n1,…,nd all divide 2N, then (3.7) and (3.8) become

simply

FR(𝒏) ⩽ O(|𝒏| lg |𝒏|sR) (3.9)
MR

⊙⊙⊙⊙(𝒏) ⩽ |𝒏| (mR+dR,ℤ)+O(|𝒏| lg |𝒏|sR). (3.10)

3.4. CRT transforms
Let 𝒏=(n1,…,nd) be a tuple of pairwise coprime numbers and n=n1⋯nd. The Chinese
remainder theorem provides us with an isomorphism of abelian groups

ℤ/(n1⋯ndℤ) →→→→→→→→→→→
𝜎

ℤ/(n1ℤ)×⋯×ℤ/(ndℤ)
i ⟼ (𝜎1(i),…,𝜎d(i)).

Any such isomorphism induces an isomorphism of R-algebras

R[x]n1⋯nd
⊙⊙⊙⊙ →→→→→→→→→→→

𝜚
R[x1]n1

⊙⊙⊙⊙ ⊗⋯⊗R[xd]nd
⊙⊙⊙⊙ ≅ R[𝒙]𝒏⊙⊙⊙⊙

xi ⟼ x1
𝜎1(i)⋯xd

𝜎d(i)

that boils down to a permutation of coefficients when using the usual power bases for
R[x]n1⋯nd

⊙⊙⊙⊙ and R[x1]n1
⊙⊙⊙⊙ ⊗⋯⊗R[xd]nd

⊙⊙⊙⊙ . For a suitable choice of 𝜎, we show in section A.3
of the appendix that this permutation can be computed efficiently on Turing machines,
which yields

C(R[x]n
⊙⊙⊙⊙↔R[𝒙]𝒏⊙⊙⊙⊙) = O(n lg n sR).

We will also need a multivariate generalization of this formula: let 𝒑= (p1,…, pd), 𝒒=
(q1,…,qd) and 𝒏=(p1q1,…,pdqd) be such that pi and qi are coprime for i=1,…,d. Then

C(R[𝒙]𝒏⊙⊙⊙⊙↔R[𝒚]𝒑⊙⊙⊙⊙[𝒛]𝒒⊙⊙⊙⊙) = O(|𝒏| lg |𝒏|sR).

This is a result of Corollary A.8 in the appendix.

3.5. Negacyclic CRT transforms
Assume now that d=2 and let n=n1n2, where n1 and n2 are coprime and n2 is odd. Then
we have isomorphisms of R-algebras

R[x]n
⊖ ≅ R[x]2n

⊙⊙⊙⊙ /(xn+1)
R[x1]n1

⊖ ≅ R[x1]2n1
⊙⊙⊙⊙ /(x1

n1+1).

DAVID HARVEY, JORIS VAN DER HOEVEN 15

Given c=(2n1)−1modn2, the map i↦(imod 2n1,c imod n2) determines an isomorphism
of abelian groups between ℤ/(2nℤ) and ℤ/(2n1ℤ)×ℤ/(n2ℤ). As explained in the
previous subsection, this gives rise to an isomorphism of R-algebras

R[x]2n
⊙⊙⊙⊙ →→→→→→→→→→→

𝜚
R[x1]2n1

⊙⊙⊙⊙ [x2]n2
⊙⊙⊙⊙

xi ⟼ x1i x2
ci.

In view of Lemma A.4, this isomorphism can be computed efficiently. Moreover, 𝜚(xn)=
x1

n1n2x2
cn1n2=(x1

n1)n2(x2
n2)cn1=x1

n1, since n2 is odd and x2
n2=1. This yields a natural isomor-

phism �̄�:R[x]n
⊖→R[x1]n1

⊖ [x2]n2
⊙⊙⊙⊙ of R-algebras such that the following diagram commutes:

R[x]2n
⊙⊙⊙⊙ →→→→→→→→→→→

𝜚
R[x1]2n1

⊙⊙⊙⊙ [x2]n2
⊙⊙⊙⊙

↓ ↓
R[x]n

⊖ →→→→→→→→→→→
�̄�

R[x1]n1
⊖ [x2]n2

⊙⊙⊙⊙

The projection R[x]2n
⊙⊙⊙⊙ →R[x]n

⊖ admits an obvious right inverse that sends a polynomial
a0+⋯+ an−1xn−1 modulo xn+1 to a0+⋯+ an−1xn−1. This lift can clearly be computed in
linear time, so we again obtain

C(R[x]n
⊖↔R[x1]n1

⊖ [x2]n2
⊙⊙⊙⊙) = O(n lg n sR).

Alternatively, one may compute �̄� in a similar way as the isomorphism of R-algebras
between R[x]n

⊙⊙⊙⊙→R[x1]n1
⊙⊙⊙⊙ [x2]n2

⊙⊙⊙⊙ from the previous subsection, while inverting signs when-
ever appropriate.

3.6. Tricyclic CRT transforms
In section 8, we will also need a triadic variant of the negacyclic CRT transforms from the
previous subsection. More precisely, assume that n=n1n2, where n1 and n2 are coprime,
n1 is even, and n2 is not divisible by 3. Then we have isomorphisms of R-algebras

R[x]n
⊘ ≅ R[x]3n/2

⊙⊙⊙⊙ /(xn+xn/2+1)
R[x1]n1

⊘ ≅ R[x1]3n1/2
⊙⊙⊙⊙ /�x1

n1+x1
n1/2+1�.

Given c=(3n1/2)−1mod n2, the map i↦(i mod (3n1/2), c i mod n2) determines an iso-
morphism of abelian groups between ℤ/((3n/2)ℤ) and ℤ/((3n1/2)ℤ)×ℤ/(n2ℤ). In
a similar way as in the previous subsection, this leads to an isomorphism of R-algebras

R[x]3n/2
⊙⊙⊙⊙ →→→→→→→→→→→

𝜚
R[x1]3n1/2

⊙⊙⊙⊙ [x2]n2
⊙⊙⊙⊙

xi ⟼ x1i x2
ci,

and a commutative diagram
R[x]3n/2

⊙⊙⊙⊙ →→→→→→→→→→→
𝜚

R[x1]3n1/2
⊙⊙⊙⊙ [x2]n2

⊙⊙⊙⊙

↓ ↓
R[x]n

⊘ →→→→→→→→→→→
�̄�

R[x1]n1
⊘ [x2]n2

⊙⊙⊙⊙

in which all maps and their right inverses can be computed efficiently. This again yields

C(R[x]n
⊘↔R[x1]n1

⊘ [x2]n2
⊙⊙⊙⊙) = O(n lg n sR).

We will qualify this kind of conversions between R[x]n
⊘ and R[x1]n1

⊘ [x2]n2
⊙⊙⊙⊙ as tricyclic CRT

transforms.

16 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

4. RADER REDUCTION

4.1. Univariate Rader reduction
Let R be a ring and let 𝜔∈R be a principal p-th root of unity for some prime number p.
The multiplicative group 𝔽p

∗ is cyclic, of order p − 1. Let g∈ {1,…, p − 1} be such that
gmod p is a generator of this cyclic group. Given a polynomial A=a0+⋯+ap−1xp−1 and
j∈{1,…,p−1} with j=gl rem p, we have

DFT𝜔(a)g lremp = a0+�
i=1

p−1

ai𝜔 i(g l remp)

= a0+�
k=0

p−2

ag−k remp𝜔(g−k remp)(g l remp)

= a0+�
k=0

p−2

ag−k remp𝜔g l−k remp.

Setting
uk = ag−k remp− a0 U = u0+⋯+up−2yp−2

vl = 𝜔g lremp V = v0+⋯+vp−2yp−2

wl = DFT𝜔(a)g l remp W = w0+⋯+wp−2yp−2,

it follows that W=UV, when regarding U, V and W as elements of R[y]p−1
⊙⊙⊙⊙ , since

V [[[[[[[[[[[[[[[[[[[�k=0

p−2

yk]]]]]]]]]]]]]]]]]]] = �
k=0

p−2

[[[[[[[[[[[[[[[[[[[�l=0

p−2

𝜔g lremp]]]]]]]]]]]]]]]]]]]yk = �
k=0

p−2

[[[[[[[[[[[[[[[[[[[�l=1

p−1

𝜔l]]]]]]]]]]]]]]]]]]]yk = −�
k=0

p−2

yk.

Notice that the vector V can be precomputed since it does not depend on a.
In summary, we have reduced the computation of a discrete Fourier transform of

length p to a cyclic convolution of length p − 1 and O(p) additions in R. This reduction
is due to Rader [46], except for the minor twist that we subtract a0 in the definition of uk.
As far as we are aware, this twist is essentially due to Nussbaumer [43, section 5.2.2].
In the next subsection, it allows us to compute Rader transforms without increasing the
dimension from p to p+1.

4.2. Univariate Rader transforms
Let us now show how to present Rader reduction using suitable linear transforms, called
left, right and inverse Rader transforms (LRT, RRT and IRT). These transforms depend
on the choice of g; from now on, we assume that g has been fixed once and for all. Given
a∈Rp and A= a0+⋯+ap−1xp−1, let U, V and W be as in section 4.1. Setting

R[y]p
♯ = R⊕R[y]p−1

⊙⊙⊙⊙ ,

we first introduce the distinguished element RRTp(𝜔)∈R[y]p
♯ by

RRTp(𝜔) = (1,V).

We also define LRTp(a)∈R[y]p
♯ by

LRTp(a) = (A(1),U),

DAVID HARVEY, JORIS VAN DER HOEVEN 17

so that LRTp:Rp→R[y]p
♯ is a linear mapping. We can retrieve DFT𝜔(a) from the product

(A(1),W)=LRTp(a)RRTp(𝜔) using

DFT𝜔(a)0 = A(1)
DFT𝜔(a)g lremp = wl.

We denote by IRTp:R[y]p
♯→Rp the linear mapping with IRTp(A(1),W)=DFT𝜔(a). Alto-

gether, we have

DFT𝜔(a) = IRTp(LRTp(a)RRTp(𝜔)).

The linear mappings LRTp and IRTp boil down to permutations and a linear number of
additions and subtractions. Now permutations can be computed efficiently on Turing
machines, as recalled in section A.1 of the appendix. More precisely, since 𝜔 is a prin-
cipal root of unity of order p, we necessarily have |R| ⩾ p. Then the permutation of p
coefficients in R of bitsize sR⩾ lg p can be done using a merge sort in time O(p lg p sR),
whence

C(LRTp) ⩽ O(p lg p sR)
C(IRTp) ⩽ O(p lg p sR).

It follows that

FR(p) ⩽ MR
⊙⊙⊙⊙(p−1)+MR

⊙⊙⊙⊙(1)+O(p lg p sR). (4.1)

In this bound, the cost MR
⊙⊙⊙⊙(1) corresponds to the trivial multiplication 1 ⋅ A(1). We

included this term in anticipation of the multivariate generalization (4.3) below. We also
recall that we assumed V to be precomputed. This precomputation can be done in time
O(pmR+ p lg p sR): we first compute the powers 𝜔 i for i=0,…, p − 2 and then permute
them appropriately.

4.3. Multivariate Rader transforms
Assume now that p1,…,pd are prime numbers, that we have fixed generators g1,…,gd for
the cyclic groups 𝔽p1

∗ ,…,𝔽pd
∗ , and that 𝜔1,…,𝜔d∈R are such that 𝜔i is a principal pi-th root

of unity for i=1,…,d. Let 𝒑=(p1,…,pd), 𝝎=(𝜔1,…,𝜔d), 𝒙=(x1,…,xd) and 𝒚=(y1,…,yd).
We define

R[𝒚]𝒑
♯ ≔ R[y1]p1

♯ ⋯[yd]pd
♯

≅ R[y1]p1
♯ ⊗⋯⊗R[yd]pd

♯ .

Using the distributivity of ⊗ with respect to ⊕, the algebra R[𝒚]𝒑 is a direct sum of alge-
bras of cyclic multivariate polynomials. More precisely, let 𝒲={0, 1}d. For each index
w∈𝒲 , let 𝒓=𝒓w∈ℕd be such that rk=1 if wk=0 and rk=pk−1 if wk=1 for k=1,…,d. Then

R[𝒚]𝒑
♯ ≅ �

w∈𝒲
R[𝒚]𝒓w

⊙⊙⊙⊙ .

Notice that

dimR[𝒚]𝒑
♯ = �

w∈𝒲
|𝒓w| = |𝒑|.

18 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

Elements in ⨁w∈𝒲 R[𝒚]𝒓w
⊙⊙⊙⊙ correspond to sums x=∑w∈𝒲 xw with xi∈R[𝒚]𝒓w

⊙⊙⊙⊙ . Assuming
the lexicographical ordering on 𝒲 , such sums are represented on a Turing tape by con-
catenating the representations of the components xw: see section A.5 in the appendix for
details. We have

C((((((((((R[𝒚]𝒑
♯↔ �

w∈𝒲
R[𝒚]𝒓w

⊙⊙⊙⊙)))))))))) = O(|𝒑|d sR), (4.2)

by Lemma A.9 (we may take 𝛿=2).
The tensor product of the mappings LRTpi:R

pi→R[yi]pi
♯ provides us with a mapping

LRT𝒑 ≔ LRTp1⊗⋯⊗LRTpd : R𝒑→R[𝒚]𝒑
♯.

