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Let C[[z]] be the ring of power series over an effective ring C. In [BK78], it was
first shown that differential equations over C[[z]] may be solved in an asymptotically
efficient way using Newton’s method. More precisely, if M(n) denotes the complexity
in order two polynomials of degree < n over C, then the first n coefficients of the
solution can be computed in time O(M(n)). However, this complexity does not take
into account the dependency of on the order r of the equation, which is exponential
for the original method [vdH02] and linear for a recent improvement [BCO+06]. In
this paper, we present a technique to get rid of this constant factor, by applying
Newton’s method up to an order like n/r and trading the remaining Newton steps
against a lazy or relaxed algorithm in a suitable FFT model.
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1. Introduction

Let C[[z]] be the ring of power series over an effective ring C. It will be convenient to
assume that C ⊇Q. In this paper, we are concerned with the efficient resolution of implicit
equations over C[[z]]. Such an equation may be presented in fixed-point form as

F = Φ(F ), (1)

where F is an indeterminate vector in C[[z]]r with r ∈N. The operator Φ is constructed
using classical operations like addition, multiplication, integration or postcomposition with
a series g ∈ C[[z]] with g0 = 0. In addition, we require that the n-th coefficient of Φ(F )n
depends only on coefficients Fi with i <n, which allows for the recursive determination of
all coefficients.

In particular, linear and algebraic differential equations may be put into the form (1).
Indeed, given a linear differential system

F ′ = A F (2)

F0 = I ∈Cr

where A is an r × r matrix with coefficients in C[[z]], we may take Φ(F ) = I +
∫

A F .
Similarly, if P is a tuple of r polynomials in C[[z]][F ] = C[[z]][F1, � , Fr], then the initial
value problem

F ′ = P (F ) (3)

F0 = I ∈Cr
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may be put in the form (1) by taking Φ(F ) = I +
∫

P (F ).
For our complexity results, and unless stated otherwise, we will always assume that

polynomials are multiplied using FFT multiplication. If C contains all 2p-th roots of unity
with p∈N, then it is classical that two polynomials of degrees < n can be multiplied using
M(n) =O(n logn) operations over C [CT65]. In general, such roots of unity can be added
artificially [SS71, CK91, vdH02] and the complexity becomes M(n) = O(n log n log log n).
We will respectively refer to these two cases as the standard and the synthetic FFT models.
In both models, the cost of one FFT transform at order 2n is ∼M(n)/3, where we assume
that the FFT transform has been replaced by a TFT transform [vdH04, vdH05] in the case
when n is not a power of two.

LetMr(C) be the set of r×r matrices over C. It is classical that two matrices in Mr(C)
can be multiplied in time O(rω) with ω < 2.376 [Str69, Pan84, WC87]. We will denote
by MM(n, r) the cost of multiplying two polynomials of degrees < n with coefficients
in Mr(C). By FFT-ing matrices of polynomials, one has MM(n,r)=O(nrω +M(n)r2) and
MM(n, r)∼M(n) r2 if r = O(logn).

In [BK78], it was shown that Newton’s method may be applied in the power series
context for the computation of the first n coefficients of the solution F to (2) or (3) in
time O(M(n)). However, this complexity does not take into account the dependence on
the order r, which was shown to be exponential in [vdH02]. Recently [BCO+06], this
dependence in r has been reduced to a linear factor. In particular, the first n coefficients
of the solution F to (3) can be computed in time O(MM(n, r)). In fact, the resolution
of (2) in the case when F and I are replaced by matrices in Mr(C[[z]]) resp. Mr(C) can
also be done in time O(MM(n, r)). Taking I = Idr, this corresponds to the computation of
a fundamental system of solutions.

However, the new complexity is not optimal in the case when the matrix A is sparse.
This occurs in particular when a linear differential equation

f (r) =Lr−1 f (r−1) +� +L0 f. (4)

is rewritten in matrix form. In this case, the method from [BCO+06] for the asymptotically
efficient resolution of the vector version of (4) as a function of n gives rise to an overhead
of O(r), due to the fact that we need to compute a full basis of solutions in order to apply
the Newton iteration.

