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We give a new algorit]'um for the multiplication of n-bit integers in the bit complexity
model, which is asHmPtoticaHH faster than all Previouslg known algorithms. More pre-
ciselg, we prove that two n-bit integers can be multipliecl intime ©o(n lognK log’ m, where
K =8 and 1og* n=min {k €N: Iog k log n< l}. Assuming, standard corjecturcs about the
distribution of Mersenne Primes, we gjve yet another algorit]wm that achieves k = 4.
The fastest Previouslg known algorithm was due to Furer, who Proved the existence
ofa complexitg bound of the above form for some finite k. We show that an optimisecl
variant of Fiirer's algorithm achieves only K =16, suggesting that our new algorithm is

faster than Fiirer's bﬂ afactor of 2'°g.
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1. INTRODUCTION

Let 1(n) denote the cost of multiplying two n-bit integers in the deterministic multi-
tape Turing model [40] (commonlg called “bit complexitg”). Previouslg, the best known
asgmptotic bound for 1(n) was due to Fiirer [18,19]. He Provecl that there is a constant
K >1such that

1(m) = O(nlognk8™), D
where logx =Inx denotes the natural logari’c}'lm of x and log*x the iterated logarithm, ie.,
|og*x 1= min{k eIN:log"kaI}, 1.2

|og°l< = |og° [;olog,
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for any x€R with x>0. The main contribution of this paper s a new algorithm that 9ielcls

the Fo”owing imProvement.

THEOREM 1.1. Forn—=® we have

I(n) = O (n log nSIOg*n> .

Furer suggested several methods to minimise the value of « in his algorithm, but did
notgive an exPIicit bound for k. In section 701C this paper, we outline an oPtimisch variant
of Fiirer's algorithm that achieves k =16. We do not know how to obtain k <16 using
Furer's aPProaclﬁ. This suggests that the new algoritlﬁm is faster than Fuirer's bg afactor
of 28",

The idea of the new algori’chm is remarkablg simple. Given two n-bit integers, we spli’c
them into chunks of exPonentiaug smaller size, say around logn bits, and thus reduce to
the Problem of multiplging integer Polynomials of degree O (n/log n) with coefficients of
bit size O (log n) . We multiply the Polynomials using discrete Fourier transforms (DFTs)
over C, witha working Precision of o (log n) bits. To compute the DFTs, we decompose
them into “short transforms” of exPonentiaHH smaller length, say [ength around Iog n,
using the Cooleg~Tul<eg method. We then use Bluestein's chirp transform to convert
cach short transforminto a Polgnomial multiplication Problem over C, and ﬁna”g convert
back to integer multip[ication via Kronecker substitution. These much smaller integer
multiplications are handled recursivelg.

The algorithmjust sketched leads immecliatelg to a bound of the form an. A detailed
l:)rooxC is given in section 4. We emphasise that the new method works directl9 over C,
and does not need sPcciaI coefficient rings with “fast” roots of unity, of the tgpc con-
structed by Firer. Optimising parameters and keePing careful track of constants leads
to Theorem 1.1, which is Provecl in section 6. We also prove the Fo”owing conditional result

in section 9, where we recall that a Mersenne Prime is a Prime of the form p=2(7—l.

THEOREMI1.2. Let T, (X) denote the number of Mersenne Prfmcs less than x. Ifthe function x> T, (x) /

loglog x is bounded both from above and from below on @ y ®) S then

I(n) = O (n Iog n‘i’log*'? .

T]’IC assumption onr, x)isa weakening o{: thc Lenstra~Pomerance~WagstaFF con-
jec’cure on the distribution of Mersenne Primes. The idea of the algorit]'lm is to replace
the coefficient ring C bg the finite field IFP [i1; we are then able to exPloit fast algoritlﬁms

for mul’ciplication modulo numbers of the form 29-1.
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An imPortant feature of the new algoritlﬁms is that the same teclﬁniques are aPPlic~
able in other contexts, such as Polynomial multiplication over finite fields. Previouslg, no
I:UrechgPe comPlexity bounds were known for the latter Prol)lem. The details are pre-
sented in the companion paper [24].