Similarly, we obtain a mapping

IRT𝒑 ≔ IRTp1⊗⋯⊗IRTpd : R[𝒚]𝒑
♯→R𝒑

and a distinguished element

RRT𝒑(𝝎) ≔ RRTp1(𝜔1)⊗⋯⊗RRTpd(𝜔d) ∈ R[𝒚]𝒑
♯.

For any a1∈Rp1,…,ad∈Rpd and 𝒂= a1⊗⋯⊗ad, we now have

DFT𝝎(𝒂) = DFT𝜔1(a1)⊗⋯⊗DFT𝜔d(ad)
= IRTp1(LRTp1(a1)RRTp1(𝜔1))⊗⋯⊗IRTpd(LRTpd(ad)RRTpd(𝜔d))
= IRT𝒑(LRTp1(a1)RRTp1(𝜔1)⊗⋯⊗LRTpd(ad)RRTpd(𝜔d))
= IRT𝒑((LRTp1(a1)⊗⋯⊗LRTpd(ad))RRT𝒑(𝝎))
= IRT𝒑(LRT𝒑(𝒂)RRT𝒑(𝝎)).

By linearity, it follows that

DFT𝝎(𝒂) = IRT𝒑(LRT𝒑(𝒂)RRT𝒑(𝝎))

for all 𝒂∈R𝒑.
From the complexity point of view, the relation (3.2) implies

C(LRT𝒑) ⩽ |𝒑|�
i=1

d
C(LRTpi)

pi
+O(|𝒑| lg |𝒑| sR) ⩽ O(|𝒑| lg |𝒑| sR)

C(IRT𝒑) ⩽ |𝒑|�
i=1

d
C(IRTpi)

pi
+O(|𝒑| lg |𝒑| sR) ⩽ O(|𝒑| lg |𝒑| sR).

Using (4.2) and d⩽lg |𝒑|, this leads to the following multivariate analogue of (4.1):

FR(𝒑) ⩽ �
w∈𝒲

MR
⊙⊙⊙⊙(𝒓w)+O(|𝒑| lg |𝒑| sR). (4.3)

As in the case of (4.1), this bound does not include the cost of the precomputation of
RRT𝒑(𝝎). This precomputation can be performed in time O(|𝒑|mR+|𝒑| lg |𝒑|sR) using the
same “list and sort” technique as in the univariate case.

5. PRIME NUMBERS IN ARITHMETIC PROGRESSIONS

5.1. The smallest prime number in an arithmetic progression
Let ℙ be the set of all prime numbers. Given two integers k > 0 and 0 < a < k with
gcd(a,k)=1, we define P(a,k)∈ℙ and P(k)∈ℙ by

P(a,k) ≔ min {ck+ a:c∈ℕ, ck+a∈ℙ}
P(k) ≔ max {P(a,k):0<a<k, gcd(a,k)=1}.

DAVID HARVEY, JORIS VAN DER HOEVEN 19

A constant L>1 with the property that P(k)=O(kL) is called a Linnik constant (notice that
we allow the implicit constants k0 and C with P(k)⩽CkL for k⩾k0 to depend on L).

The existence of a Linnik constant L>1was shown by Linnik [39, 40]. The smallest cur-
rently known value L=5.18 is due to Xylouris [57]. Assuming the Generalized Riemann
Hypothesis (GRH), it is known that any L>2 is a Linnik constant [28]. Unfortunately,
these bounds are still too weak for our purposes.

Both heuristic probabilistic arguments and numerical evidence indicate that P(k) sat-
isfies the much sharper bound P(k)=O(𝜑(k) log2 k)=O(k log2 k), where 𝜑 stands for
Euler's totient function. More precisely, based on such evidence [38], Li, Pratt and Shakan
conjecture that

liminf
k

P(k)
𝜑(k) log2 k

=1, limsup
k

P(k)
𝜑(k) log2 k

=2.

Unfortunately, a proof of this conjecture currently seems to be out of reach. At any rate,
this conjecture is much stronger than the assumption that L<1+2−1162 in Theorem 1.2.

5.2. Multiple prime numbers in arithmetic progressions
Given integers k>0, 𝜈>0, and a>0 with gcd(a,k)=1, let P𝜈(a, k) denote the 𝜈-th prime
number in the arithmetic progression a, k+ a, 2 k+ a, …, so that P(a, k)= P1(a, k). Also
define P𝜈(k)≔max {P𝜈(a,k) :0<a<k, gcd(a,k)=1}.

LEMMA 5.1. Let L be a Linnik constant. Then for any fixed integer 𝜈>0, we have

P𝜈(k)=O((k log k)L).

Remark. Note that the implied big-Oh constant depends on 𝜈; a similar remark applies
to Lemma 5.4 below.

Proof. Let C>0 be an absolute constant with P(ℓ)<C ℓ L for all ℓ . Let k>0 be given and
let a∈{1,…,k−1} be a fixed remainder class with gcd(a,k)=1.

Let q be the smallest prime number such that q>𝜈 and q ∤k. The prime number the-
orem implies that q=O(log k). For each i∈{1,…, 𝜈}, let ri ∈{0,…, k q − 1} be such that
ri ≡ i mod q and ri ≡ a mod k. Such an integer exists since q and k are coprime. Notice
also that ri and k q are coprime. Now consider the prime numbers pi =P(ri, k q) for i=
1,…,𝜈. By construction, we have pi ≡ ri ≡ i mod q, so the numbers pi are pairwise dis-
tinct. We also have pi≡amod k and pi⩽C(kq)L, whence P𝜈(a,k)⩽max1⩽i⩽𝜈 pi⩽C(kq)L=
O((k log k)L). □

Remark 5.2. For numbers k with a bounded number of prime factors, we actually have
q=O(1) in the proof of Lemma 5.1, which leads to the sharper bound P𝜈(k) =O(kL).
It is possible that the bound P𝜈(k)=O(kL) always holds, but we were unable to prove
this so far. If 𝜈 is no longer fixed, then it is not hard to see that q=O(𝜈 + log k), which
yields P𝜈(k) =O((k (𝜈 + log k))L). Concerning a generalization of the Li–Pratt–Shakan
conjecture, it is likely that there exist constants a𝜈 and b𝜈 with

liminf
k

P𝜈(k)
𝜑(k) log2 k

= a𝜈, limsup
k

P𝜈(k)
𝜑(k) log2 k

=b𝜈.

It is actually even likely that a𝜈=𝜈 and b𝜈=2𝜈. At any rate, it would be interesting to
empirically determine a𝜈 and b𝜈 via numerical experiments.

20 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

5.3. Forcing coprime multipliers
When searching for multiple prime numbers q1 k+ a, q2 k+ a,…, q𝜈 k+ a in an arithmetic
progression, as in the previous subsection, it will be useful in sections 7 and 8 to insist
that the multipliers q1,…, q𝜈 be pairwise coprime. The simplest way to force this is to
define the qi by induction for i=1,2,… using

qi ≔ min {q′⩾2 :q′k+a∈ℙ,gcd(q′,q1⋯qi−1)=1}. (5.1)

(In Lemma 5.3 below, we will show that such a value of q′ exists for all i, provided that k is
even.) We then define P𝜈

∗(a,k)≔q𝜈k+a and P𝜈
∗(k)≔max {P𝜈

∗(a,k) :0<a<k, gcd(a,k)=1}.

LEMMA 5.3. Let L>1 be a Linnik constant and assume that k is even. Given an integer q⩾1,
there exists an integer q′⩾2 such that q′k+a is prime, gcd(q′,q)=1, and

q′ = O(qLkL−1).

Proof. Modulo the replacement of q by 5 q, we may assume without loss of generality
that 5 | q. First we show that for each prime p | q, there exists an integer rp∈{p − 2,p −1}
such that p∤ rp and p∤rpk+a. Indeed, if p |k then p∤a so we may take rp=p−1; if p∤k, then
p⩾3, so at least one rp∈{p−2,p−1} satisfies rp≢0mod p and rp≢− /a k mod p. Now, using
the Chinese remainder theorem, we may construct an integer r such that 0⩽r<∏p|q p⩽q
and r≡ rp mod p for all p | q. Then we have gcd (r, q) = 1 and gcd (r k+ a, q)= 1. Since
r5≡3mod 5 or r5≡4mod 5, we also must have r⩾2.

Now gcd (r k+ a, q k)= 1, since gcd (r k+ a, q)= 1 and gcd (r k+ a, k)= gcd (a, k)= 1.
It follows that P(r k+ a, q k) is well defined. Let c⩾0 be the integer with P(r k+ a, q k)=
c q k+ r k+ a=(c q+ r) k+ a and take q′= c q+ r⩾2, so that gcd(q′, q)=gcd (r, q)=1. We
conclude by observing that q′k+a=P(r k+ a,qk)=O((qk)L), whence q′=O(qLkL−1). □

LEMMA 5.4. Let L be a Linnik constant and assume that k is even. Then for any fixed integer
𝜈>0, we have

P𝜈
∗(k)=O�k1+(L+1)𝜈−1(L−1)�.

Proof. Let us prove by induction on i that qi defined as in (5.1) satisfies

qi = O�k(L+1)i−1(L−1)�.

Indeed, setting q=q1⋯qi−1, the induction hypothesis implies

q = O�k((L+1)i−2+(L+1)i−3+⋯+1)(L−1)� = O�k((L+1)i−1−1)(L−1)/L�.

Lemma 5.3 then yields

qi = O(qLkL−1) = O�k((L+1)i−1−1)(L−1)kL−1� = O�k(L+1)i−1(L−1)�,

whence the result. □

Remark 5.5. Our bound for P𝜈
∗(k) seems overly pessimistic. It is possible that a bound

P𝜈
∗(k)=O(kL) or P𝜈

∗(k)=O((k log k)L) always holds, but we were unable to prove this
so far. It would also be interesting to investigate counterparts of the Li–Pratt–Shakan
conjecture.

DAVID HARVEY, JORIS VAN DER HOEVEN 21

6. PROOF OF THEOREM 1.1

Let L>1 be a Linnik constant with L<1+ /1 303. Our algorithm proceeds as follows.

Step 0: setting up the parameters. Assume that we wish to multiply two n-bit integers.
For sufficiently large n⩾n0 and suitable parameters m, s, p1,…, pd, we will reduce this
problem to a multiplication problem in (ℤ/mℤ)[z]sp1⋯pd

⊖ . If n<n0, then any traditional
multiplication algorithm can be used. The threshold n0 should be chosen such that var-
ious asymptotic relations encountered in the proof below hold for all n⩾n0. The other
parameters are chosen as follows:

• 𝜖≔10−6.

• ℓ ≔2lg(n
𝜖) is the smallest power of two with ℓ ⩾n𝜖.

• pi≔Pi(ℓ +1,2 ℓ) for i=1,2,…

• d≔min {d∈ℕ:ℓ 3p1⋯pd⩾n}.

• 𝜋≔P(1, 𝜈), where 𝜈≔lcm(ℓ 3,p1−1,…,pd −1)p1⋯pd.

• 𝜆≔⌈lg2 n/lg 𝜋⌉ and m≔𝜋𝜆.

• s≔2lg(5n/(p1⋯pdlg 2n))

• N≔ s p1⋯pd.

• b≔⌊lg(2m/N)/2⌋ is maximal with 22b N/2⩽m.

We claim that p1, …, pd and the rest of these parameters can be computed in linear
time O(n). Recall from [2] that we can test whether a 𝛽-bit integer is prime in
time O(𝛽O(1)). We clearly have d ⩽ 1/𝜖, whence pi ⩽ O((ℓ log ℓ)L) for i= 1, …, d, by
Lemma 5.1. For sufficiently large n, this means that

ℓ ⩽p1<⋯<pd⩽ℓ L+𝜖.

The brute force computation of p1,…, pd requires (pd − 1)/ℓ ⩽ ℓ L+𝜖−1 primality tests of
total cost ℓ L+𝜖−1 (log n)O(1)=O(n). From (pd − 1)/ℓ ⩽ ℓ L+𝜖−1, we also deduce lcm (ℓ 3,
p1−1,…,pd −1)⩽ℓ 3+d(L+𝜖−1)⩽O(ℓ 3nL−1+𝜖) and 𝜈⩽O(nL+𝜖pd)⩽O(nL+3𝜖). In particular,
𝜋⩽O((nL+3𝜖)L); for n sufficiently large, we thus get

n⩽𝜋⩽nL2+4𝜖L.

In order to compute 𝜋, we need to perform O�nL2+4𝜖L−1�=O(n1/2) primality tests of total
cost O(n1/2(log n)O(1))=O(n). This completes the proof of our claim.

Let us proceed with a few useful bounds. From log 𝜋≍log n we get

lgm=𝜆(lg 𝜋+O(1))=((((((((((((((
lg2 n
lg 𝜋 +O(1))))))))))))))) (lg 𝜋+O(1))=lg2 n+O(lg n),

which in turn yields

b= 1
2 lgm+O(lgN)= 1

2 lgm+O(lg n)= 1
2 lg

2 n+O(lg n).

Since n⩽ℓ 3p1⋯pd, we also have
2 s⩽ 20n

p1⋯pd lg2 n
⩽ℓ 3

22 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

and 2 s | ℓ 3, for sufficiently large n. Inversely, ℓ 3p1⋯pd−1<n implies

1
s ⩽

p1⋯pd lg2 n
n = lg2 n

ℓ 3 ⋅ ℓ
3p1⋯pd

n ⩽ lg2 n
ℓ 3 pd⩽

lg2 n
ℓ 3 ℓ L+𝜖⩽ 1

ℓ 3/2 .

