
Newton’s method and FFT trading

Joris van der Hoeven

Laboratoire d’Informatique (LIX)
UMR 7161 CNRS
École polytechnique

91128 Palaiseau Cedex
France

Abstract

Let C[[z]] be the ring of power series over an effective ring C. In Brent and Kung (1978), it was
first shown that differential equations over C[[z]] may be solved in an asymptotically efficient
way using Newton’s method. More precisely, if M(n) denotes the complexity for multiplying two
polynomials of degree < n over C, then the first n coefficients of the solution can be computed
in time O(M(n)). However, this complexity does not take into account the dependency on the
order r of the equation, which is exponential for the original method van der Hoeven (2002) and
quadratic for a recent improvement Bostan et al. (2007). In this paper, we present a technique
to further improve the dependency on r, by applying Newton’s method up to a lower order,
such as n/r, and trading the remaining Newton steps against a lazy or relaxed algorithm in a
suitable FFT model. The technique leads to improved asymptotic complexities for several basic
operations on formal power series, such as division, exponentiation and the resolution of more
general linear and non-linear systems of equations.

Key words: power series, Newton’s method, differential equation, FFT

1. Introduction

Let C[[z]] be the ring of power series over an effective ring C. It will be convenient to
assume that C ⊇ Q. In fact, it will suffice that all natural numbers up to the desired
series expansion order can be inverted in C. In this paper, we are concerned with the
efficient resolution of implicit equations over C[[z]]. Such an equation may be presented
in fixed-point form as

Email address: vdhoeven@lix.polytechnique.fr (Joris van der Hoeven).

URL: http://www.lix.polytechnique.fr/~vdhoeven (Joris van der Hoeven).
1 The paper was originally written using GNU TEXmacs (see www.texmacs.org). Unfortunately, Elsevier
insists on the use of LATEX with its own style files. Any insufficiencies in the typesetting quality should
therefore be imputed to Elsevier.

Preprint submitted to Elsevier Science 13 March 2010



F = Φ(F ), (1)

where F is an indeterminate vector in C[[z]]r with r ∈ N. The operator Φ is constructed
using classical operations like addition, multiplication, integration or postcomposition
with a series g ∈ C[[z]] with g0 = 0. In addition, we require that the coefficient Φ(F )n

of zn in Φ(F ) depends only on coefficients Fi with i < n, which allows for the recursive
determination of all coefficients.

In particular, linear and algebraic differential equations may be put into the form (1).
Indeed, given a linear differential system

F ′ = AF (2)

F0 = I ∈ Cr

where A is an r × r matrix with coefficients in C[[z]], we may take Φ(F ) = I +
∫

AF .
Similarly, if P is a tuple of r polynomials in C[[z]][F ] = C[[z]][F1, . . . , Fr], then the initial
value problem

F ′ = P (F ) (3)

F0 = I ∈ Cr

may be put in the form (1) by taking Φ(F ) = I +
∫

P (F ).
For our complexity results, and unless stated otherwise, we will always assume that

polynomials are multiplied using evaluation-interpolation. If C contains all 2p-th roots of
unity with p ∈ N, then it is classical that two polynomials of degrees < n can be multi-
plied using M(n) = O(n log n) operations over C, using the fast Fourier transform Cooley
and Tukey (1965). In general, such roots of unity can be added artificially Schönhage and
Strassen (1971); Cantor and Kaltofen (1991); van der Hoeven (2002) and the complexity
becomes M(n) = O(n log n log log n). We will respectively refer to these two cases as the
standard and the synthetic FFT models. More details about evaluation-interpolation will
be provided in section 2.

Let Mr(C) be the set of r×r matrices over C. It is classical that two matrices in Mr(C)
can be multiplied in time O(rω) with ω < 2.376 Strassen (1969); Pan (1984); Coppersmith
and Winograd (1987). We will denote by MM(n, r) the cost of multiplying two polynomi-
als of degrees < n with coefficients in Mr(C). When using evaluation-interpolation in the
standard FFT model, one has MM(n, r) = O(nrω + M(n)r2) and MM(n, r) ∼ M(n)r2

if r = O(log n).
In Brent and Kung (1978), it was shown that Newton’s method may be applied in

the power series context for the computation of the first n coefficients of the solution F
to (2) or (3) in time O(M(n)). However, this complexity does not take into account the
dependence on the order r, which was shown to be exponential in van der Hoeven (2002).
Recently Bostan et al. (2007), this dependence in r has been reduced to a quadratic
factor. In particular, the first n coefficients of the solution F to (3) can be computed in
time O(MM(n, r)). In fact, the resolution of (2) in the case when F and I are replaced
by matrices in Mr(C[[z]]) resp. Mr(C) can also be done in time O(MM(n, r)). Taking
I = Idr, this corresponds to the computation of a fundamental system of solutions.

2



However, the new complexity is not optimal in the case when the matrix A is sparse.
This occurs in particular when a linear differential equation

f (r) = Lr−1f
(r−1) + · · · + L0f. (4)

is rewritten in matrix form. In this case, the method from Bostan et al. (2007) for the
asymptotically efficient resolution of the vector version of (4) as a function of n gives rise
to an overhead of O(r), due to the fact that we need to compute a full basis of solutions
in order to apply the Newton iteration.

In van der Hoeven (1997, 2002), the alternative approach of relaxed evaluation was
presented in order to solve equations of the form (1). More precisely, let R(n) be the cost
to gradually compute n terms of the product h = fg of two series f, g ∈ C[[z]]. This means
that the terms of f and g are given one by one, and that we require hi to be returned
as soon as f0, . . . , fi and g0, . . . , gi are known (i = 0, . . . , n − 1). In van der Hoeven
(1997, 2002), we proved that R(n) = O(M(n) log n). In the standard FFT model, this

bound was further reduced in van der Hoeven (2007a) to R(n) = O(M(n)e2
√

log 2 log log n).

We also notice that the additional O(log n) or O(e2
√

log 2 log log n) overhead only occurs in
FFT models: when using Karatsuba or Toom-Cook multiplication Karatsuba and Ofman
(1963); Toom (1963); Cook (1966), one has R(n) ∼ M(n). One particularly nice feature
of relaxed evaluation is that the mere relaxed evaluation of Φ(F ) provides us with the
solution to (1). Therefore, the complexity of the resolution of systems like (2) or (3) only
depends on the sparse size of Φ as an expression, without any additional overhead in r.

Let L(n, r) denote the complexity of computing the first n coefficients of the solu-
tion to (4). By what precedes, we have both L(n, r) = O(MM(n, r)) and L(n, r) =
O(M(n)r log n). A natural question is whether we may further reduce this bound to
L(n, r) = O(M(n)r) or even L(n, r) ∼ M(n)r. This would be optimal in the sense that
the cost of resolution would be the same as the cost of the verification that the result is
correct. A similar problem may be stated for the resolution of systems (2) or (3).

In this paper, we present several results in this direction. The idea is as follows. Given
n ∈ N, we first choose a suitable m < n, typically of the order m = n/rα. Then we
use Newton iterations for determining successive blocks of m coefficients of F in terms
of the previous coefficients of F and AF . The product AF is computed using a lazy
or relaxed method, but on FFT-ed blocks of coefficients. Roughly speaking, we apply
Newton’s method up to an order m, where the O(r) overhead of the method is not yet
perceptible. The remaining Newton steps are then traded against an asymptotically less
efficient lazy or relaxed method without the O(r) overhead, but which is actually more
efficient when working on FFT-ed blocks of coefficients.

In fact, FFT trading is already useful in the more elementary case of power series
division. In order to enhance the readability of the paper, we will therefore introduce
the technique on this example in section 3. In the FFT model, this leads to an order n
division algorithm of time complexity D(n) ∼ 5/3M(n), which improves on the best
previously known bound D(n) ∼ 25/12M(n) Hanrot and Zimmermann (2004). Notice
that 5/3M(n) should be read (5/3)M(n) and likewise for other fractions of this kind.
Division with remainder of a polynomial of degree 2n by a polynomial of degree n can be
done in time DR(n) ∼ 2M(n); the best previously known bound was DR(n) ∼ 17/6M(n)
(private communication by Paul Zimmermann).

3



In sections 4 and 5, we treat the cases of linear and algebraic differential equations.

The main results are summarized in Tables 3 and 4 and analyzed in detail in section 7.

In particular, the exponential of a power series can now be computed at order n in time

E(n) ∼ 7/3M(n) instead of E(n) ∼ 17/6M(n) Bernstein (2000).