In the remainder of this section, we Present a brief liistorg of com[:)lexitg bounds
for integer multiplication, and we gjve an overview of the paper and of our contribution.

More historical details can be found in books such as [21, Cliapter 8].

1.1. Brief l':istory and related work

Multiplica’cion algoritl'ims of complexi{y o in the number of cligi’cs n were alreacly
known in ancient civilisations. The Eggptians used an algoritl'nm based on rePeated dou-
l)lings and additions. The Babglonians invented the Posi’cional numbering system, while
PerForming their comPutations in base 60 instead of 10. Precise clescriptions of mul-
tiPlication methods close to the ones that we learn at school aPPeared in Europe during
the late Middle Ages. For historical reicerencesJ we refer to [52, Section 11.5] and [9,5].

The first subquaclratic algoritl'lm for integer multiplication, with complexi’cg
o (nloga/ logZ) . was discovered l)g Karatsuba [»1,%2,3%]. From a modern viewPoint) Karat-
suba's algori’cl'im utilises an evaluation~interpolation scheme. The inPut integers are cut
into smaller chunks, which are taken to be the coefficients of two integer Polgnomials;
the Polynomials are evaluated at several well-chosen Points; their values at those Poin’cs
are (recursively) mul’cipliecl; interPolating the results at those Poin’cs 9ielcls the Procluc’c
Polgnomial; linallg, the integer Procluct is recovered l)g Pasting ’cogetl'ier the coefficients
of the Procluct Polynomial. This cutting~ancl—Pasting Proceclure is sometimes known as
Kronecker 5egmenta’cion (see section 2.6).

Slwortlg after the discoverg of Karatsuba's algoritl”im, which uses three evaluation
Poin’cs, Toom generalised it so as to use 2 r—1 evaluation Points instead [54, 53], for any
+=2. This leads to the bound 1(n) =0 (nlog @r=/log " for fixed r. Letting r grow slowlg with
n, l‘IC also sl'iowecl tl'iat I(n) =o(nc logn/logZ> For some constant ¢ >1, and l’lC remarl<ecl
that one may take ¢ =32, The algoritl‘im was aclaPtecl to the Turing model l39 Cook [10]
and is now known as Toom—Cook multiPlication. Cook also Provecl that one may indeed
take c = 321N the comPlexitg estimate. The next imProvement was obtained l)g Schon-
l"iage 471 bg worl<ing modulo several numbers of the form 2¢~1instead of using several
Polgnomial evaluation Points. Knuth claimed that an even better comPlexit9 bound could
be achieved l)y suital)ly aclaP’cing Toom's method [34, Section 4.3.3, Exercise 5].

The next step towards even faster integer mul’ciplication was the recliscoverg of the

fast Fourier transform (FFT) l)g Cooleg and Tul<e9 [11] (essentiallg the same algoritl'im
was alreadg known to Gauss [281). The FFT 3ield5 Particularlg efficient algori’clﬁms for
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evaluating and interpolating Polgnomials on certain sPecial sets of evaluation Points. For
exampie, ifrisa ring in which 2 is invertible, and fwer isa PrinciPai 2k_th root of unitg
(see section 2.2 for detailed definitions), then the FFT Permits evaluation and interPola~
tion at the Points Lw,..., W2 usingonly o(k 2K ringoPerations inR. Consequentig, if P
and Q are Polgnomials inRIx]1 W}’IOSC Prociuct has degree Iess ttian ZL, tt'ien t]'ie Procluct

PQ can be comPuted using O (k 2K) ring oPerations as well.

