
Even faster integer multiplication

DAVID HARVEY

School of Mathematics and Statistics
University of New South Wales

Sydney NSW 2052
Australia

Email: d.harvey@unsw.edu.au

JORIS VAN DER HOEVENa, GRÉGOIRE LECERFb

CNRS, Laboratoire d'informatique
École polytechnique

91128 Palaiseau Cedex
France

a. Email: vdhoeven@lix.polytechnique.fr
b. Email: lecerf@lix.polytechnique.fr

April 26, 2016

We give a new algorithm for the multiplication of n-bit integers in the bit complexity
model, which is asymptotically faster than all previously known algorithms. More
precisely, we prove that two n-bit integers can be multiplied in time O(n log n Klog∗n),
where K = 8 and log∗ n = min {k ∈ ℕ: log …k× log n ⩽ 1}. Assuming standard conjec-
tures about the distribution of Mersenne primes, we give yet another algorithm that
achieves K=4. The fastest previously known algorithm was due to Fürer, who proved
the existence of a complexity bound of the above form for some finite K. We show that
an optimised variant of Fürer's algorithm achieves only K = 16, suggesting that our
new algorithm is faster than Fürer's by a factor of 2log∗n.

KEYWORDS: Integer multiplication, algorithm, complexity bound, FFT
A.C.M. SUBJECT CLASSIFICATION: G.1.0 Computer-arithmetic, F.2.1 Number-theoretic
computations
A.M.S. SUBJECT CLASSIFICATION: 68W30, 68Q17, 68W40

1. INTRODUCTION

Let I(n) denote the cost of multiplying two n-bit integers in the deterministic multi-
tape Turing model [40] (commonly called “bit complexity”). Previously, the best known
asymptotic bound for I(n) was due to Fürer [18, 19]. He proved that there is a constant
K>1 such that

I(n) = O(n lognKlog∗n), (1.1)

where logx=lnx denotes the natural logarithm of x and log∗x the iterated logarithm, i.e.,

log∗x ≔ min{k∈ℕ: log∘k x⩽1}, (1.2)
log∘k ≔ log∘⋯

k×
∘ log,

for any x ∈ℝ with x > 0. The main contribution of this paper is a new algorithm that
yields the following improvement.

THEOREM 1.1. For n→∞ we have

I(n) = O(n logn8log
∗n).

1

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68Q17&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68Q17&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68Q17&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search

Fürer suggested several methods to minimise the value of K in his algorithm, but
did not give an explicit bound for K. In section 7 of this paper, we outline an optimised
variant of Fürer's algorithm that achieves K=16. We do not know how to obtain K<16
using Fürer's approach. This suggests that the new algorithm is faster than Fürer's by a
factor of 2log

∗n.
The idea of the new algorithm is remarkably simple. Given two n-bit integers, we

split them into chunks of exponentially smaller size, say around log n bits, and thus
reduce to the problem of multiplying integer polynomials of degree O(n / log n) with
coefficients of bit size O(log n). We multiply the polynomials using discrete Fourier
transforms (DFTs) over ℂ, with a working precision of O(log n) bits. To compute the
DFTs, we decompose them into “short transforms” of exponentially smaller length, say
length around log n, using the Cooley–Tukey method. We then use Bluestein's chirp
transform to convert each short transform into a polynomial multiplication problem
over ℂ, and finally convert back to integer multiplication via Kronecker substitution.
These much smaller integer multiplications are handled recursively.

The algorithm just sketched leads immediately to a bound of the form (1.1). A
detailed proof is given in section 4. We emphasise that the new method works directly
over ℂ, and does not need special coefficient rings with “fast” roots of unity, of the type
constructed by Fürer. Optimising parameters and keeping careful track of constants
leads to Theorem 1.1, which is proved in section 6. We also prove the following con-
ditional result in section 9, where we recall that a Mersenne prime is a prime of the form
p=2q −1.

THEOREM 1.2. Let 𝜋m(x) denote the number of Mersenne primes less than x. If the function
x↦𝜋m(x)/log logx is bounded both from above and from below on (3,∞), then

I(n) = O(n logn4log
∗n).

The assumption on𝜋m(x) is a weakening of the Lenstra–Pomerance–Wagstaff conjec-
ture on the distribution of Mersenne primes. The idea of the algorithm is to replace the
coefficient ring ℂ by the finite field 𝔽p[i]; we are then able to exploit fast algorithms for
multiplication modulo numbers of the form 2q −1.

An important feature of the new algorithms is that the same techniques are applic-
able in other contexts, such as polynomial multiplication over finite fields. Previously,
no Fürer-type complexity bounds were known for the latter problem. The details are
presented in the companion paper [24].

In the remainder of this section, we present a brief history of complexity bounds for
integer multiplication, and we give an overview of the paper and of our contribution.
More historical details can be found in books such as [21, Chapter 8].

1.1. Brief history and related work

Multiplication algorithms of complexity O(n2) in the number of digits n were already
known in ancient civilisations. The Egyptians used an algorithm based on repeated dou-
blings and additions. The Babylonians invented the positional numbering system, while
performing their computations in base 60 instead of 10. Precise descriptions of multipli-
cation methods close to the ones that we learn at school appeared in Europe during the
late Middle Ages. For historical references, we refer to [52, Section II.5] and [39, 5].

2 EVEN FASTER INTEGER MULTIPLICATION

The first subquadratic algorithm for integer multiplication, with complexity
O(nlog3/log2), was discovered by Karatsuba [31, 32, 33]. From a modern viewpoint,
Karatsuba's algorithm utilises an evaluation-interpolation scheme. The input integers
are cut into smaller chunks, which are taken to be the coefficients of two integer polyno-
mials; the polynomials are evaluated at several well-chosen points; their values at those
points are (recursively) multiplied; interpolating the results at those points yields the
product polynomial; finally, the integer product is recovered by pasting together the
coefficients of the product polynomial. This cutting-and-pasting procedure is sometimes
known as Kronecker segmentation (see section 2.6).

Shortly after the discovery of Karatsuba's algorithm, which uses three evaluation
points, Toom generalised it so as to use 2 r − 1 evaluation points instead [54, 53], for
any r ⩾ 2. This leads to the bound I(n) = O(nlog(2r−1)/log r) for fixed r. Letting r grow
slowly with n, he also showed that I(n)=O(n c logn/log2

p
) for some constant c>1, and he

remarked that one may take c=32. The algorithm was adapted to the Turing model by
Cook [10] and is now known as Toom–Cook multiplication. Cook also proved that one
may indeed take c=32 in the complexity estimate. The next improvement was obtained
by Schönhage [47] by working modulo several numbers of the form 2k − 1 instead of
using several polynomial evaluation points. Knuth claimed that an even better com-
plexity bound could be achieved by suitably adapting Toom's method [34, Section 4.3.3,
Exercise 5].

The next step towards even faster integer multiplication was the rediscovery of the
fast Fourier transform (FFT) by Cooley and Tukey [11] (essentially the same algorithm
was already known to Gauss [28]). The FFT yields particularly efficient algorithms for
evaluating and interpolating polynomials on certain special sets of evaluation points.
For example, if R is a ring in which 2 is invertible, and if 𝜔∈R is a principal 2k-th root
of unity (see section 2.2 for detailed definitions), then the FFT permits evaluation and
interpolation at the points 1,𝜔,…,𝜔2k−1 using only O(k 2k) ring operations in R. Conse-
quently, if P and Q are polynomials in R[X] whose product has degree less than 2k, then
the product PQ can be computed using O(k2k) ring operations as well.

In [50], Schönhage and Strassen presented two FFT-based algorithms for integer mul-
tiplication. In both algorithms, they first use Kronecker segmentation to convert the
problem to multiplication of integer polynomials. They then embed these polynomials
into R[X] for a suitable ring R and multiply the polynomials by using FFTs over R. The
first algorithm takes R = ℂ and 𝜔 = exp(2 π i / 2k), and works with finite-precision
approximations to elements of ℂ. Multiplications in ℂ itself are handled recursively,
by treating them as integer multiplications (after appropriate scaling). The second algo-
rithm, popularly known as the Schönhage–Strassen algorithm, takes R=ℤ/mℤ where
m = 22k + 1 is a Fermat number. This algorithm is the faster of the two, achieving the
bound I(n) = O(n log n log log n). It benefits from the fact that 𝜔 = 2 is a principal
2k+1-th root of unity in R, and that multiplications by powers of 𝜔 can be carried out
efficiently, as they correspond to simple shifts and negations. At around the same time,
Pollard pointed out that one can also work with R = ℤ/m ℤ where m is a prime of
the form m= a 2k+1, since then R∗ contains primitive 2k-th roots of unity [41] (although
he did not give a bound for I(n)).

Schönhage and Strassen's algorithm remained the champion for more than thirty
years, but was recently superseded by Fürer's algorithm [18]. In short, Fürer managed
to combine the advantages of the two algorithms from [50], to achieve the bound I(n)=
O(n log n 2O(log∗n)). Fürer's algorithm is based on the ingenious observation that the

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 3

ring R = ℂ[X] / (X2r−1 + 1) contains a small number of “fast” principal 2r-th roots of
unity, namely the powers of X, but also a large supply of much higher-order roots of
unity inherited from ℂ. To evaluate an FFT over R, he decomposes it into many “short”
transforms of length at most 2r, using the Cooley–Tukey method. He evaluates the short
transforms with the fast roots of unity, pausing occasionally to perform “slow” mul-
tiplications by higher-order roots of unity (“twiddle factors”). A slightly subtle point
of the construction is that we really need, for large k, a principal 2k-th root of unity 𝜔∈R
such that 𝜔2k−r=X.

In [15] it was shown that the technique from [41] to compute modulo suitable prime
numbers of the form m=a 2k+1 can be adapted to Fürer's algorithm. Although the com-
plexity of this algorithm is essentially the same as that of Fürer's algorithm, this method
has the advantage that it does not require any error analysis for approximate numerical
operations in ℂ.

Date Authors Time complexity
<3000 BC Unknown [39] O(n2)
1962 Karatsuba [31, 32] O(nlog3/log2)

1963* Toom [54, 53] O(n25 logn/log2
p

)

1966 Schönhage [47] O(n2 2logn/log2
p

(logn)3/2)

1969* Knuth [34] O(n2 2logn/log2
p

logn)
1971 Schönhage–Strassen [50] O(n logn log logn)
2007 Fürer [18] O(n logn2O(log∗n))
2014 This paper O(n logn8log

∗n)
Table 1.1. Historical overview of known complexity bounds for n-bit integer multiplication.
* It should be noted that Toom only proved that M(n)=O(n c logn/log2

p
) for some constant c>1, but

he remarked that one could take c=32. Similarly, Knuth's improved bound was only stated as an
exercise with indications on how to prove it in the proposed solution.

1.2. Our contributions and outline of the paper
Throughout the paper, integers are assumed to be handled in the standard binary rep-
resentation. For our computational complexity results, we assume that we work on a
Turing machine with a finite but sufficiently large number of tapes [40]. With some
work, it can be verified that three tapes actually suffice for the implementation of the
algorithms in this paper. Nevertheless, the seven tape machine of [49] is more conve-
nient. The Turing machine model is very conservative with respect to the cost of memory
access, which is pertinent from a practical point of view for implementations of FFT algo-
rithms. Nevertheless, other models for sequential computations could be considered [48,
20]. For practical purposes, parallel models might be more appropriate, but we will not
consider these in this paper. Occasionally, for polynomial arithmetic over abstract rings,
we will also consider algebraic complexity measures [8, Chapter 4].

In section 2, we start by recalling several classical techniques for completeness and
later use: sorting and array transposition algorithms, discrete Fourier transforms (DFTs),
the Cooley–Tukey algorithm, FFT multiplication and convolution, Bluestein's chirp
transform, and Kronecker substitution and segmentation. In section 3, we also provide
the necessary tools for the error analysis of complex Fourier transforms. Most of these
tools are standard, although our presentation is somewhat ad hoc, being based on fixed
point arithmetic.

4 EVEN FASTER INTEGER MULTIPLICATION

In section 4, we describe a simplified version of the new integer multiplication algo-
rithm, without any attempt to minimise the aforementioned constant K. As mentioned in
the sketch above, the key idea is to reduce a given DFT over ℂ to a collection of “short”
transforms, and then to convert these short transforms back to integer multiplication by
a combination of Bluestein's chirp transform and Kronecker substitution.

The complexity analysis of Fürer's algorithm and the algorithm from section 4
involves functional inequalities which contain post-compositions with logarithms and
other slowly growing functions. In section 5, we present a few systematic tools for
analysing these types of inequalities. For more information on this quite particular kind
of asymptotic analysis, we refer the reader to [46, 16].

In section 6, we present an optimised version of the algorithm from section 4, proving
in particular the bound I(n)=O(n logn 8log

∗n) (Theorem 1.1), which constitutes the main
result of this paper. In section 7, we outline a similar complexity analysis for Fürer's
algorithm. Even after several optimisations of the original algorithm, we were unable to
attain a bound better than I(n)=O(n logn16log

∗n). This suggests that the new algorithm
outperforms Fürer's algorithm by a factor of 2log

∗n.
This speedup is surprising, given that the short transforms in Fürer's algorithm

involve only shifts, additions and subtractions. The solution to the paradox is that Fürer
has made the short transforms too fast. Indeed, they are so fast that they make a neg-
ligible contribution to the overall complexity, and his computation is dominated by the
“slow” twiddle factor multiplications. In the new algorithm, we push more work into
the short transforms, allowing them to get slightly slower; the quid pro quo is that we
avoid the factor of two in zero-padding caused by Fürer's introduction of artificial “fast”
roots of unity. The optimal strategy is actually to let the short transforms dominate the
computation, by increasing the short transform length relative to the coefficient size.
Fürer is unable to do this, because in his algorithm these two parameters are too closely
linked. To underscore just how far the situation has been inverted relative to Fürer's
algorithm, we point out that in our presentation we can get away with using Schön-
hage–Strassen for the twiddle factor multiplications, without any detrimental effect on
the overall complexity.

We have chosen to base most of our algorithms on approximate complex arithmetic.
Instead, following [41] and [15], we might have chosen to use modular arithmetic. In
section 8, we will briefly indicate how our main algorithm can be adapted to this setting.
This variant of our algorithm presents several analogies with its adaptation to polyno-
mial multiplication over finite fields [24].

The question remains whether there exists an even faster algorithm than the algo-
rithm of section 6. In an earlier paper [17], Fürer gave another algorithm of complexity
O(n log n 2O(log∗n)) under the assumption that there exist sufficiently many Fermat
primes, i.e., primes of the form Fm = 22m + 1. It can be shown that a careful optimi-
sation of this algorithm yields the bound I(n) = O(n log n 4log

∗n). Unfortunately, odds
are high that F4 is the largest Fermat prime. In section 9, we present an algorithm that
achieves the bound I(n)=O(n logn 4log

∗n) under the more plausible conjecture that there
exist sufficiently many Mersenne primes (Theorem 1.2). The main technical ingredient
is a variant of an algorithm of Crandall and Fagin [12] that permits efficient multipli-
cation modulo 2q −1, despite q not being divisible by a large power of two.

It would be interesting to know whether the new algorithms could be useful in prac-
tice. We have written a prototype implementation of the algorithm from section 8 in the
MATHEMAGIX system [30]. This both enabled us to check the correctness of our method
and to observe running times close to C n log n for a suitable constant C. However, our

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 5

implementation is an order of magnitude slower than the GMP library [23]. It should
be possible to significantly reduce this gap through code optimisation and by adjusting
the thresholds and algorithms for higher practical efficiency. But we doubt that even
such a highly optimised implementation of the new algorithm will be competitive in the
near future. Nevertheless, the variant for polynomial multiplication over finite fields
presented in [24] seems to be a promising avenue for achieving speedups in practical
computations. Recent work confirms this suspicion [25].