In two recent papers Harvey (2009a,b) David Harvey has further improved the tech-

nique of FFT trading. In the standard FFT model, the FFT coincides up to a constant

factor with the inverse of its transpose. This has been exploited in Harvey (2009a) to

get better bounds I(n) ∼ 13/9M(n) and S(n) ∼ 4/3M(n) for power series inversion

and square roots. In Harvey (2009b), the complexity for exponentiation has been further

improved to E(n) ∼ 13/6M(n). In table 1, we have summarized the new results for

elementary operations on power series.

It is well known that FFT multiplication allows for tricks of the above kind, in the case

when a given argument is used in several multiplications. In the case of FFT trading, we

artificially replace an asymptotically fast method by a slower method on FFT-ed blocks,

so as to use this property. We refer to Bernstein (2000) (see also remark 11 below) for

a variant and further applications of this technique (called FFT caching by the author).

The central idea behind van der Hoeven (2007a) is also similar. In section 6, we outline

yet another application to the truncated multiplication of dense polynomials.

The efficient resolution of differential equations in power series admits several inter-

esting applications, which are discussed in more detail in van der Hoeven (2002). In

particular, certified integration of dynamical systems at high precision is a topic which

currently interests us Moore (1966); Lohner (1988); Makino and Berz (1996); Lohner

(2001); Makino and Berz (2004); van der Hoeven (2007b).

Remark 1. This paper is a thoroughly reworked version of an earlier preprint van der

Hoeven (2006), integrating several helpful remarks by two of the referees and David

Harvey.

Operation Previous bound This paper Harvey (2009a,b)

Inversion ∼ 3/2M(n) ∼ 13/9M(n)

Division ∼ 25/12M(n) ∼ 5/3M(n)

Division+Remainder ∼ 17/6M(n) ∼ 2M(n)

Square root ∼ 11/6M(n) ∼ 4/3M(n)

Exponentiation ∼ 17/6M(n) ∼ 7/3M(n) ∼ 13/6M(n)

Table 1. Table with the best asymptotic time complexities of several operations on power series
with respect to the cost M(n) of multiplication. The first column shows the best previously
known bounds and the latter two columns the best current bounds, which all involve FFT
trading. For simplicity, we assume FFT multiplication. Harvey’s bounds for inversion and square
roots also assume the standard FFT model.

4



2. Prerequisites

2.1. Evaluation-interpolation schemes

Let C be a ring in which n > 2 is not a zero-divisor and assume that C contains
a primitive n-th root ω of unity. Given a polynomial P ∈ C[z] of degree < n, and
identifying P with its vector (P0, . . . , Pn−1) of coefficients, its discrete Fourier transform
FFTω(P ) is defined by

FFTω(A) = (A(1), A(ω), A(ω2), . . . , A(ωn−1)) ∈ Cn.

If n is a power of two, then the fast Fourier transform Cooley and Tukey (1965) allows
us to perform the transformation FFTω and its inverse

FFT−1
ω = n−1 FFTω−1

using F (n) = O(n log n) operations in C. If P,Q ∈ C[z] are two polynomials with
deg(PQ) < n, then we clearly have (PQ)(ωi) = P (ωi)Q(ωi) for all i, whence

FFTω(PQ) = FFTω(P ) FFTω(Q).

Consequently, we may compute PQ using

PQ = FFT−1
ω (FFTω(P ) FFTω(Q)),

where FFTω(P ) FFTω(Q) stands for the componentwise product of the vectors FFTω(P )
and FFTω(Q). If n is a power of two, this takes 3F (n)+2n = O(n log n) operations in C.

More generally, let C[z];n denote the set of polynomials of degree < n. Then an
evaluation-interpolation scheme at degree < n and N(n) points consists of two com-
putable C-linear mappings

C[z];n
Eval7−→ CN(n)

CN(n) Eval−1

7−→ C[z];n

with the property that

PQ = Eval−1(Eval(P ) Eval(Q))

for all P,Q ∈ C[z] with deg(PQ) < n. We will denote by E(n) the maximum of the time
complexities of Eval and Eval−1. Given P,Q ∈ C[z] with deg(PQ) < n, we may then
compute PQ in time 3E(n) + N(n).

An evaluation-interpolation model is a recipe which associates an evaluation-interpola-
tion scheme to any degree n. Most fast multiplication schemes in the literature are ac-
tually based on evaluation-interpolation models. In the sequel, we will therefore assume
that the cost M(n) of multiplying two polynomials of degrees < n is given by

5



M(n) ∼ 3E(2n) + N(2n) (5)

for a suitable evaluation-interpolation model. Similarly, if scalar r × r matrices can be
multiplied in time rω, then we will assume that the cost MM(n, r) of multiplying two
r × r matrices whose entries are polynomials of degrees < n is given by

MM(n, r) ∼ 3E(2n)r2 + N(2n)rω. (6)

Notice also that a matrix-vector product takes a time

MV(n, r) ∼ E(2n)(r2 + 2r) + N(2n)r2. (7)

2.2. Classical FFT models

Let C again be a ring in which n = 2p ∈ 2N is not a zero-divisor and assume that
C contains a primitive n-th root of unity. Then we have seen that the FFT provides us
with an evaluation-interpolation scheme at degree < n, with

E(n)≍ n log n

N(n) = n.

In fact, if n/2 < m 6 n, then the truncated Fourier transform van der Hoeven (2004,
2005) still provides us with an evaluation-interpolation scheme with E(n) ∼ F (n)m/n
and N(m) = m. We will call this evaluation-interpolation model the standard FFT model .

If C does not contain a primitive n-th root of unity, then we may artificially adjoin
a suitable root of unity to C as follows Schönhage and Strassen (1971); Cantor and
Kaltofen (1991). We first decompose p = p1 + p2, n1 = 2p1 , n2 = 2p2 , with p1 = ⌈p/2⌉
and p2 = ⌊p/2⌋. Any polynomial in C[z];n corresponds to a unique polynomial in C[z]n =
C[z]/(zn + 1). We will consider the problem of multiplying in the latter ring. Consider
the following sequence:

C[z]n==C[z1]n1
[z]/(zn2 − z1)

ι−→C[z1]n1
[z2];2n2

FFT−→(C[z1]n1
)n2 .

The first map is a natural identification when setting z1 = zn2 . The injection ι corre-
sponds to writing elements of C[z1]n1

[z]/(zn2 − z1) as polynomials in z2 of degrees < n2,
and padding with zeros. Since z1 is a primitive (2n1)-th root of unity and n1 = n2 or
n1 = n2 + 1, we may finally perform an FFT in z2 with respect to z1 or z2

1 . Each of the
arrows can be reversed; in the case of ι, we take

ι−1(P0 + · · · + P2n2−1z
2n2−1
2 ) = (P0 + z1Pn2

) + · · · + (Pn2−1 + z1P2n2−1)z
n2−1.

In particular, we have PQ = ι−1(FFT−1(FFT(ι(P )) FFT(ι(Q)))) for all P,Q ∈ C[z]n.
Repeating the construction on C[z1]n1

, we end up with an evaluation-interpolation model
with

E(n) = O(n log n log log n)

N(n) = O(n log n).

6



We will call this model the synthetic FFT model . Using similar ideas to those in Cantor
and Kaltofen (1991), the model adapts to the case when 2 is a zero-divisor.

2.3. Classical evaluation-interpolation models

If C is infinite, then we may also use multipoint evaluation and interpolation in order
to construct an evaluation-interpolation scheme at any degree. Using arbitrary points,
we obtain Moenck and Borodin (1972); Strassen (1973); Borodin and Moenck (1974)

E(n) = O(M(n) log n)

N(n) = n.

If it is possible to take points in a geometric progression, then one even has Bostan and
Schost (2005)

E(n) = O(M(n))

N(n) = n.

Of course, these evaluation-interpolation models are already based on fast multiplication,
whence they are not suitable for designing the fast multiplication (5). On the other hand,
for large values of r, they may perform better than the synthetic FFT model on matrix
and matrix-vector products (6) and (7).

For small values of n, it is sometimes interesting to use simpler, but asymptotically
slower evaluation-interpolation models. For instance, we may iterate the construction

C[z];n −֒→C[z2];⌈n/2⌉[z];2
Kar−→C[z2]3;⌈n/2⌉,

where

Kar(A0 + A1z) = (A0, A0 + A1, A1).

This yields an evaluation-interpolation model with

E(n) = O(nlog 3/ log 2)

N(n) = O(nlog 3/ log 2).

This “Karatsuba model” corresponds to even-odd Karatsuba multiplication. In a similar
way, one may construct Toom-Cook models.