In [50], Sché‘)nhage and Strassen Presented two FFT-based algoritt‘ims for integer
multiPlication. In both algorithms, tt'iey first use Kronecker segmentation to convert the
Problem to multiPIication of integer Polgnomia[s. Theg then embed these Polgnomials
into R[x] for a suitable ring R and multiplg the Polgnomials bg using FFTs over R. The
first algoritlﬁm takes k =C and w=exp (271i/2%), and works with tinite~Precision approxi-
mations to elements of C. Multiplications in C itself are handled recursively, bg treating
them as integer multiplications (after aPProPriate scaling). The second algoritl"im, pop-
ularlg known as the Sctiéntiage~5trassen a[gorittim, takes R = Z/mZ. where m = ZZL +1
is a Fermat number. This algorithm is the faster of the two, achieving the bound 1(n) =
O(n log n log log n). It benefits from the fact that w =2 is a Principal 2k th root of
unity in R, and that multiplications bg powers of w can be carried out eicﬁcientlg, as tt‘ieg
corresponcl to simPIe shifts and negations. At around the same time, Pollard Pointecl out
that one can also work with K =7/ m Z where mis a Prime of the form m=a 2k +1, since then

R* contains Primitive 2%_th roots of unitg [41] (aithough he did not give a bound for1(n).

Sclﬁén]'lage and Strassen's algoritlﬁm remained the clﬁampion for more than thirtg
years, but was recentig superseclecl by Flrer's aigoritnm [18]. In st'iort, Flrer managecl
to combine the advantages of the two algorittims from [50], to achieve the bound 1(n) =
o(n Iog n Zoaog*")). Flirer's algoritt'im is based on the ingenious observation that the
ring R =C[x]/(x 27'41) contains a small number of “fast’ Principal 27-th roots of unity,
namelg the powers of X, but also a large supplg of much hig]'ler~order roots of unitg
inherited from €. To evaluate an FFT over R, he clecomPoses itinto many “short” trans-
forms of [engtn at most 27, using the Coo|e9-Tul<e3 method. He evaluates the short
transforms with the fast roots of unitg, Pausing occasiona”g to Pertorm “slow” multi-
Plications bg hig]'ler~order roots of unity (“twiddle factors”). A slig]'ltly subtle Point of

the construction is that we rea”g need, for large k,a Principal 2k-th root of unity wer
such that wzkj:X.

In [15] it was shown that the tect'inique from [41] to compute modulo suitable Prime
numbers of the form m=a2k+1 can be aclaPteci to Flrer's algorithm. Altt\oug]'i the com-
Plexitg of this algorithm is essentia“g the same as that of Fiirer's algorithm) this method

has the advantage that it does not require any error analgsis for aPProximate numerical
oPerations in C.
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Date Authors Time complexi’cy

<3000 BC |Unknown [39] o (nd

1962 Karatsuba [31, 32] O (nloga/ logZ>

196%" Toom [54, 53] O (n2” Vs o2y

1966 Schonhage [47] Oo(n2V 2logn/log? (logn)*®
1969" Knuth [54] O (n2 V208" log? log )

1971 5cl16nl1age~5trassen [50]| o (n log n loglog n)

2007 Firer [16] O (nlogn2°Ues™)

2014 This paper O (n log n 8105*">

Table 1.1. Historical overview of known complexitg bounds for n-bit integer multiplication.

y/logn/lo
* It should be noted that Toom onlg Proved that M (n) =0 (nc 57/ gZ> for some constant c>1, but
he remarked that one could take ¢ = 32. Similarlg, Knuth's imProvecl bound was only stated as an

exercise with indications on how to prove itinthe Proposed solution.

1.2. Our contributions and outline of the paper

lerouglnout the paper, integers are assumed to be handled in the standard l)inarg rep-
resentation. For our comPu’ca’cional comPlexity results, we assume that we work on a
Turing machine with a finite but sul:icicientlg large number of ta[:)es [401. With some
work, it can be verified that three taPes actuallg suffice for the implementation of the
algori’cl'lms in this paper. Nevertl‘ieless, the seven taPe machine of [49] is more conve-
nient. The Tu ring machine model is very conservative with respect to the cost of memory
access, which is Per’cinent from a Prac’cical Point of view for imPlementa’cions of FFT
algori’cl'ims. Nevertheless, other models for sec]uential comPutations could be consid-
ered [48, 20]. For Practical purposes, Parallel models miglﬁ be more aPProPriate, but
we will not consider these in this paper. Occasionallg, for Polgnomial arithmetic over
abstract rings, we will also consider algel)raic comPlexi’cg measures [8, Cl'iaPter 4].