Notations. We use Hardy's notations f ≺ g for f = o(g), and f ≍ g for f = O(g) and
g=O(f). The symbol ℝ⩾ denotes the set of non-negative real numbers, and ℕ denotes
{0,1, 2,…}. We will write lgn≔⌈logn/log2⌉.

Acknowledgments. We would like to thank the anonymous referees for their detailed
reading and comments.

2. SURVEY OF CLASSICAL TOOLS

This section recalls basic facts on Fourier transforms and related techniques used in
subsequent sections. For more details and historical references we refer the reader to
standard books on the subject such as [2, 8, 21, 44].

2.1. Arrays and sorting
In the Turing model, we have available a fixed number of linear tapes. An n1 × ⋯ × nd
array Mi1,…,id of b-bit elements is stored as a linear array of n1⋯ nd b bits. We generally
assume that the elements are ordered lexicographically by (i1, …, id), though this is just
an implementation detail.

What is significant from a complexity point of view is that occasionally we must
switch representations, to access an array (say 2-dimensional) by “rows” or by
“columns”. In the Turing model, we may transpose an n1 × n2 matrix of b-bit elements
in time O(b n1 n2 lgmin (n1, n2)), using the algorithm of [4, Appendix]. Briefly, the idea
is to split the matrix into two halves along the “short” dimension, and transpose each
half recursively.

We will also require more complex rearrangements of data, for which we resort to
sorting. Suppose that X is a totally ordered set, whose elements are represented by bit
strings of length b, and suppose that we can compare elements of X in time O(b). Then
an array of n elements of X may be sorted in time O(b n lgn) using merge sort [35], which
can be implemented efficiently on a Turing machine.

2.2. Discrete Fourier transforms
Let R be a commutative ring with identity and let n⩾1. An element 𝜔∈R is said to be a
principal n-th root of unity if 𝜔n=1 and

∑
k=0

n−1

(𝜔i)k=0 (2.1)

for all i∈{1,…,n −1}. In this case, we define the discrete Fourier transform (or DFT) of an
n-tuple a=(a0,…,an−1)∈Rn with respect to 𝜔 to be DFT𝜔(a)= â=(â0,…, ân−1)∈Rn where

âi ≔ a0+a1𝜔i+⋯+an−1𝜔(n−1)i.

6 EVEN FASTER INTEGER MULTIPLICATION

That is, âi is the evaluation of the polynomial A(X)≔a0+a1X+⋯+an−1Xn−1 at 𝜔i.
If 𝜔 is a principal n-th root of unity, then so is its inverse 𝜔−1=𝜔n−1, and we have

DFT𝜔−1(DFT𝜔(a)) = na.

Indeed, writing b≔DFT𝜔−1(DFT𝜔(a)), the relation (2.1) implies that

bi=∑
j=0

n−1

âj𝜔−ji=∑
j=0

n−1

∑
k=0

n−1

ak𝜔j(k−i)=∑
k=0

n−1

ak∑
j=0

n−1

𝜔j(k−i)=∑
k=0

n−1

ak (n𝛿i,k)=nai,

where 𝛿i,k=1 if i=k and 𝛿i,k=0 otherwise.

Remark 2.1. In all of the new algorithms introduced in this paper, we actually work over
a field, whose characteristic does not divide n. In this setting, the concept of principal
root of unity coincides with the more familiar primitive root of unity. The more general
“principal root” concept is only needed for discussions of other algorithms, such as the
Schönhage–Strassen algorithm or Fürer's algorithm.

2.3. The Cooley–Tukey FFT
Let 𝜔 be a principal n-th root of unity and let n = n1 n2 where 1 < n1 < n. Then 𝜔n1 is
a principal n2-th root of unity and𝜔n2 is a principal n1-th root of unity. Moreover, for any
i1∈{0,…,n1−1} and i2∈{0,…,n2−1}, we have

âi1n2+i2 = ∑
k1=0

n1−1

∑
k2=0

n2−1

ak2n1+k1𝜔(k2n1+k1)(i1n2+i2)

= ∑
k1=0

n1−1

𝜔k1i2(((((((((((((((((((∑k2=0
n2−1

ak2n1+k1(𝜔n1)k2i2))))))))))))))))))) (𝜔n2)k1i1. (2.2)

If 𝒜1 and 𝒜2 are algorithms for computing DFTs of length n1 and n2, we may use (2.2) to
construct an algorithm 𝒜1⊙𝒜2 for computing DFTs of length n as follows.

For each k1∈{0,…,n1−1}, the sum inside the brackets corresponds to the i2-th coeffi-
cient of a DFT of the n2-tuple (a0n1+k1,…,a(n2−1)n1+k1)∈Rn2 with respect to 𝜔n1. Evaluating
these inner DFTs requires n1 calls to 𝒜2. Next, we multiply by the twiddle factors 𝜔k1i2,
at a cost of n operations in R. (Actually, fewer than n multiplications are required, as
some of the twiddle factors are equal to 1. This optimisation, while important in practice,
has no asymptotic effect on the algorithms discussed in this paper.) Finally, for each
i2∈{0,…,n2−1}, the outer sum corresponds to the i1-th coefficient of a DFT of an n1-tuple
in Rn1 with respect to 𝜔n2. These outer DFTs require n2 calls to 𝒜1.

Denoting by FR(n) the number of ring operations needed to compute a DFT of length
n, and assuming that we have available a precomputed table of twiddle factors, we
obtain

FR(n1n2) ⩽ n1FR(n2)+n2FR(n1)+n.

For a factorisation n=n1⋯nd, this yields recursively

FR(n) ⩽ ∑
i=1

d n
ni
FR(ni)+(d−1)n. (2.3)

The corresponding algorithm is denoted 𝒜1⊙⋯⊙𝒜d. The ⊙ operation is neither com-
mutative nor associative; the above expression will always be taken to mean (⋯((𝒜1⊙
𝒜2)⊙𝒜3)⊙⋯)⊙𝒜d.

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 7

Let ℬ be the butterfly algorithm that computes a DFT of length 2 by the formula
(a0,a1)↦(a0+a1,a0−a1). Then ℬ⊙k≔ℬ⊙⋯⊙ℬ computes a DFT of length n≔2k in time
FR(2k)=O(kn). Algorithms of this type are called fast Fourier transforms (or FFTs).

The above discussion requires several modifications in the Turing model. Assume
that elements of R are represented by b bits.

First, for 𝒜1⊙𝒜2, we must add a rearrangement cost of O(b n lgmin(n1,n2)) to effi-
ciently access the rows and columns for the recursive subtransforms (see section 2.1). For
the general case𝒜1⊙⋯⊙𝒜d, the total rearrangement cost is bounded by O(∑ib n lgni)=
O(bn lgn).

Second, we will sometimes use non-algebraic algorithms to compute the subtrans-
forms, so it may not make sense to express their cost in terms of FR. The relation (2.3)
therefore becomes

F(n) ⩽ ∑
i=1

d n
ni
F(ni)+(d−1)nmR+O(bn lgn), (2.4)

where F(n) is the (Turing) cost of a transform of length n over R, and where mR is the cost
of a single multiplication in R.

Finally, we point out that 𝒜1⊙𝒜2 requires access to a table of twiddle factors 𝜔i1i2,
ordered lexicographically by (i1, i2), for 0⩽ i1<n1, 0⩽ i2<n2. Assuming that we are given
as input a precomputed table of the form 1, 𝜔, …, 𝜔n−1, we must show how to extract
the required twiddle factor table in the correct order. We first construct a list of triples
(i1, i2, i1 i2), ordered by (i1, i2), in time O(n lg n); then sort by i1 i2 in time O(n lg2 n) (see
section 2.1); then merge with the given root table to obtain a table (i1, i2,𝜔i1i2), ordered by
i1 i2, in time O(n (b+lgn)); and finally sort by (i1, i2) in time O(n lgn (b+lgn)). The total
cost of the extraction is thus O(n lgn(b+lgn)).

The corresponding cost for 𝒜1 ⊙ ⋯ ⊙ 𝒜d is determined as follows. Assuming that
the table 1, 𝜔, …, 𝜔n−1 is given as input, we first extract the subtables of (n1 ⋯ ni)-th
roots of unity for i = d − 1, …, 2 in time O((n1⋯ nd + ⋯ + n1 n2) (b + lg n)) = O(n (b +
lgn)). Extracting the twiddle factor table for the decomposition (n1⋯ ni−1)×ni then costs
O(n1⋯ni lgn(b+lgn)); the total over all i is again O(n lgn(b+lgn)).

Remark 2.2. An alternative approach is to compute the twiddle factors directly in the
correct order. When working over ℂ, as in section 3, this requires a slight increase in
the working precision. Similar comments apply to the root tables used in Bluestein's
algorithm in section 2.5.

2.4. Fast Fourier multiplication
Let 𝜔 be a principal n-th root of unity in R and assume that n is invertible in R. Consider
two polynomials A = a0 + ⋯ + an−1 Xn−1 and B = b0 + ⋯ + bn−1 Xn−1 in R[X]. Let C =
c0+⋯+ cn−1Xn−1 be the polynomial defined by

c ≔ 1
n DFT𝜔−1(DFT𝜔(a)DFT𝜔(b)),

where the product of the DFTs is taken pointwise. By construction, we have ĉ= â b̂, which
means that C(𝜔i)=A(𝜔i)B(𝜔i) for all i∈{0,…,n − 1}. The product S= s0+⋯+ sn−1Xn−1

of A and B modulo Xn−1 also satisfies S(𝜔i)=A(𝜔i)B(𝜔i) for all i. Consequently, ŝ= â b̂,
s=DFT𝜔−1(ŝ)/n= c, whence C=S.

8 EVEN FASTER INTEGER MULTIPLICATION

For polynomials A, B∈R[X] with degA< n and deg B< n, we thus obtain an algo-
rithm for the computation of AB modulo Xn −1 using at most 3FR(n)+O(n) operations
in R. Modular products of this type are also called cyclic convolutions. If deg (A B) < n,
then we may recover the product AB from its reduction modulo Xn −1. This multiplica-
tion method is called FFT multiplication.

If one of the arguments (say B) is fixed and we want to compute many products A B
(or cyclic convolutions) for different A, then we may precompute DFT𝜔(b), after which
each new product AB can be computed using only 2FR(n)+O(n) operations in R.

2.5. Bluestein's chirp transform
We have shown above how to multiply polynomials using DFTs. Inversely, it is possible
to reduce the computation of DFTs — of arbitrary length, not necessarily a power of two
— to polynomial multiplication [3], as follows.

Let 𝜔 be a principal n-th root of unity. For simplicity we assume that n is even, and
that there exists some 𝜂∈R with 𝜂2=𝜔. Consider the sequences

fi≔𝜂i2, gi≔𝜂−i2.

Then 𝜔ij= fi fj gi− j, so for any a∈Rn we have

âi=∑
j=0

n−1

aj𝜔ij= fi∑
j=0

n−1

(aj fj) gi− j. (2.5)

Also, since n is even,
gi+n=𝜂−(i+n)2=𝜂−i2−n2−2ni=𝜂−i2𝜔−(n

2+i)n= gi.

Now let F≔ f0 a0+⋯+ fn−1 an−1Xn−1, G≔ g0+⋯+ gn−1Xn−1 and C≔ c0+⋯+ cn−1Xn−1≡
FG modulo Xn −1. Then (2.5) implies that âi= fi ci for all i∈{0,…,n−1}. In other words,
the computation of a DFT of even length n reduces to a cyclic convolution product of the
same length, together with O(n) additional operations in R. Notice that the polynomial
G is fixed and independent of a in this product.

The only complication in the Turing model is the cost of extracting the fi in the correct
order, i.e., in the order 1, 𝜂, 𝜂4, 𝜂9, …, 𝜂(n−1)2, given as input a precomputed table 1, 𝜂,
𝜂2, …, 𝜂2n−1. We may do this in time O(n lg n (b + lg n)) by applying the strategy from
section 2.3 to the pairs (i, i2mod2n) for 0⩽ i<n. Similar remarks apply to the gi.

Remark 2.3. It is also possible to give variants of the new multiplication algorithms in
which Bluestein's transform is replaced by a different method for converting DFTs to
convolutions, such as Rader's algorithm [43].

2.6. Kronecker substitution and segmentation
Multiplication in ℤ[X] may be reduced to multiplication in ℤ using the classical tech-
nique of Kronecker substitution [21, Corollary 8.27]. More precisely, let d > 0 and n > 0,
and suppose that we are given two polynomials A,B∈ℤ[X] of degree less than d, with
coefficients Ai and Bi satisfying |Ai| ⩽ 2n and |Bi| ⩽ 2n. Then for the product C = A B we
have |Ci|⩽22n+lgd. Consequently, the coefficients of C may be read off the integer product
C(2N)=A(2N)B(2N) where N≔2n+lgd+2. Notice that the integers |A(2N)| and |B(2N)|
have bit length at most d N, and the encoding and decoding processes have complexity
O(dN).

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 9

The inverse procedure is Kronecker segmentation. Given n > 0 and d > 0, and non-
negative integers a < 2n and b < 2n, we may reduce the computation of c ≔ a b to the
computation of a product C ≔ A B of two polynomials A, B ∈ℤ[X] of degree less than
d, and with |Ai| < 2k and |Bi| < 2k where k≔⌈n/d⌉. Indeed, we may cut the integers into
chunks of k bits each, so that a=A(2k), b=B(2k) and c=C(2k). Notice that we may recover
c from C using an overlap-add procedure in time O(d (k+ lg d)) =O(n+ d lg d). In our
applications, we will always have d=O(n/lgn), so that O(n+d lgd)=O(n).

Kronecker substitution and segmentation can also be used to handle Gaussian inte-
gers (and Gaussian integer polynomials), and to compute cyclic convolutions. For
example, given polynomials A,B∈ℤ[i][X]/(Xd−1)with |Ai|, |Bi|⩽2n, then for C=A B we
have |Ci|⩽22n+lgd, so we may recover C from the cyclic Gaussian integer product C(2N)=
A(2N)B(2N)∈(ℤ/(2dN −1)ℤ)[i], where N≔2 n+lgd+2. In the other direction, suppose
that we wish to compute a b for some a, b∈(ℤ/(2dn − 1)ℤ)[i]. We may assume that the
“real” and “imaginary” parts of a and b are non-negative, and so reduce to the problem
of multiplying A, B ∈ ℤ[i][X] / (Xd − 1), where a = A(2n) and b = B(2n), and where
the real and imaginary parts of Ai,Bi∈ℤ[i] are non-negative and have at most n bits.

3. FIXED POINT COMPUTATIONS AND ERROR BOUNDS

In this section, we consider the computation of DFTs over ℂ in the Turing model. Ele-
ments of ℂ can only be represented approximately on a Turing machine. We describe
algorithms that compute DFTs approximately, using a fixed-point representation for ℂ,
and we give complexity bounds and a detailed error analysis for these algorithms. We
refer the reader to [7] for more details about multiple precision arithmetic.

For our complexity estimates we will freely use the standard observation that I(k n)=
O(I(n)) for any fixed constant k, since the multiplication of two integers of bit length⩽k n
reduces to k2 multiplications of integers of bit length ⩽n, for any fixed k⩾1.