Notice finally that
n

lgm ∼ n
2b ∼

n
lg2 n

⩽ N
5 ⩽ 2n

lg2 n
∼ n

b ∼ 2n
lgm .

Step 1: Kronecker segmentation. For sufficiently large n, the last inequality implies that
n⩽(N/2)b. In order to multiply two n-bit integers i and j, we expand them in base 2b, i.e.

i= �
k=0

N/2−1

ik2bk, j= �
k=0

N/2−1

jk2bk, 0⩽ ik, jk<2b,

and form the polynomials

I= �
k=0

N/2−1

ik zk, J= �
k=0

N/2−1

jk zk.

Let Ī, J̄∈(ℤ/mℤ)[z]N
⊖ be the reductions of these polynomials modulo m and zN+1. Since

deg (I J)<N and (I J)k <22b N/2⩽m for k=0,…,N − 1, we can read off the product I J
from the product Ī J̄, after which i j=(I J)(2b). Computing I, J, Ī, J̄ from i and j clearly takes
linear time O(n), and so does the retrieval of I J and i j from Ī J̄. In other words, we have
shown that

I(n) ⩽ Mℤ/mℤ
⊖ (N)+O(n). (6.1)

Step 2: CRT transforms. At a second stage, we use negacyclic CRT transforms (sec-
tion 3.5) followed by traditional CRT transforms (section 3.4) in order to reduce multipli-
cation in (ℤ/mℤ)[z]N

⊖ to multiplication in 𝔸[𝒙]𝒑⊙⊙⊙⊙, where 𝒙 = (x1, …, xd), 𝒑= (p1, …, pd),
and 𝔸=(ℤ/mℤ)[u]s

⊖:

Mℤ/mℤ
⊖ (N) ⩽ M𝔸

⊙⊙⊙⊙ (p1⋯pd)+O(N lgN lgm)
M𝔸

⊙⊙⊙⊙ (p1⋯pd) ⩽ M𝔸
⊙⊙⊙⊙ (𝒑)+O(|𝒑| lg |𝒑| s lgm).

Since O(|𝒑| lg |𝒑| s lgm)=O(N lg |𝒑| lg m)=O(N lgN lgm)=O(n lg n), this yields

Mℤ/mℤ
⊖ (N) ⩽ M𝔸

⊙⊙⊙⊙ (𝒑)+O(n lg n).

The computation of a generator of the cyclic group 𝔽𝜋
∗ can be done in time O(𝜋1/4+𝜖)=

O�n(L2+4𝜖L)/4+𝜖�=O(n), by [53]. The lift of the ((𝜋 − 1)/𝜈)-th power of this generator
to ℤ/mℤ can be computed in time (log n)O(1) and yields a primitive 𝜈-th root of unity
𝜔∈ℤ/mℤ. We perform the multivariate cyclic convolutions in 𝔸[𝒙]𝒑⊙⊙⊙⊙ using fast Fourier
multiplication, where the discrete Fourier transforms are computed with respect to 𝝎=
(𝜔𝜈/p1,…,𝜔𝜈/pd). In view of (3.8), this leads to

Mℤ/mℤ
⊖ (N) ⩽ 3F𝔸(𝒑)+ |𝒑| (m𝔸+d𝔸,ℤ)+O(n lg n)

⩽ 3F𝔸(𝒑)+ |𝒑|m𝔸+O(n lg n).

Indeed, scalar divisions by integers in 𝔸 can be performed in time

d𝔸,ℤ ⩽ sdℤ/mℤ,ℤ = O((((((((((s𝔸 I(lgm)
lg m)))))))))) = O((((((((((n

|𝒑| (lg lgm)1+o(1))))))))))) = O((((((((((n lg n
|𝒑|))))))))))

DAVID HARVEY, JORIS VAN DER HOEVEN 23

using Schönhage–Strassen's algorithm for integer multiplication. Now we observe that
lg s≍ lg n≺ lg2 n≍ lg m and s lg m= (N/|𝒑|) lg m⩽(10+ o(1))n/|𝒑|, whence s I(lg m)=
O� n

|𝒑| lg n�, again using Schönhage–Strassen multiplication. Performing multiplications
in 𝔸 using Kronecker multiplication, it also follows that

m𝔸⩽ I(s(2 lgm+lg s))+O(s I(lgm))⩽ I(3 s lgm)+O� n
|𝒑| lg n�,

for sufficiently large n. We conclude that

Mℤ/mℤ
⊖ (N) ⩽ 3F𝔸(𝒑)+ |𝒑| I(3 s lgm)+O(n lg n). (6.2)

Step 3: multivariate Rader reduction. We compute the multivariate discrete Fourier
transforms using Rader reduction. For each 𝒘∈𝒲 = {0, 1}d, let 𝒓𝒘= (r𝒘,1, …, r𝒘,d) be
such that r𝒘,k=1 if wk=0 and r𝒘,k=pk −1 if wk=1 for k=1,…,d. Then (4.3) implies

F𝔸(𝒑) ⩽ �
𝒘∈𝒲

M𝔸
⊙⊙⊙⊙ (𝒓𝒘)+O(|𝒑| lg |𝒑| s lgm)

= �
𝒘∈𝒲

M𝔸
⊙⊙⊙⊙ (𝒓𝒘)+O(n lg n).

The necessary precomputations for each of the 2d=O(1) Rader reductions can be per-
formed over ℤ/mℤ instead of 𝔸. Using Schönhage–Strassen multiplication, this can be
done in time

O(|𝒑|mℤ/mℤ+|𝒑| lg |𝒑|sℤ/mℤ) = O(|𝒑| lgm(lg lgm)1+o(1)+|𝒑| lg |𝒑| lg m)
= O(|𝒑| s lg |𝒑| lgm)
= O(n lg n),

since

(lg lgm)1+o(1) = (lg lg n)1+o(1) = O(lg n) = O(lgN) = O(lg(s |𝒑|)) = O(s lg |𝒑|).

Now for any 𝒘∈𝒲∖{𝟏}, we have |𝒓w|⩽p1⋯pd/ℓ . Performing multiplications in 𝔸[𝒖]𝒓𝒘
⊙⊙⊙⊙

using d-fold Kronecker substitution and Cantor–Kaltofen's variant of Schönhage–Strassen
multiplication over ℤ/mℤ, this yields

M𝔸
⊙⊙⊙⊙ (𝒓𝒘) = O(Mℤ/mℤ(2d s |𝒓𝒘|))

= O(2ds |𝒓𝒘| lgm (log (s |𝒓𝒘| lgm))1+o(1))
= O(2d (n/ℓ)(log n)1+o(1)),

whence

�
𝒘∈𝒲∖{𝟏}

M𝔸
⊙⊙⊙⊙ (𝒓𝒘) = O(4d (n/ℓ)(log n)1+o(1)).

Since 4d=O(1) and 1/ℓ ⩽1/n𝜖, the right hand side is bounded by O(n), whence

F𝔸(𝒑) ⩽ M𝔸
⊙⊙⊙⊙ (𝒓𝟏)+O(n lg n). (6.3)

Step 4: second CRT transforms. For k=1,…, d, we may decompose r𝟏,k = pk − 1= ℓ qk,
where qk is odd. Using multivariate CRT transforms (Corollary A.8), this yields

M𝔸
⊙⊙⊙⊙ (𝒓𝟏) ⩽ M𝔸

⊙⊙⊙⊙ (q1,…,qd, ℓ ,…, ℓ)+O(n lg n).

24 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

Setting 𝔹=𝔸[𝒚]𝒒⊙⊙⊙⊙ and ℓℓℓℓℓℓℓℓℓ =�ℓ ,…d×, ℓ �, this relation can be rewritten as

M𝔸
⊙⊙⊙⊙ (𝒓𝟏) ⩽ M𝔹

⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ)+O(n lg n). (6.4)

Step 5: Nussbaumer polynomial transforms. Since ℓ |s, we have a fast root of unity u2s/ℓ of
order ℓ in 𝔸 and in 𝔹. We may thus compute polycyclic convolutions of order ℓℓℓℓℓℓℓℓℓ over 𝔹
using fast Fourier multiplication, with Nussbaumer polynomial transforms in the role of
discrete Fourier transforms. From (3.10), it follows that

M𝔹
⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ) ⩽ |ℓℓℓℓℓℓℓℓℓ | (m𝔹+d𝔹,ℤ)+O(|ℓℓℓℓℓℓℓℓℓ | lg |ℓℓℓℓℓℓℓℓℓ | s𝔹)

⩽ |ℓℓℓℓℓℓℓℓℓ |m𝔹+O(|ℓℓℓℓℓℓℓℓℓ | lg |ℓℓℓℓℓℓℓℓℓ |s𝔹)
⩽ |ℓℓℓℓℓℓℓℓℓ |M𝔸

⊙⊙⊙⊙ (𝒒)+O(n lg n).

Here we used the bound d𝔹,ℤ=O(s𝔹 lg |ℓℓℓℓℓℓℓℓℓ |), which is shown in a similar way as above.
Modulo a change of variables u →𝜂 u where 𝜂 =𝜔𝜈/(2s) is a principal (2 s)-th root of
unity in ℤ/mℤ, negacyclic convolutions in (ℤ/mℤ)[u]s

⊖ reduce to cyclic convolutions
in (ℤ/mℤ)[u]s

⊙⊙⊙⊙. Combining this with the above relations, this yields

M𝔹
⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ) ⩽ |ℓℓℓℓℓℓℓℓℓ |Mℤ/mℤ

⊙⊙⊙⊙ (s, 𝒒)+O(|ℓℓℓℓℓℓℓℓℓ | s |𝒒|mℤ/mℤ)+O(n lg n)
⩽ |ℓℓℓℓℓℓℓℓℓ |Mℤ/mℤ

⊙⊙⊙⊙ (s, 𝒒)+O(n lg n).

The bound |ℓℓℓℓℓℓℓℓℓ | s |𝒒|mℤ/mℤ⩽Nmℤ/mℤ⩽O(nmℤ/mℤ/lgm)⩽O(n lg n) follows from (1.1).

Step 6: residual cyclic convolutions. By construction, ℤ/mℤ contains principal roots
of unity of orders s,q1,…,qd, which can again be computed in time O(n) using a similar
method as above. We may thus compute cyclic convolutions of order (s, 𝒒) over ℤ/mℤ
using fast Fourier multiplication. Since |ℓℓℓℓℓℓℓℓℓ | s |𝒒|mℤ/mℤ=O(n lg n) and |ℓℓℓℓℓℓℓℓℓ | s |𝒒| dℤ/mℤ,ℤ=
O(n lg n), we obtain

M𝔹
⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ) ⩽ 3N(((((((((((((((((

((
(
(Fℤ/mℤ(s)

s +�
k=1

d
Fℤ/mℤ(qk)

qk)))))))))))))))))
))
)
)+O(n lg n).

Using Bluestein reduction (2.10), the univariate discrete Fourier transforms can be trans-
formed back into cyclic products:

M𝔹
⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ) ⩽ 3N(((((((((((((((((

((
(
(Mℤ/mℤ

⊙⊙⊙⊙ (s)
s +�

k=1

d
Mℤ/mℤ

⊙⊙⊙⊙ (qk)
qk)))))))))))))))))

))
)
)+O(n lg n).

We perform the cyclic products using Kronecker substitution. Since I is increasing (by
definition), this yields

M𝔹
⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ) ⩽ 3N(((((((((((((((((

((
(
(I(s (2 lgm+lg s))

s +�
k=1

d
I(qk (2 lg m+lg qk))

qk)))))))))))))))))
))
)
)+O(n lg n).

⩽ 9N lg m(((((((((((((((((
((
(
(I(3 s lgm)

3 s lgm +�
k=1

d
I(3qk lgm)
3qk lgm)))))))))))))))))

))
)
)+O(n lg n). (6.5)

Step 7: recurse. Combining the relations (6.1), (6.2), (6.3), (6.4) and (6.5), while using
the fact that 27N lgm⩽(270+o(1))n⩽271n for sufficiently large n, we obtain

I(n) ⩽ 271n(((((((((((((((((
((
(
(I(3 s lgm)

3 s lgm +�
k=1

d
I(3qk lgm)
3qk lgm)))))))))))))))))

))
)
)+|𝒑| I(3 s lgm)+O(n lg n).

DAVID HARVEY, JORIS VAN DER HOEVEN 25

Using that 3 |𝒑| s lgm⩽(30+ o(1)) n⩽31n, this relation simplifies to

I(n) ⩽ 302n(((((((((((((((((
((
(
(I(3 s lgm)

3 s lgm +�
k=1

d
I(3qk lgm)
3qk lg m)))))))))))))))))

))
)
)+O(n lg n).

In terms of the normalized cost function

I∗(n) ≔ max
2⩽k⩽n

I(k)
k log k

and M=3max(s,q1,…,qk) lgm, this relation becomes

I(n)
n log n ⩽ 302 I∗(M)

log n (((((((((((((((((
((
(
(log(3 s lgm)+�

k=1

d

log(3qk lgm))))))))))))))))))
))
)
)+O(1)

⩽ 302 I∗(M)
log n (log(sq1⋯qd)+(d+1) log (3 lgm))+O(1).

