Mathematical Font Art

BY JORIS VAN DER HOEVEN

Laboratoire d’informatique, UMR 7161 CNRS
Campus de I’Ecole polytechnique
1, rue Honoré d’Estienne d’Orves
Batiment Alan Turing, CS35003
91120 Palaiseau

April 26, 2016

Abstract

Currently, only a limited number of fonts are available for high quality
mathematical typesetting, such as Knuth’s computer modern font, the
STix font, and several fonts from the TEX GYRE family. An interesting
challenge is to develop tools which allow users to pick any existing
favorite font and to use it for writing mathematical texts. We will
present progress on this problem as part of recent developments in the
GNU TgXy1acs scientific text editor.

1 Introduction

For a long period, most documents with mathematical formulas were typeset
using Knuth’s COMPUTER MODERN font [5]. Recently, a few alternative fonts
were designed, such as the STIX font [7] and the TEX GYRE fonts [3]. These
handcrafted fonts all admit a high quality, but they required an important
development effort. Now there exists thousands of fonts for non mathemat-
ical purposes. To what extent is it possible to use such fonts for mathematical
texts or presentations, or on the web?

In this paper we describe recent developments inside the GNU TgXyacs
scientific text editor [1] which aim at a better support of general purpose fonts,
thereby making life a bit more colorful. The focus is on fully automatic tech-
niques for using existing fonts inside structured documents with mathematical
formulas. Further fine tuning for specific characters in particular fonts is another
interesting topic which will not be discussed here.

There are obvious limitations of what we can do with a font if bold and italic
declinations or glyphs for various important characters are missing. Nevertheless
we will see that quite a lot is often possible even though the resulting quality
may be inferior to what can be achieved via manual design. Since various special
characters or font effects are often only used at a reduced number of places inside
actual documents, the occasional loss of quality may remain within acceptable
bounds, even for professional purposes.

2 SECTION 2

Our general strategy for turning existing fonts into full fledged mathematical
font families is to remedy each of the font’s insufficiencies. The most common
problems are the following:

— Lack of the most important font declinations as needed in scientific doc-
uments: Bold, Italic, SMALL CAPITALS, Sans Serif, Typewriter.

— Lack of specific glyphs: non English languages, mathematical symbols,
and in particular big operators, extensible brackets and wide accents.

— Inconsistencies: sloppy design of some glyphs that are important for
mathematics (such as —, <, etc.), leading to inconsistencies.

The main countermeasures are font substitution and font emulation. The first
technique (see Section 2) consists of borrowing missing glyphs from other fonts.
This can either be done on the level of an entire font (e.g. for obtaining bold
or italic declinations) or for individual characters (e.g. a missing « symbol, or
lacking Greek characters). Font emulation consists of combining and altering
the glyphs of symbols in a font in order to generate new ones. This can again
be done for entire fonts (Section 3) or individual glyphs (Sections 4 and 5).

All techniques described in this paper have been implemented in TEXyracs;
version 1.99.5 and beyond. The software can freely be downloaded from our web-
site www.texmacs.org. The virtual character definitions described in Section 4
below can be found in the TeXmacs/fonts/virtual directory; interested users
may play with these definitions. Longer examples of what can be obtained using
the techniques described in this paper are available here:

http://www.texmacs.org/joris/fontart/fontart-abs.html

In the TEX/IATEX universe, there have also been several efforts towards
better support for modern OPENTYPE fonts, most notably XETEX [4] and
LUATEX [2]. The first system also contains features that are similar to those
described in Section 3. However, these systems do not support full mathemat-
ical font emulation as presented in this paper. XETEX and LUATEX also tend
to diverge from standard IATEX through the introduction of incompatibilities.