3.1. Fixed point numbers
We will represent fixed point numbers by a signed mantissa and a fixed exponent. More
precisely, given a precision parameter p⩾4, we denote byℂp the set of complex numbers
of the form z=mz 2−p, where mz=u+ v i for integers u and v satisfying u2+ v2⩽22p, i.e.,
|z|⩽1. We write ℂp2e for the set of complex numbers of the form u2e, where u∈ℂp and
e∈ℤ; in particular, for z∈ℂp 2e we always have |z|⩽2e. At every stage of our algorithms,
the exponent e will be determined implicitly by context, and in particular, the exponents
do not have to be explicitly stored or manipulated.

In our error analysis of numerical algorithms, each z∈ℂp2e is really the approxima-
tion of some genuine complex number z̃∈ℂ. Each such z comes with an implicit error
bound 𝜀z⩾0; this is a real number for which we can guarantee that |z − z̃| ⩽ 𝜀z. We also
define the relative error bound for z by 𝜌z≔𝜀z/2e. We finally denote by 𝜖≔21−p⩽1/8 the
“machine accuracy”.

Remark 3.1. Interval arithmetic [38] (or ball arithmetic [29, Chapter 3]) provides a sys-
tematic method for tracking error bounds by storing the bounds along with z. We will
use similar formulas for the computation of 𝜀z and 𝜌z, but we will not actually store the
bounds during computations.

10 EVEN FASTER INTEGER MULTIPLICATION

3.2. Basic arithmetic
In this section we give error bounds and complexity estimates for fixed point addition,
subtraction and multiplication, under certain simplifying assumptions. In particular, in
our DFTs, we only ever need to add and subtract numbers with the same exponent.
We also give error bounds for fixed point convolution of vectors; the complexity of this
important operation is considered later.

For x∈ℝ, we define the “round towards zero” function ⌊x⌉ by ⌊x⌉≔ ⌊x⌋ if x⩾0 and
⌊x⌉≔ ⌈x⌉ if x⩽0. For x, y∈ℝ, we define ⌊x+ y i⌉≔ ⌊x⌉ + ⌊y⌉ i. Notice that |⌊z⌉| ⩽ |z| and
|⌊z⌉−z|⩽ 2√ for any z∈ℂ.

PROPOSITION 3.2. Let z, u ∈ ℂp 2e. Define the fixed point sum and difference z ∔ u, z −. u ∈
ℂp2e+1 by mz±. u≔⌊(mz±mu)/2⌉. Then z∔u and z−. u can be computed in time O(p), and

𝜌z±. u ⩽ 𝜌z+𝜌u
2 +𝜖.

Proof. We have

|(z±. u)− (z±u)|
2e+1 = |||||⌊⌊⌊⌊⌊mz±mu

2 ⌉⌉⌉⌉⌉− mz±mu
2 |||||2−p⩽ 2√ ⋅2−p⩽𝜖

and
|(z±u)− (z̃± ũ)|

2e+1 ⩽ 𝜀z+𝜀u

2e+1 = 𝜌z+𝜌u
2 ,

whence |(z±. u)− (z̃± ũ)|/2e+1⩽(𝜌z+𝜌u)/2+𝜖. □

PROPOSITION 3.3. Let z∈ℂp2ez and u∈ℂp2eu. Define the fixed point product z×. u∈ℂp2ez+eu

by mz×. u≔⌊2−p mz mu⌉. Then z×. u can be computed in time O(I(p)), and

1+𝜌z×. u ⩽ (1+𝜌z)(1+𝜌u)(1+𝜖).

Proof. We have

|z×. u−zu|/2ez+eu=|⌊2−p mz mu⌉−2−p mz mu| 2−p⩽ 2√ ⋅2−p⩽𝜖
and

|zu− z̃ ũ| ⩽ |z| |u− ũ|+ |z− z̃| (|u|+ |ũ−u|)
⩽ 2ez𝜀u+2eu𝜀z+𝜀z𝜀u

= (𝜌u+𝜌z+𝜌z𝜌u)2ez+eu.

Consequently, |z×. u− z̃ ũ|/2ez+eu⩽𝜌z+𝜌u+𝜌z𝜌u+𝜖⩽(1+𝜌z)(1+𝜌u)(1+𝜖)−1. □

Proposition 3.3 may be generalised to numerical cyclic convolution of vectors as fol-
lows.

PROPOSITION 3.4. Let k⩾ 1 and n≔2k. Let z∈ (ℂp 2ez)n and u∈ (ℂp 2eu)n. Define the fixed
point convolution z∗. u∈(ℂp2ez+eu+k)n by

m(z∗. u)i≔⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊2−p−k ∑
i1+i2=i (modn)

mzi1
mui2⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉, 0⩽ i<n.

Then

max
i

(1+𝜌(z∗. u)i) ⩽ max
i

(1+𝜌zi)max
i

(1+𝜌ui)(1+𝜖).

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 11

Proof. Let ∗ denote the exact convolution, and write 𝜌z≔maxj 𝜌zj and 𝜌u≔maxj 𝜌uj. As
in the proof of Proposition 3.3, we obtain |(z∗. u)i − (z∗u)i|/2ez+eu+k⩽ 2√ ⋅2−p⩽𝜖 and

|(z∗u)i − (z̃∗ ũ)i| ⩽ ∑
i1+i2=i (modn)

|zi1ui2− z̃i1 ũi2|

⩽ (𝜌z+𝜌u+𝜌z𝜌u)2ez+eu+k.

The proof is concluded in the same way as Proposition 3.3. □

3.3. Precomputing roots of unity
Let ℍ≔{x+ y i∈ℂ: y⩾0} and ℍp≔{x+ y i∈ℂp: y⩾0}. Let √ :ℍ→ℍ be the branch of

the square root function such that ei𝜃
p

≔ei𝜃/2 for 0⩽𝜃⩽𝜋. Using Newton's method [7,
Section 3.5] and Schönhage–Strassen multiplication [50], we may construct a fixed point
square root function ⋅√ : ℍp →ℍp, which may be evaluated in time O(p log p log log p),
such that | z⋅√ − z√ |⩽𝜖 for all z∈ℍp. For example, we may first compute some u∈ℍ such
that |u − z√ | ⩽ 𝜖/4 and |u| ⩽ 1, and then take z⋅√ ≔ ⌊2p u⌉ 2−p; the desired bound follows
since 𝜖/4+ 2√ ⋅2−p⩽𝜖.

LEMMA 3.5. Let z∈ℍp, and assume that |z̃|=1 and 𝜌z⩽3/8. Then 𝜌 z⋅√ ⩽𝜌z+𝜖.

Proof. The mean value theorem implies that | z̃√ − z√ |⩽𝜀zmaxw∈D |1/(2 w√)| where D≔
{w∈ℍ: |w−z|⩽𝜀z}. For w∈D we have |w|⩾ |z̃|− |z̃−z|− |z−w|⩾1−3/8−3/8⩾1/4; hence
| z̃√ − z√ |⩽𝜀z=𝜌z. By construction | z⋅√ − z√ |⩽𝜖. We conclude that | z⋅√ − z̃√ |⩽𝜌z+𝜖. □

PROPOSITION 3.6. Let k ∈ ℕ and p ⩾ k, and let 𝜔 ≔ e2𝜋i/2k
. We may compute 1, 𝜔, 𝜔2, …,

𝜔2k−1∈ℂp, with 𝜌𝜔i⩽𝜖 for all i, in time O(2k p logp log logp).

Proof. It suffices to compute 1,𝜔,…,𝜔2k−1−1∈ℍp. Starting from 𝜔0=1 and 𝜔2k−2= i, for
each ℓ = k − 3, k − 4,…, 0, we compute 𝜔i2ℓ for i= 1, 3, …, 2k−ℓ−1 − 1 using 𝜔i2ℓ≔ 𝜔i2ℓ+1⋅p if
i<2k−ℓ−2 and 𝜔i2ℓ≔ i𝜔i2ℓ−2k−2

otherwise. Performing all computations with temporarily
increased precision p' ≔ p + lg p + 2 and corresponding 𝜖' ≔ 21−p', Lemma 3.5 yields
𝜌𝜔i ⩽ k 𝜖'⩽𝜖/4. This also shows that the hypothesis 𝜌𝜔i ⩽3/8 is always satisfied, since
𝜖/4⩽ 1/32⩽ 3/8. After rounding to p bits, the relative error is at most 𝜖/4+ 2√ ⋅ 2−p⩽
𝜖. □

3.4. Error analysis for fast Fourier transforms
A tight algorithm for computing DFTs of length n=2k⩾2 is a numerical algorithm that
takes as input an n-tuple a∈ (ℂp 2e)n and computes an approximation â∈ (ℂp 2e+k)n to
the DFT of a with respect to 𝜔=e2πi/n (or 𝜔=e−2πi/n in the case of an inverse transform),
such that

max
i

(1+𝜌âi) ⩽ max
i

(1+𝜌ai)(1+𝜖)3k−2.

We assume for the moment that any such algorithm has at its disposal all necessary root
tables with relative error not exceeding 𝜖. Propositions 3.2 and 3.3 directly imply the
following:

12 EVEN FASTER INTEGER MULTIPLICATION

PROPOSITION 3.7. The butterfly algorithmℬ that computes a DFT of length 2 using the formula
(a0,a1)↦(a0∔a1,a0−. a1) is tight.

Proof. We have 𝜌âi⩽(𝜌a0+𝜌a1)/2+𝜖⩽maxi𝜌ai+𝜖⩽(1+maxi𝜌ai)(1+𝜖)−1. □

PROPOSITION 3.8. Let k1, k2⩾1, and let 𝒜1 and 𝒜2 be tight algorithms for computing DFTs of
lengths 2k1 and 2k2. Then 𝒜1⊙𝒜2 is a tight algorithm for computing DFTs of length 2k1+k2.

Proof. The inner and outer DFTs contribute factors of (1+𝜖)3k1−2 and (1+𝜖)3k2−2, and by
Proposition 3.3 the twiddle factor multiplications contribute a factor of (1+𝜖)2. Thus

max
i

(1+𝜌âi)⩽max
i

(1+𝜌ai)(1+𝜖)(3k1−2)+2+(3k2−2)⩽max
i

(1+𝜌ai)(1+𝜖)3(k1+k2)−2. □

COROLLARY 3.9. Let k ⩾ 1. Then ℬ⊙k is a tight algorithm for computing DFTs of length 2k

over ℂp, whose complexity is bounded by O(2k k I(p)).

4. A SIMPLE AND FAST MULTIPLICATION ALGORITHM

In this section we give the simplest version of the new integer multiplication algorithm.
The key innovation is an alternative method for computing DFTs of small length. This
new method uses a combination of Bluestein's chirp transform and Kronecker substitu-
tion (see sections 2.5 and 2.6) to convert the DFT to a cyclic integer product in (ℤ/(2n' −
1)ℤ)[i] for suitable n'.

PROPOSITION 4.1. Let 1 ⩽ r ⩽ p. There exists a tight algorithm 𝒞r for computing DFTs of
length 2r over ℂp, whose complexity is bounded by O(I(2r p)+2r I(p)).

Proof. Let n≔2r, and suppose that we wish to compute the DFT of a∈ (ℂp 2e)n. Using
Bluestein's chirp transform (notation as in section 2.5), this reduces to computing a cyclic
convolution of suitable F∈(ℂp2e)[X]/(Xn−1) and G∈ℂp[X]/(Xn−1). We assume that
the fi and gi have been precomputed with 𝜌 fi, 𝜌gi⩽𝜀.

We may regard F' ≔ 2p−e F and G' ≔ 2p G as cyclic polynomials with complex
integer coefficients, i.e., as elements of ℤ[i][X] / (Xn − 1). Write F' = ∑i=0

n−1 Fi' Xi and
G' = ∑i=0

n−1 Gi' Xi, where Fi', Gi' ∈ ℤ[i] with |Fi'| ⩽ 2p and |Gi'| ⩽ 2p. Now we compute
the exact product H'≔F'G'∈ℤ[i][X]/(Xn −1) using Kronecker substitution. More pre-
cisely, we have |Hi'| ⩽ 22p+r, so it suffices to compute the cyclic integer product H'(2b)=
F'(2b)G'(2b) ∈ (ℤ/(2nb − 1)ℤ)[i], where b≔2 p+ r+2=O(p). Then H≔H' 2e−2p is the
exact convolution of F and G, and rounding H to precision p yields F∗. G∈(ℂp2e+r)[X]/
(Xn − 1) in the sense of Proposition 3.4. A final multiplication by fi yields the Fourier
coefficients âi∈ℂp2e+r.

To establish tightness, observe that 1 + 𝜌Fi ⩽ (1 + 𝜌ai) (1 + 𝜖)2 and 𝜌Gi ⩽ 𝜖, so Propo-
sition 3.4 yields 1 + 𝜌(F∗.G)i ⩽ (1 + 𝜌a) (1 + 𝜖)4 where 𝜌a ≔ maxi 𝜌ai; we conclude that
1+𝜌âi⩽(1+𝜌a) (1+𝜖)6. For r⩾3, this means that the algorithm is tight; for r⩽2, we may
take 𝒞r≔ℬ⊙r.

For the complexity, observe that the product in (ℤ/(2nb − 1) ℤ)[i] reduces to three
integer products of size O(n p). These have cost O(I(n p)), and the algorithm also per-
forms O(n) multiplications in ℂp, contributing the O(n I(p)) term. □

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 13

Remark 4.2. A crucial observation is that, for suitable parameters, the DFT algorithm
in Proposition 4.1 is actually faster than the conventional Cooley–Tukey algorithm of
Corollary 3.9. For example, if we assume that I(m) =m (logm)1+o(1), then to compute a
transform of length n over ℂp with n ∼ p, the Cooley–Tukey approach has complexity
n2 (log n)2+o(1), whereas Proposition 4.1 yields n2 (log n)1+o(1), an improvement by a
factor of roughly logn.

THEOREM 4.3. For n→∞, we have

I(n)
n lgn = O(((((((((((((((

I(lg2n)
lg2n lg lgn

+ I(lgn)
lgn lg lgn +1))))))))))))))). (4.1)

Proof. We first reduce our integer product to a polynomial product using Kronecker seg-
mentation (section 2.6). Splitting the two n-bit inputs into chunks of b≔lgn bits, we need
to compute a product of polynomials u,v∈ℤ[X] with non-negative b-bit coefficients and
degrees less than m≔⌈n/b⌉=O(n/lgn). The coefficients of h≔u v have O(lgn) bits, and
we may deduce the desired integer product h(2b) in time O(n).

Let k ≔ lg (2 m). To compute u v, we will use DFTs of length 2k = O(n/ lg n) over
ℂp, where p ≔ 2 b + 2 k + lg k + 8 = O(lg n). Zero-padding u to obtain a sequence
(u0,…,u2k−1)∈(ℂp2b)2k, and similarly for v, we compute the transforms û, v̂∈(ℂp2b+k)2k

with respect to 𝜔≔e2πi/2k
as follows.

Let r≔lglgn and d≔⌈k/r⌉=O(lgn/lglgn). Write k=r1+⋯+rd with ri≔r for i⩽d−1
and rd≔ k − (d − 1) r⩽ r. We use the algorithm 𝒜≔𝒜1⊙⋯⊙𝒜d (see section 2.3), where
for 1⩽ i⩽d−1 we take 𝒜i to be the tight algorithm 𝒞r for DFTs of length 2r≍lgn given by
Proposition 4.1, and where 𝒜d is ℬ⊙rd as in Corollary 3.9. In other words, we split the k
usual radix-2 layers of the FFT into groups of r layers, handling the transforms in each
group with the Bluestein–Kronecker reduction, and then using ordinary Cooley–Tukey
for the remaining rd layers.