In [vdH97, vdH02], the alternative approach of relaxed evaluation was presented in
order to solve equations of the form (1). More precisely, let R(n) be the cost to gradually
compute n terms of the product h = f g of two series f , g ∈ C[[z]]. This means that the
terms of f and g are given one by one, and that we require hi to be returned as soon
as f0,� , fi and g0,� , gi are known (i = 0,� , n − 1). In [vdH97, vdH02], we proved that
R(n) = O(M(n) log n). In the standard FFT model, this bound was further reduced
in [vdH03a] to R(n) = O(M(n) e2 log logn

√
). We also notice that the additional O(log n)

or O(e2 log logn
√

) overhead only occurs in FFT models: when using Karatsuba or Toom-
Cook multiplication [KO63, Too63, Coo66], one has R(n) ∼ M(n). One particularly nice
feature of relaxed evaluation is that the mere relaxed evaluation of Φ(F ) provides us with
the solution to (1). Therefore, the complexity of the resolution of systems like (2) or (3)
only depends on the sparse size of Φ as an expression, without any additional overhead in r.

Let L(n, r) denote the complexity of computing the first n coefficients of the solution
to (4). By what precedes, we have both L(n, r)=O(M(n) r2) and L(n, r)=O(M(n) r logn).
A natural question is whether we may further reduce this bound to L(n, r)=O(M(n) r) or
even L(n, r)∼M(n) r. This would be optimal in the sense that the cost of resolution would
be the same as the cost of the verification that the result is correct. A similar problem may
be stated for the resolution of systems (2) or (3).
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In this paper, we present several results in this direction. The idea is as follows. Given
n ∈ N, we first choose a suitable m < n, typically of the order m = n/r1+ǫ. Then we
use Newton iterations for determining successive blocks of m coefficients of F in terms
of the previous coefficients of F and A F . The product A F is computed using a lazy
or relaxed method, but on FFT-ed blocks of coefficients. Roughly speaking, we apply
Newton’s method up to an order m, where the O(r) overhead of the method is not yet
perceptible. The remaining Newton steps are then traded against an asymptotically less
efficient lazy or relaxed method without the O(r) overhead, but which is actually more
efficient for small m when working on FFT-ed blocks of coefficients.

It is well known that FFT multiplication allows for tricks of the above kind, in the case
when a given argument is used in several multiplications. In the case of FFT trading, we
artificially replace an asymptotically fast method by a slower method on FFT-ed blocks,
so as to use this property. We refer to [Ber] (see also remark 6 below) for a variant and
further applications of this technique (called FFT caching by the author). The central
idea behind [vdH03a] is also similar. In section 4, we outline yet another application to
the truncated multiplication of dense polynomials.

The efficient resolution of differential equations in power series admits several inter-
esting applications, which are discussed in more detail in [vdH02]. In particular, certified
integration of dynamical systems at high precision is a topic which currently interests
us [vdH06a]. More generally, the efficient computation of Taylor models [Moo66, Loh88,
MB96, Loh01, MB04] is a potential application.

2. Linear differential equations

Given a power series f ∈ C[[z]] and similarly for vectors or matrices of power series (or
power series of vectors or matrices), we will use the following notations:

f;i = f0 +� + fi−1 zi−1

fi;j = fi +� + fj−1 zj−1,

where i, j ∈N with i 6 j.
In order to simplify our exposition, it is convenient to rewrite all differential equations

in terms of the operator δ=z∂/∂z. Given a matrix A∈Mr(C[[z]]) with A0=0, the equation

δM = A M (5)

admits unique solution M ∈Mr(C[[z]]) with M0 = Idr. The main idea of [BCO+06] is to
provide a Newton iteration for the computation of M . More precisely, with our notations,
assume that M;n and M;n

−1 =(M−1);n are known. Then we have

M;2n4 [M;n − (M;n δ−1 M;n
−1)(δM;n −A;2n M;n)];2n. (6)

Indeed, setting

E = A;2n M;n − δM;n = O(zn)

∆ = (M;n δ−1 M;n
−1) E= O(zn),

we have

(δ −A)∆ = (δM;n) (M;n)−1 ∆ +(1 +O(zn)) E−A ∆

= (A M;n + O(zn)) (M;n
−1 +O(zn)) ∆ + (1 +O(zn))E−A ∆

= E +O(z2n),

Joris van der Hoeven 3



so that (δ − A)(M;n + ∆) = O(z2n) and ∆ = Mn;2n + O(z2n). Computing M;n and M;n
−1

together using (6) and the usual Newton iteration [Sch33, MC79]

M;2n
−1 = [M;n

−1 + M;n
−1 (1−M;n M;n

−1)];2n (7)

for inverses yields an algorithm of time complexity O(MM(n,r)). The quantities En;2n and
Mn;2n = ∆n;2n may be computed efficiently using the middle product algorithm [HQZ04].