In section 2, we start ng recalling several classical teclmiques for completeness
and later use: sorting and array transPosition algoritl'lms, discrete Fourier transforms
(DFTs), the Cooley-Tukey algoritl'nm, FFET multiplication and convolution, Bluestein's
cl‘nirP transgorm, and Kronecker substitution and segmentation. In section 3, we also
Provicle the necessary tools for the error analgsis of complex Fourier transforms. Most

of these tools are stanclard, altlﬁougl'i our Presentation is somewhat ad hoc, being based
on fixed Point arithmetic.

In section 4, we describe a simPlilied version of the new integer multiplication algo~

rithm, without any attempt to minimise the aforementioned constant k. As mentioned in
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the sketch above, the |<e9 ideais to reduce a given DFT over Ctoa collection of “short”
transtorms, and then to convert these short transforms back to integer multipiication bg

a combination of Bluestein's ctiirp transform and Kronecker substitution.

The compiexitg analgsis of Fiirer's algoritnm and the algorittim from section 4
involves functional inequalities which contain Post~compositions with logarittlms and
other 5iowl3 growing functions. In section 5, we present a few systematic tools for
anaigsing these types of inequalities. For more information on this c]uite Particuiar kind

of asymptotic analgsis, we refer the reader to [46, 16].
In section 6, we present an oPtimised version of the algoritnm from section 4, Proving

in particular the bound 1(m) = 0 (nlog 8105*"> (Theorem 1.1), which constitutes the main
result of this paper. In section 7, we outline a similar comPIexitg analgsis for Furer's algo~

rithm. Even after several oPtimisations of the original algorittim, we were unable to attain

a bound t)etter tt‘ian I(n)=0 (n log n ]6105*") Tnis suggests tnat tne new algoritt‘im out-
Pertorms Firer's algoritt‘im bg a factor of Zlog*".

This speedup is surprising, given that the short transforms in Fiirer's algorittim
involve oniy snitts, additions and subtractions. The solution to the Paraclox is that Fuirer
has made the short transforms too fast. lncieeci, ttieg are so fast that ttieg make a neg-
ligible contribution to the overall comPIexitg) and his computation is dominated bg the
“slow” twiddle factor multipiications. In the new algorittim, we Push more work into the
short transforms, a”owing them to get sliglﬁtlg slower; the qu/d pro quo is that we avoid
the factor of two in zero~Padding caused bg Fiirer's introduction of artificial “fast” roots
of unity. The oPtimai strategy is actua”y to let the short transforms dominate the com-
Putation, bg increasing the short transform iengtti relative to the coefficient size. Fiirer
is unable to do ttiis, because in his algorittim these two Parameters are too cioseiy linked.
To underscorejust how far the situation has been inverted relative to Fiirer's algoritlﬁm,
we Point out that in our Presentation we can get away with using Scnonnage~5trassen
for the twiddle factor multiPIications, without any detrimental effect on the overall com-
Piexity.

We have chosen to base most of our algorittims on aPProximate comPlex arithmetic.
Instead, to”owing [41]1 and [15], we migtlt have chosen to use modular arithmetic. In sec-
tion 8, we will brieﬂg indicate how our main algorittlm can be adapted to this setting. This
variant of our aigorittim presents several analogies with its acJaPtation to Polgnomiai mul-

tiPlication over finite fields [247].

The cluestion remains whether there exists an even faster algorittlm than the algo~
rithm of section 6. In an earlier paper [171, Fiirer gave another algoritnm of compiexitg

o(n |og n Zo(log*”)) under the assum[:)tion that there exist sutticientlg many Fermat
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Primcs, ie., Primes of the form F =2*+1. Itcan be shown that a careful oPtimisation
of this algori’c}'lm gields the bound In) =0 (n log n 4-105*”). UnFortunatelg, odds are hig}'l
that r, is the largest Fermat prime. In section 9, we presentan algoritlﬁm that achieves the
bound 1(n) =0 (n log n 4—’05*") under the more Plausible conjec’cure that there exist suf-
ﬁ'cientlg many Mersenne Primes (Theorem 1.2). The main technical ingreclient Is a variant
of an algorithm of Crandall and Fagin 1121 that Permits efficient multiplication modulo
271, clespite g not bcing divisible bg a large power of two.