We next compute the pointwise products ĥi ≔ ûi v̂i ∈ ℂp 22b+2k, and then apply an
inverse transform 𝒜' defined analogously to 𝒜. A final division by 2k (which is really
just an implicit adjustment of exponents) yields approximations hi∈ℂp22b+2k.

Since 𝒜 and 𝒜' are tight by Propositions 3.8, 4.1 and Corollary 3.9, we have 1+𝜌ûi⩽
(1 + 𝜖)3k−2, and similarly for v̂. Thus 1 + 𝜌ĥi

⩽ (1 + 𝜖)6k−3, so 1 + 𝜌hi ⩽ (1 + 𝜖)9k−5 ⩽
exp(9 k 𝜖)⩽ exp(25+lg k−p)⩽1+26+lg k−p after the inverse transform (since exp x⩽1+2 x
for x⩽1). In particular, 𝜀hi=22b+2k𝜌hi⩽22b+2k+lg k−p+6⩽1/4, so we obtain the exact value
of hi by rounding to the nearest integer.

Now we analyse the complexity. Using Proposition 3.6, we first compute a table of
roots 1, 𝜔, …, 𝜔2k−1 in time O(2k p log p log log p) = O(n lg n), and then extract the
required twiddle factor tables in time O(2k k (p+ k))=O(n lgn) (see section 2.3). For the
Bluestein reductions, we may extract a table of 2r+1-th roots in time O(2k p)=O(n), and
then rearrange them as required in time O(2r r (p+ r))=O(lg2n lg lgn) (see section 2.5).
These precomputations are then all repeated for the inverse transforms.

By Corollary 3.9, Proposition 4.1 and (2.4), each invocation of 𝒜 (or 𝒜') has cost

O((d−1)2k−r(I(2r p)+2r I(p))+2k−rd2rd rd I(p)+(d−1)2k I(p)+p2k k)
= O((d−1)2k−r I(2r p)+(d+ rd)2k I(p)+p2k k)

= O((((((((((n
lgn lg lgn I(lg2n)+ n

lg lgn I(lgn)+n lgn)))))))))).

14 EVEN FASTER INTEGER MULTIPLICATION

The cost of the O(2k) pointwise multiplications is subsumed within this bound. □

It is now a straightforward matter to recover Fürer's bound.

THEOREM 4.4. For some constant K>1, we have

I(n) = O(n lgnKlog∗n).

Proof. Let T(n)≔ I(n)/(n lgn) for n⩾2. By Theorem 4.3, there exists x0⩾2 and C>1 such
that

T(n) ⩽ C(T(lg2n)+T(lgn)+1)

for all n > x0. Let Φ(x) ≔ 4 log2 x for x ∈ ℝ, x > 1. Increasing x0 if necessary, we may
assume that Φ(x)⩽x−1 for x>x0, so that the function Φ∗(x)≔min{j∈ℕ:Φ∘j(x)⩽x0} is
well-defined. Increasing C if necessary, we may also assume that T(n)⩽3C for all n⩽x0.

We prove by induction on Φ∗(n) that T(n) ⩽ (3 C)Φ∗(n)+1 for all n. If Φ∗(n) = 0,
then n ⩽ x0, so the bound holds. Now suppose that Φ∗(n) ⩾ 1. Since lg2 n ⩽ Φ(n), we
have Φ∗(lg n)⩽Φ∗(lg2 n)⩽Φ∗(Φ(n))=Φ∗(n)− 1, so by induction T(n)⩽C (3C)Φ∗(n)+
C(3C)Φ∗(n)+C⩽(3C)Φ∗(n)+1.

Finally, sinceΦ(Φ(x))≺logx, we haveΦ∗(x)⩽2 log∗x+O(1), so T(n)=O(Klog∗n) for
K≔(3C)2. □

5. LOGARITHMICALLY SLOW RECURRENCE INEQUALITIES

This section is devoted to developing a framework for handling recurrence inequalities,
similar to (4.1), that appear in subsequent sections.

Let Φ: (x0, ∞) → ℝ be a smooth increasing function, for some x0 ∈ℝ. We say that
Φ∗: (x0,∞)→ℝ⩾ is an iterator of Φ if Φ∗ is increasing and if

Φ∗(x) = Φ∗(Φ(x))+1 (5.1)

for all sufficiently large x.
For instance, the standard iterated logarithm log∗ defined in (1.2) is an iterator of log.

An analogous iterator may be defined for any smooth increasing functionΦ:(x0,∞)→ℝ
for which there exists some 𝜎⩾x0 such that Φ(x)⩽x−1 for all x>𝜎. Indeed, in that case,

Φ∗(x) ≔ min{k∈ℕ:Φ∘k(x)⩽𝜎}

is well-defined and satisfies (5.1) for all x>𝜎. It will sometimes be convenient to increase
x0 so that Φ(x)⩽x−1 is satisfied on the whole domain of Φ.

We say that Φ is logarithmically slow if there exists an ℓ∈ℕ such that

(log∘ℓ∘Φ∘exp∘ℓ)(x) = logx+O(1) (5.2)

for x → ∞. For example, the functions log (2 x), 2 log x, (log x)2 and (log x)log logx are
logarithmically slow, with ℓ=0,1,2, 3 respectively.

LEMMA 5.1. LetΦ:(x0,∞)→ℝ be a logarithmically slow function. Then there exists 𝜎⩾x0 such
that Φ(x)⩽x−1 for all x>𝜎. Consequently all logarithmically slow functions admit iterators.

Proof. The case ℓ=0 is clear. For ℓ⩾1, let Ψ≔log∘Φ∘exp. By induction Ψ(x)⩽x−1 for
large x, so Φ(x)⩽exp(logx−1)=x/e⩽x−1 for large x. □

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 15

In this paper, the main role played by logarithmically slow functions is to measure
size reduction in multiplication algorithms. In other words, multiplication of objects of
size n will be reduced to multiplication of objects of size n', where n' ⩽Φ(n) for some
logarithmically slow function Φ(x). The following result asserts that, from the point of
view of iterators, such functions are more or less interchangeable with logx.

LEMMA 5.2. For any iterator Φ∗ of a logarithmically slow function Φ, we have

Φ∗(x) = log∗x+O(1).

Proof. First consider the case where ℓ = 0 in (5.2), i.e., assume that |Φ(x)− log x| ⩽C for
some constant C>0 and all x>x0. Increasing x0 and C if necessary, we may assume that
Φ∗(x)=Φ∗(Φ(x))+1 for all x>x0, and that 2e2C>x0.

We claim that
y
2 ⩽x⩽2y ⟹ logy

2 ⩽Φ(x)⩽2 logy (5.3)

for all y>4 e2C. Indeed, if y
2⩽x⩽2y, then

1
2 logy⩽log y

2 −C⩽Φ(y
2)⩽Φ(x)⩽Φ(2y)⩽log(2y)+C⩽2logy.

Now, given any x>4e2C, let k≔min{k∈ℕ: log∘k x⩽4e2C}, so k⩾1. For any j=0,…,
k−1 we have log∘j x>4e2C, so k-fold iteration of (5.3), starting with y=x, yields

log∘j x
2 ⩽Φ∘j(x)⩽2 log∘j x (0⩽ j⩽k).

Moreover this shows that Φ∘j(x)>2e2C>x0 for 0⩽ j<k, so Φ∗(x)=Φ∗(Φ∘k(x))+k. Since
Φ∘k(x)⩽2 log∘k x⩽8e2C and k=log∗x+O(1), we obtain Φ∗(x)=log∗x+O(1).

Now consider the general case ℓ ⩾ 0. Let Ψ ≔ log∘ℓ ∘ Φ ∘ exp∘ℓ, so that Ψ∗ ≔ Φ∗ ∘
exp∘ℓ is an iterator of Ψ. By the above argument Ψ∗(x) = log∗ x+O(1), and so Φ∗(x) =
Ψ∗(log∘ℓx)=log∗(log∘ℓx)+O(1)=log∗x− ℓ+O(1)=log∗x+O(1). □

The next result, which generalises and refines the argument of Theorem 4.4, is our
main tool for converting recurrence inequalities into actual asymptotic bounds for solu-
tions. We state it in a slightly more general form than is necessary for the present paper,
anticipating the more complicated situation that arises in [24].

PROPOSITION 5.3. Let K > 1, B⩾ 0 and ℓ ∈ℕ. Let x0⩾ exp∘ℓ(1), and let Φ: (x0, ∞)→ℝ be
a logarithmically slow function such that Φ(x)⩽x−1 for all x>x0. Then there exists a positive
constant C (depending on x0, Φ, K, B and ℓ) with the following property.

Let 𝜎 ⩾x0 and L>0. Let 𝒮⊆ℝ, and let T: 𝒮→ℝ⩾ be any function satisfying the following
recurrence. First, T(y)⩽L for all y∈𝒮, y⩽𝜎. Second, for all y∈𝒮, y>𝜎, there exist y1,…,yd∈𝒮
with yi⩽Φ(y), and weights 𝛾1,…,𝛾d⩾0 with ∑i𝛾i=1, such that

T(y) ⩽ K((((((((((((1+ B
log∘ℓy))))))))))))∑i=1

d

𝛾i T(yi)+L.

Then we have T(y)⩽CLKlog∗y−log∗𝜎 for all y∈𝒮, y>𝜎.

Proof. Let 𝜎, L, 𝒮 and T(x) be as above. Define Φ𝜎
∗(x)≔min{k∈ℕ:Φ∘k(x)⩽𝜎} for x>x0.

We claim that there exists r∈ℕ, depending only on x0 and Φ, such that

Φ𝜎
∗(x) ⩽ log∗x− log∗𝜎+ r (5.4)

16 EVEN FASTER INTEGER MULTIPLICATION

for all x> 𝜎. Indeed, let Φ∗(x) ≔min {j∈ℕ:Φ∘j(x) ⩽ x0}. First suppose 𝜎 > x0, so that
Φ∗(𝜎)⩾1. For any x>𝜎, we have Φ∘(Φ𝜎

∗(x)−1)(x)>𝜎, so

Φ∘(Φ𝜎
∗(x)−1+Φ∗(𝜎)−1)(x)⩾Φ∘(Φ∗(𝜎)−1)(𝜎)>x0,

and hence Φ∗(x) > Φ𝜎
∗(x) + Φ∗(𝜎) − 2. This last inequality also clearly holds if 𝜎 = x0

(since 0>−2). By Lemma 5.2 we obtain Φ𝜎
∗(x)⩽Φ∗(x)−Φ∗(𝜎)+O(1)= log∗x − log∗𝜎 +

O(1).
Define a sequence of real numbers E1,E2,… by the formula

Ej ≔ {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
1+B if j⩽ r+ℓ,
1+B/exp∘(j−r−ℓ−1)(1) if j> r+ℓ.

We claim that

1+B/log∘ℓx ⩽ EΦ𝜎
∗(x) (5.5)

for all x>𝜎. Indeed, let j≔Φ𝜎
∗(x). If j⩽ r+ℓ then (5.5) holds as x>𝜎 ⩾ x0⩾exp∘ℓ(1). If

j> r+ℓ then log∗x⩾ j− r by (5.4), so x⩾exp∘(j−r−1)(1) and hence log∘ℓx⩾exp∘(j−r−ℓ−1)(1).
Now let y∈𝒮. We will prove by induction on j≔Φ𝜎

∗(y) that

T(y) ⩽ E1⋯Ej L(K j+⋯+K+1)

for all y>x0. The base case j≔0, i.e., y⩽𝜎, holds by assumption. Now assume that j⩾1,
so y>𝜎. By hypothesis there exist y1,…,yd∈𝒮, yi⩽Φ(y), and 𝛾1,…,𝛾d⩾0 with ∑i𝛾i=1,
such that

T(y) ⩽ KEj∑
i
𝛾i T(yi)+L.

Since Φ𝜎
∗(yi)⩽Φ𝜎

∗(Φ(y))=Φ𝜎
∗(y)−1, we obtain

T(y) ⩽ KEj∑
i
𝛾i (E1⋯Ej−1L(K j−1+⋯+K+1))+L

= E1⋯Ej L(K j+⋯+K2+K)+L
⩽ E1⋯Ej L(K j+⋯+K2+K+1).

Finally, the infinite product

E≔∏
j⩾1

Ej⩽(1+B)r+ℓ∏
k⩾0

((((((((((((1+ B
exp∘k(1)))))))))))))

certainly converges, so we have T(y)⩽E L K j+1/(K−1) for y>x0. Setting C≔E Kr+1/(K−
1), by (5.4) we obtain T(y)⩽CLKlog∗y−log∗𝜎 for all y>𝜎. □

6. EVEN FASTER MULTIPLICATION

In this section, we present an optimised version of the new integer multiplication algo-
rithm. The basic outline is the same as in section 4, but our goal is now to minimise the
“expansion factor” at each recursion level. The necessary modifications may be sum-
marised as follows.

• Since Bluestein's chirp transform reduces a DFT to a complex cyclic convolution,
we take the basic recursive problem to be complex cyclic integer convolution, i.e.,
multiplication in (ℤ/(2n −1)ℤ)[i], rather than ordinary integer multiplication.

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 17

• In multiplications involving one fixed operand, we reuse the transform of the
fixed operand.

• In a convolution of length n with input coefficients of bit size b, the size of the
output coefficients is 2 b + O(lg n), so the ratio of output to input size is 2 +
O((lg n)/b). We increase b from lg n to (lg n)2, so as to reduce the inflation ratio
from O(1) to 2+O(1/lgn).

• We increase the “short transform length” from lg n to (lg n)lg lgn+O(1). The com-
plexity then becomes dominated by the Bluestein–Kronecker multiplications,
while the contribution from ordinary arithmetic in ℂp becomes asymptotically
negligible. (As noted in section 1, this is precisely the opposite of what occurs
in Fürer's algorithm.)

We begin with a technical preliminary. To perform multiplication in (ℤ/(2n − 1) ℤ)[i]
efficiently using FFT multiplication, we need n to be divisible by a high power of two.
We say that an integer n⩾3 is admissible if 2𝜅(n) |n, where 𝜅(n)≔lgn − lg (lg2n)+1 (note
that 0⩽𝜅(n)⩽ lgn for all n⩾3). We will need a function that rounds a given n up to an
admissible integer. For this purpose we define 𝛼(n)≔⌈n/2𝜅(n)⌉ 2𝜅(n) for n⩾3. Note that
𝛼(n) may be computed in time O(lgn).

LEMMA 6.1. Let n⩾3. Then 𝛼(n) is admissible and

n⩽𝛼(n)⩽n+ 4n
lg2n

. (6.1)

Proof. We have n ⩽ 𝛼(n) ⩽ n + 2𝜅(n), which implies (6.1). Since n/2𝜅(n) ⩽ 2lgn−𝜅(n) and
𝜅(n) ⩽ lg n, we have ⌈n / 2𝜅(n)⌉ ⩽ 2lgn−𝜅(n) and thus 𝛼(n) ⩽ 2lgn, i.e., lg 𝛼(n) = lg n. In
particular 𝜅(𝛼(n))=𝜅(n), so 𝛼(n) is admissible. (In fact, one easily checks that 𝛼(n) is the
smallest admissible integer ⩾n). □

Remark 6.2. It is actually possible to drop the requirement that n be divisible by a high
power of two, by using the Crandall–Fagin method (see section 9). We prefer to avoid
this approach in this section, as it adds an unnecessary layer of complexity to the presen-
tation.