By Lemma 5.1, we have qk=O(ℓ L−1(log ℓ)L) for all k. For sufficiently large n, this means
that qk⩽ /1 8 (ℓ /2)L+𝜖−1, whence s q1⋯ qd ⩽(ℓ /2)3+(L+𝜖−1)d ⩽nL−1+4𝜖 and log(s q1⋯ qd)⩽
(L−1+4𝜖) log n. Using that (d+1) log (3 lg m)=O(log log n), the latest bound on I(n)/
(n log n) therefore further simplifies into

I(n)
n log n ⩽ I∗(M) (302(L−1+4𝜖)+ o(1))+B,

for some suitable universal constant B>0. For sufficiently large n⩾n0, using our assump-
tions L<1+ /1 303, we have n>M and 302(L−1+4𝜖)+ o(1)<1−𝜖, whence

I(n)
n log n ⩽ (1−𝜖) I∗(M)+B.

Let us show by induction over n that this implies I∗(n)⩽ I∗(n0)+B/𝜖 for all n⩾n0. This
is clear for n=n0, so assume that n>n0. Then the above inequality yields

I(n)
n log n ⩽ (1−𝜖)�I∗(n0)+

B
𝜖�+B = (1−𝜖) I∗(n0)+

B
𝜖 ⩽ I∗(n0)+

B
𝜖 .

Consequently, I∗(n)=max (I∗(n − 1), I(n)/(n log n))⩽ I∗(n0)+B/𝜖. This completes the
induction and we conclude that I∗(n)=O(1), whence I(n)=O(n log n).

Remark 6.1. In our proof, we have not attempted to optimize the constant 303. With a bit
more work, it should be possible to achieve any constant larger than 32, as follows:

• On three occasions, we used the crude estimate o(1)⩽1 for large n; this explains
the increase from 300 to 303.

• Taking 𝜖≍1/log log logn, the cost of the pointwise multiplications in (6.2) becomes
negligible, so there is no further increase from 271 to 302 in the last step. Since
this also means that the dimension d is no longer constant, a few adaptations are
necessary. For instance, we need Remark 5.2 that P𝜈(k)=O((k (𝜈 + log k))L) and
at the end of step 3, we only have 4d=O(log log n).

• Taking s≔2lg((4+𝜖)n/(p1⋯pdlg 2n)) one gains a factor 5/4.
• In recursive FFT-multiplications, one argument is always fixed (due to the fact

that one of the multipliers in the Bluestein and Rader reductions is fixed). In a sim-
ilar way as in [25], this makes it possible to save one fast Fourier transform out
of three. Since this observation can be used twice in steps 2 and 6, a further factor
of 9/4 can be gained in this way.

26 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

• In step 6, we used the crude bound 2 s (lg m+lg s)⩽3 s lg m. Replacing the right-
hand side by (2+𝜖) s lgm, we save another factor 3/2.

• By allowing s to contain some small odd factors, we may further improve the
inequality N lgm⩽(10+o(1))n in step 7 to become N lgm⩽(5+o(1))n. This saves
another factor of two.

We finally recall that we opted to present our algorithm for number theoretic FFTs.
When switching to approximate complex FFTs, one advantage is that one may work
more extensively with primitive roots of power of two orders. This should also allow
for the use of Crandall–Fagin's reduction (in a similar way as in [25]) to further release
the assumption on the Linnik constant to L<1+ /1 16.

7. PROOF OF THEOREM 1.2 IN CHARACTERISTIC π ≠2

Recall that elements of the finite field 𝔽𝜋 𝜅 are represented as remainder classes of poly-
nomials in 𝔽𝜋[x]𝜅 modulo 𝜇, for some given monic irreducible polynomial 𝜇∈𝔽𝜋[x] of
degree 𝜅. Using Kronecker substitution and segmentation, one has the following well
known complexity bounds [27, section 3]:

M𝜋 𝜅(n) ⩽ M𝜋(2n𝜅)+O(nM𝜋(𝜅))
M𝜋(n) ⩽ M𝜋 𝜅(⌈n/⌊𝜅/2⌋⌉)+O(n lg 𝜋).

In order to establish Theorem 1.2, it therefore suffices to consider the case when q=𝜋
is a prime number. In this section, we first prove the theorem in the case when 𝜋 ≠
2. The case 𝜋=2 is treated in the next section. If lg n=O(lg 𝜋), then it is well known
that M𝜋(n)=O(I(n lg 𝜋)), again using Kronecker substitution. In this particular case,
Theorem 1.2 therefore follows from Theorem 1.1. Let L>1 be a Linnik constant with
L<1+2−777. Our algorithm proceeds as follows.

Step 0: setting up the parameters. Assume that we wish to multiply two polynomials
of degree <n in 𝔽𝜋[x]. For n⩾n0≔𝜏𝜋2⩾𝜋 with 𝜏⩾1 and suitable parameters 𝜅 and N,
we will reduce this problem to a multiplication problem in 𝔽𝜋 𝜅[z]N

⊖ . If n<n0, then we
use Kronecker multiplication. The factor 𝜏 is a sufficiently large absolute constant such
that various asymptotic inequalities encountered during the proof hold for all n⩾n0. The
other parameters are determined as follows:

• 𝜖≔1/770.

• ℓ ≔2lg(n
𝜖) is the smallest power of two with ℓ ⩾n𝜖>1.

• With the notations from section 5.3 and for each 𝜈>0, let p𝜈=q𝜈 ℓ +1 be the 𝜈-th
element in the list P1

∗(1, ℓ),P2
∗(1, ℓ),P3

∗(1, ℓ),… with p𝜈≠𝜋 and 2 ∤q𝜈.

• d≔min {d∈ℕ:ℓ 4p1⋯pd⩾n}.

• 𝜅≔lcm(p1−1,…,pd −1).

• s≔2lg(4n/(𝜅p1⋯pd)).

• N≔ s p1⋯pd.

Since ℓ 4p1⋯p766⩾ℓ 770=ℓ 1/𝜖⩾n, we must have d⩽766. From Lemma 5.4, we get

ℓ <p1<⋯<pd⩽Pd+2
∗ (1, ℓ)< C̄ ℓ L̄⩽ℓ 1+𝜖,

DAVID HARVEY, JORIS VAN DER HOEVEN 27

for sufficiently large n, where

L̄≔1+(L+1)d+1 (L−1)<1+(2+2−777)7672−777<1+𝜖,

and C̄ is a constant. As in the previous section, the prime numbers p1,…,pd and the rest
of the parameters can be computed in linear time O(n). Let us proceed with a few useful
bounds that hold for sufficiently large n. From the definitions of s and N, we clearly have

4n⩽𝜅N⩽8n.

From pd<ℓ 1+𝜖 and 𝜅=ℓ lcm(q1,…,qd)⩽ℓ 1−d p1⋯pd, we get

ℓ ⩽𝜅⩽ℓ 1+d𝜖⩽ℓ 2

and

ℓ ⩽4ℓ 2−(d+1)𝜖=4ℓ 4−(1+𝜖)−(1+d𝜖)⩽ 4ℓ 4−(1+𝜖)

𝜅 ⩽ 4n
𝜅p1⋯pd

⩽s⩽ 8n
𝜅p1⋯pd

⩽ 8ℓ 4
𝜅 ⩽8ℓ 3.

Step 0, continued: setting up the FFT field. Notice that ℓ |𝜅. Elements of the field 𝔽𝜋 𝜅 will
be represented as polynomials in𝔽𝜋[x] modulo 𝜇, where 𝜇∈𝔽𝜋[x] is a monic irreducible
polynomial of degree 𝜅. By [51, Theorem 3.2], such a polynomial can be computed in
time O(𝜋1/2(lg𝜋)3𝜅3+𝜖+(lg𝜋)2𝜅4+𝜖)=O(𝜋1/2+𝜖𝜅4+𝜖)=O(n1/2+𝜖ℓ 8+2𝜖)=O(n1/2+10𝜖)=
O(n), where we used the assumption that n⩾𝜋.

Setting 𝜈≔p1⋯pd, we claim that the field 𝔽𝜋 𝜅 admits a primitive 𝜈-th root of unity 𝜔,
that can also be computed in time O(n). Indeed, pi −1 divides 𝜅 for each i∈{1,…,d} and
pi≠𝜋, whence 𝜋𝜅≡1mod pi, so that pi | (𝜋𝜅− 1). We compute 𝜔 by brute force: for all
polynomials P∈𝔽𝜋[x], starting with those of smallest degree, we check whether Pmod𝜇
is a primitive 𝜈-th root. By [52, Theorem 1.1, r⩽𝜅 lg 𝜋], this procedure succeeds after
at most O(𝜋 (𝜅 lg 𝜋)4+𝜖 𝜅2) checks. In order to check whether a given 𝜔=P mod 𝜇 is
a primitive 𝜈-th root of unity, it suffices to verify that 𝜔𝜈/pi≠1 for each i∈{1,…,d}, which
can be done in time O((𝜅 lg𝜋)1+𝜖 lg n) using binary powering. The total time to compute
a suitable 𝜔 is therefore bounded by O(𝜋 (𝜅 lg 𝜋)5+2𝜖𝜅2 lg n)=O(𝜋n2(7+2𝜖)𝜖 (lg n)6+2𝜖)=
O(n), using our assumption that n⩾𝜋2.

Step 1: Kronecker segmentation. Recall that 𝜅N⩾4n. In order to multiply two polyno-
mials a,b∈𝔽𝜋[x] of degree <n, we cut them in chunks ak,bk∈𝔽𝜋[x] of degree <𝜅/2, i.e.

a= �
k=0

N/2−1

ak x(𝜅/2)k, b= �
k=0

N/2−1

bk x(𝜅/2)k,

and form the polynomials

A= �
k=0

N/2−1

ak zk, B= �
k=0

N/2−1

bk zk.

Let Ā, B̄∈𝔽𝜋 𝜅[z]N
⊖ be the reductions of these polynomials modulo 𝜇 and zN +1. Since

degz (AB)<N and degx (AB)<𝜅, we can read off the product AB from the product Ā B̄,
after which ab=(AB)(x𝜅/2). Computing A,B, Ā, B̄ from a and b clearly takes linear time
O(n lg 𝜋), and so does the retrieval of A B and a b from Ā B̄. In other words, we have
shown that

M𝜋(n) ⩽ M𝜋 𝜅
⊖ (N)+O(n lg 𝜋). (7.1)

28 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

Step 2: CRT transforms. At a second stage, we use negacyclic CRT transforms followed
by traditional CRT transforms in order to reduce multiplication in 𝔽𝜋 𝜅[z]N

⊖ to multiplica-
tion in 𝔸[𝒙]𝒑⊙⊙⊙⊙, where 𝒙=(x1,…,xd), 𝒑=(p1,…,pd), and 𝔸=𝔽𝜋 𝜅[u]s

⊖:

M𝜋 𝜅
⊖ (N) ⩽ M𝔸

⊙⊙⊙⊙ (p1⋯pd)+O(N lg N 𝜅 lg 𝜋)
M𝔸

⊙⊙⊙⊙ (p1⋯pd) ⩽ M𝔸
⊙⊙⊙⊙ (𝒑)+O(|𝒑| lg |𝒑| s𝜅 lg 𝜋).

Since O(|𝒑| lg |𝒑| s𝜅 lg 𝜋)=O(N lg |𝒑| 𝜅 lg 𝜋)=O(N lgN 𝜅 lg 𝜋)=O(n lg 𝜋 lg n), this yields

M𝜋 𝜅
⊖ (N) ⩽ M𝔸

⊙⊙⊙⊙ (𝒑)+O(n lg 𝜋 lg n).

We perform the multivariate cyclic convolutions in 𝔸[𝒙]𝒑⊙⊙⊙⊙ using fast Fourier multi-
plication, where the discrete Fourier transforms are computed with respect to 𝝎=
(𝜔𝜈/p1,…,𝜔𝜈/pd). In view of (3.8) and

|𝒑|d𝔸,ℤ ⩽ |𝒑| s𝔸
dℤ/𝜋ℤ,ℤ
lg 𝜋 = O(n lg 𝜋 (lg lg 𝜋)1+o(1)) = O(n lg 𝜋 lg n),

this yields

M𝔸
⊙⊙⊙⊙ (𝒑) ⩽ 3F𝔸(𝒑)+ |𝒑| (m𝔸+d𝔸,ℤ)+O(|𝒑| s𝔸)

⩽ 3F𝔸(𝒑)+ |𝒑|m𝔸+O(n lg 𝜋 lg n).

The reduction of a polynomial of degree <2𝜅 in 𝔽𝜋[x] modulo 𝜇 using Barrett's algo-
rithm [3] essentially requires two polynomial multiplications in 𝔽𝜋[x] of degree <𝜅,
modulo the precomputation of a preinverse in time O(M𝜋(𝜅))=O(n). Performing mul-
tiplications in 𝔸 using Kronecker substitution, we thus have

m𝔸 ⩽ M𝜋(2𝜅 s)+2 sM𝜋(𝜅)+O(𝜅 s lg 𝜋).

For sufficiently large n, we conclude that

M𝜋 𝜅
⊖ (N) ⩽ 3F𝔸(𝒑)+ |𝒑|M𝜋(2𝜅 s)+2 |𝒑| sM𝜋(𝜅)+O(n lg 𝜋 lg n). (7.2)

Step 3: multivariate Rader reduction. We compute the multivariate discrete Fourier
transforms using Rader reduction. For each 𝒘∈𝒲 = {0, 1}d, let 𝒓𝒘= (r𝒘,1, …, r𝒘,d) be
such that r𝒘,k=1 if wk=0 and r𝒘,k=pk −1 if wk=1 for k=1,…,d. Then

F𝔸(𝒑) = �
𝒘∈𝒲

M𝔸
⊙⊙⊙⊙ (𝒓𝒘)+O(n lg 𝜋 lg n).