2 Font analysis and font substitution

In order to borrow missing characters from other fonts, it is important to be able
to determine fonts with a similar design, so that the alien glyphs fit nicely into
the main text:

The symbols «, f, 7 are acceptable inside v+ a+y++z+7. (1)

The sgmbols a,B,y donot look very wellinside x+a +tytp+z+y. (2)

www.texmacs.org
http://www.texmacs.org/joris/fontart/fontart-abs.html
http://www.texmacs.org/joris/fontart/fontart-abs.html
http://www.texmacs.org/joris/fontart/fontart-abs.html
http://www.texmacs.org/joris/fontart/fontart-abs.html
http://www.texmacs.org/joris/fontart/fontart-abs.html
http://www.texmacs.org/joris/fontart/fontart-abs.html
http://www.texmacs.org/joris/fontart/fontart-abs.html
http://www.texmacs.org/joris/fontart/fontart-abs.html
http://www.texmacs.org/joris/fontart/fontart-abs.html
http://www.texmacs.org/joris/fontart/fontart-abs.html
http://www.texmacs.org/joris/fontart/fontart-abs.html
http://www.texmacs.org/joris/fontart/fontart-abs.html

POOR MAN’S FONT EMULATION 3

Usually, rules for font substitution are specified manually for each individual
font. Although this often yields the most precise and predictable results, it can
be tedious to write such rules. For this reason, we also implemented a more
automatic mechanism in order to determine good substitutes.

A prerequisite for our algorithm for automatic font substitutions is a detailed
analysis of the main characteristics of all supported fonts. The results of this
analysis are stored in a database. Using this database, we may then compute
the distance between two fonts. In the case when a symbol ¢ is missing in
a font F7, it then suffices to find the closest font F5 that supports this symbol o.
Notice that the best substitution font may depend on the fonts which are
installed on your system.

In our database we both use discrete font characteristics (e.g. sans serif, small
capitals, handwritten, ancient, gothic, etc.) and continuous ones (e.g. italic slant,
height of an “x” symbol, etc.). Most characteristics are determined automatically
by analyzing the name of the font (for some of the discrete characteristics) or
individual glyphs (for the continuous ones). Some “font categories” (such as
handwritten, gothic, etc.) can be specified manually.

One of the most important font characteristics is the height of the “x” symbol
(with respect to the design size). When the font Fy borrows a symbol from the
font F» we first scale it by the quotient of these x-heights inside F} and F5. In
the example (1) this was done correctly, contrary to (2).

Other common font characteristics are also taken into account into our data-
base, such as the italic slant, the width of the “M” symbol, the ascent and descent
(above and above the “x” symbol), etc. In addition, we carefully analyze the
glyphs themselves in order to determine the horizontal and vertical stroke widths
for the “0” and “O” symbols, the average aspect-ratios of uppercase and lowercase
letters, and the average area of glyphs that is filled (how much ink will be used).

Our current implementation manages to find reasonably good font substitu-
tions. Notice that this may even be a problem on certain occasions. For instance,
in the example (3) below, the sans serif font is such a good match that it can
barely be distinguished from the serif font, thereby defeating its purpose:

This sample text is a bit too good. (3)

3 Poor man’s font emulation

Various font alterations such as Bold, Italic and SMALL CAPITALS can be emu-
lated in rather obvious ways, although with significant loss of quality:

— Emboldening can be achieved through the replacement of pixels by small
lines. In addition, it may be worth it to horizontally stretch certain char-
acters such as “m”. The appropriate stretching factors are highly font and
character dependent, but using the factors corresponding to the computer
modern font usually leads to reasonable results.

4 SECTION 3

— Italic fonts can be approximated by slanted fonts, which may be fur-
ther narrowed for a better result. The most important drawback of this
method is that it often falls short of producing the correct italic versions
of certain characters (a/a/a, {/f/f, g/g/g, etc.).

— Small capitals can be emulated by rescaling capitals using a factor that
roughly turns an “X” into an “x”. Instead of conserving the aspect-ratio,
we found it more pleasing to slightly widen characters as well. The trans-
formed version of “X” may also be taken slightly higher than “x”.