Now let n be admissible, and consider the problem of computing t ⩾ 1 products
u1v,…,ut v with u1,…,ut, v ∈ (ℤ/(2n −1)ℤ)[i], i.e., t products with one fixed operand.
Denote the cost of this operation by Ct(n). Our algorithm for this problem will perform
t+1 forward DFTs and t inverse DFTs, so it is convenient to introduce the normalisation

C(n) ≔ sup
t⩾1

Ct(n)
2 t+1 .

This is well-defined since clearly Ct(n) ⩽ t C1(n). Roughly speaking, C(n) may be
thought of as the notional cost of a single DFT.

The problem of multiplying k-bit integers may be reduced to the above problem by
using zero-padding, i.e., by taking n≔𝛼(2 k+ 1) and t≔1. Since 𝛼(2 k+ 1)=O(k) and
C1(n)⩽3C(n), we obtain I(k)⩽3C(O(k))+O(k). Thus it suffices to obtain a good bound
for C(n).

18 EVEN FASTER INTEGER MULTIPLICATION

The recursive step in the main multiplication algorithm involves computing “short”
DFTs via the Bluestein–Kronecker device. As pointed out in section 2.5, this leads to
a cyclic convolution with one fixed operand. To take advantage of the fixed operand,
let Bp,t(2r) denote the cost of computing t independent DFTs of length 2r over ℂp, and
let Bp(2r) ≔ supt⩾1Bp,t(2r)/(2 t + 1). Then we have the following refinement of Propo-
sition 4.1. As usual we assume that the necessary Bluestein root table has been precom-
puted.

PROPOSITION 6.3. Let r⩾3, and assume that 2r divides n'≔𝛼((2 p+r+2) 2r). Then there exists
a tight algorithm 𝒞r' for computing DFTs of length 2r over ℂp, with

Bp(2r) ⩽ C(n')+O(2r I(p)).

Proof. We use the same notation and algorithm as in the proof of Proposition 4.1, except
that in the Kronecker substitution we take b ≔ n'/2r ⩾ 2 p + r + 2, so that the resulting
integer multiplication takes place in (ℤ/(2n' − 1) ℤ)[i]. The proof of tightness is iden-
tical to that of Proposition 4.1 (this is where we use the assumption r ⩾ 3). For the
complexity bound, note that n' is admissible by construction, so for any t ⩾ 1 we have
Bp,t(2r) ⩽Ct(n') +O(t 2r I(p)). Here we have used the fact that G' is fixed over all these
multiplications. Dividing by 2 t+1 and taking suprema over t⩾1 yields the result. □

The next result gives the main recurrence satisfied by C(n) (compare with The-
orem 4.3).

THEOREM 6.4. There exists x0⩾3 and a logarithmically slow function Φ:(x0,∞)→ℝ with the
following property. For all admissible n>x0, there exists an admissible n'⩽Φ(n) such that

C(n)
n lgn ⩽ ((((((((((8+O((((((((((1

lg lgn)))))))))))))))))))) C(n')
n' lgn' +O(1). (6.2)

Proof. Let n be admissible and sufficiently large, and consider the problem of computing
t⩾ 1 products u1 v, …, ut v, for u1,…,ut, v∈ (ℤ/(2n −1)ℤ)[i]. Let k≔𝜅(n) ∼ lg n, so that
2k |n, and let b≔n/2k≍lg2n.

We cut the inputs into 2k chunks of size b, i.e., if w is one of the t+1 inputs, we write
w=w0+w1 2b+⋯+w2k−1 2(2

k−1)b, where wi∈ℤ[i], and where the real and imaginary parts
of wi have absolute value at most 2b. Thus |wi|⩽ 2√ ⋅2b<2b+1, and for any p⩾b+1we may
encode w as a polynomial W∈(ℂp2b+1)[X]/(X2k

−1).
We will multiply the desired (cyclic) polynomials by using DFTs of length 2k over

ℂp where p≔2 b+ 2 k+ lg k+ 10=O(lg2 n). We construct the DFTs in a similar way to
section 4. Let r≔(lg lg n)2 and d≔⌈k/r⌉ =O(lg n/(lg lg n)2). Write k= r1+⋯+ rd with
ri≔ r for i⩽ d − 1 and rd≔ k − (d − 1) r⩽ r. We use the tight algorithm 𝒜≔𝒜1⊙⋯⊙𝒜d,
where for 1⩽ i⩽d −1 we take 𝒜i to be the tight algorithm 𝒞r' for DFTs of length 2r given
by Proposition 6.3, and where 𝒜d is ℬ⊙rd as in Corollary 3.9. Thus, for the first d − 1
groups of r layers, we use Bluestein–Kronecker to reduce to complex integer convolution
of size n' ≔ 𝛼((2 p + r + 2) 2r), and the remaining layers are handled using ordinary
Cooley–Tukey. We write 𝒜' for the analogous inverse transform.

To check the hypothesis of Proposition 6.3, we observe that 2r |n' for sufficiently large
n, as n' is divisible by 2k' where k'≔lgn'− lg(lg2n')+1, and

2k'≍ n'
lg2n'

≍ (2p+ r+2)2r

lg2((2p+ r+2)2r)
≍ b2r

(lgb+ r)2≍
(lgn)2
(lg lgn)4 2

r≻2r.

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 19

Denote by D the cost of a single invocation of 𝒜 (or 𝒜'). By Corollary 3.9 and (2.4),
we have

D ⩽ (d−1)Bp,2k−r(2r)+O(2k−rd2rd rd I(p))+O(d2k I(p))+O(2k kb).

The last term is the rearrangement cost, and simplifies to O(n lg n). The second term
covers the invocations of 𝒜d, and simplifies to O(r2k I(p)), so is absorbed by the d2k I(p)
term. The first term covers the invocations of 𝒞r'. By definition Bp,2k−r(2r) ⩽ (2 ⋅ 2k−r +
1)Bp(2r), and since 2k−r≻lg lgn, Proposition 6.3 yields

Bp,2k−r(2r) ⩽ (2+O(1/lg lgn))2k−rC(n')+O(2k I(p)).

Thus

D ⩽ (2+O(1/lg lgn))d2k−rC(n')+O(d2k I(p))+O(n lgn).

We will use Schönhage–Strassen's algorithm for fixed point multiplications in ℂp.
Since p = O(lg2 n), we may take I(p) = O(lg2 n lg lg n lg lg lg n). Thus the d 2k I(p) term
becomes

O((((((((((((lgn
(lg lgn)2

n
lg2n

lg2n lg lgn lg lg lgn))))))))))))=O((((((((((n lgn lg lg lgn
lg lgn))))))))))=O(n lgn).

(We could of course use our algorithm recursively for these multiplications; however, it
turns out that Schönhage–Strassen is fast enough, and leads to simpler recurrences. In
fact, the algorithm asymptotically spends more time rearranging data than multiplying
in ℂp!)

Since (2 p+ r+ 2) 2r= (4 b+O(lg n)) 2r= (4+O(1/lg lg n)) b 2r, and since lg(b 2r) =
r+O(lg lgn)=(1+O(1/lg lgn)) r≻lg lgn, by Lemma 6.1 we have

n' = (4+O(1/lg lgn))b2r,
lgn' = (1+O(1/lg lgn)) r.

We also have k=lgn+O(lg lgn) and d=k/r+O(1), so

lgn = (1+O(1/lg lgn))k,
d = (1+O(1/lg lgn))k/r.

Thus

d2k−r= 4(2k b)d
(4b2r) =((((((((((4+O((((((((((1

lg lgn)))))))))))))))))))) n lgn
n' lgn' ,

and consequently

D ⩽ ((((((((((8+O((((((((((1
lg lgn)))))))))))))))))))) n lgn

n' lgn' C(n
')+O(n lgn).

To compute the desired t products, we must execute t+1 forward transforms and t
inverse transforms. For each product, we must also perform O(2k) pointwise multipli-
cations in ℂp, at cost O(2k I(p))=O(n lgn). As in the proof of Theorem 4.3, the cost of all
necessary root table precomputations is also bounded by O(2k I(p))=O(n lgn). Thus we
obtain

Ct(n) ⩽ (2 t+1)D+O(tn lgn).

Dividing by (2 t+1)n lgn and taking suprema yields the bound (6.2).

20 EVEN FASTER INTEGER MULTIPLICATION

The error analysis is almost identical to the proof of Theorem 4.3, the only difference
being that b is replaced by b+1. Denoting one of the t products by h∈(ℂp22b+2k+2)[X]/
(X2k

−1), we have 𝜌hi⩽26+lg k−p exactly as in Theorem 4.3. Thus 𝜀hi⩽22b+2k+lg k−p+8⩽1/4,
and again we obtain hi by rounding to the nearest integer.

Finally we show how to define Φ(x). We already observed that lg n'∼ r∼(lg lg n)2.
Thus there exists a constant C>0 such that logloglogn'⩽loglogloglogn+C for large n,
so we may take Φ(x)≔exp∘3(log∘4x+C). □

Now we may prove the main theorem announced in the Introduction.

Proof of Theorem 1.1. Let x0 and Φ(x) be as in Theorem 6.4. Increasing x0 if necessary,
by Lemma 5.1 we may assume that Φ(x)⩽x−1 for x>x0, and that x0⩾exp(exp(1)).

Let T(n)≔C(n)/(n lgn) for admissible n⩾3. By the theorem, there exist constants B,
L>0 such that for all admissible n>x0, there exists an admissible n'⩽Φ(n) with

T(n) ⩽ 8((((((((((1+ B
log logn))))))))))T(n')+L.

Increasing L if necessary, we may also assume that T(n) ⩽ L for all admissible n ⩽ x0.
Taking 𝒮 to be the set of admissible integers, we apply Proposition 5.3 with K≔8, 𝜎≔x0,
ℓ ≔ 2, and for each admissible n > x0 setting d ≔ 1, 𝛾1≔ 1, y ≔ n and y1≔ n' as above.
We conclude that T(n) = O(8log∗n), and hence C(n) = O(n lg n 8log

∗n) as n runs over
admissible integers. We already pointed out that I(k)⩽3C(O(k))+O(k). □

7. AN OPTIMISED VARIANT OF FÜRER'S ALGORITHM

As pointed out in the Introduction, Fürer proved that I(n) = O(n log n Klog∗n) for some
K > 1, but did not give an explicit bound for K. In this section we sketch an argument
showing that one may achieve K = 16 in Fürer's algorithm, by reusing tools from pre-
vious sections, especially section 6.

At the core of Fürer's algorithm is the ring R = ℂ[X] / (X2r−1 + 1), which contains
the principal 2r-th root of unity X. Note that R is a direct sum of 2r−1 copies of ℂ, and
hence not a field (for r ⩾ 2). A crucial observation is that X is a “fast” root of unity, in
the sense that multiplication by X and its powers can be achieved in linear time, as in
Schönhage–Strassen's algorithm. For any k> r, we need to construct a 2k−r-th root 𝜔 of
X, which is itself a 2k-th principal root of unity. We recall Fürer's construction of 𝜔 as
follows.

LEMMA 7.1. With R as above, let 𝜚=exp 2πi
2k and 𝜎=exp 2πi

2r . Then

𝜔 ≔ ∑
i=0

2r−1−1

𝜚2i+1 ∏j≠i (X−𝜎2 j+1)
∏j≠i (𝜎2i+1−𝜎2 j+1)

∈R

is a principal 2k-th root of unity with 𝜔2k−r=X. The coefficients of 𝜔 have absolute value ⩽1.

Proof. See [19, Section 4]. □

As our basic recursive problem, we will consider multiplication in (ℤ/(2n+1)ℤ)[i],
where n is divisible by a high power of two. We will refer to the last property as “admis-
sibility”, but we will not define it precisely. We write Ct(n) for the cost of t ⩾ 1 such
products with one fixed argument, and C(n)≔supt⩾1Ct(n)/(2 t+1) for the normalised
cost, exactly as in section 6.

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 21

Fürer worked with ℤ/(2n + 1) ℤ rather than (ℤ/ (2n + 1) ℤ)[i], but, since we are
interested in constant factors, and since the recursive multiplication step involves multi-
plication of complex quantities, it simplifies the exposition to work systematically with
complexified objects everywhere.

For suitable parameters r and k, we will encode elements of (ℤ/ (2n + 1) ℤ)[i] as
(nega)cyclic polynomials in R[Y] / (Y2k + 1), where R ≔ ℂ[X] / (X2r−1 + 1) as above.
We choose the parameters later; for now we require only that 2k+r−2 divides n and that
b≔n/2k+r−2⩾lgn (so that the coefficients are not too small).

The encoding proceeds as follows. Given a ∈ℤ/(2n + 1) ℤ, we split a into 2k parts
a0,…,a2k−1 of n/2k bits. Each ai is cut into 2r−2 even smaller pieces ai,0,…, ai,2r−2−1 of b bits.
Then a is encoded as

ã ≔ ∑
i=0

2k−1

∑
j=0

2r−2−1

ai, j Xj Yi,

and an element u= x+ y i ∈ (ℤ/(2n+1)ℤ)[i] is encoded as ũ≔ x̃+ ỹ i. (Notice that the
coefficients of Xj are zero for 2r−2⩽ j<2r−1; this zero-padding is the price Fürer pays for
introducing artificial roots of unity.)

We represent complex coefficients by elements of ℂp2e for a suitable precision para-
meter p. The exponent e varies during the algorithm, as explained in [19]; nevertheless,
additions and subtractions only occur for numbers with the same exponent, as in the
algorithms from sections 4 and 6.

Given u, v ∈ (ℤ/ (2n + 1) ℤ)[i], to successfully recover the product u v from the
polynomial product ũ ṽ∈R[Y]/(Y2k+1), we must choose p⩾2 b+k+r+h, where h is an
allowance for numerical error. Certainly r⩽k⩽lgn, and, as shown by Fürer, we may also
take h=O(lgn) (an analogous conclusion is reached in sections 4 and 6). Thus we may
assume that p=2b+O(lgn).

We must now show how to compute a product ũ ṽ, for ũ, ṽ∈R[Y]/(Y2k + 1). Fürer
handles these types of multiplications using “half-DFTs”, i.e., DFTs that evaluate at
odd powers of 𝜂, where 𝜂 ∈ R is a principal 2k+1-th root of unity such that 𝜂2k+1−r = X
(Lemma 7.1). To keep terminology and notation consistent with previous sections, we
prefer to make the substitution U(X, Y) ≔ ũ(X, 𝜂 Y), i.e., writing ũ = ∑i=0

2k−1 ũi(X) Yi,
we put U ≔∑i (ũi 𝜂i) Yi, and similarly for ṽ and V. This reduces the problem to com-
puting the product U V in R[Y] / (Y2k

− 1). The change of variable imposes a cost of
O(2kmR), where mR is the cost of a multiplication in R.

So now consider a product U V, where U, V ∈ R[Y] / (Y2k
− 1). Let 𝜔 ≔ 𝜂2, so that

𝜔2k−r = X. Let d ≔ ⌈k / r⌉, and write k = r1 + ⋯ + rd with ri ≔ r for i ⩽ d − 1 and rd ≔
k − (d − 1) r ⩽ r. For each i, let 𝒜i be the algorithm for DFTs of length 2ri that applies
the usual Cooley–Tukey method, taking advantage of the fast 2ri-th root of unity X2r−ri.
The complexity of 𝒜i is O(2ri+r ri p), since it performs O(2ri ri) linear-time operations on
objects of bit size O(2r p). Let D be the complexity of the algorithm 𝒜≔𝒜1⊙⋯⊙𝒜d for
DFTs of length 2k over R. Then (2.4) yields

D ⩽ O(((((((((((((((((((∑i=1
d

2k−ri2ri+r ri p)))))))))))))))))))+⌈⌈⌈⌈⌈⌈⌈
k
r⌉⌉⌉⌉⌉⌉⌉2kmR+O(n lgn),

The first term is bounded by O(d2k2r rp)=O((2k+r p)k)=O(n lgn), since p=O(b).