A lot of the complexity results for polynomials also hold for integers, by considering
them as the evaluations of polynomials in 2b for a suitable word length b. For integer
matrix multiplications, several evaluation-interpolation models are of interest. First of all,
one may use approximate floating point arithmetic of bit length 2b + O(log n). Secondly,
one may fit the b-bit coefficients in Fp where Fp has many 2q-th roots of unity (e.g.
p = 3 ·230 +1). These two models are counterparts of the standard FFT model. One may
also use the Schönhage-Strassen model (which is the counterpart of the synthetic FFT

7



model). For large matrix sizes, one may finally use Chinese remaindering, which is the
natural counterpart of multipoint evaluation.

In practice, operations in C do not have a constant cost. Nevertheless, when computing
with truncations of a power series f ∈ C[[z]], it is usually the case that the bit size of fi

is proportional to i (or a power of i). Consequently, the worst cost of an operation in C
is usually bounded by a constant times the average cost of the same operation over the
complete computation.

2.4. Middle products

Let h = fg be the product of two power series f, g ∈ C[[z]]. In order to efficiently
compute only a part hi, . . . , hi+n−1 of h, a useful tool is the so called “middle prod-
uct” Hanrot et al. (2004). Let R,Q ∈ C[z] be two polynomials with deg R < 2n and
deg Q 6 n. Then we define their middle product R ⋉n Q (or simply R ⋉ Q if n is clear
from the context) by

P = R ⋉ Q =
∑

i<n





n
∑

j=0

Ri+jQn−j



 zi.

Notice that this definition generalizes to the case when A,B and C are arbitrary rings
with a multiplication · : A× B → C, and f ∈ A[[z]], g ∈ B[[z]]. In matrix form, we have

VP =











P0

...

Pn−1











=











Qn · · · Q0

. . .
. . .

Qn · · · Q0

































R0

...

R2n−1























= TQVR.

This formula is almost the transposed form of a usual product. More precisely, if R = PQ
with deg P < n and deg Q 6 n, then we have

VR =























R0

...

R2n−1























=























Q0

...
. . .

Qn Q0

. . .
...

Qn

































P0

...

Pn−1











= MQVP .

In other words, TQ = M⊤
Rev(Q), where M⊤ denotes the transpose of a matrix M and

Rev(Q) = Revn(Q) = Q0z
n + · · · + Qn.

For a fixed evaluation-interpolation scheme, the product MQVP is computed efficiently
using evaluation and interpolation. More precisely, the operator Eval at degree < 2n,
restricted to polynomials of degree < n corresponds to an N(2n) × n matrix E:

8



Eval(P ) = EVP .

Let ∆Q be the diagonal matrix with entries Eval(Q). Then

Eval(PQ) = ∆QEVP .

Finally, the operator Eval−1 at degree < 2n corresponds to a (2n) × N(2n) matrix Ê:

PQ = Ê∆QEVP .

Since this equality holds for all P , it follows that

MQ = Ê∆QE

TQ = E⊤∆Rev(Q)Ê
⊤.

Assuming that the algorithms Eval and Eval−1 for evaluation and interpolation only
use C-linear operations, the actions of E⊤ and Ê⊤ on vectors can be computed by the
transpositions tEval and tEval−1 of these algorithms in time E(2n)+O(N(2n)) Bordewijk
(1956); Bernstein (web). We may thus compute the middle product using

R ⋉ Q = tEval(tEval−1(R) Eval(Rev(Q))) (8)

in time ∼ 3E(2n) + O(N(2n)). In the standard FFT model, the matrix Ê is actually
symmetric and E is the upper half part of a symmetric matrix. Hence, (8) becomes

R ⋉ Q = FFTω(FFT−1
ω (R) FFTω(Rev(Q)))mod zn.

One may also use the alternative formula Harvey (2009a)

R ⋉ Q = FFT−1
ω (FFTω(R) FFTω(Q)) div zn,

which is based on the fact that standard FFT multiplication of R and Q really computes
the exact product of RQ modulo z2n − 1. Writing P = P0 + P1z

n + P2z
2n = RQ

with deg Pi < n, we then notice that P1 coincides with the middle product, whereas
P = (P0 + P2) + P1z

n modulo z2n − 1.

3. Division

Given a power series f ∈ C[[z]] (and similarly for vectors or matrices of power series,
or power series of vectors or matrices) and integers 0 6 i 6 j, we will use the notations:

f;i = f0 + · · · + fi−1z
i−1

fi;j = fi + · · · + fj−1z
j−i−1.

By convention, f;0 = 0 and fi;i = 0 for all i.

9



3.1. Blockwise products

Let m ∈ N> be fixed. Any series F ∈ C[[z]] in z may be rewritten blockwise as a
power series F̄ in Z = zm with coefficients F̄i ∈ C[z], deg F̄i < m:

F̄ = F̄0 + F̄1Z + F̄2Z
2 + · · ·

F̄i = Fim;(i+1)m. (9)

Let us now consider the computation of a product P = AF , where A,F ∈ C[[z]]. The
coefficients of the blockwise product ĀF̄ are polynomials of degrees < 2m instead of
< m. In order to recover the coefficients of P̄ , we define the “contraction operator” Con:
given a series Φ̄ ∈ C[z][[Z]], whose coefficients are polynomials of degrees < 2m, we let

Con(Φ̄)i = Φi−1 div zm + Φi mod zm.

Then we have

P̄ = Con(ĀF̄ ). (10)

Alternatively, we may first “extend” the series Ā using

Ext(Ā)i = Āi−1 + Āiz
m

and then compute P̄ using middle products:

P̄ = Ext(Ā) ¤⋉ F̄ =
∑

i1+i2=i

Ext(Ā)i1 ⋉ F̄i2 . (11)

These formulas are illustrated in Figure 1. From now on, and for reasons which are
detailed in remark 2, we will use formula (11) for all product computations.

Assume now that we have fixed an evaluation-interpolation model for polynomials of
degrees < 2m. Then we may replace the polynomial representations of the blockwise
coefficients Āi and F̄i by their transforms

Ā∗
i = tEval−1(Āi−1 + Āiz

m) (12)

F̄ ∗
i = Eval(Rev(F̄i)), (13)

compute convolution products in the transformed model

P̄ ∗
i = Ā∗

i ⋉ F̄ ∗
0 + · · · + Ā∗

0 ⋉ F̄ ∗
i ,

and apply (8) in order to recover the coefficients

P̄i = tEval(P̄ ∗
i ). (14)

In particular, assuming Ā∗
0, . . . , Ā

∗
i and F̄ ∗

0 , . . . , F̄ ∗
i known, we may compute P̄ ∗

i using
(i + 1)N(2m) scalar multiplications and P̄i using an additional time E(2m).

10



Ā0

Ā1

Ā2

Ā3

F̄0 F̄1 F̄2 F̄3

Ā0

Ā1

Ā2

Ā3

F̄0 F̄1 F̄2 F̄3

Fig. 1. Two ways to compute the coefficient P̄3, with P = AF . At the left-hand side, we use
P̄3 = (Ā2F̄0 + Ā1F̄1 + Ā0F̄2) div zm + (Ā3F̄0 + Ā2F̄1 + Ā1F̄2 + Ā0F̄3) mod zm. At the right-hand
side, we use middle products: P̄3 = (Ā2 + Ā3z

m)⋉ F̄0 +(Ā1 + Ā2z
m)⋉ F̄1 +(Ā0 + Ā1z

m)⋉ F̄2+
(Ā

−1 + Ā0z
m) ⋉ F̄3.

Remark 2. It turns out that the formula (11) is slightly more convenient and efficient

than (10): in the applications below, the coefficients F̄i will be computed one by one

as a function of the previous diagonal sums ĀiF̄0 + · · · + Ā1F̄i−1. In particular, when

using (10), the computation of the high part Ā0F̄i div zm of Ā0F̄i will need to be done sep-

arately at the next iteration. When using middle products, this computation is naturally

integrated into the product (Āi + Āi+1z
m) ⋉ F̄0 + · · · + (Ā0 + Ā1z

m) ⋉ F̄i.

3.2. Division

Let A,B ∈ C[[z]] be two power series such that A0 is invertible. Assume that we want

to compute the first n = mk coefficients of F = B
A . Denoting U = 1

A , we first compute

Ū0 using a classical Newton iteration Brent and Kung (1978); Schönhage (2000). Given

0 6 i < k, assume that F̄0, . . . , F̄i−1 have been computed, and let

P̄i = (Āi−1 + Āiz
m) ⋉ F̄0 + · · · + (Ā0 + Ā1z

m) ⋉ F̄i−1.

Setting Ā−1 = 0, we then must have

(AF )i = P̄i + (Ā−1 + Ā0z
m) ⋉ F̄i = B̄i.