The necessary precomputations for each of the 2d=O(1) Rader reductions can be per-
formed over 𝔽𝜋 𝜅 instead of 𝔸, in time

O(|𝒑|m𝔽𝜋𝜅+|𝒑| lg |𝒑|s𝔽𝜋𝜅) = O(|𝒑| lg 𝜋𝜅 (lg lg 𝜋𝜅)1+o(1)+|𝒑| lg |𝒑| lg 𝜋𝜅)
= O(𝜅 |𝒑| lg 𝜋 (lg n)1+o(1)+𝜅 |𝒑| lg 𝜋 lg n)
= O(𝜅 s |𝒑| lg 𝜋 lg n)
= O(n lg 𝜋 lg n).

Now for any 𝒘∈𝒲∖{𝟏}, we have |𝒓w|⩽p1⋯pd/ℓ . Performing multiplications in M𝔸
⊙⊙⊙⊙ (𝒓𝒘)

using d-fold Kronecker substitution and (1.6), this yields

M𝔸
⊙⊙⊙⊙ (𝒓𝒘) = O(M𝜋(2d𝜅 s |𝒓𝒘|))

= O(2d𝜅 s |𝒓𝒘| lg 𝜋 (log (2d𝜅 s |𝒓𝒘| lg 𝜋))1+o(1))
= O(2d (n lg 𝜋/ℓ)(log (n lg 𝜋))1+o(1)),

DAVID HARVEY, JORIS VAN DER HOEVEN 29

whence

�
𝒘∈𝒲∖{𝟏}

M𝔸
⊙⊙⊙⊙ (𝒓𝒘) = O(4d (n lg 𝜋/ℓ)(log (n lg 𝜋))1+o(1)).

Since 4d=O(1), 1/ℓ ⩽1/n𝜖, and n⩾lg 𝜋, the right hand side is bounded by O(n lg 𝜋),
whence

F𝔸(𝒑) ⩽ M𝔸
⊙⊙⊙⊙ (𝒓𝟏)+O(n lg 𝜋 lg n). (7.3)

Step 4: second CRT transforms. For k=1,…, d, we may decompose r𝟏,k = pk − 1= ℓ qk,
where qk is odd. Using multivariate CRT transforms, this yields

M𝔸
⊙⊙⊙⊙ (𝒓𝟏) ⩽ M𝔸

⊙⊙⊙⊙ (q1,…,qd, ℓ ,…, ℓ)+O(n lg 𝜋 lg n).

Setting 𝔹=𝔸[𝒚]𝒒⊙⊙⊙⊙ and ℓℓℓℓℓℓℓℓℓ =�ℓ ,…d×, ℓ �, this relation can be rewritten as

M𝔸
⊙⊙⊙⊙ (𝒓𝟏) ⩽ M𝔹

⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ)+O(n lg 𝜋 lg n). (7.4)

Step 5: Nussbaumer polynomial transforms. Since ℓ |s, we have a fast root of unity u2s/ℓ of
order ℓ in 𝔸 and in 𝔹. We may thus compute polycyclic convolutions of order ℓℓℓℓℓℓℓℓℓ over 𝔹
using fast Fourier multiplication, with Nussbaumer polynomial transforms in the role of
discrete Fourier transforms:

M𝔹
⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ) ⩽ |ℓℓℓℓℓℓℓℓℓ | (m𝔹+d𝔹,ℤ)+O(|ℓℓℓℓℓℓℓℓℓ | lg |ℓℓℓℓℓℓℓℓℓ | s𝔹)

⩽ |ℓℓℓℓℓℓℓℓℓ |m𝔹+O(|ℓℓℓℓℓℓℓℓℓ | lg |ℓℓℓℓℓℓℓℓℓ |s𝔹)
⩽ |ℓℓℓℓℓℓℓℓℓ |M𝔸

⊙⊙⊙⊙ (𝒒)+O(n lg 𝜋 lg n).

Step 6: residual cyclic convolutions. This time, we convert the residual multivariate cyclic
convolutions of length 𝒒 back into univariate cyclic convolutions of length |𝒒| using CRT
transforms the other way around. This is possible since s,q1,…,qd are pairwise coprime,
and we get

M𝔸
⊙⊙⊙⊙ (𝒒) ⩽ M𝔸

⊙⊙⊙⊙ (|𝒒|)+O(𝜅 s |𝒒| lg 𝜋 lg |𝒒|)
⩽ M𝜋 𝜅

⊖ (s |𝒒|)+O(𝜅 s |𝒒| lg 𝜋 lg(s |𝒒|)),

whence

M𝔹
⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ) ⩽ |ℓℓℓℓℓℓℓℓℓ |M𝔸

⊙⊙⊙⊙ (𝒒)+O(n lg 𝜋 lg n)
⩽ |ℓℓℓℓℓℓℓℓℓ |M𝜋 𝜅

⊖ (s |𝒒|)+O(n lg 𝜋 lg n).

We perform the univariate cyclic products using Kronecker substitution. Since reductions
of polynomials in 𝔽𝜋[x]2𝜅 modulo 𝜇 can be done in time 2M𝜋(𝜅)+O(𝜅 lg 𝜋), this yields

M𝔹
⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ) ⩽ |ℓℓℓℓℓℓℓℓℓ |M𝜋(2𝜅 s |𝒒|)+2 |ℓℓℓℓℓℓℓℓℓ | |𝒒| sM𝜋(𝜅)+O(n lg 𝜋 lg n)

⩽ 2N 𝜅M𝜋(2𝜅 s |𝒒|)
2𝜅 s |𝒒| +2 |𝒑| sM𝜋(𝜅)+O(n lg 𝜋 lg n). (7.5)

Step 7: recurse. Combining the relations (7.1), (7.2), (7.3), (7.4) and (7.5), while using
the fact that 6N 𝜅⩽48n, we obtain

M𝜋(n) ⩽ 48n((((((((((M𝜋(2𝜅 s |𝒒|)
2𝜅 s |𝒒|))))))))))+|𝒑|M𝜋(2𝜅 s)+8 |𝒑| sM𝜋(𝜅)+O(n lg 𝜋 lg n).

In terms of the normalized cost function

M𝜋
∗ (n) = max

2⩽k⩽n

M𝜋(k)
k lg 𝜋 log(k lg 𝜋)

30 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

and M=2𝜅 s |𝒒|, this relation becomes
M𝜋(n)

n lg 𝜋 log(n lg 𝜋) ⩽ 48M𝜋
∗ (2𝜅 s |𝒒|) log(2𝜅 s |𝒒| lg 𝜋)

log(n lg 𝜋)

+16M𝜋
∗ (2𝜅 s) log(2𝜅 s lg 𝜋)

log(n lg 𝜋) +64M𝜋
∗ (𝜅) log(𝜅 lg 𝜋)log(n lg 𝜋) +O(1)

⩽ 128M𝜋
∗ (M) log(2𝜅 s |𝒒| lg 𝜋)

log(n lg 𝜋) +O(1),

where we used the fact that 2 |𝒑| 𝜅 s⩽16n. Recall that s⩽8 ℓ 3 and qk<ℓ 𝜖 for k=1,…,d,
whence s |𝒒|<8ℓ 3+d𝜖⩽8ℓ 4−4𝜖, whereas 𝜅⩽ℓ 2. Consequently, for large n, we have

log(2𝜅 s |𝒒| lg 𝜋) ⩽ (6−4𝜖)𝜖 log n+O(log lg 𝜋)
⩽ (6−4𝜖)𝜖 log n+O(log lg n)
⩽ 6𝜖 log n
⩽ 6𝜖log(n lg 𝜋).

For some suitable universal constant B>0, this yields
M𝜋(n)

n lg 𝜋 log(n lg 𝜋) ⩽ 768M𝜋
∗ (M)𝜖+B.

For sufficiently large n, we have M=2𝜅s |𝒒|⩽16 |𝒒|
|𝒑| n⩽16nℓ −d<n and 768𝜖<1−𝜖, whence

M𝜋(n)
n lg 𝜋 log(n lg 𝜋) ⩽ (1−𝜖)M𝜋

∗ (M)+B.

In a similar way as in the previous section, this impliesM𝜋
∗ (n)⩽M𝜋

∗ (n0)+B/𝜖 for all n⩾n0.
Now recall that Kronecker substitution and Theorem 1.1 imply M𝜋(n)=O(I(n lg 𝜋))=
O(n lg 𝜋 log(n lg 𝜋)) for all n⩽ n0=O(𝜋2), whence M𝜋

∗ (n0) =O(1). We conclude that
M𝜋(n)=O(n lg 𝜋 lg(n lg 𝜋)).

Remark 7.1. The hypothesis L<1+2−777 is very pessimistic and mainly due to the way
we reduce the residual multivariate cyclic convolutions back to univariate ones. Our
assumption that the q1,…,qd be pairwise coprime clearly makes this back-reduction very
easy. Nevertheless, with more work, we expect that this assumption can actually be
released. We intend to come back to this issue in a separate paper on the computation
of multivariate cyclic convolution products.

8. PROOF OF THEOREM 1.2 IN CHARACTERISTIC π =2

The proof of Theorem 1.2 in the case when 𝜋=2 is similar to the one from the previous
section, with two important changes:

• Following Schönhage [48], we need to use triadic DFTs instead of dyadic ones. In
particular, ℓ ≔3⌈log3(n𝜖)⌉ will now be a power of three.

• The transform lengths pi − 1 are unavoidably even. This time, we will therefore
have pi=2 qi ℓ +1, where the qi are pairwise coprime. As a consequence, we will
need a separate mechanism to deal with residual polycyclic convolution products
of length 2 in each variable.

Given a ring R and an integer t⩾0, it will be convenient to define

Rt ≔ R[𝜃1,…,𝜃t]/(𝜃12−1,…,𝜃t
2−1).

DAVID HARVEY, JORIS VAN DER HOEVEN 31

We will also use the abbreviations 𝔽𝜋 𝜅,t≔(𝔽𝜋 𝜅)t, MR,t≔MRt, M𝜋 𝜅,t≔M𝔽𝜋𝜅,t, and so on.
Throughout this section, we assume that L>1 is a Linnik constant with L<1+2−1162. Our
algorithm proceeds as follows.

Step 0: setting up the parameters. Let t⩾0 and assume that we wish to multiply two
polynomials of degree <n in 𝔽𝜋,t[x]. For n⩾n0 with n0⩾1 and suitable parameters 𝜅
and N, we will reduce this problem to a multiplication problem in 𝔽𝜋 𝜅,t[z]N

⊘ . If n<n0,
then we use a naive multiplication algorithm. The threshold n0 is a sufficiently large
absolute constant such that various asymptotic inequalities encountered during the proof
hold for all n⩾n0. The other parameters are determined as follows:

• 𝜖≔1/1154.

• ℓ ≔3⌈log3(n𝜖)⌉ is the smallest power of three with ℓ ⩾n𝜖.

• With the notations from section 5.3 and for each 𝜈>0, let p𝜈=2q𝜈 ℓ +1 be the 𝜈-th
element in the list P1

∗(1,2 ℓ),P2
∗(1,2 ℓ),P3

∗(1,2 ℓ),… with gcd(q𝜈, 6)=1.

• d≔min {d∈ℕ:ℓ 4p1⋯pd⩾n}.

• 𝜅≔lcm(p1−1,…,pd −1).

• s≔2⋅3⌈log3(2n/(𝜅p1⋯pd))⌉ is smallest in 2 ⋅ 3ℕ with 𝜅 s p1⋯pd⩾4n.

• N≔ s p1⋯pd.

Since ℓ 4p1⋯p1150⩾ℓ 1154=ℓ 1/𝜖⩾n, we must have d⩽1150. From Lemma 5.4, we get

ℓ <p1<⋯<pd⩽Pd+2
∗ (1,2 ℓ)< C̄(2 ℓ)L̄⩽ℓ 1+𝜖,

for sufficiently large n, where

L̄≔1+(L+1)d+1(L−1)<1+(2+2−1162)11512−1162<1+𝜖,

and C̄ is a constant. As before, the prime numbers p1,…,pd and the rest of the parameters
can be computed in linear time O(n). Let us proceed with a few useful bounds that hold
for sufficiently large n. From the definitions of s and N, we clearly have

4n⩽𝜅N⩽12n.

From pd<ℓ 1+𝜖 and 𝜅=2ℓ lcm(q1,…,qd)⩽ℓ 1−dp1⋯pd, we get

ℓ ⩽𝜅⩽ℓ 1+d𝜖⩽ℓ 2

and

ℓ ⩽4ℓ 2−(d+1)𝜖=4ℓ 4−(1+𝜖)−(1+d𝜖)⩽ 4ℓ 4−(1+𝜖)

𝜅 ⩽ 4n
𝜅p1⋯pd

⩽s⩽ 12n
𝜅p1⋯pd

⩽ 12ℓ 4
𝜅 ⩽12ℓ 3.

Step 0, continued: setting up the FFT field. As in the previous section, setting 𝜈≔p1⋯pd,
the defining polynomial 𝜇 for 𝔽𝜋 𝜅 and a primitive 𝜈-th root of unity 𝜔 can both be com-
puted in time O(n).