With more work, the above “poor man’s” strategies might be further enhanced.
For instance, the italic a might be better approximated using a shortened version
of d instead of a. In order to improve bold font emulation, we might also replace
pixels by small lines of cleverly adjusted lengths.

More elaborate emulation strategies might greatly benefit from a toolkit for
“retro-engineering” the design of existing fonts. For instance, given an outline,
we might want to determine the curve(s) followed by a “pen” and the size (or
shape) of the pen at each point of the curve. This would then make it easy to
produce high quality narrowed and widened versions of a font, as well as better
emboldened fonts, or variants in which the pen’s size is uniform (as needed for
sans serif and typewriter fonts). Another interesting question is whether it is
possible to automatically detect serifs and to add or remove them.

We have started to experiment with more elaborate emulation algorithms
for the generation of “blackboard bold” variants of glyphs. The easiest strategy
is to produce an outlined version of the possibly emboldened input glyph. The
standard AMS blackboard bold font uses this method (C, N, Q, R, Z), but we
consider the result suboptimal with respect to adding a single stroke (C, N, @,
R, Z). We implemented an algorithm for the detection of the part of contour to
be “double stroked”. We next embolden this part and hollow it out.

Regular Bold Italic Small Caps Blackboard Bold Mathematics
Optima Bold" /alic SMALLCAPS €, N, Q R Z x*+f(x,3-)
Cochin Bold™ /tali® SmALL Caps CN Q IR, Z «? +f(.x, bl—ic)
Chartrand |Bold Italic SMALL CAPS €, IN,Q, IR, Z x®+f(x,7—)

Essays1743 |Bold” Iradic" SMALL CAPS €, N,Q,R,Z" x*+ f(x,—)
Wepnr Textur | DO e S[AWLEAPS N QRS 2or(r55)

Chalkduster [Bold Iialic SWALL CAPS €, N, ®, R, Z x*+f(x,70-)
Comic Sans |Bold Italic SMALLCAPs C,N,Q,R,Z x*+f(x,—)

'b+c

Papyrus Bold italc SwALLCaPs C, N, Q,R,Z x*+f (x, ;)

Figure 1. Emulation of bold, italic, small capitals and blackboard bold.
* These declinations are already supported by the original font.

VIRTUAL CHARACTERS 5

4 Virtual characters

Missing glyphs can be generated automatically from existing ones using a com-
bination of the following main techniques, listed by increasing complexity:

— Superposition of several glyphs: + and — can be combined into +, and <
be obtained by juxtaposing two < symbols.

— Clipping rectangular areas: cutting +— and — in their midsts and com-
bining them yields +».

— Linear transformations: combining a crushed O and an I, we may produce
the Greek capital ®. Turning around —, we obtain 7.

— Simple graphical constructs such as circles and lines. This can for instance
be used for producing the missing half circle of C.

— Special ad hoc transformations that directly operate on the pixels of
a glyph (or on their outlines if possible). For instance, we designed a spe-
cial “curlyfication” method that turns < into < and < into <. Similarly,
we implemented a “flood fill” algorithm for transforming < into «.

In a similar vein, we need various querying mechanisms: all glyphs come with
logical and physical bounding boxes, but we sometimes may want to compute
the exact width of some stroke or obtain other kinds of information.

We developed a small language that can be used for defining new “virtual”
characters in terms of existing ones. The design of every new virtual glyph can
be regarded as a puzzle: finding a clever way to combine existing glyphs into the
desired one using the primitives from the language. Of course, we are looking
for robust solutions in the sense that they should work for any reasonable font
in which the required basic glyphs are available.

Let us consider a few examples. For the construction of arrows, it turns out
that the single guillemets < and > are often well suited for the heads (the rescaled
symbols < and > are acceptable fallbacks). The arrow bars are obtained from
the minus sign —, but the determination of an appropriate minus is non trivial.
For instance, the width of the dash - is usually too large, so we should avoid
using this symbol. The underscore is a better candidate; one may also cut the
plus sign into several pieces (avoiding the vertical stroke) and recombine them.