22 EVEN FASTER INTEGER MULTIPLICATION

Let us now consider the second term ⌈k / r⌉ 2k mR, which describes the cost of the
twiddle factor multiplications. This term turns out to be the dominant one. Both Kro-
necker substitution and FFT multiplication may be considered for multiplication in R,
but it turns out that Kronecker substitution is faster (a similar phenomenon was noted
in Remark 4.2). So we reduce multiplication in R to multiplication in (ℤ/(2n'+1)ℤ)[i]
where n' ⩾ 2r−1 (2 p + r + 2) is admissible and divisible by 2r−1. For any reasonable
definition of admissibility we then have n' = (1 + o(1)) 2r p, provided that r is some-
what smaller than p. (In the interests of brevity, we will not specify the o(1) terms for
the remainder of the argument. They can all be controlled along the lines of section 6.)
Most of the twiddle factors are reused many times, so we will assume that mR = (2 +
o(1))C(n'), where the factor 2 counts the two (rather than three) DFTs needed for each
multiplication of size n'. The term of interest then becomes

⌈⌈⌈⌈⌈⌈⌈k
r⌉⌉⌉⌉⌉⌉⌉2kmR = (2+o(1)) r+lgp

r
2k+r pk
n' lgn' C(n

').

Since p=2b+O(lgn)=(2+O(lgn
b))b and 2k+r b=4n, this yields

D ⩽ (16+o(1))((((((((((1+O((((((((((lgn
b)))))))))))))))))))) r+lgp

r
n lgn

n' lgn' C(n
')+O(n lgn).

To minimise the leading constant, we must choose b to grow faster than lg n, and r to
grow faster than lg p. For example, taking r≔(lg lg n)2 and k≔ lg n − r − lg (lg2 n) leads
to b = 4 n/2k+r ≍ lg2 n and lg p ≍ lg b ≍ lg lg n. The function mapping n to n' is then
bounded by a logarithmically slow function, and a similar argument to section 6 shows
that I(n)=O(n logn16log

∗n).

8. FAST MULTIPLICATION USING MODULAR ARITHMETIC

Shortly after Fürer's algorithm appeared, De et al [15] presented a variant based on mod-
ular arithmetic that also achieves the complexity bound I(n)=O(n lognKlog∗n) for some
K>1. Roughly speaking, they replace the coefficient ring ℂ with the field ℚp of p-adic
numbers, for a suitable prime p. In this context, working to “finite precision” means
performing computations in ℤ/p𝜆ℤ, where 𝜆⩾1 is a precision parameter.

The main advantage of this approach is that the error analysis becomes trivial; indeed
ℤ/p𝜆ℤ is a ring (unlike our ℂp), and arithmetic operations never lead to precision loss
(unless one divides by p, which never happens in these algorithms). The main disadvan-
tage is that there are certain technical difficulties associated with finding an appropriate
p; this is discussed in section 8.2 below.

The aim of this section is to sketch an analogue of the algorithm of section 6 that
achieves I(n) = O(n log n 8log

∗n) using modular arithmetic instead of ℂ. We assume
familiarity with p-adic numbers, referring the reader to [22] for an elementary introduc-
tion.

8.1. Sketch of the algorithm
For the basic problem, we take multiplication in ℤ/(2n − 1)ℤ, where n is admissible (in
the sense of section 6) and where one of the arguments is fixed over t⩾1 multiplications.
As before, we take k≔𝜅(n), and cut the inputs into chunks of b≔ n/2k =O(lg2 n) bits.
Thus we reduce to multiplying polynomials in ℤ[X] / (X2k

− 1) with coefficients of at
most b bits. The coefficients of the product have at most 2b+k bits.

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 23

Let p be a prime such that p=1(mod2k), so that ℚp contains a primitive 2k-th root of
unity 𝜔. The problem of finding such p and 𝜔 is discussed in the next section; for now
we assume only that lgp=O(lgn). We may then embed the multiplication problem into
ℚp[X]/(X2k

− 1), and use DFTs with respect to 𝜔 to compute the product. On a Turing
machine, we cannot represent elements of ℚp exactly, so we perform all computations in
ℤ/p𝜆ℤ where

𝜆 ≔ ⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈ 2b+k
(lgp)−1⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉.

This choice ensures that lg(p𝜆) ⩾ 2 b+ k, so knowledge of the product in (ℤ/p𝜆ℤ)[X]/
(X2k

−1) determines it unambiguously in ℤ[X]/(X2k
−1).

To compute each DFT, we first use the Cooley–Tukey algorithm to decompose it into
“short transforms” of length 2r, where r ≔ (lg lg n)2. (As in section 6, there are also
residual transforms of length 2rd for some rd ⩽ r, whose contribution to the complexity
is negligible.) Multiplications in ℤ/ p𝜆 ℤ, such as the multiplications by twiddle fac-
tors, are handled using Schönhage–Strassen's algorithm, with the divisions by p𝜆 being
reduced to multiplication via Newton's method. We then use Bluestein's algorithm to
convert each short transform to a cyclic convolution of length 2r over ℤ/p𝜆ℤ, and apply
Kronecker substitution to convert this to multiplication in ℤ/(2n' − 1)ℤ, where n' is the
smallest admissible integer exceeding 2r (2 𝜆 lgp+r). This multiplication is then handled
recursively.

Now, since lg p = O(lg n), lg p ⩾ k, b ≍ lg2 n and k = O(lg n), we have 𝜆 = (2 +
O(1/lg n)) b/lg p, and hence n'= (4+O(1/lg lg n)) b 2r, just as in section 6. The rest of
the complexity analysis follows exactly as in the proof of Theorem 6.4, except for the
computation of p and 𝜔, which is considered below.

Remark 8.1. The role of the precision parameter 𝜆 is to give some extra flexibility
regarding the choice of p. If there was an efficient way to find a prime p = 1 (mod 2k)
larger than 22b+k (but not too much larger), and an efficient way to find a suitable 2k-
th root of unity modulo p, then we could always take 𝜆 ≔ 1 and obtain an algorithm
working directly over the finite field 𝔽p.

8.2. Computing suitable p and ω
Given a transform length 2k for k⩾1, our aim is to find a prime p such that p=1(mod2k),
i.e., such that 2k divides p−1. Denote by p0(k) the smallest such prime.

Heath-Brown has conjectured that p0(k)=O(2k k2) [26], but given the current state of
knowledge in number theory, we are only able to prove a result of the following type.

LEMMA 8.2. For all sufficiently large k we have p0(k)<26k, and we may compute p0(k) in time
O(25k kO(1)).

Proof. This is a special case of Linnik's theorem [36, 37], which states that there exist
constants C and L such that for any a, b ∈ ℕ with gcd (a, b) = 1, there exists a prime
number p= a (mod b) with p< C bL. The best currently known estimate L⩽ 5.2 for L is
due to Xylouris [56]. Applying this result for a=1 and b=2k, we get the bound p<26k for
large enough k. The complexity bound follows by testing 2k+1, 2 ⋅ 2k+1, 3 ⋅ 2k+1,… for
primality until we find p, using a polynomial time primality test [1]. □

24 EVEN FASTER INTEGER MULTIPLICATION

The difficulty with this result — already noted in [15] — is that the time required to
find p greatly exceeds the time bound we are trying to prove for I(n)!

To avoid this problem, De et al suggested using a multivariate splitting, i.e., by
encoding each integer as a polynomial in ℤ[X1, …, Xm] for suitable m, say m ⩾ 7. One
then uses m-dimensional DFTs to multiply the polynomials. Since the transform length
is shorter, one can get away with a smaller p. Unfortunately, this introduces further
zero-padding and leads to a larger value of K, ruining our attempt to achieve the bound
O(n logn8log

∗n).
On the other hand, we note that the problem only really occurs at the top recursion

level. Indeed, at deeper recursion levels, there is exponentially more time available at the
previous level to compute p. So one possible workaround is to use a different, sufficiently
fast algorithm at the top level, such as Fürer's algorithm, and then switch to the algo-
rithm sketched in section 8.1 for the remaining levels. In this way one still obtains the
bound O(n logn 8log

∗n), and asymptotically almost all of the computation is done using
the algorithm of section 8.1.

If one insists on avoiding ℂ entirely, there are still many choices: one could use the
algorithm of De et al at the top level, or use a multivariate version of the algorithm of
section 8.1. One could even use the Schönhage–Strassen algorithm, whose main recur-
sive step yields the bound I(n)=O(n1/2 I(n1/2)+n logn); applying this three times gives
I(n)=O(n7/8 I(n1/8)+n logn), and then to multiply integers with n1/8 bits, one can find a
suitable prime using Lemma 8.2 in time O(n3/4+o(1))=O(n).

Another way to work around the problem is to assume the generalised Riemann
hypothesis (GRH). De et al pointed out that under GRH, it is possible to find a suit-
able prime efficiently using a randomised algorithm. Here we show that, under GRH,
we can even use deterministic algorithms.

LEMMA 8.3. Assume GRH. Then p0(k) = O(22k k2), and we may compute p0(k) in time
O(2k kO(1)).

Proof. The first bound is given in [27], and the complexity bound follows similarly to the
proof of Lemma 8.2. □

To use this result, we must modify the algorithm of section 8.1 slightly. Choose a con-
stant C > 3 so that we can compute p0(k) in time O(2k kC), as in Lemma 8.3. Increase
the coefficient size from (lg n)2 to (lg n)C−1, and change the definition of admissibility
accordingly. The transform length then decreases to 2k = O(n/(lg n)C−1), and the cost
of computing p decreases to only O(n lgn). The rest of the complexity analysis is essen-
tially unchanged; the result is an algorithm with complexity O(n log n 8log

∗n), working
entirely with modular arithmetic, in which the top recursion level does not need any
special treatment.

Finally, we consider the computation of a suitable approximation to a 2k-th root of
unity in ℚp.

LEMMA 8.4. Given k,𝜆⩾1 and a prime p=1(mod2k), we may find 𝜔̃∈ℤ/p𝜆ℤ such that 𝜔̃=
𝜔 (mod p𝜆) for some primitive 2k-th root of unity 𝜔∈ℚp, in time O(p1/4+𝜖+(k 𝜆 log p)1+𝜖)
for any 𝜖>0.

Proof. We may find a generator g of (ℤ/pℤ)∗ deterministically in time O(p1/4+𝜖) [51].
Then 𝜔̃0= g(p−1)/2k

is a primitive 2k-th root of unity in ℤ/pℤ, and there is a unique prim-
itive 2k-th root of unity 𝜔∈ℚp congruent to 𝜔̃0 modulo p. Given 𝜔̃0, we may compute
𝜔(modp𝜆) using fast Newton lifting in time O((k𝜆logp)1+𝜖) [9, Section 12.3]. □

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 25

In the context of section 8.1, we may assume that 𝜆=O((lgn)O(1)) and k=O(lgn), so
the cost of finding 𝜔 is O(p1/4+𝜖). This is certainly less than the cost of finding p itself,
using either Lemma 8.2 or Lemma 8.3.

9. CONJECTURALLY FASTER MULTIPLICATION

It is natural to ask whether the approaches from sections 6, 7 or 8 can be further opti-
mised, to obtain a complexity bound I(n)=O(n lognKlog∗n) with K<8.

In Fürer's algorithm, the complexity is dominated by the cost of multiplications in
R=ℂ[X]/(X2r−1+1). If we could use a similar algorithm for a much simpler R, then we
might achieve a better bound. Such an algorithm was actually given by Fürer [17], under
the assumption that there exist sufficiently many Fermat primes, i.e., primes of the form
Fm = 22m + 1. More precisely, his algorithm requires that there exists a positive integer
k such that for every m∈ℕ, the sequence Fm+1, …, F2m+k contains a prime number. The
DFTs are then computed directly over R=𝔽Fm for suitable m, taking advantage of the fact
that 𝔽Fm contains a fast 2m+1-th primitive root of unity (namely the element 2) as well as
a 22m-th primitive root of unity. It can be shown that a suitably optimised version of this
hypothetical algorithm achieves K=4: we still pay a factor of two due to the fact that we
compute both forward and inverse transforms, and we pay another factor of two for the
zero-padding in the recursive reduction. Unfortunately, it is likely that F4=65537 is the
last Fermat prime [13].

In the K=8 algorithm of section 6, a potential bottleneck arises during the short trans-
forms, when we use Kronecker substitution to multiply polynomials in ℂp[X]/(X2r

−1).
We really only need the high p bits of each coefficient of the product (i.e., of the real
and imaginary parts), but we are forced to allocate roughly 2p bits per coefficient in the
Kronecker substitution, and then we discard roughly half of the output. This problem
is similar to the well-known obstruction that prevents us from using FFT methods to
compute a “short product”, i.e., the high n bits or low n bits of the product of two n-bit
integers, any faster than computing the full 2n bits.

In this section, we present a variant of the algorithm of section 6, in which the coeffi-
cient ring ℂ is replaced by a finite field 𝔽p[i], where p=2q −1 is a Mersenne prime. Thus
“short products” are replaced by “cyclic products”, namely by multiplications modulo
2q−1. This saves a factor of two at each recursion level, and consequently reduces K from
8 to 4.

This change of coefficient ring introduces several technical complications. First, it is
of course unknown if there are infinitely many Mersenne primes. Thus we are forced to
rely on unproved conjectures about the distribution of Mersenne primes.

Second, q is always prime (except possibly at the top recursion level). Thus we cannot
cut up an element of ℤ/pℤ into equal-sized chunks with an integral number of bits, and
still expect to take advantage of cyclic products. In other words, q is very far from being
admissible in the sense of section 6. To work around this, we deploy a variant of an algo-
rithm of Crandall and Fagin [12], which allows us to work with chunks of varying size.
The Crandall–Fagin algorithm was originally presented over ℂ, and depended crucially
on the fact that ℝ contains suitable roots of 2. In our setting, we work over 𝔽p'[i]≅𝔽(p')2,
where p'=2q'−1 is a Mersenne prime exponentially smaller than p. Happily,𝔽p' contains
suitable roots of 2, and this enables us to adapt their algorithm to our setting. Moreover,
since (p')2− 1=2q'+1 (2q'−1− 1), the field 𝔽p'[i] contains roots of unity of high power-of-
two order, namely of order 2q'+1, so we can perform FFTs over 𝔽p'[i] very efficiently.

26 EVEN FASTER INTEGER MULTIPLICATION

Finally, we can no longer use Kronecker substitution, as this would reintroduce the
very zero-padding we are trying to avoid. Instead, we take our basic problem to be
polynomial multiplication over (ℤ/ p ℤ)[i] (where p = 2q − 1 is not necessarily prime).
After the Crandall–Fagin splitting step, we have a bivariate multiplication problem over
𝔽p'[i], which is solved using 2-dimensional FFTs over 𝔽p'[i]. These FFTs are in turn
reduced to 1-dimensional FFTs using standard methods; this dimension reduction is,
roughly speaking, the analogue of Kronecker substitution in this algorithm. (Indeed,
it is also possible to give an algorithm along these lines that works over ℂ but avoids
Kronecker substitution entirely; this still yields K = 8 because of the “short product”
problem mentioned above.) For the 1-dimensional transforms, we use the same tech-
nique as in previous sections: we use Cooley–Tukey's algorithm to decompose them into
“short transforms” of exponentially shorter length, then use Bluestein's method to con-
vert them to (univariate) polynomial products, and finally evaluate these products recur-
sively.