Step 1: Kronecker segmentation. Recall that 𝜅N⩾4n. In order to multiply two polyno-
mials a,b∈𝔽𝜋,t[x] of degree <n, we cut them in chunks ak,bk∈𝔽𝜋,t[x] of degree <𝜅/2, i.e.

a= �
k=0

N/2−1

ak x(𝜅/2)k, b= �
k=0

N/2−1

bk x(𝜅/2)k,

32 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

and form the polynomials

A= �
k=0

N/2−1

ak zk, B= �
k=0

N/2−1

bk zk.

Let Ā, B̄∈𝔽𝜋 𝜅,t[z]N
⊘ be the reductions of these polynomials modulo 𝜇 and zN + zN/2+1.

Since degz (AB)<N and degx (A B)<𝜅, we can read off the product A B from the pro-
duct Ā B̄, after which a b=(A B)(x𝜅/2). Computing A,B, Ā, B̄ from a and b clearly takes
linear time O(2tn), and so does the retrieval of AB and ab from Ā B̄. In other words, we
have shown that

M𝜋,t(n) ⩽ M𝜋 𝜅,t
⊘ (N)+O(2t n). (8.1)

Step 2: CRT transforms. At a second stage, we use tricyclic CRT transforms followed
by traditional CRT transforms in order to reduce multiplication in 𝔽𝜋 𝜅,t[z]N

⊘ to multipli-
cation in 𝔸t[𝒙]𝒑⊙⊙⊙⊙, where 𝒙=(x1,…,xd), 𝒑=(p1,…,pd), and 𝔸=𝔽𝜋 𝜅[u]s

⊘:

M𝜋 𝜅,t
⊘ (N) ⩽ M𝔸,t

⊙⊙⊙⊙ (p1⋯pd)+O(2t N lg N 𝜅)
M𝔸,t

⊙⊙⊙⊙ (p1⋯pd) ⩽ M𝔸,t
⊙⊙⊙⊙ (𝒑)+O(2t |𝒑| lg |𝒑| s𝜅).

Since O(|𝒑| lg |𝒑| s𝜅)=O(N lg |𝒑|𝜅)=O(N lgN 𝜅)=O(n lg n), this yields

M𝜋 𝜅,t
⊘ (N) ⩽ M𝔸,t

⊙⊙⊙⊙ (𝒑)+O(2tn lg n).

We perform the multivariate cyclic convolutions in 𝔸t[𝒙]𝒑⊙⊙⊙⊙ using fast Fourier mul-
tiplication, where the discrete Fourier transforms are computed with respect to 𝝎=
(𝜔𝜈/p1,…,𝜔𝜈/pd). Since the only possible divisions of elements in 𝔸 by integers are divi-
sions by one, they come for free, so (3.8) yields

M𝔸,t
⊙⊙⊙⊙ (𝒑) ⩽ 3F𝔸,t(𝒑)+ |𝒑|m𝔸,t+O(2t n lg n).

The multivariate DFTs can be performed on the 2t coefficients over 𝔸 in parallel:

F𝔸,t(𝒑) ⩽ 2tF𝔸(𝒑)+O(2t n lg n).

The reduction of a polynomial of degree <2𝜅 in 𝔽𝜋[x] modulo 𝜇 using Barrett's algo-
rithm [3] essentially requires two polynomial multiplications in 𝔽𝜋[x] of degree <𝜅,
modulo the precomputation of a preinverse in time O(M𝜋(𝜅))=O(n). Performing mul-
tiplications in 𝔸t using Kronecker substitution, we thus have

m𝔸,t ⩽ M𝜋,t(2𝜅 s)+2⋅2t ⋅ sM𝜋(𝜅)+O(2t𝜅 s).

For sufficiently large n, we conclude that

M𝜋 𝜅,t
⊘ (N) ⩽ 3 ⋅2t ⋅F𝔸(𝒑)+ |𝒑|M𝜋,t(2𝜅 s)+2⋅2t ⋅ |𝒑| sM𝜋(𝜅)+O(2t n lg n). (8.2)

Step 3: multivariate Rader reduction. This step is essentially the same as in section 7;
setting 𝒓𝟏=𝒑−1, we obtain the bound

F𝔸(𝒑) ⩽ M𝔸
⊙⊙⊙⊙ (𝒓𝟏)+O(n lg n). (8.3)

Step 4: second CRT transforms. For k=1,…, d, we may decompose r𝟏,k= pk − 1=2 ℓ qk,
where qk is coprime with 6. Using multivariate CRT transforms, this yields

M𝔸
⊙⊙⊙⊙ (𝒓𝟏) ⩽ M𝔸

⊙⊙⊙⊙ (2q1,…,2qd, ℓ ,…, ℓ)+O(n lg n).

DAVID HARVEY, JORIS VAN DER HOEVEN 33

Setting 𝔹=𝔸[𝒚]2𝒒⊙⊙⊙⊙ and ℓℓℓℓℓℓℓℓℓ =�ℓ ,…d×, ℓ �, this relation can be rewritten as

M𝔸
⊙⊙⊙⊙ (𝒓𝟏) ⩽ M𝔹

⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ)+O(n lg n). (8.4)

Step 5: Nussbaumer polynomial transforms. Since ℓ | (s/2), we have a fast root of unity
u3s/(2ℓ) of order ℓ in 𝔸 and in 𝔹. We may thus compute polycyclic convolutions of
order ℓℓℓℓℓℓℓℓℓ over 𝔹 using fast Fourier multiplication, with triadic Nussbaumer polynomial
transforms in the role of discrete Fourier transforms. Using that divisions by integers
are again for free in 𝔹, this yields

M𝔹
⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ) ⩽ |ℓℓℓℓℓℓℓℓℓ |m𝔹+O(|ℓℓℓℓℓℓℓℓℓ | lg |ℓℓℓℓℓℓℓℓℓ |s𝔹)

⩽ |ℓℓℓℓℓℓℓℓℓ |M𝔸
⊙⊙⊙⊙ (2𝒒)+O(n lg n).

Step 6: residual cyclic convolutions. Using CRT transforms, the residual multivariate
cyclic convolutions of length (2q1,…,2qd) are successively transformed into multivariate
cyclic convolutions of lengths (2, …, 2, q1, …, qd) and then (2, …, 2, q1⋯ qd). Using that
s,q1,…,qd are pairwise coprime, we get

M𝔸
⊙⊙⊙⊙ (2𝒒) ⩽ M𝔸,d

⊙⊙⊙⊙ (|𝒒|)+O(2d𝜅 s |𝒒| lg |𝒒|)
⩽ M𝜋 𝜅,d

⊘ (s |𝒒|)+O(2d𝜅 s |𝒒| lg(s |𝒒|)),

whence

M𝔹
⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ) ⩽ |ℓℓℓℓℓℓℓℓℓ |M𝔸

⊙⊙⊙⊙ (2𝒒)+O(n lg n)
⩽ |ℓℓℓℓℓℓℓℓℓ |M𝜋 𝜅,d

⊘ (s |𝒒|)+O(n lg n).

We perform the univariate cyclic products using Kronecker substitution. Since reduc-
tions of polynomials in 𝔽𝜋[x]2𝜅 modulo 𝜇 can be done in time 2M𝜋(𝜅)+O(𝜅), this yields

M𝔹
⊙⊙⊙⊙ (ℓℓℓℓℓℓℓℓℓ) ⩽ |ℓℓℓℓℓℓℓℓℓ |M𝜋,d(2𝜅 s |𝒒|)+2 |ℓℓℓℓℓℓℓℓℓ | |2𝒒| sM𝜋(𝜅)+O(n lg n)

⩽ 2N 𝜅M𝜋,d(2𝜅 s |𝒒|)
2𝜅 s |2𝒒| +2 |𝒑| sM𝜋(𝜅)+O(n lg n). (8.5)

Step 7: recurse. Combining the relations (8.1), (8.2), (8.3), (8.4) and (8.5), while using
the fact that 6N 𝜅⩽72n, we obtain

M𝜋,t(n)
2t ⩽ 72n((((((((((((M𝜋,d(2𝜅 s |𝒒|)

2𝜅 s |𝒒| 2d))))))))))))+|𝒑|M𝜋,t(2𝜅 s)
2t +8|𝒑| sM𝜋(𝜅)+O(n lg n).

In terms of the normalized cost functions

M̄𝜋,t(n) = max
0⩽i⩽t

M𝜋,i(n)
2i

M𝜋,t
∗ (n) = max

2⩽k⩽n

M̄𝜋,t(k)
k log k

and M=2𝜅 s |𝒒|, the above relation implies

M̄𝜋,t(n)
n log n ⩽ 72M𝜋,d

∗ (2𝜅 s |𝒒|) log(2𝜅 s |𝒒|)
log n

+24M𝜋,t
∗ (2𝜅 s) log(2𝜅 s)

log n +96M𝜋,0
∗ (𝜅) log 𝜅

log n +O(1)

⩽ 192M𝜋,max(t,d)
∗ (M) log(2𝜅 s |𝒒|)

log n +O(1),

34 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

where we used the fact that 2 |𝒑|𝜅 s⩽24n. Taking t0=1150, so that d⩽ t0, this yields

M̄𝜋,t0(n)
n log n ⩽ 192M𝜋,t0

∗ (M) log(2𝜅 s |𝒒|)
log n +O(1).

Recall that s⩽12 ℓ 3 and qk<ℓ 𝜖 for k=1,…,d, whence s |𝒒|<12 ℓ 3+d𝜖⩽12 ℓ 4−4𝜖, whereas
𝜅⩽ℓ 2. Consequently,

log(2𝜅 s |𝒒|) ⩽ (6−4𝜖)𝜖 log n+O(1) ⩽ 6𝜖 log n

for large n. For some suitable universal constant B>0, this yields

M̄𝜋,t0(n)
n log n ⩽ 1152M𝜋,t0

∗ (M)𝜖+B,

For sufficiently large n⩾n0, we have M=2𝜅 s |𝒒|⩽24 |𝒒|
|𝒑| n⩽24n ℓ −d<n and 1152𝜖<1−𝜖,

whence
M̄𝜋,t0(n)
n log n ⩽ (1−𝜖)M𝜋,t0

∗ (M)+B.

In a similar way as in the previous sections, this implies M𝜋,t0
∗ (n)⩽M𝜋,t0

∗ (n0)+B/𝜖 for all
n⩾n0, whence M𝜋(n)⩽M𝜋,0

∗ (n)n log n⩽M𝜋,t0
∗ (n)n log n⩽O(n lg n).

Remark 8.1. Since it suffices to consider the case when t⩽ t0=1150 is bounded in our
proof, we can pay ourselves the luxury to use a naive algorithm for polynomial multi-
plications over 𝔽𝜋,t of bounded degree ⩽n0. It is an interesting question how to do such
multiplications more efficiently. First of all, we notice that

𝔽𝜋[𝜃1,…,𝜃t]/(𝜃12−1,…,𝜃t
2−1) ≅ 𝔽𝜋[z1,…,zt]/(z12,…,zt

2),

via the the change of variables 𝜃1= z1+1,…,𝜃t= zt+1. The bound (3.2) implies that this
change of variables can be performed in time O(t2t). In [50], Schost designed an efficient
algorithm for multiplication in the truncated power series ring 𝔽𝜋[z1,…, zt]/(z12,…, zt

2).
The idea is to embed this ring inside

𝔽𝜋[[𝜀]][z1,…,zt]/(z12− 𝜀z1,…,zt
2− 𝜀zt)

and then to use multipoint evaluation and interpolation at z1,…, zt∈{0, 𝜀}. It turns out
that it suffices to compute with series of precision O(𝜀t+1) in order to obtain the desired
product. Altogether, this leads to an algorithm of bit complexity O(t22t).

9. VARIANTS OF THEOREM 1.2

There are several variants and generalizations of Theorem 1.2 along similar lines as the
results in [27, section 8]. First of all, we have the following:

THEOREM 9.1. Assume that there exists a Linnik constant with L<1+2−1162 and let m>0. Then
the bit complexity Mℤ/mℤ(n) of multiplying two polynomials in (ℤ/mℤ)[x]n satisfies

Mℤ/mℤ(n) = O(n logm log(n logm)), uniformly in m.

Proof. Routine adaptation of the proofs of [27, Theorems 8.2 and 8.3]. □

DAVID HARVEY, JORIS VAN DER HOEVEN 35

Until now, we have systematically worked in the bit complexity model for implemen-
tations on a multitape Turing machine. But it is a matter of routine to adapt Theorem 1.2
to other complexity models. In the straight-line program (SLP) model, the most straight-
forward adaptation of [27, Theorem 8.4] goes as follows:

THEOREM 9.2. Assume that there exists a Linnik constant with L<1+2−1162. Let 𝒜 be an
𝔽𝜋-algebra, where 𝜋 is prime. We may multiply two polynomials in 𝒜[X] of degree less than n
using O(n logn) additions, subtractions, and scalar multiplications, and O�n(logn)log24/log572�
non-scalar multiplications. These bounds are uniform over all primes 𝜋 and all 𝔽𝜋-algebras 𝒜.