Instead of doubling the precision at each step, we may also increment the number of
known terms with a fixed number of terms m. More precisely, given n, m > 0, we have

M;n+m4 [M;n − (M;m δ−1 M;m
−1)(δM;n −A;n+m M;n)];n+m. (8)

This relation is proved in a similar way as (6). The same recurrence may also be applied
for computing blocks of coefficients of the unique solution F ∈ C[[z]]r to the vector linear
differential equation

δF =A F (9)

with initial condition F0 = I ∈Cr:

F;n+m4 [F;n − (M;m δ−1 M;m
−1)(δF;n −A;n+m F;n)];n+m. (10)

Both the right-hand sides of the equations (8) and (10) may be computed efficiently using
the middle product.

Assume now that we want to compute F;n and take m < n. For simplicity, we will
assume that n=km with k ∈N and that C contains all 2p-th roots of unity for p∈N. We
start by decomposing F;n using

F;n = F[0] +� +F[k−1]

F[i] = Fim;(i+1)m (11)

and similarly for A. Setting P =A F , we have

P[i] =(A[i−1] +A[i]) ⋉ F[0] +� +(A[0] + A[1]) ⋉ F[i−1] + (A[−1] +A[0]) ⋉ F[i],

where ⋉ stands for the middle product (see figure 1). Instead of computing P[i] directly
using this formula, we will systematically work with the FFT transforms F[j]

∗ of F[j] at
order 2 m and similarly for A[j−1] +A[j] and P[j], so that

P[i]
∗ = (A[i−1] +A[i])

∗
⋉ F[0]

∗ +� +(A[0] +A[1])
∗
⋉ F[i−1]

∗ + (A[−1] +A[0])
∗
⋉ F[i]

∗ .

Recall that we may resort to TFT transforms [vdH04, vdH05] if m is not a power of two.
Now assume that M[0], M[0]

−1 and

P[i]
pre=P[i]− (A[−1] + A[0]) ⋉ F[i] =((A[0] +� +A[i]) (F[0] +� + F[i−1]))[i]

are known. Then the relation (10) yields

F[i] =
[

(M[0] δ
−1 M[0]

−1)P[i]
pre

]

[i]
. (12)

In practice, we compute F[i] via X =(M[0]
−1P[i]

pre)[i], Y = δX and F[i]=(M[0]Y )[i], using FFT

multiplication. Here we notice that the FFT transforms of M[0] and M[0]
−1 only need to be

computed once.
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A[0]

A[1]

A[2]

A[3]

F[0] F[1] F[2] F[3]

Figure 1. Illustration of the computation of P[3] using middle products.

Putting together what has been said and assuming that M[0], M[0]
−1 and F[0] are known,

we have the following algorithm for the successive computation of F[1],� , F[k−1]:

for i= 0,� , k − 1 do (A[i−1] + A[i])
∗4 FFT(A[i−1] + A[i])

for i= 1,� , k − 1 do

F[i−1]
∗ 4 FFT(F[i−1])

(P[i]
pre)∗4 (A[i−1] + A[i])

∗
⋉ F[0]

∗ +� + (A[0] +A[1])
∗
⋉ F[i−1]

∗

P[i]
pre4 FFT−1((P[i]

pre)∗)

F[i]4 [

(M[0] δ
−1 M[0]

−1)P[i]
pre

]

[i]

In this algorithm, the product P = A F is evaluated in a lazy manner. Of course, using
a straightforward adaptation, one may also use a relaxed algorithm. In particular, the
algorithm from [vdH03b] is particularly well-suited in combination with middle products.
In the standard FFT model, [vdH03a] is even faster.

Theorem 1. Consider the differential equation (9), where A has s non-zero entries.
Assume the standard FFT model. Then there exists an algorithm which computes the
truncated solution F;n to (9) at order n in time ∼M(n) (s + 4/3 r), provided that r =
o(logn). In particular, L(n, r)∼ 7/3 M(n) r.