It would be interesting to know whether the new algorithms could be useful in prac-
tice. We have written a prototype implementation of the algorit}'lm from section 8 in
the MATHEMAGIX sgstem [»0]. This both enabled us to check the correctness of our

method and to observe running times close to Cn [og n for a suitable constant c. How-

ever, our implementation is an order of magnitude slower than the GmP librarg [23]. 1t
should be Possible to signhqcantlg reduce this gap t]'lroug]'l code oPtimisation and bg
acﬁusting the thresholds and algorit]'lms for }'ligher Prac’cical eﬁi’ciencg. But we doubt
that even such a hig}'lly oPtimisch implementation of the new algorithm will be compet-
itive in the near future. Nevertheless, the variant for Polgnomia[ multiplication over finite
fields Presented in [24] seems to be a Promising avenue for achieving speedups in prac-

tical comPutations. Recent work confirms this suspicion [25].

Notations. We use Harcly‘s notations £ < g for £ = o(g), and £ % g for f = o(g) and
g= o(f). Thc sgmbol R> denotes thc set o1c non~nega’cive real numbers, and N denotes
{0,1,2,...}. We will write lgn 1= “og n/logZ].

Aclcnowlcdgmcnts. We would like to thank the anonymous referees for their detailed

reading and comments.

2. SURVEY OF CLASSICAL TOOLS

This section recalls basic facts on Fourier transforms and related techniques used in
subsequent sections. For more details and historical references we refer the reader to

standard books on the subjec’c such as [2, 8, 21, 441.

2.1. Arrays and sorting

In the Turing moclel, we have available a fixed number of linear taPes. An gy X s Xy

. of b-bit elements is stored as a linear array of n - nyb bits. We gcncra”g
'd

assume that the elements are ordered Iexicographically by Gy oor i), thougl'l this isjust
an imPlementa’cion detail.

array M,
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What is signhqcant froma complexity Point of view is that occasiona”g we must switch
rePresentations, to access an array (sag Z~dimcnsional) }39 “rows” or bg “columns”.
In the Turing model, we may transpose an ny X n, matrix of b-bit elements in time
O (b nn, lgmin (ry n2)>, using the algorit]'lm of [4, APPendix]. Brieﬂy, the idea is to spli’c
the matrix into two halves along the “short” dimension, and transpose each half recur-
sively.

We will also require more comPlex rearrangements of data, for which we resort to
sorting. SuPPose that x is a tota”y ordered set, whose elements are rePresented bg
bit strings of [ength b, and suppose that we can compare elements of x in time o(b).
Then an array of n elements of x may be sorted in time O(b n Ig n) using merge sort
351, which can be implemente& ef—ﬁcientlg on a Turing machine.

2.2. Discrete Fourier transforms

Let R be a commutative ring with identitg and let n=1. An element we R is said to be a

Prfnc:}oa/ n-th root oz[unfiy if w"=1and
-
> (Whk=0 @.n
k=0

forall iell, ..., n =1 In this case, we define the discrete Fourier transform (or DFT) of an
n~tuP|e a=(ag, ...,a,) €R" with respect to w to be DFT, (a)=5=(5,,...,4,_) €R" where

§~ = ao+alw[+H'+an_]w(n_0f.

7

That s, 4, is the evaluation of the Po[gnomial A(X)izagtaX+-+a X" Tatw'.

1

Hwisa PrinciPaI n-th root of unity, then so is its inverse w™ =w" and we have

DFT - (DFTw (3)) = na.
Indeed, writing b:=DFT ~+(DFT,(a)), the relation (2.1 imPlies that

n—=1 n-l n—l n—1

n—1 n=1
b= Z ‘EA'/’ w = Z Z 3 w‘j(kﬂ: Z 3 Z w‘j@_/): Z 3y (n 6/,/<> =naj,
j=0 ' j=0 k=0 k=0 j=0 k=0

where S, =1 i =k and S5, ,=0 otherwise.