Proof. With respect to the proof of [27, Theorem 8.4], the only non-trivial thing to check
concerns the number of non-scalar multiplications. These are due to the innermost mul-
tiplications of our recursive FFT-multiplications, when unrolling the recursion. Assume
first that 𝜋≠2. Then one level of our recursion reduces the multiplication of two poly-
nomials in 𝔽𝜋[x]n to N multiplications in 𝔽𝜋 𝜅, whence to 2N multiplications in 𝔽𝜋[x]𝜅.
By construction, we have 𝜅 ⩽ ℓ 2⩽ (2 n)2𝜖 and 𝜅N ⩽8 n. Each recursive step therefore
expands the data size by a factor at most 16 while passing from degree n to degree
roughly n2𝜖= n1/385. The algorithm therefore requires log log n/log 385+O(1) recur-
sive steps and O�n (log n)log16/log385� non-scalar multiplications. In the case when 𝜋=2,
the reasoning is similar: this time, the data size is expanded by a factor at most 24 at
each recursive step (since 𝜅N ⩽12 n), whereas the degree in x descends from n to at
most n2𝜖=n1/572. This leads to the announced complexity bound. □

We notice that the number of non-scalar multiplications is far larger than O�n4log
∗n�,

as for the algorithm from [27, Theorem 8.4]. Ideally speaking, we would like to take 𝜅
exponentially smaller than n, which requires a sharper bound on P𝜈

∗(k) than the one from
Lemma 5.4. Assuming that this is possible (modulo stronger number theoretic assump-
tions), the number of recursive steps would go down to log∗ n+O(1), and the number
of non-scalar multiplications to O�n 24log

∗n�. With more work, it is plausible that the
constant 24 can be further reduced.

It is also interesting to observe that the bulk of the other 𝔽𝜋-vector space operations
are additions and subtractions: for some constant 𝛼with 0<𝛼<1, the algorithm only uses
O(n (log n)𝛼) scalar multiplications. In a similar way as above, this number goes down
to O�n2O(log ∗n)� modulo stronger number theoretic assumptions. For bounded 𝜋=O(1),
we also notice that scalar multiplications theoretically reduce to lg 𝜋=O(1) additions.

APPENDIX A. TURING MACHINE IMPLEMENTATIONS

Recall that all computations in this paper are done in the deterministic multitape Turing
model [16]. In this appendix, we briefly review the cost of various basic types of data
rearrangements when working in this model.

A.1. Arrays and sorting
Let R be a data type whose instances take sR bits. An n1×⋯×nd array Mi1,…,id of elements
in R is stored as a linear array of n1⋯nd sR bits. We generally assume that the elements
are ordered lexicographically by (i1,…, id).

36 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

What is significant from a complexity point of view is that occasionally we must
switch representations, to access an array (say 2-dimensional) by “rows” or by “columns”.
In the Turing model, we may transpose an n1×n2 matrix of elements in R in time

TR(n1,n2) = O(sR n1n2 lg min(n1,n2)),

using the algorithm of [5, appendix]. Briefly, the idea is to split the matrix into two halves
along the “short” dimension, and transpose each half recursively.

We will also require more complex rearrangements of data, for which we resort to
sorting. Suppose that we can compare elements of R in linear time O(sR). Then an array
of n elements of R may be sorted in time

PR(n) = O(sR n lg n),

using merge sort [36], which can be implemented efficiently on a Turing machine.
Let us now consider a general permutation 𝜎∈𝔖n. We assume that 𝜎 is represented

by the array (𝜎(1),…,𝜎(n)), which takes space O(n lg n) on a Turing tape. Given a gen-
eral data type R, the permutation naturally acts on arrays of length with entries in R. As
long as lg n=O(sR), this action can be computed in time O(sRn lg n), by tagging the i-th
entry of the array by 𝜎(i), sorting the tagged entries, and then removing the tags.

Unfortunately, for some of the data rearrangements in this paper, we do not have
lg n=O(sR). Nevertheless, certain special kinds of permutations can still be performed
in time O(sR n lg n). Transpositions are one important example. In the next subsections,
we will consider a few other examples.

A.2. Basic multivariate rewritings

LEMMA A.1. Consider a permutation 𝜎∈𝔖ℓ . Let 𝒏=(n1,…,nℓ)∈(ℕ>)ℓ and𝒎=(m1,…,mℓ)=
(n𝜎(1),…,n𝜎(ℓ)). Then

C(R𝒏↔R𝒎) = O(sR |𝒏| lg |𝒏|)

Proof. Let C>0 be an absolute constant with TR(k1, k2) ⩽C sR k1 k2 log min (k1, k2) for
all k1,k2. Let us prove by induction on ℓ that C(R𝒏↔R𝒎) ⩽C sR |𝒏| log |𝒏|. For ℓ ⩽ 1,
the result is clear, so assume that l>1. Let 𝜋: {1,…, ℓ }→{1,…, ℓ } be the mapping with
𝜋(1)=𝜎(1), 𝜋(2)=1,…,𝜋(𝜎(1))=𝜎(1)−1 and 𝜋(k)= k for k>𝜎(1). Setting 𝒏′=(n1,…,
n𝜎(1)), 𝒓 ′=(n𝜋(1),…,n𝜋(𝜎(1))) and 𝒓=(n𝜋(1),…,𝜋(ℓ)), the natural isomorphism between R𝒏′

and R𝒓 ′ corresponds to the transposition of an (n1⋯ n𝜎(1)−1) × n𝜎(1) matrix with coef-
ficients in R. Since conversions between R𝒏 and R𝒓 amount to n𝜎(1)+1⋯nℓ such transposi-
tions, it follows that

C(R𝒏↔R𝒓) ⩽ C sR |𝒏| log n𝜎(1).

By the induction hypothesis, we also have

C(R𝒓↔R𝒎) ⩽ C sR𝜎(1)
|𝒏|

n𝜎(1)
log |𝒏|

n𝜎(1)
= CsR |𝒏| log

|𝒏|
n𝜎(1)

,

whence

C(R𝒏↔R𝒎) ⩽ C(R𝒏↔R𝒓)+C(R𝒓↔R𝒎) ⩽ C sR |𝒏| log |𝒏|,

as desired. □

DAVID HARVEY, JORIS VAN DER HOEVEN 37

COROLLARY A.2. For any monic polynomials P1∈R[x1],…,Pℓ ∈R[xℓ], the conversions

R[x1]/(P1)⋯ [xℓ]/(Pℓ)↔R[x𝜎(1)]/(P𝜎(1)) ⋯ [x𝜎(ℓ)]/(P𝜎(ℓ))

can be performed in time O(sRn lg n), where n=deg P1⋯deg Pℓ .

Proof. Setting 𝒏=(deg P1,…,deg Pℓ), we may naturally represent elements in

R[x1]/(P1)⋯ [xℓ]/(Pℓ)

by ℓ -variate arrays in R𝒏. Similarly, elements of

R[x𝜎(1)]/(P𝜎(1)) ⋯ [x𝜎(ℓ)]/(P𝜎(ℓ))

are represented by arrays in R𝒎=(n𝜎(1),…,n𝜎(ℓ)). We now apply the lemma. □

COROLLARY A.3. We have

C(R[𝒙]𝒏⊙⊙⊙⊙↔R[𝒚]𝒎⊙⊙⊙⊙) = O(sR |𝒏| lg |𝒏|).

Proof. Take Pi=xi
ni −1 for i=1,…, ℓ . □

A.3. CRT transforms
We start with two lemmas from [23, section 2.4]. For convenience we reproduce the
proofs here.

LEMMA A.4. Let m1,m2⩾2 be relatively prime and n=m1m2. Then

C(R[x]n
⊙⊙⊙⊙↔R[x1]m1

⊙⊙⊙⊙ [x2]m2
⊙⊙⊙⊙) = O(sRn lgmin(m1,m2)).

Proof. Let c=m2
−1 modm1, and let

𝛽:R[x]/(xm1m2−1)→R[x1,x2]/(x1m1−1,x2m2−1)

denote the homomorphism that maps x to x1c x2, and acts as the identity on R. Suppose
that we wish to compute 𝛽(F) for some input polynomial

F= �
k=0

m1m2−1

Fk xk∈R[x]/(xm1m2−1).

Interpreting the list (F0,…,Fm1m2−1) as an m1×m2 array, the (i1, i2)-th entry corresponds
to Fi1m2+i2. After transposing the array, which costs O(sRm1m2 lgmin(m1,m2)) bit opera-
tions, we have an m2×m1 array, whose (i2, i1)-th entry is Fi1m2+i2. Now for each i2, cyclically
permute the i2-th row by (i2cmodm1) slots; altogether this uses only O(sRm1m2) bit oper-
ations. The result is an m2×m1 array whose (i2, i1)-th entry is F(i1−i2cmodm1)m2+i2, which
is exactly the coefficient of

x1
((i1−i2c)m2+i2)cx2

(i1−i2c)m2+i2=x1
i1x2

i2

in 𝛽(F). The inverse map 𝛽−1 may be computed by reversing this procedure. □

LEMMA A.5. Let n=m1⋯mℓ where the mi are pairwise coprime. Then

C(R[x]n
⊙⊙⊙⊙↔R[x1]m1

⊙⊙⊙⊙ ⋯[xk]mℓ
⊙⊙⊙⊙) = O(sRn lg n).

38 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

Proof. Using Lemma A.4, we construct a sequence of isomorphisms

R[x]n
⊙⊙⊙⊙ ≅ R[x1]m1

⊙⊙⊙⊙ [w2]m2⋯mℓ
⊙⊙⊙⊙

≅ R[x1]m1
⊙⊙⊙⊙ [x1]m2

⊙⊙⊙⊙ [w3]m3⋯mℓ
⊙⊙⊙⊙

⋮
≅ R[x1]m1

⊙⊙⊙⊙ ⋯[xk]mℓ
⊙⊙⊙⊙

the i-th of which may be computed in CsRn log ni bit operations for some universal con-
stant C>0. The overall cost is ∑i CsRn log ni=CsRn log n bit operations. □

A.4. Multivariate CRT transforms

LEMMA A.6. Let 𝒏=(n1,…,nℓ)∈(ℕ>)ℓ and let ni=mi,1⋯mi,ki be the prime power factoriza-
tion of each ni. Setting 𝒎=(m1,1,…,m1,k1,…,mℓ ,1,…,mℓ ,kℓ), we have

C(R[𝒙]𝒏⊙⊙⊙⊙↔R[𝒚]𝒎⊙⊙⊙⊙) = O(sR |𝒏| lg |𝒏|).

Proof. We prove the assertion by induction over ℓ . For ℓ ⩽ 1, the result follows
from Lemma A.5, so assume that l>1. Denote 𝒏′= (n2, …, nℓ), 𝒎′= (m2,1, …,m2,k2, …,
mℓ ,1, …, mℓ ,kℓ), and 𝒎♯= (m1,1, …, m1,k1). Lemma A.5 yields C(R[x1]n1

⊙⊙⊙⊙ ↔ R[𝒚 ♯]𝒎♯
⊙⊙⊙⊙)=

O(sRn1 lg n1), whence

C(R[𝒙]𝒏⊙⊙⊙⊙↔R[𝒚♯]𝒎♯
⊙⊙⊙⊙ [𝒙′]𝒏′

⊙⊙⊙⊙) = O(sR |𝒏| lg n1).

The induction hypothesis also yields

C(R[𝒚♯]𝒎♯
⊙⊙⊙⊙ [𝒙′]𝒏′

⊙⊙⊙⊙ ↔R[𝒚]𝒎⊙⊙⊙⊙) = O�sR[𝒚♯]
𝒎♯
⊙⊙⊙⊙ |𝒏′| lg |𝒏′|� = O(sR |𝒏| lg |𝒏′|).

Adding up the these two bounds, the result follows. □

Given 𝒏=(n1,…,nℓ)∈(ℕ>)ℓ , we recall that the classification of finite abelian groups
implies the existence of a unique tuple 𝒏′= (n1′,…,nℓ ′′) with 2⩽nℓ ′′ |nℓ ′−1′ |⋯ |n1′, ℓ ′⩽ ℓ ,
|𝒏′|= |𝒏|, and

ℤ/(n1ℤ)×⋯×ℤ/(nℓ ℤ) ≅ ℤ/(n1′ ℤ)×⋯×ℤ/(nℓ ′′ ℤ).

We call 𝒏′ the normal form of 𝒏 and say that 𝒏 is in normal form if 𝒏′=𝒏.

LEMMA A.7. If 𝒏′ is the normal form of 𝒏, then

C(R[𝒙]𝒏⊙⊙⊙⊙↔R[𝒙′]𝒏′
⊙⊙⊙⊙) = O(sR |𝒏| lg |𝒏|).

Proof. Let𝒎 and𝒎′ be the tuples obtained when performing the entry-wise prime power
factorizations of 𝒏 and 𝒏′ as in Lemma A.6. From Lemma A.6 it follows that C(R[𝒙]𝒏⊙⊙⊙⊙↔
R[𝒚]𝒎⊙⊙⊙⊙)=O(sR |𝒏| lg |𝒏|) and C(R[𝒙′]𝒏′

⊙⊙⊙⊙ ↔R[𝒚′]𝒎′
⊙⊙⊙⊙)=O(sR |𝒏′| lg |𝒏′|)=O(sR |𝒏| lg |𝒏|). Since

𝒎′ is a permutation of 𝒎, the result follows from Lemma A.1. □

We say that two tuples 𝒏=(n1,…,nℓ) and 𝒏′=(n1′,…,nℓ ′′) are equivalent if they admit
the same normal form.