9.1. Mersenne primes
Let 𝜋m(x) denote the number of Mersenne primes less than x. Based on probabilistic
arguments and numerical evidence, Lenstra, Pomerance and Wagstaff have conjectured
that

𝜋m(x) ∼ eγ
log2 log logx

as x→∞, where γ=0.5772… is the Euler constant [55, 42]. Our fast multiplication algo-
rithm relies on the following slightly weaker conjecture.

CONJECTURE 9.1. There exist constants 0<a<b such that for all x>3,

a log logx<𝜋m(x)<b log logx.

PROPOSITION 9.2. Assume Conjecture 9.1 and let c≔ b/a. For any integer n⩾2, there exists
a Mersenne prime p=2q − 1 in the interval 2n<p<2nc

. Given n, we may compute the smallest
such p, and find a primitive 2q+1-th root of unity in 𝔽p[i], in time O(n(3+o(1))c).

Proof. The required prime exists since for n⩾2 we have

𝜋m(2nc)>a log log(2nc)=a c logn+a log log2>b logn+b log log2=b log log(2n)>𝜋m(2n).

An integer of the form 2q − 1 may be tested for primality in time q2+o(1) using the
Lucas–Lehmer primality test [13]. A simple way to compute p is to apply this test suc-
cessively for all q ∈ {n + 1, …, ⌊nc⌋}; this takes time O(n(3+o(1))c). A primitive 2q+1-th
root of unity 𝜔 may be computed by the formula 𝜔 ≔ 22

q−2
+ (−3)2q−2 i ∈ 𝔽p[i] in time

O(q2+o(1)); see [45] or [14, Corollary 5]. □

9.2. Crandall and Fagin's algorithm revisited
Let p=2q−1 be a Mersenne number (not necessarily prime). The main integer multiplica-
tion algorithm depends on a variant of Crandall and Fagin's algorithm that reduces mul-
tiplication in (ℤ/pℤ)[i][X]/(XM − 1) to multiplication in 𝔽p'[i][X,Y]/(XM −1,YN −1),
where p' = 2q' − 1 is a suitably smaller Mersenne prime (assuming that such a prime
exists).

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 27

To explain the idea of this reduction, we first consider the simpler univariate case,
in which we reduce multiplication in (ℤ/pℤ)[i] to multiplication in 𝔽p'[i][Y]/(YN −1).
Here we require that N⩽ q, that gcd(N, q')= 1 and that q'⩾2 ⌈q/N⌉ + lgN+3. For any
k∈ℕ, we will write ℕk={0,…,k−1} and ℤk={−(k−1),…,k−1}.

Assume that we wish to compute the product of u,v∈(ℤ/pℤ)[i]. Considering u and
v as elements of ℕp[i] modulo p, we decompose them as

u=∑
i=0

N−1

ui2ei, v=∑
i=0

N−1

vi2ei, (9.1)

where

ei ≔ ⌈q i/N⌉,
ui,vi ∈ ℕ2ei+1−ei[i].

We regard ui and vi as complex “digits” of u and v, where the base 2ei+1−ei varies with the
position i. Notice that ei+1− ei takes only two possible values: ⌊q/N⌋ or ⌈q/N⌉.

For 0⩽ i<N, let

ci ≔ Nei −q i, (9.2)

so that 0⩽ci<N. For any 0⩽ i1, i2<N, define 𝛿i1,i2∈ℤ as follows. Choose 𝜎∈{0,1} so that
i≔ i1+ i2−𝜎N lies in the interval 0⩽ i<N, and put

𝛿i1,i2 ≔ ei1+ ei2− ei −𝜎q.

From (9.2), we have

ci1+ ci2− ci=N (ei1+ ei2− ei)−q(i1+ i2− i)=N 𝛿i1,i2.

Since the left hand side lies in the interval (−N, 2N), this shows that 𝛿i1,i2∈{0, 1}. Now,
since 2q=1(modp) and ei1+ ei2= ei+𝛿i1,i2(modq), we have

uv =∑
i1=0

N−1

∑
i2=0

N−1

ui1vi22
ei1+ei2 =∑

i=0

N−1

wi2ei (modp),

where

wi ≔ ∑
i1+i2=i (modN)

2𝛿i1,i2ui1vi2.

Since |ui1| < 2√ ⋅ 2⌈q/N⌉ and similarly for vi2, we have wi ∈ ℤ4⌈q/N⌉+1N[i]. Note that we
may recover u v from w0, …, wN−1 in time O(q), by a standard overlap-add procedure
(provided that N=O(q/lgq)).

Let h be the inverse of q' modulo N; this inverse exists since we assumed gcd(N,
q')=1. Let 𝜃≔2h∈𝔽p', so that

𝜃N=2hN=2,

since 2 has order q' in 𝔽p'. The quantity 𝜃 plays the same role as the real N-th root of 2
appearing in Crandall–Fagin's algorithm.

Now define polynomials U, V ∈ 𝔽p'[i][Y]/(YN − 1) by Ui ≔ 𝜃ci ui and Vi ≔ 𝜃ci vi for
0⩽ i<N, and let W=W0+⋯+WN−1YN−1≔UV be their (cyclic) product. Then

w̃i≔𝜃−ci Wi= ∑
i1+i2=i (modN)

𝜃−ci Ui1Vi2=∑ 𝜃ci1+ci2−ci ui1vi2=∑ 2𝛿i1,i2ui1vi2

28 EVEN FASTER INTEGER MULTIPLICATION

coincides with the reinterpretation of wi as an element of 𝔽p'[i]. Moreover, we may
recover wi unambiguously from w̃i, as q' ⩾ 2 ⌈q /N⌉ + lg N + 3 and wi ∈ ℤ4⌈q/N⌉+1N[i].
Altogether, this shows how to reduce multiplication in (ℤ/pℤ)[i] to multiplication in
𝔽p'[i][Y]/(YN −1).

Remark 9.3. The pair (ei+1, ci+1) can be computed from (ei, ci) in O(lg q) bit operations,
so we may compute the sequences e0,…, eN−1 and c0,…,cN−1 in time O(N lgq). Moreover,
since ci+1−ci takes on only two possible values, we may compute the sequence 𝜃c0,…,𝜃cN−1

using O(N) multiplications in 𝔽p'[i].

9.3. Bivariate Crandall–Fagin reduction
Generalising the discussion of the previous section, we now show how to reduce mul-
tiplication in (ℤ/p ℤ)[i][X]/(XM − 1), for a given M ⩾ 1, to multiplication in 𝔽p'[i][X,
Y]/(XM − 1, YN − 1). For this, we require that N ⩽ q, that gcd(N, q') = 1 and that q' ⩾
2⌈q/N⌉+lg(MN)+3.

Indeed, consider two cyclic polynomials u = u0 + ⋯ + uM−1 XM−1 and v = v0 + ⋯ +
vM−1XM−1 in (ℤ/pℤ)[i][X]/(XM − 1). We cut each of the coefficients ui, vi∈(ℤ/pℤ)[i]
into N chunks ui, j and vi, j of bit size at most ⌈q/N⌉, using the same varying base strategy
as above. With 𝜃N=2 and cj as before, we next form the bivariate cyclic polynomials

U≔∑
i, j

ui, j𝜃cj Xi Yj, V≔∑
i, j

vi, j𝜃cj Xi Yj

in 𝔽p'[i][X,Y]/(XM −1,YN −1). Setting

W ≔ UV=∑
i, j

wi, j𝜃cj Xi Yj,

the same arguments as in the previous section yield

wi, j = ∑
i1+i2=i (modM)

∑
j1+ j2= j (modN)

2𝛿j1, j2ui1, j1vi2, j2.

Using the assumption that q'⩾2 ⌈q/N⌉+lg(M N)+3, we recover the coefficients wi, j, and
hence the product uv, from the bivariate cyclic convolution product W=UV.

9.4. Conjecturally faster multiplication
Let q⩾2 and p≔2q−1 (not necessarily prime). We will take our basic recursive problem
to be multiplication in (ℤ/p ℤ)[i][X]/(XM − 1) for suitable M. We need M somewhat
larger than q; this is analogous to the situation in section 6, where we chose a “short
transform length” somewhat larger than the coefficient size. Thus we set M = M(q) ≔
2𝜇(q) where 𝜇(q) is defined as follows.

LEMMA 9.4. There exists an increasing function 𝜇:ℕ→ℕ such that

0⩽𝜇(q)− (log2q)(log2 log2q)⩽2 (9.3)

for all q⩾2, and such that we may compute 𝜇(q) in time (logq)1+o(1).

Proof. Let f (q)≔(log2 q) (log2 log2 q). Using [6], we may construct a function g(q) such
that |g(q)− f (q)|⩽1/q for all q⩾2, and which may be computed in time (logq)1+o(1). One
checks that f (q+1)− f (q)⩾2/q for all q⩾2, so g(q+1)⩾ f (q+1)− 1

q+1 ⩾ f (q+1)− 1
q ⩾

f (q)+ 1
q ⩾ g(q) for q⩾2. Thus g(q) is increasing, and 𝜇(q)≔⌊g(q)+3/2⌋ has the desired

properties. □

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 29

We say that an integer n⩾2 is admissible if it is of the form n=q M where M≔M(q) for
some q⩾2. (This should not be confused with the notion of admissibility of section 6.) An
element of (ℤ/pℤ)[i][X]/(XM − 1) is then represented by 2n bits. Note that q↦ q M(q)
is strictly increasing, so there is a one-to-one correspondence between integers q⩾2 and
admissible n. For x⩾2 we define 𝛽(x) to be the smallest admissible integer n⩾x.

LEMMA 9.5. We have 𝛽(n) = O(n) as n →∞. Given n ⩾ 2, we may compute 𝛽(n), and the
corresponding q, in time o(n).

Proof. From (9.3) we have (q + 1) M(q + 1) / (q M(q)) = O(2𝜇(q+1)−𝜇(q)) = O(1); this
immediately implies that 𝛽(n)=O(n).

Suppose that we wish to compute 𝛽(n) for some n. We assume that n is large enough
that the definition q0≔2⌈lgn/(lg lgn−lg lg lgn−1)⌉ makes sense and so that q0⩾2. One checks
that (log2 q0) (log2 log2 q0) ⩾ lg n, so 𝜇(q0) ⩾ lg n and hence q0 M(q0) ⩾ n. To find the
smallest suitable q, we may simply compute q M(q) for each q=2, 3,…, q0, and compare
with n. This takes time O(q0(logq0)1+o(1))=o(n). □

Now let q ⩾ 2, p ≔ 2q − 1 and M ≔ M(q). Consider the problem of computing t ⩾ 1
products u1 v,…,ut v with u1,…,ut, v∈(ℤ/pℤ)[i][X]/(XM − 1). We denote by Ct(n) the
complexity of this problem, where n≔qM(q) is the admissible integer corresponding to
q. As in section 6, we define C(n)≔supt⩾1Ct(n)/(2 t+1).

Notice that multiplication of two integers of bit size⩽k reduces to the above problem,
for t = 1, via a suitable Kronecker segmentation. Indeed, let n ≔ 𝛽(8 k) = q M(q) for
some q, and encode the integers as integer polynomials of degree less than M/2 with
coefficients of bit size m≔⌈k/(M/2)⌉. The desired product may be recovered from the
product in (ℤ/pℤ)[i][X]/(XM −1), as

2m+lg(M/2)⩽ 4k
M +𝜇(q)⩽ q

2 +𝜇(q)⩽q−1

for large q. Thus, as in section 6, we have I(k)⩽3C(O(k))+O(k), and it suffices to obtain
a good bound for C(n).

Now suppose additionally that p= 2q − 1 is prime. In this case (ℤ/pℤ)[i] = 𝔽p[i] is
a field, and as noted above, it contains 2q+1-th roots of unity, so we may define DFTs
of length 2r over 𝔽p[i] for any r ⩽ q + 1. In particular, for r ⩽ q we may use Bluestein's
algorithm to compute DFTs of length 2r. Denote by Bq,t(2r) the cost of evaluating t inde-
pendent DFTs of length 2r over 𝔽p[i], and put Bq(2r) ≔ supt⩾1 Bq,t(2r)/ (2 t + 1). Here
we assume as usual that a 2r+1-th root of unity is known, and that the corresponding
Bluestein root table has been precomputed.

Let us apply these definitions in the case r≔lgM; this is permissible, as lgM⩽ q for
sufficiently large q. Since convolution of length M over𝔽p[i] is exactly the basic recursive
problem, and since one of the operands is fixed, we have Bq,t(M) ⩽Ct(n) +O(t M I(q)),
where n≔qM, and hence

Bq(M) ⩽ C(n)+O(M I(q)). (9.4)

THEOREM 9.6. Assume Conjecture 9.1. Then there exists x0 ⩾ 2 and a logarithmically slow
function Φ: (x0, ∞)→ℝ with the following property. For all admissible n> x0, there exists an
admissible n'⩽Φ(n) such that

C(n)
n lgn ⩽ ((((((((((4+O((((((((((1

lg lg lgn)))))))))))))))))))) C(n')
n' lgn' +O(1). (9.5)

30 EVEN FASTER INTEGER MULTIPLICATION

Proof. Let n ≔ q M with M = M(q). Assume that we wish to compute t ⩾ 1 products
with one fixed operand. Our goal is to reduce to a problem of the same form, but for
exponentially smaller n.

Choose parameters. Let p'= 2q' − 1 be the smallest Mersenne prime larger than 2(lgM)2.
By Proposition 9.2, we have 2(lgM)2<p'<2(lgM)2c

, whence (lgM)2⩽q'⩽(lgM)2c, for some
absolute constant c>1. Moreover, we may compute p', together with a primitive 2q'+1-
th root of unity 𝜔 in 𝔽p'[i], in time O((lgM)(6+o(1))c)=O(n lgn). We define M'≔M(q')
and n'≔q'M'.

The algorithm must perform various multiplications in 𝔽p'[i], at cost O(I(q')). For
simplicity we will use Schönhage–Strassen's algorithm for these multiplications, i.e., we
will take I(q')=O(q' lgq' lg lgq'). Since lgq'=O(lg lgM)=O(lg lgn), we have

I(q') = O(q' lg lgn lg lg lgn).

Crandall–Fagin reduction. We use the framework of section 9.3 to reduce the basic mul-
tiplication problem in (ℤ/pℤ)[i][X]/(XM −1) to multiplication in 𝔽p'[i][X,Y]/(XM −1,
YN −1) for suitable N. We take N≔2ℓ s where

ℓ ≔ lg((((((((((2q
q' lg lgq)))))))))),

s ≔ 2⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈ q
2ℓ(q'− lg2q)⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉+1.

We also write L ≔ 2ℓ. The definition of s makes sense for large q since q' ⩾ (lg M)2 ≍
(lgq lg lg q)2. Let us check that the hypotheses of section 9.3 are satisfied for large q. We
have L≍q/(q' lg lgq) and hence s≍lg lgq; in particular, s≠q', so gcd(N,q')=1, and also
N≍ q/q'≺ q/lg q. Since N=L s⩾2 q/(q' − lg2 q), we also have 2 ⌈q/N⌉⩽ q' − lg2 q+O(1),
and thus 2⌈q/N⌉+lg(MN)+3⩽q' since lg(MN)=O(lgq lg lgq).