It thus suffices to take

F̄i = Ū0(B̄i − P̄i)mod zn. (15)

Carrying out this iterative method in an evaluation-interpolation model for polynomials

of degrees < 2m yields the following algorithm:

11



Algorithm divide(B,A,m, k)

Input: two truncated power series A,B ∈ C[[z]] at order km > 0, such that A0 is

invertible.

Output: the truncated series F;mk, where F = B
A .

Compute Ū0 and Ū∗
0 = Eval(Ū0)

For i = 0, . . . , k − 1 do

Ā∗
i := tEval−1(Āi−1 + Āiz

m)

F̄ ∗
i−1 := Eval(Rev(F̄i−1))

P̄ ∗
i := Ā∗

i F̄
∗
0 + · · · + Ā∗

1F̄
∗
i−1

P̄i := tEval(P̄ ∗
i )

∆̄∗
i := Eval(B̄i − P̄i)

F̄ ∗
i := Ū∗

i ∆̄∗
i

F̄i := Eval−1(F̄ ∗
i )mod zn

Return F̄0 + F̄1z
m + · · · + F̄k−1z

(k−1)m

Remark 3. In the above algorithm, the coefficients of P̄ = (Ext(Ā) − Ext(Ā)0) ¤⋉ F̄ are

computed in a naive manner using

P̄ ∗
i := Ā∗

i F̄
∗
0 + · · · + Ā∗

1F̄
∗
i−1

Alternatively, we may rewrite (15) as an implicit equation in the transformed model and

use a relaxed algorithm for its resolution van der Hoeven (2002, 2007a). For this purpose,

we first extend the operators Rev, Eval, etc. blockwise to series S in Z using

Rev(S) = Rev(S0) + Rev(S1)Z + · · ·
Eval(S) = Eval(S0) + Eval(S1)Z + · · ·

...

Then the equation (15) may be rewritten as

F̄i = [Ū0(B̄ − (Ext(Ā) − Ext(Ā)0) ¤⋉ F̄ )mod zn]i,

which leads to the blockwise implicit equation

F̄ = F̄0 + Ū0(B̄ − (Ext(Ā) − Ext(Ā)0) ¤⋉ F̄ )mod zn.

In the transformed model, this equation becomes

F̄ = F̄0 + Eval−1 (Eval (Ū0) Eval (tEval (tEval−1 (Ext(Ā) − Ext(Ā)0)

Eval (Rev(F̄ )))))mod zn,

and we solve it using a relaxed multiplication algorithm.

12



3.3. Complexity analysis

From now on, it will be convenient to restrict our attention to evaluation-interpolation
models for which E(n)/n and N(n)/n are increasing functions in n and N(n) = o(E(n)).
Given two functions f and g in n, we will write f . g if for any ε > 0 we have f(n) 6
(1 + ε)g(n) for all sufficiently large n.

Theorem 1. The quotient of two power series in C[[z]] can be computed at order n in

time

D(n) . 5E(2n).

Proof. Let us analyze the complexity of divide. The precomputation of Ū0 can be done
in time 6E(2m) + 2N(2m) when using a fast algorithm Hanrot et al. (2004) based on
Newton’s method. The main loop accounts for
• Five evaluation-interpolations of cost 5kE(2m).
• One naive order k product in the transformed model of cost O(1

2k(k + 1))N(2m). In
view of Remark 3, the naive product may be replaced by a relaxed product, which
leads to a cost R(k)N(2m).

• k scalar multiplications in the transformed model of cost O(k)N(2m).
Adding up these costs, the complete division takes a time

D(m, k) . (5k + 7)E(2m) + (R(k) + O(k))N(2m). (16)

Choosing k such that 1/k = o(1) and R(k)N(2n/k) = o(kE(2n/k)), the theorem follows.
The choice k = ⌊log log n⌋ works both in the standard and the synthetic FFT model. 2

Remark 4. In practice, the number k should be chosen not too large, so as to keep
R(k)N(2m) reasonably small. According to (16), we need 5k + 7 < 25/4k in order to
beat the best previously known division algorithm Hanrot and Zimmermann (2004),
which happens for k > 28/5.

Remark 5. For small values of k, the fact that we perform more multiplications in the
transformed model is compensated by the fact that the FFTs are computed for smaller
sizes. Let us compare in detail a truncated FFT multiplication at order n and a blockwise
multiplication as in section 3.1 at order n = km.

For simplicity, we will assume the standard FFT model and naive inner multiplication.
The 2n inner multiplications in the classical FFT multiplication are replaced by (k +1)n
inner multiplications in the blockwise model, accounting for (k−1)n extra multiplications.
Every FFT at size 2n is replaced by k FFTs of size 2m, thereby saving approximately
n log2 k multiplications. For k = 4, the blockwise algorithm therefore saves 6n− 3n = 3n
multiplications. For k = 8, we save 9n−7n = 2n multiplications. For k = 16, we perform
15n − 12n = 3n more multiplications.

Using relaxed Karatsuba multiplication, we only need 81/16n inner multiplications
in the blockwise model for k = 16, so we save (9 − 1/16)n multiplications. We also
notice that the division algorithm requires five FFTs instead of three for multiplication.
For k = 16 and naive inner multiplication, this means that we actually “save” 20n− 15n
multiplications. In any case, the analysis shows that blockwise algorithms should perform
well for moderate values of k, at least for the standard FFT model.

13



Remark 6. For i = k, . . . , 2k − 2, the coefficients

∆̄i = B̄i − (Āk−2 + Āk−1z
m) ⋉ F̄i+1−k − · · · − (Āi−k + Āi+1−kzm) ⋉ F̄k−1

can be computed using k−1 additional transforms of cost (k−1)E(2m) and M(k)N(2m)
additional inner multiplications. This implies that the quotient and the remainder of
a division of a polynomial V of degree < 2n by a polynomial U of degree n − 1 can
be computed in time . 6E(2n). Indeed, it suffices to take A(z) = zn−1U(1/z), B(z) =
z2n−1V (1/z), and apply the above argument.

Remark 7. The division algorithm should also apply for integers and floating point num-
bers instead of polynomials and truncated power series. Of course, this requires a certain
amount of extra work in order to handle carries correctly. We also expect FFT trading
to be more efficient for standard FFT models (FFT multiplication over complex dou-
bles or over a field Fp with a large 2q-th root of unity) than for the synthetic model
(Schönhage-Strassen multiplication).

4. Linear differential equations

In order to simplify our exposition, it is convenient to write all differential equations
in terms of the operator δ = z ∂

∂z . The inverse δ−1 of δ is defined by

δ−1f =
∑

n>0

fn

n
zn,

for all f ∈ C[[z]] with f0 = 0.

4.1. Newton iteration

Given a matrix A ∈ Mr(C[[z]]) with A0 = 0, the equation

δM = AM (17)

admits a unique solution M ∈ Mr(C[[z]]) with M0 = Idr. The main idea of Bostan et
al. (2007) is to provide a Newton iteration for the computation of M . More precisely,
assume that M;n and M−1

;n = (M−1);n are known. Then we have

M;2n := [M;n − (M;nδ−1M−1
;n )(δM;n − A;2nM;n)];2n. (18)

Indeed, setting

E = A;2nM;n − δM;n = O(zn)

∆ = (M;nδ−1M−1
;n )E = O(zn),

we have

14



(δ − A)∆ = (δM;n)(M;n)−1∆ + (Idr +O(zn))E − A∆

= (AM;n + O(zn))(M−1
;n + O(zn))∆ + (Idr +O(zn))E − A∆

= E + O(z2n),

so that (δ −A)(M;n + ∆) = O(z2n) and ∆ = Mn;2n + O(z2n). Computing M;n and M−1
;n

together using (18) and the usual Newton iteration Schulz (1933); Moenck and Carter
(1979)

M−1
;2n = [M−1

;n + M−1
;n (Idr −M;nM−1

;n )];2n (19)

for inverses yields an algorithm of time complexity O(MM(n, r)). The quantities En;2n

and Mn;2n = ∆n;2n may be computed efficiently using the middle product algorithm.
Instead of doubling the precision at each step, we may also increment the number of

known terms with a fixed number of terms m. More precisely, given n > m > 0, we have

M;n+m := [M;n − (M;mδ−1M−1
;m )(δM;n − A;n+mM;n)];n+m. (20)

This relation is proved in a similar way as (18). The same recurrence may also be applied
for computing blocks of coefficients of the unique solution F ∈ C[[z]]r to the vector linear
differential equation

δF = AF (21)

with initial condition F0 = I ∈ Cr:

F;n+m := [F;n − (M;mδ−1M−1
;m )(δF;n − A;n+mF;n)];n+m,

or

Fn;n+m := [(M;mδ−1M−1
;m )((A;n+mF;n)n;n+mzn)]n;n+m. (22)

Both the right-hand sides of the equations (20) and (22) may be computed efficiently
using the middle product algorithm.