COROLLARY A.8. If 𝒏 and 𝒏′ are equivalent, then

C(R[𝒙]𝒏⊙⊙⊙⊙↔R[𝒙′]𝒏′
⊙⊙⊙⊙) = O(sR |𝒏| lg |𝒏|). □

DAVID HARVEY, JORIS VAN DER HOEVEN 39

A.5. Tensor products of direct sums
Consider an R-algebra of the form A=⨁i∈ℐ Ai, where ℐ={i[1],…, i[r]} is finite and totally
ordered i[1]<⋯< i[r] . Elements x∈A are of the form x=∑i∈ℐ xi with xi ∈Ai, so we
may naturally represent them on a Turing tape by concatenating the representations of
xi[1],…,xi[r]. In particular, if each Ai is an R-algebra of dimension si whose elements are
represented by vectors of size si with entries in R, then elements in A are simply repre-
sented as vectors of size ∑i∈ℐ si with entries in R.

Now consider d such algebras A1=⨁i1∈ℐ1
A1,i1,…,Ad =⨁id∈ℐd

Ad,id and let us form
their tensor product B=⨂k=1

d Ak. Let sk,ik be the dimension of the R-subalgebra Ak,ik for
k=1,…,d and ik∈ℐ k. Then elements in B are recursively represented as vectors of size
sd=∑id∈ℐd

sd,id with entries in B′=⨂k=1
d−1 Ak. Using the distributivity of ⊗ over⊕, we have

a natural isomorphism

B = �
k=1

d
Ak ≅ �

𝒊∈𝓘
B𝒊,

where

𝓘 = ℐ1×⋯×ℐd

B𝒊 = B(i1,…,id) = �
k=1

d
Ak,ik.

When endowing the index set 𝓘 with the lexicographical ordering, this isomorphism
requires some reordering of data on Turing tapes, but we can compute it reasonably
efficiently as follows:

LEMMA A.9. With the above notations, t= s1⋯ sd, and 𝛿=max (|ℐ1|,…, |ℐd|), we have

C((((((((((�
1⩽k⩽d

Ak↔�
𝒊∈𝓘

B𝒊)))))))))) = O(sR t d𝛿).

Proof. Let us prove the assertion by induction on d. For d=1, we have nothing to do,
so assume that d>1. We may consider an element y of B as a vector of size s2⋯ sd with
coefficients in A1≅Rs1. For each i1∈ℐ1, we may compute the projection x1,i1 of x1∈A1 on
A1,i1 in time O(sRs1). Doing this for all s2⋯ sd entries of y, we obtain an element yi1 of

yi1∈A1,i1⊗A2⊗⋯⊗Ad.

This computation takes a time O(sRt). Using the induction hypothesis, we can convert yi1
into an element

zi1 ∈ �
(i2,…,id)∈ℐ2×⋯×ℐd

Bi1,…,id

in time O(sR t (d − 1) 𝛿 s1,i1/s1). Doing this in order for all i1∈ℐ1 and concatenating the
resulting zi1, we obtain the conversion of y as an element of ⨁𝒊∈𝓘 B𝒊. The total compu-
tation time is bounded by

O(((((((((((((((((�
i1∈ℐ1

sR t+ sR t (d−1)𝛿 s1,i1
s1))))))))))))))))) = O(sR t |ℐ1|+ sR t (d−1)𝛿) = O(sR t d𝛿).

The conversion in the opposite direction can be computed in the same time by reversing
the algorithm. □

40 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

BIBLIOGRAPHY

[1] R. Agarwal and J. Cooley. New algorithms for digital convolution. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 25(5):392–410, 1977.

[2] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Math., 160(2):781–793, 2004.
[3] P. Barrett. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a stan-

dard digital signal processor. In A. M. Odlyzko, editor, Advances in Cryptology — CRYPTO' 86, pages
311–323. Berlin, Heidelberg, 1987. Springer Berlin Heidelberg.

[4] L. I. Bluestein. A linear filtering approach to the computation of discrete Fourier transform. IEEE
Transactions on Audio and Electroacoustics, 18(4):451–455, 1970.

[5] A. Bostan, P. Gaudry, and É. Schost. Linear recurrences with polynomial coefficients and application
to integer factorization and Cartier-Manin operator. SIAM J. Comput., 36:1777–1806, 2007.

[6] C. B. Boyer. A History of Mathematics. Princeton Univ. Press, First paperback edition, 1985.
[7] R. P. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge University Press, 2010.
[8] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta

Informatica, 28:693–701, 1991.
[9] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier series. Math.

Computat., 19:297–301, 1965.
[10] S. Covanov and E. Thomé. Fast integer multiplication using generalized Fermat primes. Math. Comp.,

88:1449–1477, 2019.
[11] A. De, P. P. Kurur, C. Saha, and R. Saptharishi. Fast integer multiplication using modular arithmetic.

SIAM J. Comput., 42(2):685–699, 2013.
[12] M. Fürer. Faster integer multiplication. In Proceedings of the Thirty-Ninth ACM Symposium on Theory of

Computing, STOC 2007, pages 57–66. New York, NY, USA, 2007. ACM Press.
[13] M. Fürer. Faster integer multiplication. SIAM J. Comput., 39(3):979–1005, 2009.
[14] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, New York,

3rd edition, 2013.
[15] I. J. Good. The interaction algorithm and practical Fourier analysis. Journal of the Royal Statistical Society,

Series B. 20(2):361–372, 1958.
[16] C. H.Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[17] D. Harvey. Faster arithmetic for number-theoretic transforms. J. Symbolic Comput., 60:113–119, 2014.
[18] D. Harvey. Faster truncated integer multiplication. https://arxiv.org/abs/1703.00640, 2017.
[19] D. Harvey and J. van der Hoeven. Faster integer and polynomial multiplication using cyclotomic coef-

ficient rings. Technical Report, ArXiv, 2017. http://arxiv.org/abs/1712.03693.
[20] D. Harvey and J. van der Hoeven. Faster integer multiplication using plain vanilla FFT primes. Math.

Comp., 88(315):501–514, 2019.
[21] D. Harvey and J. van der Hoeven. Faster integer multiplication using short lattice vectors. In R. Schei-

dler and J. Sorenson, editors, Proc. of the 13-th Algorithmic Number Theory Symposium, Open Book Series
2, pages 293–310. Mathematical Sciences Publishes, Berkeley, 2019.

[22] D. Harvey and J. van der Hoeven. Integer multiplication in time O (n log n). Technical Report, HAL,
2019. http://hal.archives-ouvertes.fr/hal-02070778.

[23] D. Harvey and J. van der Hoeven. Faster polynomial multiplication over finite fields using cyclotomic
coefficient rings. Shortened version of [19]. Accepted for publication in J. of Complexity.

[24] D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over finite fields. Tech-
nical Report, ArXiv, 2014. http://arxiv.org/abs/1407.3361. Preprint version of [27].

[25] D. Harvey, J. van der Hoeven, and G. Lecerf. Even faster integer multiplication. Journal of Complexity,
36:1–30, 2016.

[26] D. Harvey, J. van der Hoeven, and G. Lecerf. Fast polynomial multiplication over F260. In Proc.
ISSAC '16, pages 255–262. New York, NY, USA, 2016. ACM.

[27] D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over finite fields. J.
ACM, 63(6), 2017. Article 52.

[28] D. R. Heath-Brown. Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic
progression. Proc. London Math. Soc., 64(3):265–338, 1992.

[29] M. T. Heideman, D. H. Johnson, and C. S. Burrus. Gauss and the history of the fast Fourier transform.
Arch. Hist. Exact Sci., 34(3):265–277, 1985.

[30] J. van der Hoeven. Relax, but don't be too lazy. JSC, 34:479–542, 2002.

DAVID HARVEY, JORIS VAN DER HOEVEN 41

https://arxiv.org/abs/1703.00640
https://arxiv.org/abs/1703.00640
https://arxiv.org/abs/1703.00640
https://arxiv.org/abs/1703.00640
https://arxiv.org/abs/1703.00640
https://arxiv.org/abs/1703.00640
https://arxiv.org/abs/1703.00640
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://hal.archives-ouvertes.fr/hal-02070778
http://hal.archives-ouvertes.fr/hal-02070778
http://hal.archives-ouvertes.fr/hal-02070778
http://hal.archives-ouvertes.fr/hal-02070778
http://hal.archives-ouvertes.fr/hal-02070778
http://hal.archives-ouvertes.fr/hal-02070778
http://hal.archives-ouvertes.fr/hal-02070778
http://hal.archives-ouvertes.fr/hal-02070778
http://hal.archives-ouvertes.fr/hal-02070778
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361

[31] J. van der Hoeven. Faster Chinese remaindering. Technical Report, HAL, 2016. http://
hal.archives-ouvertes.fr/hal-01403810.

[32] J. van der Hoeven, R. Larrieu, and G. Lecerf. Implementing fast carryless multiplication. In J. Blömer,
I. S. Kotsireas, T. Kutsia, and D. E. Simos, editors, Proc. MACIS 2017, Vienna, Austria, Lect. Notes in
Computer Science, pages 121–136. Cham, 2017. Springer International Publishing.

[33] A. A. Karatsuba. The complexity of computations. Proc. of the Steklov Inst. of Math., 211:169–183, 1995.
English translation; Russian original at pages 186–202.

[34] A. Karatsuba and J. Ofman. Multiplication of multidigit numbers on automata. Soviet Physics Doklady,
7:595–596, 1963.

[35] D. E. Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms. Addison-Wesley,
1969.

[36] D. E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching. Addison-Wesley,
Reading, MA, 1998.

[37] S. Lang. Algebra. Springer Verlag, 2002.
[38] J. Li, K. Pratt, and G. Shakan. A lower bound for the least prime in an arithmetic progression. The

Quarterly Journal of Mathematics, 68(3):729–758, 2017.
[39] Yu. V. Linnik. On the least prime in an arithmetic progression I. The basic theorem. Rec. Math. (Mat.

Sbornik) N.S., 15(57):139–178, 1944.
[40] Yu. V. Linnik. On the least prime in an arithmetic progression II. The Deuring-Heilbronn phenom-

enon. Rec. Math. (Mat. Sbornik) N.S., 15(57):347–368, 1944.
[41] O. Neugebauer. The Exact Sciences in Antiquity. Brown Univ. Press, Providence, R.I., 1957.
[42] H. J. Nussbaumer. Fast polynomial transform algorithms for digital convolution. IEEE Trans. Acoust.

Speech Signal Process., 28(2):205–215, 1980.
[43] H. J. Nussbaumer. Fast Fourier Transforms and Convolution Algorithms. Springer-Verlag, 2nd edition,

1982.
[44] H. J. Nussbaumer and P. Quandalle. Computation of convolutions and discrete Fourier transforms by

polynomial transforms. IBM J. Res. Develop., 22(2):134–144, 1978.
[45] J. M. Pollard. The fast Fourier transform in a finite field. Mathematics of Computation, 25(114):365–374,

1971.
[46] C. M. Rader. Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE,

56:1107–1108, 1968.
[47] A. Schönhage. Multiplikation großer Zahlen. Computing, 1(3):182–196, 1966.
[48] A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Infor.,

7:395–398, 1977.
[49] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292, 1971.
[50] É. Schost. Multivariate power series multiplication. In Manuel Kauers, editor, ISSAC '05, pages 293–300.

New York, NY, USA, 2005. ACM Press.
[51] V. Shoup. New algorithms for finding irreducible polynomials over finite fields. Math. Comp.,

189:435–447, 1990.
[52] V. Shoup. Searching for primitive roots in finite fields. Math. Comp., 58:369–380, 1992.
[53] I. Shparlinski. On finding primitive roots in finite fields. Theoret. Comput. Sci., 157(2):273–275, 1996.
[54] D. E. Smith. History of Mathematics, volume 2. Dover, 1958.
[55] L. H. Thomas. Using computers to solve problems in physics. Applications of digital computers, 458:42–57,

1963.
[56] A. L. Toom. The complexity of a scheme of functional elements realizing the multiplication of integers.

Soviet Mathematics, 4(2):714–716, 1963.
[57] T. Xylouris. On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet L-

functions. Acta Arith., 1:65–91, 2011.

42 POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS IN TIME O(n log n)

http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810

	1. Introduction
	1.1. Brief history and related work
	Integer multiplication
	Polynomial multiplication
	Related tools

	1.2. Overview of the new results
	Integer multiplication
	Polynomial multiplication
	Variants
	Applications

	2. Univariate arithmetic
	2.1. Basic notations
	2.2. Discrete Fourier transforms and fast Fourier multiplication
	2.3. The Cooley–Tukey FFT
	2.4. Nussbaumer polynomial transforms
	2.5. Triadic Nussbaumer polynomial transforms
	2.6. Bluestein's chirp transform

	3. Multivariate arithmetic
	3.1. Tensor products
	3.2. Vector notation and multivariate polynomials
	3.3. Multivariate Fourier transforms
	3.4. CRT transforms
	3.5. Negacyclic CRT transforms
	3.6. Tricyclic CRT transforms

	4. Rader reduction
	4.1. Univariate Rader reduction
	4.2. Univariate Rader transforms
	4.3. Multivariate Rader transforms

	5. Prime numbers in arithmetic progressions
	5.1. The smallest prime number in an arithmetic progression
	5.2. Multiple prime numbers in arithmetic progressions
	5.3. Forcing coprime multipliers

	6. Proof of Theorem
	7. Proof of Theorem in characteristic π≠2
	8. Proof of Theorem in characteristic π=2
	9. Variants of Theorem
	Appendix A. Turing machine implementations
	A.1. Arrays and sorting
	A.2. Basic multivariate rewritings
	A.3. CRT transforms
	A.4. Multivariate CRT transforms
	A.5. Tensor products of direct sums

	Bibliography