Remark 2.1. In all of the new algorithms introduced in this paper, we ac’cua”y work
over a ﬁelcl, whose characteristic does not divide n. In this setting, the concept of Prin-
ciPa[ root of unity coincides with the more familiar primitive root of unity . The more genera[
“Principal root” concept is onlg needed for discussions of other algorithms) such as the

5chénhage~5’crassen algori’chm or Flrer's a[gorithm.
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2.5. The Cooley—-Tukey FFET

Letwbea Principa[ n-th root of unity andlet n=n, n, where 1<n<n. Thenw™is a Principa[
n,~th root of unity and w™is a Principal n-th root of unity. Moreover, for any ;€{0, ...,

m—1tand ,€{0, ..., n,—1}, we have

=l =l

_ (L n+/<>(/'n +r')
By = Z Z Al W 2R .
£=0 ky=0

=l ny=l
> w ( D g, W Lﬂ] (WM 2.2)

k=0 k=0

>

0]

I A and A, are algoritl'lms for computing DFTs of lengtlﬁ my and n,, We may use (2.2) to
construct an algorithm AOA, for comPuting DFTs of [ength n as follows.

For each ke{o, ..., n—1}, the sum inside the brackets corres[:)oncls to the :’Z-th coef-
ficient of a DFT of the n2~tuP|e (aonl+kla e a(nz—l)n|+/<|> € R™ with respect to w™. Evaluating
these inner DFTs requires calls to A,. Next, we multiplg }39 the twiddle factors w"?, at a
costof n oPerations ink. (Actua”g, fewerthan n multiplications are recluire&, as some of
the twiddle factors are equal tol. This optimisation, while imPortant in Practice, has no
asymptotic effect on the algorithms discussed in this PaPer.) Fina“y, for each A (S
=1}, the outer sum corresponcls to the j-th coefficient of a DFT of an n]-tuPle in R with

respect to w™. These outer DFTs require n, calls to A,.
Denoting bg Fe(n) the number of ring operations needed to compute a DFT of
lengt}'l n, and assuming that we have available a Precomputed table of twiddle Factors,

we obtain
I:R (n] nz) S f:R (nz) +nZFR (n,) +n.

For a factorisation n=n - ny, this 5ields recursivelg

d
Fo(n) < Z;Fk(n,}ﬂa’—l) n. (2.3)
j=1

The corres[:)oncling algorithm is denoted A0+ OA,. Theo operation is neither commu-

tative nor associative; the above expression will a[ways be taken to mean (- (([QoA)o

A O )OA,.

Let # be the butterﬂg algorithm that computes a DFT of length 2 bg the formula
(a0, a) = (ag+ap ag—a). Then 8% := 5005 computes a DIFT of length n:=2% in time
Fo (29 =0(kn). Algorithms of this type are called fast Fourier transforms (or FFTs).

The above discussion requires several modifications in the Turing model. Assume

tha’c elements oxC R are represented bg b bits.
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First, for A, @ A,, we must add a rearrangement cost of O (b n lg min (n,n,)) to
e#icientlg access the rows and columns for the recursive subtransforms (see sec-
tion 2.1). For the gcncral case A0 - 0 A, the total rearrangement cost is bounded

bg O(ZibnlgnID =O<bnlgn>.
Second, we will sometimes use non-algebraic algorithms to compute the subtrans-

Forrns, so it may not make sense to express their cost in terms of Fe- The relation 2.3

’CI’)CFC]COY'C becomes

| 3

d
F(n) < > 4

=t

[;(”7,’>+<d_])nmR+O<bnlgn>, 24)

3

where F(n) is the (Turing) cost of a transform of Iength nover R, and where Mg is the

costof a single multip[ication nR.

Fina”g) we point out that A, 0 A, requires access to a table of twiddle factors w',
ordered lexicograp]nica”g bg (i, 7)), forOsi<np, Osi<n, Assuming that we are given
as inPut a Precomputccl table of the form L, w, ..., ™ we must show how to extract
the required twiddle factor table in the correct order. We first construct a list of triPles
(i, iy, i i), ordered bg Gy 7, in time O(n lg n); then sort bg i iy in time O (n lg? n) (see
section 2.1); then merge with the given root table to obtain a table Ciy £y, W) | ordered bg
i, intime O (n (b+lg n));and ﬁna“y sort by (i, ) intime O (nlgn (b +lg n)). The total
cost of the extraction is thus O (n lg n (b +lg n)) .