Proof. In our algorithm, we take k = ⌊r1+ǫn⌋, where ǫn grows very slowly to infinity
(such as ǫn = log log log n), so that logm∼ log n. Let us carefully examine the cost of our
algorithm for this choice of k:

1. The computation of F[0], M[0] and M[0]
−1 requires a time O(M(m) r2) = o(M(n) r).

2. The computation of the FFT-transforms A[i]
∗ 4 FFT(A[i]), F[i]

∗ 4 FFT(F[i]) and the
inverse transforms P[i]4 FFT−1(P[i]

∗ ) has the same complexity ∼M(m)ks∼M(n) s

as the computation of the final matrix product A F at order n.

3. The computation of O(k2) middle products (A[i−1]+A[i])
∗
⋉ F[j]

∗ in the FFT-model
requires a time O(k2 ms) =O(k n s). Using a relaxed multiplication algorithm, the
cost further reduces to O(R(k)m s) =O(n ǫn s log2 r) = o(M(n) s).

4. The computation of the F[i] using the Newton iteration (12) involves

a. Matrix FFT-transforms of M[0] and M[0]
−1, of cost O(M(m) r2)= o(M(n) r).
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b. 4 (k − 1) vectorial FFT-transforms of cost ∼ 4/3 M(m) k r∼ 4/3 M(n) r.

c. O(k) matrix vector multiplications in the FFT-model, of cost O(k m r2) =

O(n r2)= o(M(n) r).

Adding up the different contributions completes the proof. Notice that the computation of
⌈n/k⌉k−n<k more terms has negligible cost, in the case when n is not a multiple of k. �

Remark 2. In the synthetic FFT model, the recursive FFT-transforms A[i]
∗ , F[i]

∗ and M[i]
∗

require an additional O(log n) space overhead, when using the polynomial adaptation
[CK91, vdH02] of Schönhage-Strassen multiplication. Consequently, the cost in point 3
now becomes

O(R(k) m s logn) =O(n ǫn s log2 r log log r logn) = O

(

M(n) s
ǫn log2 r log log r

log logn

)

.

Provided that log2r log logr=o(log logn), we obtain the same complexity as in the theorem,
by choosing ǫn sufficiently slow.

Remark 3. With minor changes, the algorithm can be adapted in order to compute
the unique solution of the matrix δM = A M with M0 = Idr (which corresponds to a
fundamental system of solutions to (9)). In that case, the complexity becomes ∼M(n) (r2+
4/3 r2)∼ 7/3 M(n) r2.

Remark 4. It is instructive to compare our complexity bounds with the old complexity
bounds if we do not use FFT trading. In that case, let T(n, r) denote the complexity of
computing both M;n and M;n

−1. One has

T(2 n, r) =T(n, r) + 5 M(n) r2 + O(n rω),

since the product A;n F;n and the formulas (6) and (7) give rise to 1 + 2 + 2 = 5

matrix multiplications. This yields T(n, r) ∼ 5 M(n) r2 from which we may subtract
M(n) r2 in the case when Mn

−1 is not needed. The bound may be further improved to
T(n, r) ∼ 9/2 M(n) r2 using [Sch00]. Similarly, the old bound for the resolution of (9) is
∼M(n) (17/6 r2 + s/2 +2/3 r), or ∼M(n) (31/12 r2 + s/2 +2/3 r) when using [Sch00].

Remark 5. In point 3 of the proof, the computation of the middle products using a naive
lazy algorithm requires a time O(k n s) = O(rǫn M(n) s). In practice, we may actually
take ǫn = 0, in which case there is no particular penalty when using a naive algorithm
instead of a relaxed one. In fact, for larger values of r, it is rather the hypothesis r =
O(logn) which is easily violated. In that case, one may take 1<k <r instead of k > r and
still gain a constant factor between 1 and r.

Remark 6. The results of this section apply in particular to the computation of the
exponential f = eg of a power series g. In that case, theorem 1 provides a way to com-
pute f;n in time ∼ 7/3M(n), which yields an improvement over [Ber, HZ]. Notice that FFT
trading is a variant of Newton caching in [Ber], but not exactly the same: in our case, we
use an “order k” Newton iteration, whereas Bernstein uses classical Newton iterations on
block-decomposed series. In the case of power series division f/g at order n or division
with remainder of a polynomial of degree < 2n by a polynomial of degree < n, the present
technique also allows for improvements w.r.t. [Ber, HZ]. In both cases, the new complexity
is ∼5/3M(n). In addition, we notice that the technique of FFT trading allows for a “smooth
junction” between the Karatsuba (or Toom-Cook) model and the FFT model.
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3. Algebraic differential equations

Assuming that one is able to solve the linearized version of an implicit equation (1), it is
classical that Newton’s method can again be used to solve the equation itself [BK78, vdH02,
BCO+06]. Before we show how to do this for algebraic systems of differential equations,
let us first give a few definitions for polynomial expressions.