Assuming that we have an appropriate arrow bar and head, we may use the
following code for producing an actual arrow:

(rightarrow (right-fit arrowbar (align righthead arrowbar * 0.5)))

The align primitive is used to vertically align the arrow head at the center of
the arrow bar. The right-fit primitive is less basic and corresponds to sliding
the arrowhead from the right to the left until the arrow bar goes past the head
on its right. More direct ways to produce arrows turn out to be less robust. Left
and left-right arrows can be defined using

(leftarrow (left-flip rightarrow))
(leftrightarrow (join (part leftarrow * 0.5) (part rightarrow 0.5 *)))

6 SECTION 5

These definitions potentially take advantage of an existing rightarrow in the
base font. The part primitive performs two horizontal clippings between the
middle and the extremities, whereas join is used for superposition.

An interesting challenge is the emulation of Greek characters. This seems
intractable for the lowercase symbols, but is less hopeless for the capitals. For
instance, I" can be obtained by flipping the Roman L upside down and we already
mentioned how to obtain a reasonable ®. More interesting is the case of II,
which can be obtained from H by moving the horizontal bar to the top. However,
extracting this bar is not so easy in some fonts: consider K. For a robust method,
we therefore cut the H into pieces: we first extract ™ ** .. and recombine them
into II. We next take a tiny piece of the central bar, extend it to the desired
length, and move it to the top.

FTAOAENETOU QT =¥ =< LB
Optima FTAOAZNEYPWYQF =22k ->s<L e
Cochin FAOAZIIEZYPWVYQ=z ==z 2 Kk > s g »
Didot FAOAENXYXYOPPQF ===z - =< »
Cuprum FTAOGANZNIYOYQFs =8 KF->535LC0
Essays1743 TAOGAEZEINIXY PP Q3 =z s M 555 50
Am. Typewr. TAOAEZEIIZYDRPPQF =2 5 55k
Chalkboard [T AOGAZNZY PP QF =22k >5$GE 0
Challkduster FABAZNZY B TR T =222 25552
Papgrus FTANOANZMNEZYDPYWYQF =2 ->s5ss5s 58
Paper Cuts FTABAZNEYRTNF =2 H->s5ssFe

Figure 2. Emulation of various mathematical symbols in various fonts.

5 Rubber characters

One specific problem with mathematical fonts is the need for rubber charac-
ters. There are essentially four types of them: big operators (3>, [[, &), large

delimite;s ((())) {{{}}}, wide accents (*, 7, ~), and long arrows (———,

We produce these rubber characters using essentially the same techniques
as in the previous section. Especially horizontal and vertical scaling are very
useful, as well as cutting symbols into several parts and reassembling them
appropriately.

For instance, moderately large versions of the bracket (are obtained through
magnification, typically with a higher stretch factor in the vertical direction. For
larger sizes, this method produces results that are unacceptably thick. In that
case, we rather cut the bracket into a top, a bottom, and a tiny middle part.
We next repeat the middle part as many times as necessary in order to obtain
a bracket of the desired size.

CONCLUSION AND PERSPECTIVES 7

The use of scaling is a very delicate matter. For instance, in the case of square
brackets [(and their potential derivatives [and |), the point where horizontally
magnified versions get too fat is usually reached much earlier than for ordinary
or curly brackets. In the case of wide accents, we typically need very large
horizontal stretch factors, which yield unacceptable results. Magnified versions
of 3~ and [] typically look allright, but this is much less so for).

We are still in the process of fine tuning our implementation. For better
results, one major challenge is to develop magnification methods with a finer
control over the stroke widths. In particular, we need a reliable magnification
method that preserves all relevant widths.

— S| o) e
—_— e g % P[g (o)) {{to1}}
— — S | o) {a
—— S YT | (O fmy

s s o Lt i

Figure 3. Assorted rubber symbols from various fonts.