The corresponcling cost for A0+ OA,is determined as follows. Assuming that the

n—l

table lw,...,w™ is given as inPu’c, we first extract the subtables of (ry-=n) -th roots of
unity fori=d-1,...,2intime O((n -+ ny+-+nn,) (b+|gn)> =0(n (b+|gn)>. Extracting
the twiddle factor table for the clecomposition (m-- ) xn then costs O (n -+ n lgn (b+

lgn)); the total over all 7 is again O (nlgn (b+lgn)).

Remark 2.2. An alternative aPProach is to compute the twiddle factors directlg in the
correct order. When Working over C as in section 3, this rec]uires a slight increase in the

working Precision. Similar comments aPP19 to the root tables used in Bluestein's algo~

rithm in section 2.5.

2.4. Fast Fourier multiPIication

Letwbea Principal n-th root of unitg in R and assume that n is invertible in k. Consider
two Polgnomials A=ag++a X and B=hy+ - +b X" in RIX]. Let C=cy+ -+

c. X" be the Polynomial defined by

c = lnD]:Tw—l(D]:Tw(a) Dl:Tw<b))’
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A
A

where the Product of the DFTs is taken Poin’cwise. By construction, we have & = 5 b,
which means that c (W) =AW B (W forall iefo, ..., n-1}. The Product S=sotHs, X

of A and 5 modulo x"—1 also satisfies s (W) =AW B (W) forall 7. Consequentlg, 5 =.§/;,
s=DFT _4(8)/n=c, whence c=s.

For Polgnomia[s A, Ber[X] with clegA< n and clegB <n,we thus obtain an algorithm
for the comPutation of AB modulo x"—1 using atmost 3, (n)+o(n) operations inR.
Modular Proclucts of this tgpe are also called cyclic convolutions . It deg (AB)<n, then we
may recover the Procluct AB fromits reduction modulo x"-1. This multiplication method
is called FrT multiplication .

If one of the arguments (sag B) is fixed and we want to compute many Products AB
(or cyclic convolutions) for different A, then we may precompute DIFT (b)), after which
each new Procluct AB can be comPuted using only 21 (mM+o(n) oPerations nRk.

2.5. Bluestein's chirp transform

We have shown above how to multiplg Polynomials using DF Ts. lnvcrsely, itis Possib[e to
reduce the computation of DFTs — of arbitrarg lcngt]'l, not necessarily a power of two
—to Polgnomial multiPlication [3], as follows.

Let w be a Principal n-th root of unity. For simplicitg we assume that n is even, and

that there exists some neR with n*=w. Consider the sequences

-2
f=n", g=n

Then w7=£f/. - j» SO for any a€R"” we have

5 = I
DRI ACHHEN @5
j=0 j=0
Also, since n is even,
O R e 2 s
‘g‘f‘f-n:n <+ ) :)f] 2 :’7 w <Z ) :‘g}.

Now let Fi=fyag+ - +f _ja, X", Gi=got-+g X"and Ci=co+ -+ X"2rG
modulo x”=1. Then (2.5) implies that 4. = f.c forall i€{0, ..., n=1}. In other words, the
comPutation of a DFT of even lengtl'l n reduces to a cgclic convolution Procluct of the
same Iength, toget]')er with ©(n) additional operations in k. Notice that the Polgnomial
G is fixed and irlclepenclent of ainthis Procluct.

The only comPIication inthe Turing modelis the cost of extractingthc £.inthe correct
order, i.e., inthe order 1,n,n*, 1%, ..., 17(”_])2, given as in[:)ut a Precomputed table 1,n,n%, ...,
n*"7. We may do this intime © (n Ig n (b +lg n)) bg applgingthe strategy from section 2.3
to the Pairs (i, i*mod2 n) for 0<i<n. Similar remarks applg to the g-
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Remark 23. ltis also Possible to give variants of the new multiplication algoritlﬁms in
which Bluestein's transform is replaced by a different method for converting DFTs to

convolutions, such as Rader's algori’c]'lm [43].