Given a vector F =C[[z]]r of series variables, we will represent polynomials in C[[z]][F ]@
C[F ][[z]] =C[[z]][F1,� , Fr] by dags (directed acyclic graphs), whose leaves are either series
in C[[z]] or variables Fi, and whose inner nodes are additions, subtractions or multiplica-
tions. An example of such a dag is shown in figure 2. We will denote by s1 and s2 the number
of nodes which occur as an operand resp. result of a multiplication. We call s=(s1+ s2)/3
the multiplicative size s of the dag and the total number t of nodes the total size of the
dag. Using the FFT, one may compute P (F );n in terms of F;n in time ∼M(n) s+na.

+

×

F2

F1ez

× ×

Figure 2. Example of a polynomial expression in C[[z]][F1, F2], represented by a dag. In this
particular example, the multiplicative size of the polynomial is s=7/3 (since s1=4 and s2=3)and
its total size 7. Notice in particular that squares only count for 2/3 in the multiplicative size.

Now assume that we are given an r-dimensional system

δF =P (F ), (13)

with initial condition F0 = I ∈ Cr, and where P (F ) is a tuple of r polynomials in
z C[[z]][F1, � , Fr]

r @ C[F1, � , Fr][[z]]r. Given the unique solution F to this initial value
problem, consider the Jacobian matrix

J =
∂P

∂F
(F ) =









∂P1

∂F1
� ∂P1

∂Fr
 

∂Pr

∂F1
� ∂Pr

∂Fr









(F ).

Assuming that F;m is known, we may compute J;m in time O(M(m)) using automatic
differentiation. As usual, this complexity hides an (r, s, t)-dependent overhead, which is
bounded by O(r (s+ t n/M(n))). For n> m, we have

P (F;n +Fn;n+m) = P (F;n) +J;m Fn;n+m +O(zn+m)

δF;n+m = P (F;n);n+m +J;m Fn;n+m,

so that

Fn;n+m = [(δ −J;m)−1 (P (F;n)n;n+m)]n;n+m. (14)

Let us again adopt the notation (11). Having determined F[i−1] and Q(F )[i−1] for each
subexpression Q(F ) of P (F ) up to a given order i, the computation of F[i] and all Q(F )[i]
can be done in three steps:

1. The computation of all Q(F̃ )[i], using lazy or relaxed evaluation, where F̃ =
F[0] +� +F[i−1].
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2. The determination of F[i] =
[

(δ − J[0])
−1 P (F̃ )[i]

]

[i]
using (14).

3. The computation of all Q(F )[i].

We notice that Q(F )[i] and Q(F̃ )[i] are almost identical, since

Q(F )[i]− Q(F̃ )[i] =

[

∂Q

∂F
(F )F[i]

]

[i]

.

If Q = U V is a product, then Q(F̃ )[i] can be determined from U(F̃ )[i] and V (F̃ )[i] using
a suitable middle product with “omitted extremes” (see figure 3). Step 3 consists of an
adjustment, which puts these extremes back in the sum. Of course, the computations of
products Q= UV can be done in a relaxed fashion.

i

U

V

Figure 3. Illustration of the product Q(F )[i]=(UV )(F )[i]. The part inside the square corresponds
to Q(F̃ )[i] and the two small triangles to the difference Q(F )[i]− Q(F̃ )[i].

Theorem 7. Consider an r-dimensional system (13), where P is a polynomial, given by a
dag of multiplicative size s and total size t. Assume the standard FFT model. Then there
exist an algorithm which computes F;n in time ∼M(n) (s + 4/3 r) + O(n t), provided that
r = o(logn).

Proof. When working systematically with the FFT-ed values of the Q(F )[i], steps 1

and 3 give rise to a cost M(n) s for the FFT transforms and a cost O(n t) for the scalar
multiplications and additions. In a similar way as in the proof of theorem 1, the compu-
tation of the F[i] gives rise to a cost ∼ 4/3 M(n) r. Again, the cost of the computation of
the initial F[0] and J[0] is negligible. �

Remark 8. The bound becomes ∼M(n) (s + 4/3 r) + O(t n log n) in the synthetic FFT
model and under the assumption log2 r log log r = o(log log n). This bound is derived in
a similar way as in remark 2.