6 Conclusion and perspectives

After a moderate development investment, we are now able to use a lot of existing
fonts for mathematical typesetting. The quality of the obtained results ranges
from “better than nothing” to “professional typesetting quality”. Our virtual font
implementation can be regarded as a genuine “metafont”. Paradoxically, and
in comparison, Knuth’s METAFONT initiative [6] has essentially resulted in the
creation of a single mathematical font of extremely high quality.

One interesting question that occurred during our development of a virtual
mathematical metafont concerns the “essence of a font”: which font features
essentially contain all necessary information to reproduce the entire font, and
how? For instance, most mathematical symbols can be reconstructed from a few
basic glyphs: —, =, ~, <, <, C, » (or =), ., 0, °, (, [and {. Similarly, the Greek
capitals can essentially be reconstructed from E, H, O, X and Z. So what is the
real “fingerprint” of a font?

The development of more and better glyph emulation tools might be valuable
for font designers. On the one hand, such tools may be used to automatically
generate lots of glyphs. On the other hand, they allow designers to compare
their own handcrafted glyphs with automatically generated alternatives. This
may help to spot errors or increase consciousness about the distinctive features
of a personal design.

8 SECTION

For the moment, we developed all our font substitution and emulation tools
inside TEXy1acs- It might be worthwhile to conceive a separate library with even
more systematic tools for font analysis, retro-engineering and glyph emulation.
Such a library might come with command line tools for generating mathemat-
ically enriched fonts, emboldened or narrowed versions, etc. For the moment,
several of our algorithms are also limitated to operating on bitmaps. In the
future, it would be nice to systematically work with vector graphics only.

One final issue concerns the purpose of alternative fonts. For instance, cer-
tain fonts such as Chalkboard, Challkeduster, Essays1743, Viggivoo 3D
are mainly used in order to produce specific graphical effects: emulate text on
a chalkboard or on a blackboard, imitating a degraded retro-font, or producing
a 3D sensation. It can be questioned whether these purposes are always best
served through the use of a special font. For instance, handwriting might be
imitated better by dynamically generating many different versions of the same
letter. Better retro and 3D effects might be obtained by applying a suitable
graphical filter to an entire portion of text. This might even more be true in
the presence of fractions, square roots or geometric pictures.

Bibliography

[1] Massimiliano Gubinelli, Joris van der Hoeven, Frangois Poulain, and Denis Raux. GNU
TeXmacs: towards a scientific office suite. In Mathematical Software - ICMS 2014 -
4th International Congress, Seoul, South Korea, August 5-9, 2014. Proceedings, pages
562-569. 2014.

[2] T. Hoekwater, H. Henkel, and H. Hagen. Luatex. http://www.luatex.org/, 2007.

[3] B. Jackowski, J. Nowacki, and J. Ludwichowski. The TEX Gyre collection of fonts. http://
www.gust.org.pl/projects/e-foundry/tex-gyre/.

[4] J. Kew. Xetex. http://tug.org/xetex/, 2005.

[5] Donald E. Knuth. Computer Modern Typefaces, volume E of Computers and Typesetting.
Addison-Wesley, 1986.

[6] Donald E. Knuth. The METAFONTbook, volume C of Computers and Typesetting.
Addison-Wesley, 1986.

[7] STI Pub companies. STIX fonts project. http://www.stixfonts.org/, 2010.

http://www.luatex.org/
http://www.luatex.org/
http://www.luatex.org/
http://www.luatex.org/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://tug.org/xetex/
http://tug.org/xetex/
http://tug.org/xetex/
http://tug.org/xetex/
http://tug.org/xetex/
http://tug.org/xetex/
http://www.stixfonts.org/
http://www.stixfonts.org/
http://www.stixfonts.org/
http://www.stixfonts.org/

	1 Introduction
	2 Font analysis and font substitution
	3 Poor man's font emulation
	4 Virtual characters
	5 Rubber characters
	6 Conclusion and perspectives
	Bibliography