4.2. Blockwise resolution

The block notations Ā and F̄ from section 3.1 naturally generalize to series of matrices
and series of vectors. The derivation δ operates in a blockwise fashion:

δ̄(F̄iZ
i) = (δ̄iF̄i)Z

i = (imF̄i,0 + · · · + (im + m − 1)F̄i,m−1z
m−1)Zi.

We define the blockwise operator Λ̄, with

Λ̄P̄ = Λ̄P̄0 + Λ̄(P̄1Z) + · · · ,

by

15



Λ̄(P̄iZ
i) = (Λ̄iP̄i)Z

i = [(M̄0δ−1M̄−1
0 )(P̄iZi)]iZ

i.

In practice, we may compute Λ̄iP̄i by

X = M̄−1
0 P̄i mod zm

Y = δ̄−1
i X

Λ̄iP̄i = M̄0Y mod zm.

Now (22) yields a formula for the blockwise resolution of (17):

F̄i = Λ̄i[A(F − F̄izim)]i. (23)

= Λ̄i[(Āi−1 + Āiz
m) ⋉ F̄0 + · · · + (Ā0 + Ā1z

m) ⋉ F̄i−1].

Assume that we have fixed an evaluation-interpolation scheme at degree < 2m. Replacing
the blockwise coefficients Āi and F̄i by their transforms (12-13) and applying (23), we
may compute Λ̄iP̄i by evaluation-interpolation:

X = Eval−1(Eval(M̄−1
0 ) Eval(P̄i))mod zm

Y = δ̄−1
i X

Λ̄iP̄i = Eval−1(Eval(M̄0) Eval(Y ))mod zm.

Of course, Eval(M̄0) and Eval(M̄−1
0 ) only need to be computed once. This leads to the

following algorithm for the computation of F̄0, . . . , F̄k−1:

Algorithm lin solve(A, I,m, k)
Input: a linear initial value problem (21) and orders m and k
Output: the truncated series F;mk

Compute M̄0, M̄−1
0 and F̄0 as in section 4.1

For i = 1, . . . , k − 1 do
Ā∗

i := tEval−1(Āi−1 + Āiz
m)

F̄ ∗
i−1 := Eval(Rev(F̄i−1))

P̄ ∗
i := Ā∗

i F̄
∗
0 + · · · + Ā∗

1F̄
∗
i−1

P̄i := tEval(P̄ ∗
i )

F̄i := Λ̄iP̄i

Return F̄0 + F̄1z
m + · · · + F̄k−1z

(k−1)m

Remark 8. In the above algorithm, the coefficients of P̄ are computed in a naive manner.
In a similar way as in Remark 3, we may use a relaxed algorithm instead. More precisely,
the equation (23) may be rewritten as

F̄i = [Λ̄((Ext(Ā) − Ext(Ā)0) ¤⋉ F̄ )]i,

which leads to the blockwise implicit equation

16



F̄ = F̄0 + Λ̄((Ext(Ā) − Ext(Ā)0) ¤⋉ F̄ ).

In the transformed model, this equation becomes

F̄ = F̄0 + Λ̄ tEval(tEval−1(Ext(Ā) − Ext(Ā)0) Eval(Rev(F̄ ))).

We understand that Λ̄ is computed blockwise in the transformed model.

4.3. Complexity analysis

Assuming that A has s non-zero entries, we denote by L(n, r, s) the time complexity
in order to compute the truncated solution F;n to (21) at order n.

Theorem 2. Consider the differential equation (21), where A has s non-zero entries.

Assume that rω−1 = o(n) and R(rω−1)/rω−1 = o(E(2n)/N(2n)). Then there exists an

algorithm which computes the truncated solution F;n to (21) at order n in time

L(n, r, s) . E(2n)(s + 6r) + O(N(2n)r2). (24)

Proof. In our algorithm, let φn be a function which increases towards infinity, such that
φnrω−1 = o(n) and R(φnrω−1)/(φnrω−1) = o(E(2n)/N(2n)). We take k = ⌊φnrω−1⌋
and m = ⌈n/k⌉, so that km − n 6 k = o(n). Let us carefully examine the cost of our
algorithm for these choices of k and m:

(1) By the choice of k, the precomputation of F̄0, M̄0 and M̄−1
0 requires a time

O(MM(m, r)) = O(E(2m)r2 + N(2m)rω) = O

(

E(2n)
rω

k

)

= o(E(2n)r).

Similarly, the precomputation of Eval(M̄0) and Eval(M̄−1
0 ) can be done in time

O(E(2m)r2) = o(E(2n)r).

(2) The computation of the transforms Ā∗
i , F̄ ∗

i and the inverse transforms P̄i can be
done in time

. E(2m)k(s + 2r) 6 E(2n)(s + 2r).

(3) The computation of O(k2) products Ā∗
i F̄

∗
j in the transformed model requires a time

O(k2N(2m)s) = O(N(2n)ks).

Using a relaxed multiplication algorithm, this cost further reduces to

O(R(k)N(2m)s) = O

(

N(2n)
R(k)

k
s

)

.

17



(4) The computation of F̄i = Λ̄iP̄i involves 4(k−1) vectorial evaluations-interpolations,
of cost

. 4E(2m)kr 6 4E(2n)r

and O(k) matrix-vector multiplications in the transformed model, of cost

O(kN(2m)r2) = O(N(2n)r2).

Adding up the different contributions, we obtain the bound

L(n, r, s) . E(2n)(s + 6r) + N(2n)O

(

R(k)

k
s + r2

)

.

By construction, N(2n)R(k)/k = o(E(2n)), and the result follows. 2

Corollary 1. In the standard FFT model, and under the assumption r = o(log n), we

have

L(n, r, s) . (s/3 + 2r)M(n)

L(n, r) . 7/3rM(n).

The same bounds are obtained in the synthetic FFT model if r = o(log log n).

Remark Of course, 7/3rM(n) should be read (7/3)rM(n) and likewise below.

Proof. In the standard FFT model, we have E(2n) ∼ M(n)/3, E(2n)/N(2n) = O(log n)

and R(rω−1)/rω−1 = O(e2
√

log 2 log log r log r). If r = o(log n), we may therefore apply the
theorem and the second term in (24) becomes negligible with respect to the first one.

In the synthetic FFT model, we have E(2n) ∼ M(n)/3, E(2n)/N(2n) = O(log log n)
and R(rω−1)/rω−1 = O((log r)2 log log r). If r = o(log log n), we may again apply the
theorem and the second term in (24) becomes negligible. 2

4.4. Further observations

Remark 9. In practice, one should choose φn just sufficiently large such that the pre-
computation has a small cost with respect to the remainder of the computation. This is
already the case for φn close to 1.

Remark 10. The use of middle products was needed in order to achieve the factor s/3+2r
in Corollary 1. As explained in Remark 2, using a more straightforward multiplication
algorithm seems to require one additional transform. This leads to the factor s/3+7r/3.

Remark 11. Corollary 1 applies in particular to the exponentiation f = eg of a power
series g. We obtain an algorithm of time complexity L(n, 1) . 7/3M(n), which yields an
improvement over Bernstein (2000); Hanrot and Zimmermann (2004). Notice that FFT
trading is a variant of Newton caching in Bernstein (2000), but not exactly the same: in
our case, we use an “order k” Newton iteration, whereas Bernstein uses classical Newton
iterations on block-decomposed series.

18



Remark 12. With minor changes, the algorithm can be adapted in order to compute
the unique solution of the matrix differential equation δM = MF with M0 = Idr. The
unique solution M corresponds to a fundamental system of solutions to (21). A similar
complexity analysis to the one in the proof of Theorem 2 yields the bound

LM(n, r) . 7r2E(2n) + O(rωN(2n)).

Under the additional hypotheses of the corollary, we thus get

LM(n, r) . 7/3r2M(n).

Remark 13. In the standard FFT model, the conditions of Theorem 2 reduce to

log r = o

(

log n

e2
√

log 2 log log n

)

. (25)

If s = r, then we obtain

L(n, r) = nrO(log n + r).

This complexity should be compared to the bound provided by a relaxed approach

L(n, r) = O(R(n)r) = O(nr log ne2
√

log 2 log log n).

If r = o(log n), our new approach gains a factor O(e2
√

log 2 log log n). On the other hand, the

relaxed approach becomes more efficient for moderate orders log ne2
√

log 2 log log n = O(r).
In the case when s = r2, the theorem yields

L(n, r, r2) = O(nr2 log n),

whereas the relaxed approach yields the bound

L(n, r, r2) = O(R(n)r2) = O(nr2 log ne2
√

log 2 log log n).