Remark 9. A detailed comparison between the new and old [BCO+06] complexities
is difficult, because the size parameter s is not entirely adequate for expressing the old
complexity. In the worst case, the old complexity is ∼M(n) (s r+8/3r2+4/3r)+O(t rn),
which further improves to ∼M(n) (s r +13/6 r2+4/3 r)+O(t r n) using [Sch00]. However,
the factor sr is quite pessimistic, since it occurs only when most of the subexpressions Q(F )
of P (F ) depend on most of the variables F1, � , Fr. If the multiplicative subexpressions
Q(F ) depend on an average number of µ variables Fj, then the process of automatic
differentiation can be optimized so as to replace s by µ in the bound (roughly speaking).
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4. Truncated multiplication

It is well-known that discrete FFT transforms are most efficient on blocks of size 2p with
p∈N. In particular, without taking particular care, one may lose a factor 2 when computing
the product of two polynomials P and Q of degree n − 1 with n � 2N. One strategy to
remove this problem is to use the TFT (truncated Fourier transform) as detailed in [vdH04]
with some corrections and further improvements in [vdH05].

An alternative approach is to cut P and Q into k = ⌈n/m⌉ parts of size m=2p, where
k grows slowly to infinity with n. Let us denote

Pi;j = Pi +� +Pj−1 zj−i−1

P[i] = Pim;(i+1)m

Attention to the minor change with respect to the notations from section 2. Now we
multiply P and Q by

1. FFT-ing the blocks P[i] and Q[i] at size 2 m.

2. Naively multiplying the resulting FFT-ed polynomials in U = zm:

P ∗ = P[0]
∗ +� + P[k−1]

∗ Uk−1

Q∗ = Q[0]
∗ +� + Q[k−1]

∗ Uk−1

3. Transforming the result back.

This approach has a cost ∼ C k m log m + 2 k2 m ∼ C n log n + 2 k n which behaves
more “smoothly” as a function of n.

In this particular case, it turns out that the TFT transform is always better, because
the additional linear factor 2 k n is reduced to 2 n. However, in the multivariate setting,
the TFT also has its drawbacks. More precisely, consider two multivariate polynomials
P , Q ∈ C[z1, � , zd] whose supports have a “dense flavour”. Typically, we may assume the
supports to be convex subsets of Nd. In addition one may consider truncated products,
where we are only interested in certain monomials of the product. In order to apply the
TFT, one typically has to require in addition that the supports of P and Q are initial
segments of Nd. Even then, the overhead for certain types of supports may increase if d

gets large.
One particularly interesting case for complexity studies is the computation of the trun-

cated product of two dense polynomials P and Q with total degree < n. This is typically
encountered in the integration of dynamical systems using Taylor models. Although the
TFT is a powerful tool for small dimensions (d6 4), FFT trading might be an interesting
complement for moderate dimensions (5 6 d 6 8). For really huge dimensions, one may
use [LS03] or [vdH02, Section 6.3.5]. The idea is again to cut P in blocks

P =
∑

i=(i1,� ,id)

P[i] U
i (U i =U1

i1�Ud
id)

P[i] =
∑

j<(m,� ,m)

Pmi+j zj (zj = z1
j1� zd

jd)

where k = ⌈n/m⌉ is small (and m preferably a power of two). Each block is then trans-
formed using a suitable TFT transform (notice that the supports of the blocks are still
initial segments when restricted to the block). We next compute the truncated product
of the TFT-ed polynomials

∑

P[i]
∗ U i and

∑

Q[i]
∗ U i in a naive way and TFT back. The

naive multiplication step involves

Nk,d =
(

d + k − 1
k − 1

)(

d

0

)

+
(

d + k − 2
k − 2

)(

d +1
1

)

+� +
(

d

0

)(

d + k − 1
k − 1

)
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multiplications of TFT-ed blocks. We may therefore hope for some gain whenever
Nk,d (n/k)d is small with respect to M(nd) ∼ d M(n). We always gain for k = 2 and
usually also for k = 3, in which case Nk,d ∼ 2 d2. Even for k = 4, when Nk,d ∼ 4/3 d3,
it is quite possible that one may gain in practice.