We also note for later use the estimate

MNq' = ((((((((((2+O((((((((((1
lg lgn))))))))))))))))))))n.

Indeed, since s≍lg lgq we have

s = ((((((((((2+O((((((((((1
lg lgq)))))))))))))))))))) q

2ℓ(q'− lg2q)
,

and we already noticed earlier that (lg2q)/q'=O(1/(lg lgq)2)=O(1/lg lgq).
To assess the cost of the Crandall–Fagin reduction, we note that computing the ei

and ci costs O(N lg q) =O(n lg n) (see Remark 9.3), the splitting itself and final overlap-
add phase require time O(t n), and the various multiplications by 𝜃, 𝜃ci and 𝜃−ci have cost
O(tMN I(q'))=O(tn I(q')/q')=O(tn lgn).

Reduction to power-of-two lengths. Next we reduce multiplication in 𝔽p'[i][X, Y] /
(XM − 1, YN − 1) to multiplication in ℛ[X, Z]/(XM − 1, ZL − 1), where ℛ ≔ 𝔽p'[i][U]/
(Us − 1). In fact, since gcd(L, s) = 1, these rings are isomorphic, via the map that sends
X to X and Y to Z U. Evaluating this isomorphism corresponds to rearranging the coef-
ficients according to the rule i ↦ (i0, i1), where i ∈ {0, …, N − 1} is the exponent of Y
and where i0 ≔ i mod L and i1 ≔ i mod s are the exponents of Z and U. This may be
achieved in time O(t M N lgN (q'+ lgN)) =O(t n lg n) using the same sorting strategy
as in section 2.3. The inverse rearrangement is handled similarly.

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 31

Reduction to univariate transforms. For multiplication in ℛ[X,Z]/(XM − 1,ZL − 1), we
will use bivariate DFTs overℛ . This is possible because 𝔽p'[i] contains both M-th and L-
th primitive roots of unity, namely𝜔2q'+1/M and𝜔2q'+1/L, since q'≻lgM and q'≻lgL. More
precisely, we must perform t+1 forward bivariate DFTs and t inverse bivariate DFTs of
length M×L over ℛ , and t M L multiplications in ℛ . Each bivariate DFT reduces further
to s M univariate DFTs of length L over 𝔽p'[i] (with respect to Z) and s L univariate DFTs
of length M over 𝔽p'[i] (with respect to X). Interspersed between these steps are various
matrix transpose operations of total cost O(t s M L lg(s M L) q') = O(t n lg n), to enable
efficient access to the “rows” and “columns” (see section 2.1).

Multiplications in ℛ are handled by zero-padding, i.e., we first use Cooley–Tukey to
multiply in𝔽p'[i][U]/(U2⌈lg s⌉+1

−1), and then reduce modulo Us−1. The total cost of these
multiplications is O(t M L s lg s I(q')) = O(t n lg s I(q')/q') = O(t n lg lg n (lg lg lg n)2) =
O(tn lgn).
Reduction to short transforms. Consider one of the “long” univariate DFTs of length
2k∈{M,L} over𝔽p'[i]. We decompose the DFT into “short” DFTs of length M' as follows.
Let r ≔ lg M' = O(lg lg n lg lg lg n) and d ≔ ⌈k / r⌉ = O(lg n / (lg lg n lg lg lg n)), and
write k = r1+⋯+ rd where ri ≔ r for 1 ⩽ i ⩽ d − 1 and rd ≔ k − (d − 1) r ⩽ r. We use the
algorithm 𝒜≔𝒜1⊙⋯⊙𝒜d, where for 1⩽ i⩽ d − 1 we take 𝒜i to be the algorithm based
on Bluestein's method (discussed immediately before (9.4)), and where 𝒜d is the usual
Cooley–Tukey algorithm over 𝔽p'[i]. Let Dk be the cost of a single invocation of 𝒜 (or of
the corresponding inverse transform 𝒜'). By (2.4) we have

Dk ⩽ (d−1)Bq',2k−r(2r)+O(2k−rd2rd rd I(q'))+O(d2k I(q'))+O(2k q' lgn).

The cost of precomputing the necessary root tables is only O(2k I(q')). By definition
Bq',2k−r(2r) ⩽ (2 ⋅ 2k−r + 1) Bq'(M'). From (9.4) and the estimate 2k−r ≻ lg lg n, the first
term becomes

(d−1)Bq',2k−r(2r) ⩽ (2+O(1/lg lgn))(d−1)2k−rC(n')+O(d2k−r M' I(q')).

The contribution to Dk from all terms involving I(q') is

O(2k (rd+d) I(q'))=O((((((((((2k lgn
lg lgn lg lg lgn q' lg lgn lg lg lgn))))))))))=O(2k q' lgn),

so

Dk ⩽ (2+O(1/lg lgn))(d−1)2k−rC(n')+O(2k q' lgn).

Denoting by D the cost of a bivariate DFT of length M×L overℛ , we thus have (ignoring
the transposition costs, which were included earlier)

D = sLDlgM+ sMDlgL

⩽ ((((((((((2+O((((((((((1
lg lgn))))))))))))))))))))((((((((((sL⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊ lgM

lgM'⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋ M
M' + sM⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊ lgL

lgM'⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋ L
M'))))))))))C(n')+O(sLMq' lgn)

⩽ ((((((((((2+O((((((((((1
lg lgn)))))))))))))))))))) sLM lg(LM)

M' lgM' C(n
')+O(sLMq' lgn)

⩽ ((((((((((4+O((((((((((1
lg lgn)))))))))))))))))))) n lgn

n' lgM' C(n
')+O(n lgn).

Moreover, since
lgn'
lgM' =1+ lgq'

lgM' =1+O((((((((((1
lg lgq'))))))))))=1+O((((((((((1

lg lg lgn)))))))))),

32 EVEN FASTER INTEGER MULTIPLICATION

we get

D ⩽ ((((((((((4+O((((((((((1
lg lg lgn)))))))))))))))))))) n lgn

n' lgn' C(n
')+O(n lgn).

We must perform 2 t+1 bivariate DFTs; the bound (9.5) then follows exactly as in the
proof of Theorem 6.4.

For large n, we have logq'=O(loglogM)=O(loglogn), so logn'=logq'+O(𝜇(q'))=
O(log q' log log q') = O(log log n log log log n). Thus there exists a constant C > 0
such that log log log n' ⩽ log log log log n + C for large n, and we may take Φ(x) ≔
exp∘3(log∘4x+C). □

Proof of Theorem 1.2. Follows from Theorem 9.6 and Proposition 5.3, analogously to the
proof of Theorem 1.1. □

BIBLIOGRAPHY

[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Math., 160(2):781–793, 2004.
[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of computer algorithms. Addison-

Wesley, 1974.
[3] L. I. Bluestein. A linear filtering approach to the computation of discrete Fourier transform. IEEE Trans-

actions on Audio and Electroacoustics, 18(4):451–455, 1970.
[4] A. Bostan, P. Gaudry, and É. Schost. Linear recurrences with polynomial coefficients and application to

integer factorization and Cartier-Manin operator. SIAM J. Comput., 36:1777–1806, 2007.
[5] C. B. Boyer. A History of Mathematics. Princeton Univ. Press, first paperback edition, 1985.
[6] R. P. Brent. Fast multiple-precision evaluation of elementary functions. J. Assoc. Comput. Mach.,

23(2):242–251, 1976.
[7] R. P. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge University Press, 2010.
[8] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory. Springer-Verlag, 1997.
[9] H. Cohen, G. Frey, R. Avanzi, Ch. Doche, T. Lange, K. Nguyen, and F. Vercauteren, editors. Handbook

of elliptic and hyperelliptic curve cryptography. Discrete Mathematics and its Applications. Chapman &
Hall/CRC, Boca Raton, FL, 2006.

[10] S. A. Cook. On the minimum computation time of functions. PhD thesis, Harvard University, 1966.
[11] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier series.

Math. Computat., 19:297–301, 1965.
[12] R. Crandall and B. Fagin. Discrete weighted transforms and large-integer arithmetic. Math. Comp.,

62(205):305–324, 1994.
[13] R. Crandall and C. Pomerance. Prime numbers. A computational perspective. Springer, New York, 2nd

edition, 2005.
[14] R. Creutzburg and M. Tasche. Parameter determination for complex number-theoretic transforms

using cyclotomic polynomials. Math. Comp., 52(185):189–200, 1989.
[15] A. De, P. P. Kurur, C. Saha, and R. Saptharishi. Fast integer multiplication using modular arithmetic.

SIAM J. Comput., 42(2):685–699, 2013.
[16] J. Écalle. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Hermann,

collection: Actualités mathématiques, 1992.
[17] M. Fürer. On the complexity of integer multiplication (extended abstract). Technical Report CS-89-17,

Pennsylvania State University, 1989.
[18] M. Fürer. Faster integer multiplication. In Proceedings of the Thirty-Ninth ACM Symposium on Theory of

Computing, STOC 2007, pages 57–66, New York, NY, USA, 2007. ACM Press.
[19] M. Fürer. Faster integer multiplication. SIAM J. Comput., 39(3):979–1005, 2009.
[20] M. Fürer. How fast can we multiply large integers on an actual computer? In A. Pardo and A. Viola,

editors, Proceedings of LATIN 2014: Theoretical Informatics: 11th Latin American Symposium, Montevideo,
Uruguay, volume 8392 of Lect. Notes Comput. Sci., pages 660–670. Springer Berlin Heidelberg, 2014.

[21] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, New York,
NY, USA, 3rd edition, 2013.

[22] F. Q. Gouvêa. p-adic numbers. An introduction. Universitext. Springer-Verlag, Berlin, 1993.
[23] T. Granlund et al. GMP, the GNU multiple precision arithmetic library. http://gmplib.org, 1991.

Latest version 6.0.0 released in 2014.

DAVID HARVEY, JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 33

http://gmplib.org
http://gmplib.org
http://gmplib.org

[24] D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over finite fields. Tech-
nical report, HAL, 2014. http://hal.archives-ouvertes.fr.

[25] D. Harvey, J. van der Hoeven, and G. Lecerf. Fast polynomial multiplication over F260. Technical report,
HAL, 2016. http://hal.archives-ouvertes.fr/hal-01265278.

[26] D. R. Heath-Brown. Almost-primes in arithmetic progressions and short intervals. Math. Proc. Cam-
bridge Philos. Soc., 83(3):357–375, 1978.

[27] D. R. Heath-Brown. Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic
progression. Proc. London Math. Soc. (3), 64(2):265–338, 1992.

[28] M. T. Heideman, D. H. Johnson, and C. S. Burrus. Gauss and the history of the fast Fourier transform.
Arch. Hist. Exact Sci., 34(3):265–277, 1985.

[29] J. van der Hoeven. Journées Nationales de Calcul Formel (2011), volume 2 of Les cours du CIRM, chapter
Calcul analytique. CEDRAM, 2011. Exp. No. 4, 85 pages, http://ccirm.cedram.org/ccirm-bin/
fitem?id=CCIRM_2011__2_1_A4_0.

[30] J. van der Hoeven, G. Lecerf, B. Mourrain, et al. Mathemagix, 2002. http://www.mathemagix.org.
[31] A. Karatsuba and J. Ofman. Умножение многозначных чисел на автоматах. Doklady Akad. Nauk SSSR,

7:293–294, 1962. English translation in [32].
[32] A. Karatsuba and J. Ofman. Multiplication of multidigit numbers on automata. Soviet Physics Doklady,

7:595–596, 1963.
[33] A. A. Karatsuba. The complexity of computations. Proc. of the Steklov Inst. of Math., 211:169–183, 1995.

English translation; Russian original at pages 186–202.
[34] D. E. Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms. Addison-Wesley,

1969.
[35] D. E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching. Addison-Wesley,

Reading, MA, 1998.
[36] Yu. V. Linnik. On the least prime in an arithmetic progression I. The basic theorem. Rec. Math. (Mat.

Sbornik) N.S., 15(57):139–178, 1944.
[37] Yu. V. Linnik. On the least prime in an arithmetic progression II. The Deuring-Heilbronn phenom-

enon. Rec. Math. (Mat. Sbornik) N.S., 15(57):347–168, 1944.
[38] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, N.J., 1966.
[39] O. Neugebauer. The Exact Sciences in Antiquity. Brown Univ. Press, Providence, R.I., 1957.
[40] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[41] J. M. Pollard. The fast Fourier transform in a finite field. Math. Comp., 25(114):365–374, 1971.
[42] C. Pomerance. Recent developments in primality testing. Math. Intelligencer, 3(3):97–105, 1980/81.
[43] C. M. Rader. Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE,

56(6):1107–1108, June 1968.
[44] K. R. Rao, D. N. Kim, and J. J. Hwang. Fast Fourier Transform - Algorithms and Applications. Signals and

Communication Technology. Springer-Verlag, 2010.
[45] I. S. Reed and T. K. Truong. The use of finite fields to compute convolutions. IEEE Trans. Inform.

Theory, IT-21:208–213, 1975.
[46] M. C. Schmeling. Corps de transséries. PhD thesis, Université Paris-VII, France, 2001.
[47] A. Schönhage. Multiplikation großer Zahlen. Computing, 1(3):182–196, 1966.
[48] A. Schönhage. Storage modification machines. SIAM J. on Comput., 9:490–508, 1980.
[49] A. Schönhage, A. F. W. Grotefeld, and E. Vetter. Fast Algorithms – A Multitape Turing Machine Imple-

mentation. BI-Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zürich, 1994.
[50] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292, 1971.
[51] I. Shparlinski. On finding primitive roots in finite fields. Theoret. Comput. Sci., 157(2):273–275, 1996.
[52] D. E. Smith. History of Mathematics, volume 2. Dover, 1958.
[53] A. L. Toom. The complexity of a scheme of functional elements realizing the multiplication of integers.

Soviet Mathematics, 4(2):714–716, 1963.
[54] A. L. Toom. О сложности схемы из функциональных элементов, реализующей умножение целых
чисел. Doklady Akad. Nauk SSSR, 150:496–498, 1963. English translation in [53].

[55] S. Wagstaff. Divisors of Mersenne numbers. Math. Comp., 40(161):385–397, 1983.
[56] T. Xylouris. On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet L-

functions. Acta Arith., 1:65–91, 2011.

34 EVEN FASTER INTEGER MULTIPLICATION

http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://www.mathemagix.org
http://www.mathemagix.org
http://www.mathemagix.org

	1. Introduction
	1.1. Brief history and related work
	1.2. Our contributions and outline of the paper

	2. Survey of classical tools
	2.1. Arrays and sorting
	2.2. Discrete Fourier transforms
	2.3. The Cooley–Tukey FFT
	2.4. Fast Fourier multiplication
	2.5. Bluestein's chirp transform
	2.6. Kronecker substitution and segmentation

	3. Fixed point computations and error bounds
	3.1. Fixed point numbers
	3.2. Basic arithmetic
	3.3. Precomputing roots of unity
	3.4. Error analysis for fast Fourier transforms

	4. A simple and fast multiplication algorithm
	5. Logarithmically slow recurrence inequalities
	6. Even faster multiplication
	7. An optimised variant of Fürer's algorithm
	8. Fast multiplication using modular arithmetic
	8.1. Sketch of the algorithm
	8.2. Computing suitable p and ω

	9. Conjecturally faster multiplication
	9.1. Mersenne primes
	9.2. Crandall and Fagin's algorithm revisited
	9.3. Bivariate Crandall–Fagin reduction
	9.4. Conjecturally faster multiplication

	Bibliography