We thus gain a factor O(e2
√

log 2 log log n) under the sole assumption (25).

Remark 14. In the case when C does not admit many 2p-th roots of unity, we have the
choice between the synthetic FFT model and multipoint evaluation-interpolation. In the
synthetic FFT model, the almost optimal bounds from Corollary 1 are reached under
the rather harsh assumption r = o(log log n). This makes the method interesting only for
particularly low orders r 6 3 (maybe r 6 5 for really huge values of n).

If C admits an infinity of points in geometric progression, then we may also use mul-
tipoint evaluation-interpolation with E(2n) ∼ cM(n) and N(n) = n for some constant
c > 1. In a similar way as in Corollary 1, one obtains the bound

L(n, r, s) . cM(n)(s/3 + 2r)

19



under the assumption r = o(log n log log n), since E(2n)/N(2n) = O(log n log log n). If
s = r2, then the assumption may even be replaced by (log r)2 log log r = o(log n log log n).
Recall that R(n) = O(M(n) log n) in this context. Therefore, we potentially gain a factor
O(log n) compared to the relaxed approach.

Remark 15. One may wonder whether the technique of FFT trading is useful in asymp-
totically less efficient models such as the Karatsuba model. Recall however that R(n) =
O(M(n)) in any model with M(n) ≍ nα for α > 1. The Karatsuba model is even essen-
tially relaxed, in the sense that R(n) = M(n). Therefore, the use of Newton’s method at
best allows for the gain of a constant factor. Moreover, FFT trading also does not help,
since E(n) ∼ N(n) in such models, so the second term in (24) can never be neglected
with respect to the first term.

Remark 16. It is instructive to compare our complexity bounds with the complexity
bounds if we only use Newton’s method and neither FFT trading nor relaxed computa-
tions. In that case, let T (n, r) denote the complexity of computing both M;n and M−1

;n .
One has

T (2n, r) = T (n, r) + 5M(n)r2 + O(nrω),

since the product A;nF;n and the formulas (18) and (19) give rise to 1+2+2 = 5 matrix
multiplications. This yields

T (n, r) . 5M(n)r2.

Notice that we may subtract the cost M(n)r2 if the final M−1
n is not needed. It follows

that

L(n, r, s) . M(n)(17/6r2 + s/2 + 2/3r).

Using a trick from Schönhage (2000), one may even prove that

T (n, r) . 9/2M(n)r2,

which yields

L(n, r, s) . M(n)(31/12r2 + s/2 + 2/3r).

5. Algebraic differential equations

Assuming that one is able to solve the linearized version of an implicit equation (1),
it is classical that Newton’s method can again be used to solve the equation itself Brent
and Kung (1978); van der Hoeven (2002); Bostan et al. (2007). Before we show how to
do this for algebraic systems of differential equations, let us first give a few definitions
for polynomial expressions.

Given a vector F ∈ C[[z]]r of series variables, we represent polynomials in C[[z]][F ] ∼=
C[F ][[z]] = C[[z]][F1, . . . , Fr] by dags (directed acyclic graphs), whose leaves are either

20



series in C[[z]] or variables Fi, and whose inner nodes are additions, subtractions or
multiplications. An example of such a dag is shown in Figure 2. We will denote by s1

and s2 the number of nodes which occur as an operand resp. result of a multiplication.
We call s = (s1 + s2)/3 the multiplicative size of the dag and the total number t of nodes
the total size of the dag. Using evaluation-interpolation, one may compute P (F );n in
terms of F;n in time . 3sE(2n) + tN(2n).

+

×

F2

F1e
z

× ×

Fig. 2. Example of a polynomial expression in C[[z]][F1, F2], represented by a dag. In this par-
ticular example, the multiplicative size of the polynomial is s = 7/3 (since s1 = 4 and s2 = 3)
and its total size 7.

Now assume that we are given an r-dimensional system

δF = P (F ), (26)

with initial condition F0 = I ∈ Cr, and where P (F ) is a tuple of r polynomials in
zC[[z]][F1, . . . , Fr]

r ∼= C[F1, . . . , Fr][[z]]r. Given the unique solution F to this initial value
problem, consider the Jacobian matrix

J =
∂P

∂F
(F ) =











∂P1

∂F1

· · · ∂P1

∂Fr

...
...

∂Pr

∂F1

· · · ∂Pr

∂Fr











(F ).

Assuming that F;m is known, we may compute J;m in time . (2r + 1)sM(m) + O(rtm)
using the standard differentiation rules. For n > m, we have

P (F;n + Fn;n+m) = P (F;n) + J;mFn;n+m + O(zn+m)

δF;n+m = P (F;n);n+m + J;mFn;n+m,

so that

Fn;n+m = [(δ − J;m)−1(P (F;n)n;n+mzn)]n;n+m. (27)

Let us again adopt the notation (9). We will compute F̄ and Q(F ) for any subexpression
Q(F ) of P (F ) in a relaxed manner. Each series Q(F ) will actually be broken up into its

21



head Q(F )0 and its tail Q(F )∗ = Q(F ) − Q(F )0, so that sums and products are really
computed using

U(F ) + V (F ) = (U(F )0 + V (F )0) + (U(F )∗ + V (F )∗)

U(F )V (F ) = (U(F )0V (F )0) + (U(F )0V (F )∗ + U(F )∗V (F )0 + U(F )∗V (F )∗)

Assume that F̄j and Q(F )j have been evaluated for all j < i and notice that

F;n = F̄0 + · · · + F̄i−1z
(i−1)m.

The advantage of our modified way to compute the Q(F ) is that it also allows us to
efficiently evaluate Q(F;n)i. Indeed, since Q(F;n) − Q(F ) = O(Zi), we have

(U + V )(F;n)i = U(F;n)i + V (F;n)i

(UV )(F;n)i = (U(F;n)iV (F )0 + U(F )0V (F;n)i + (U(F )∗V (F )∗)i)mod zm +

(U(F )V (F ))i−1 div zm.

We may finally compute F̄i using

F̄i = Λ̄iP (F;n)i, (28)

where Λ̄ is the blockwise operator which acts on S̄iZ
i by

Λ̄iS̄i = [(δ − J̄0)−1(S̄iZi)]i.

Let us now analyze the time complexity A(n, r, s, t) of the computation of F;n.

Theorem 3. Consider an r-dimensional system (26), where P is a polynomial, given by

a dag of multiplicative size s and total size t. Assume that rω−1 = o(n) and

R(rω−1)/rω−1 = o(E(2n)/N(2n)).

Then there exists an algorithm which computes F;n in time

A(n, r, s, t) . E(2n)(6s + 4r) + O(nt).

Proof. In order to perform all multiplications in the transformed model, we have to com-

pute both U(F )
∗

i = Eval(U(F )i) and U(F;n)
∗

i = Eval(U(F;n)i) for each argument U(F )

of a multiplicative subexpression of P (F ) and Q(F )i = Eval−1(Q(F )
∗

i ) and Q(F;n)i =

Eval−1(Q(F;n)
∗

i ) for each multiplicative subexpression Q(F ) of P (F ). This amounts to
a total of 6ks evaluations-interpolations of size 2m, of cost . 6sE(2n). The computations
of the F̄i using (28) induce an additional cost 4rE(2n). The relaxed multiplications in
the transformed model correspond to a cost N(2m)O(sR(k)) = o(E(2n)s). The additions
are done in the untransformed model, in time O(nt). The precomputation of J̄0, J̄−1

0 and
its transforms have a negligible cost O(rsM(m) + rtm + r2E(2m) + rωN(2m)). 2

22



Corollary 2. In the standard FFT model, and assuming that r = o(log n), we have

A(n, r, s, t) . M(n)(2s + 4r/3) + O(nt).

The same bound holds in the synthetic FFT model, assuming that r = o(log log n).

Remark 17. In the case when most multiplications in P (F ) only depend linearly on F ,
it is possible to adapt a similar technique as in the previous section and perform these
multiplications using the middle product. This allows for a reduction of the factor 2s to
something between s and 2s.

Remark 18. When solving (26) using Newton’s method Bostan et al. (2007) with the
optimization from Schönhage (2000), one obtains the bound

A(n, r, s, t) . (2rs + 2s + 13/6r2 + 4/3r)M(n) + O(rtn).

However, the factor 2rs is quite pessimistic. For instance, if the expressions P1(F ), . . . ,
Pr(F ) do not share any common subexpressions, then we may use automatic differ-
entiation Baur and Strassen (1983) for the computation of J . The multiplicative size
s′ = s′1 + s′2 for this circuit is given by s′1 = s1 + s2 and s′2 = 3s2, whence s′ 6 4s and

A(n, r, s, t) . (6s + 13/6r2 + 4/3r)M(n) + O(rtn).