The main advantage of the above method over other techniques, such as the TFT, is
that the shape of the support is preserved during the reduction

∑

Pi zi →
∑

P[i] U
i (as

well as for the “destination support”). However, the TFT also allows for some additional
tricks [vdH05, Section 9] and it is not yet clear to us which approach is best in practice. Of
course, the above technique becomes even more useful in the case of more general truncated
multiplications for dense supports with shapes which do not allow for TFT multiplication.

For small values of n, we notice that the pair/odd version of Karatsuba multiplication
presents the same advantage of geometry preservation (see [HZ02] for the one-dimensional
case). In fact, fast multiplication using FFT trading is quite analogous to this method,
which generalizes for Toom-Cook multiplication. In the context of numerical computations,
the property of geometry preservation is reflected by increased numerical stability.

To finish, we would like to draw the attention of the reader to another advantage of FFT
trading: for really huge values of n, it allows for the reduction of the memory consumption.
For instance, assume that we want to multiply two truncated power series P and Q at
order n. With the above notations, one may first compute P[0]

∗ ,� ,P[k−1]
∗ . For i=0,� , k−1,

we next compute Q[i]
∗ , R[i]

∗ = P[0]
∗ Q[i]

∗ + � + P[k−1]
∗ Q[i]

∗ and FFT−1(R[i]
∗ ). The idea is now

that P[0]
∗ , � , P[i−1]

∗ , R[0]
∗ , � , R[i−1]

∗ are no longer used at stage i, so we may remove them
from memory.

5. Conclusion

We have summarized the main results of this paper in tables 1 and 2. We recall that
R(n)=O(M(n)e2 log logn

√
) in the standard FFT model and R(n)=O(M(n) logn) otherwise.

In practice, we expect that the factor O(e2 log logn
√

) behaves very much like a constant,
which equals 1 at the point where we enter the FFT model. Consequently, we expect the
new algorithms to become only interesting for quite large values of n. We plan to come
back to this issue as soon as implementations of all algorithms will be available in the
Mmxlib library [vdH06b]. On the other hand, Newton iterations are better suited to
parallel computing than relaxed evaluation. An interesting remaining problem is to reduce
the cost of computing a fundamental system of solutions to (4). This would be possible if
one can speed up the joint computation of the FFT transforms of f , δf ,� , δ(r−1) f .

Resolution of an r-dimensional system of linear differential equations
Algorithm Fundamental system One solution
Relaxed ∼ R(n) r2 ∼ R(n) s

Newton ∼ 4 M(n) r2 ∼ M(n) (17/6 r2 + s/2 + 2/3 r)

New ∼ 7/3 M(n) r2 ∼M(n) (s+4/3 r)

Table 1. Complexities for the resolution of an r-dimensional system δF =AF of linear differential
equations up to n terms. We either compute a fundamental system of solutions or a single solution
with a prescribed initial condition. The parameter s stands for the number of non-zero coefficients
of the matrix A (we always have s6 r2). We assume that r = o(log n) in the standard FFT model
and log2 r log log r = o(log log n) in the synthetic FFT model.

10 Newton’s method and FFT trading



Resolution of an r-dimensional system of algebraic differential equations
Algorithm Complexity
Relaxed ∼ R(n) s+O(n t)

Newton ∼ M(n) (s r +8/3 r2 +4/3 r) + O(t r n)
New ∼M(n) (s +4/3 r) + O(t n)

Table 2. Complexities for the resolution of an r-dimensional system δF = P (F ) up to n terms,
where P is a polynomial of multiplicative size s and total size t. For the bottom line, we assume
the standard FFT model and we require that r = o(logn). In the synthetic FFT model, the bound
becomes ∼ M(n) (s + 4/3 r) + O(t n log n), under the assumption log2 r log log r = o(log log n).

A final interesting question is to which extent Newton’s method can be generalized.
Clearly, it is not hard to consider more general equations of the kind

δF =P (F , F (z2),� , F (zp)),

since the series F (z2),� ,F (zp) merely act as perturbations. However, it seems harder (but
maybe not impossible) to deal with equations of the type

δF =P (F ,F (q z)),

since it is not clear a priori how to generalize the concept of a fundamental system of
solutions and its use in the Newton iteration. In the case of partial differential equations
with initial conditions on a hyperplane, the fundamental system of solutions generally
has infinite dimension, so essentially new ideas would be needed here. Nevertheless, the
strategy of relaxed evaluation applies in all these cases, with the usual O(log n) overhead
in general and O(e2 log logn

√
) overhead in the synthetic FFT model.
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