6. Truncated multiplication

Assume the standard FFT model. It is well-known that discrete FFTs are most efficient
on blocks of size 2p with p ∈ N. In particular, without taking particular care, one may
lose a factor 2 when computing the product of two polynomials P and Q of degrees < n
with n 6∈ 2N. One strategy to remove this problem is to use the TFT (truncated Fourier
transform) as detailed in van der Hoeven (2004, 2005). Another way to smooth the
complexity is to cut P and Q in smaller blocks, and trade superfluous and asymptotically
expensive FFTs against asymptotically less expensive multiplications in the FFT model.

More precisely, we cut P and Q into k = ⌈n/m⌉ parts of size m = 2p, where k =
o(log n) grows slowly to infinity with n. With the notation (9), and using FFTs at size 2m
for evaluation-interpolation, we compute PQ as follows:

(1) We first transform P̄ ∗
i = Eval(P̄i) and Q̄∗

i = Eval(Q̄i) for i < k.
(2) We compute the naive product R̄∗ = P̄ ∗Q̄∗ of the polynomials P̄ and Q̄ in Z.
(3) We compute R̄i = Eval−1(R̄∗

i ) for i < 2k− 1 and return R̄0 + · · ·+ R̄2k−2z
(2k−2)m.

Let C be the constant such that M(m) ∼ 3E(2m) ∼ Cm log m for m ∈ 2N. Then the
above algorithm requires

4kE(2m) + 2k2m ∼ 4/3Cn log n + 2kn

operations in C. If we only need the truncated product (PQ);n, then we may save k
inverse transforms and half of the inner multiplications, so the complexity reduces to

3kE(2m) + k2m ∼ Cn log n + kn.

23



Both complexities depend smoothly on n and admit no major jumps at powers of two.
In this particular case, it turns out that the TFT transform is always better, because

both the full and the truncated product can be computed using only

Cn log n + 2n

operations in C. However, in the multivariate setting, the TFT also has its pitfalls. More
precisely, consider two multivariate polynomials P,Q ∈ C[z1, . . . , zd] whose supports have
a “dense flavour”. Typically, we may assume the supports to be convex subsets of Nd. In
addition one may consider truncated products, where we are only interested in certain
monomials of the product. In order to apply the TFT, one typically has to require in
addition that the supports of P and Q are initial segments ofNd. Even then, the overhead
for certain types of supports may increase if d gets large.

One particularly interesting case for complexity studies is the computation of the trun-
cated product of two dense polynomials P and Q with total degree < n. This is typically
encountered in the integration of dynamical systems using Taylor models. Although the
TFT is a powerful tool for small dimensions (d 6 4), FFT trading might be an interesting
complement for moderate dimensions (5 6 d 6 8). For even larger dimensions, one may
use Lecerf and Schost (2003) or (van der Hoeven, 2002, Section 6.3.5). The idea is again
to cut P in blocks

P =
∑

i=(i1,...,id) P̄iZ
i (Zi = Zi1

1 · · ·Zid

d )

P̄i =
∑

j<(m,...,m) Pmi+jz
j (zj = zj1

1 · · · zjd

d )

where k = ⌈n/m⌉ is small (and m preferably a power of two). Each block is then trans-
formed using an FFT (or a suitable TFT, since the supports of the blocks are still initial
segments when restricted to the block). We next compute the truncated product of the
transformed polynomials

∑

P̄ ∗
i Zi and

∑

Q̄∗
i Z

i in a naive way and transform back.
Let us analyze the complexity of this algorithm. The number Mk,d of monomials of

total degree k is given by

Mk,d =

(

k + d − 1

d − 1

)

.

In particular, Md(z) =
∑∞

k=0 Mk,dz
k = (1− z)−d and M0,d = 1. In order to compute the

monomials in P̄ Q̄ of total degree k, we need

Hk,d = Mk,dM0,d + Mk−1,dM1,d + · · · + M0,dMk,d =

(

k + 2d − 1

2d − 1

)

,

since Hd(z) =
∑

k Hk,dz
k = Md(z)2 = M2d(z). In total, we thus need

Nk,d = H0,d + · · · + Hk−1,d =

(

k + 2d − 1

2d

)

multiplications of TFT-ed blocks, since Nd(z) =
∑

k Nk,dz
k = z

1−z Hd(z) = zM2d+1(z).
For large k, we have

24



Mk,d ∼
1

(d − 1)!
kd−1

Nk,d ∼
1

(2d)!
k2d

We may therefore hope for some gain with respect to plain FFT multiplication whenever

Nk,dm
d ∼ Nk,d

kd
nd ∼ kd

(2d)!
nd < dnd log n ∼ M(nd),

i.e. if

log n >
Nk,d

dkd
∼ kd

d(2d)!
.

In Table 2, we have shown the values of Nk,d/(dkd) for small values of k and d. It is clear
from the table that FFT trading can be used quite systematically in order to improve
the performance. For larger dimensions, the gain becomes particularly important. This
should not come as a surprise, because naive multiplication is more efficient than FFT
multiplication for k 6 d.

d

k
1 2 3 4 5 6 7 8

1 1.0000 0.50000 0.33333 0.25000 0.20000 0.16667 0.14286 0.12500

2 1.5000 0.62500 0.29167 0.14063 0.068750 0.033854 0.016741 0.0083008

3 2.0000 0.83333 0.34568 0.13889 0.054321 0.020805 0.0078385 0.0029150

4 2.5000 1.0938 0.43750 0.16113 0.055859 0.018514 0.0059291 0.0018482

5 3.0000 1.4000 0.56000 0.19800 0.064064 0.019413 0.0055954 0.0015504

6 3.5000 1.7500 0.71296 0.24826 0.077238 0.022105 0.0059340 0.0015144

7 4.0000 2.1429 0.89796 0.31268 0.095294 0.026299 0.0067236 0.0016179

8 4.5000 2.5781 1.1172 0.39276 0.11870 0.032036 0.0079209 0.0018266

9 5.0000 3.0556 1.3731 0.49040 0.14821 0.039506 0.0095509 0.0021357

10 5.5000 3.5750 1.6683 0.60775 0.18476 0.048988 0.011674 0.0025537

11 6.0000 4.1364 2.0055 0.74718 0.22944 0.060836 0.014378 0.0030975

12 6.5000 4.7396 2.3873 0.91124 0.28350 0.075468 0.017771 0.0037902

Table 2. Numerical values of Nk,d/(dkd) for small d and k.

The main advantage of the above method over other techniques, such as the TFT, is
that the shape of the support is preserved during the reduction

∑

Piz
i → ∑

P̄iZ
i (as

well as for the “destination support”). However, the TFT also allows for some additional

25



tricks (van der Hoeven, 2005, Section 9) and it is not yet clear to us which approach is
best in practice. Of course, the above technique becomes even more useful in the case
of more general truncated multiplications for dense supports with shapes which do not
allow for TFT multiplication.

For small values of n, we notice that the even/odd version of Karatsuba multiplication
presents the same advantage of geometry preservation (see Hanrot and Zimmermann
(2002) for the one-dimensional case). In fact, fast multiplication using FFT trading is
quite analogous to this method, which generalizes for Toom-Cook multiplication. In the
context of numerical computations, the property of geometry preservation is reflected by
increased numerical stability.

To finish, we would like to draw the attention of the reader to another advantage of
FFT trading: for really huge values of n, it leads to a reduction in memory usage. Indeed,
when computing the coefficients of a product sequentially R̄ = P̄ Q̄, we only need to store
the transform R̄∗

i of one coefficient in the result at a time.

7. Conclusion

We have summarized the main results of this paper in Tables 3 and 4. We recall that

R(n) = O(M(n)e2
√

log 2 log log n) in the standard FFT model and R(n) = O(M(n) log n)

otherwise. Consequently, the new approach allows at best for a gain O(e2
√

log 2 log log n)
in the standard FFT model and O(log n) in the synthetic FFT model. In practice, the

factor O(e2
√

log 2 log log n) behaves very much like a constant, so the new algorithms be-
come interesting only for quite large values of n. As pointed out in remark 15, FFT
trading loses its interest in asymptotically slower evaluation-interpolation models, such
as the Karatsuba model. We plan to come back to practical complexity issues as soon
as implementations of all algorithms are available in the Mathemagix system van der
Hoeven et al. (2002). Notice also that Newton iterations are better suited to parallel
computing than is relaxed evaluation.

Resolution of an r-dimensional system of linear differential equations

Algorithm Fundamental system One solution

Relaxed ∼ R(n)r2
∼ R(n)s

Newton ∼ 15/4M(n)r2
∼ M(n)(31/12r2 + s/2 + 2/3r)

New ∼ 7/3M(n)r2
∼ M(n)(s/3 + 2r)

Table 3. Complexities for the resolution of an r-dimensional system δF = AF of linear dif-
ferential equations up to n terms. We either compute a fundamental system of solutions or a
single solution with a prescribed initial condition. The parameter s stands for the number of
non-zero coefficients of the matrix A (we always have s 6 r2). We assume that r = o(log n) in
the standard FFT model and r = o(log log n) in the synthetic FFT model.

One interesting remaining problem is to reduce the cost of computing a fundamental
system of solutions to (4). This would be possible if one can speed up the joint compu-
tation of the FFTs of f, δf, . . . , δ(r−1)f .

26



Resolution of an r-dimensional system of algebraic differential equations

Algorithm Complexity

Relaxed ∼ R(n)s + O(nt)

Newton ∼ M(n)(2sr + 2s + 13/6r2 + 4/3r) + O(trn)

New ∼ M(n)(2s + 4/3r) + O(tn)

Table 4. Complexities for the resolution of an r-dimensional system δF = P (F ) up to n terms,
where P is a polynomial of multiplicative size s and total size t. For the bottom line, we assume
the standard FFT model and we require that r = o(log n). In the synthetic FFT model, the
bound becomes ∼ M(n)(2s + 4/3r) + O(tn log n), under the assumption r = o(log log n).

Another interesting question is to what extent Newton’s method can be generalized.
Clearly, it is not hard to consider more general equations of the kind

δF = P (F, F (z2), . . . , F (zp)),

since the series F (z2), . . . , F (zp) merely act as perturbations. However, it seems harder
(but maybe not impossible) to deal with equations of the type

δF = P (F, F (qz)),

since it is not clear a priori how to generalize the concept of a fundamental system of
solutions and its use in the Newton iteration.

In the case of partial differential equations with initial conditions on a hyperplane,
the fundamental system of solutions generally has infinite dimension, so essentially new
ideas would be needed here. Nevertheless, the strategy of relaxed evaluation applies in all

these cases, with the usual O(log n) overhead in general and O(e2
√

log 2 log log n) overhead
in the standard FFT model.

References

Baur, W., Strassen, V., 1983. The complexity of partial derivatives. Theor. Comput. Sci.
22, 317–330.

Bernstein, D., The transposition principle. http://cr.yp.to/transposition.html.
Bernstein, D., 2000. Removing redundancy in high precision Newton iteration. Available

from http://cr.yp.to/fastnewton.html.
Bordewijk, J. L., 1956. Inter-reciprocity applied to electrical networks. Applied Scientific

Research B: Electrophysics, Acoustics, Optics, Mathematical Methods 6, 1–74.
Borodin, A., Moenck, R., 1974. Fast modular transforms. Journal of Computer and Sys-

tem Sciences 8, 366–386.
Bostan, A., Chyzak, F., Ollivier, F., Salvy, B., Schost, E., Sedoglavic, A., January 2007.

Fast computation of power series solutions of systems of differential equations. In:
Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms. New Orleans,
Louisiana, U.S.A., pp. 1012–1021.

27



Bostan, A., Schost, É., August 2005. Polynomial evaluation and interpolation on special
sets of points. Journal of Complexity 21 (4), 420–446, festschrift for the 70th Birthday
of Arnold Schönhage.

Brent, R., Kung, H., 1978. Fast algorithms for manipulating formal power series. Journal
of the ACM 25, 581–595.

Cantor, D., Kaltofen, E., 1991. On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica 28, 693–701.

Cook, S., 1966. On the minimum computation time of functions. Ph.D. thesis, Harvard
University.

Cooley, J., Tukey, J., 1965. An algorithm for the machine calculation of complex Fourier
series. Math. Computat. 19, 297–301.

Coppersmith, D., Winograd, S., may 25–27 1987. Matrix multiplication via arithmetic
progressions. In: Proc. of the 19th Annual Symposium on Theory of Computing. New
York City, pp. 1–6.

Hanrot, G., Quercia, M., Zimmermann, P., 2004. The middle product algorithm I. Speed-
ing up the division and square root of power series. AAECC 14 (6), 415–438.

Hanrot, G., Zimmermann, P., Dec. 2002. A long note on Mulders’ short product. Research
Report 4654, INRIA, available from
http://www.loria.fr/ hanrot/Papers/mulders.ps.

Hanrot, G., Zimmermann, P., 2004. Newton iteration revisited.
http://www.loria.fr/ zimmerma/papers/fastnewton.ps.gz.

Harvey, D., 2009a. Faster algorithms for the square root and reciprocal of power series.
http://arxiv.org/abs/0910.1926.

Harvey, D., 2009b. Faster exponentials of power series.
http://arxiv.org/abs/0911.3110.

van der Hoeven, J., July 1997. Lazy multiplication of formal power series. In: Küchlin,
W. W. (Ed.), Proc. ISSAC ’97. Maui, Hawaii, pp. 17–20.

van der Hoeven, J., 2002. Relax, but don’t be too lazy. JSC 34, 479–542.
van der Hoeven, J., July 4–7 2004. The truncated Fourier transform and applications.

In: Gutierrez, J. (Ed.), Proc. ISSAC 2004. Univ. of Cantabria, Santander, Spain, pp.
290–296.

van der Hoeven, J., 2005. Notes on the Truncated Fourier Transform. Tech. Rep. 2005-5,
Université Paris-Sud, Orsay, France.

van der Hoeven, J., 2006. Newton’s method and FFT trading. Tech. Rep. 2006-17, Univ.
Paris-Sud, http://www.texmacs.org/joris/fnewton/fnewton-abs.html.

van der Hoeven, J., 2007a. New algorithms for relaxed multiplication. JSC 42 (8), 792–
802.

van der Hoeven, J., 2007b. On effective analytic continuation. MCS 1 (1), 111–175.
van der Hoeven, J., et al., 2002. Mathemagix. http://www.mathemagix.org.
Karatsuba, A., Ofman, J., 1963. Multiplication of multidigit numbers on automata. Soviet

Physics Doklady 7, 595–596.
Lecerf, G., Schost, E., September 2003. Fast multivariate power series multiplication in

characteristic zero. SADIO Electronic Journal on Informatics and Operations Research
5 (1), 1–10.

Lohner, R., 1988. Einschließung der Lösung gewöhnlicher Anfangs- und randwertauf-
gaben und anwendugen. Ph.D. thesis, Universität Karlsruhe.

28



Lohner, R., 2001. On the ubiquity of the wrapping effect in the computation of er-
ror bounds. In: Kulisch, U., Lohner, R., Facius, A. (Eds.), Perspectives on enclosure
methods. Springer, Wien, New York, pp. 201–217.

Makino, K., Berz, M., 1996. Remainder differential algebras and their applications. In:
Berz, M., Bischof, C., Corliss, G., Griewank, A. (Eds.), Computational differentiation:
techniques, applications and tools. SIAM, Philadelphia, pp. 63–74.

Makino, K., Berz, M., 2004. Suppression of the wrapping effect by Taylor model-based
validated integrators. Tech. Rep. MSU Report MSUHEP 40910, Michigan State Uni-
versity.

Moenck, R., Borodin, A., 1972. Fast modular transforms via division. In: Thirteenth
annual IEEE symposium on switching and automata theory. Univ. Maryland, College
Park, Md., pp. 90–96.

Moenck, R., Carter, J., 1979. Approximate algorithms to derive exact solutions to sys-
tems of linear equations. In: Symbolic and algebraic computation (EUROSAM ’79,
Marseille). Vol. 72 of LNCS. Springer, Berlin, pp. 65–73.

Moore, R., 1966. Interval Analysis. Prentice Hall, Englewood Cliffs, N.J.
Pan, V., 1984. How to multiply matrices faster. Vol. 179 of Lect. Notes in Math. Springer.
Schönhage, A., 2000. Variations on computing reciprocals of power series. Inform. Pro-

cess. Lett. 74, 41–46.
Schönhage, A., Strassen, V., 1971. Schnelle Multiplikation grosser Zahlen. Computing 7,

281–292.
Schulz, G., 1933. Iterative Berechnung der reziproken Matrix. Z. Angew. Math. Mech.

13, 57–59.
Strassen, V., 1969. Gaussian elimination is not optimal. Numer. Math. 13, 352–356.
Strassen, V., 1973. Die Berechnungskomplexität von elementarsymmetrischen Funktio-

nen und von Interpolationskoeffizienten. Numer. Math. 20, 238–251.
Toom, A., 1963. The complexity of a scheme of functional elements realizing the multi-

plication of integers. Soviet Mathematics 4 (2), 714–716.

29