2.6. Kronecker substitution and scgmcntation

Multiplication in Z[x] may be reduced to multiplication in Z using the classical tech-
nique of Kronecker substitution [21, Coro“arg 8.271. More Preciselg, let d >0 and n >0,
and suppose ’c}'la’c we are given two Polynomials A B eZ[x] o{: degree Iess than d, wi’c}'l
coefficients A, and B, sa’cis{:ging IA,ISZ” and 15/| <2". Then for the Procluc’c C=AB we have
lC,l < ZZ"+!gd. Consec]uentlg) the coefficients of ¢ may be read off the integer Procluct
c@") =A@2") B(2") where n:=2n+lg d +2. Notice that the integers |4(2")| and |5 2M)]
have bit Iength at most dn, and the encocling and decocling processes have complexitg
O(dN).

The inverse Proceclure is Kronecker segmentation. Given n > O and d > 0, and non-
negative integers a < 27 and b <27, we may reduce the computation of c:=ab to the
comPutation of a Procluct C:=AB of two Polgnomials A, BeZ[x] of clegrec less than
d, and with [A] < 2% and |5 < 2% where Lk := [n/d]. Indeed, we may cut the integers
into chunks of £ bits each, so that a=A(2%), b=5(25) and c=c (25 . Notice that we may
recover ¢ from ¢ using an overla[:)—add Procedure intime O (d (k +lg d)) =0 (n+d lg d).
In our aPPIications, we will a[wags have d =0 (n/lg n) ,so that © <n+a’ lg d) =0(n).

Kronecker substitution and segmentation can also be used to handle Gaussian
in’cegers (ancl Gaussian integer Polgnomials), and to comPute cgclic convolutions. For
example, given Polgnomials A, BeZl1Ix1/(x¥ =1 with |al, |5 | <2, thenfor c = A B
we have Icl < Zz"+15d

c@M =AM @M e(Z/@N-D )], where N =2 0+ Ig d +2. In the other direction,

, SO we may recover C from the cgclic Gaussian integer Product

suppose that we wish to compute ab for some a, be (z./ QP -DZ)[i]. We may assume
that the “real” and “imaginarg” Parts of aand b are non-negative, and so reduce to the
Problem of mul’ciplying A, BeZ[i1[x1/(x9=1), where a=A(2" and b =52, and where
the real and imaginarg Par'ts of A, BeZ[i] are non~nega’cive and have at most r bits.

3. FIXED POINT COMPUTATIONS AND ERROR BOUNDS

In this section, we consider the comPutation of DFTs over C in the Turing model. Ele-
ments of C can onlg be re[:)resented aPProximatelg on a Turing machine. We describe
algori’chms that compute DFTs aPProximatelg) using a ﬁxed—Point representation for C,
and we give complexitg bounds and a detailed error analgsis for these algorithms. We

refer the reader to 71 for more details about mul’ciple Precision arithmetic.
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For our complexity estimates we will Freelg use the standard observation that 1(kn) =
o((m) for any fixed constant k ,since the multiplication of two integers of bit lengtlﬂ <kn
reduces to k2 multiplications of integers of bit Iength <n, for any fixed k=>1.

3.1. Fixed Point numbers

We will represent fixed Point numbers bg a signed mantissa and a fixed exponent. More
Precise[g, given a Precision parameter p=> 4, we denote bg CP the set of complex num-
bers of the form 2= m 2" where m =utvi for integers u and v satis{:ging ut+ vZSZZP, ie.,
lz] <1. We write CP 2¢ for the set of complex numbers of the form u 2°, where v e CP and
e€Z;in Particu[ar, for = GCP 2°we alwags have |z]<2°. At every stage of our algorithms,
the exPoncnt e will be determined implicitlg bg context, and in Par‘hicular, the exPonen’cs
do not have to be explicitlg stored or manipula’ced

In our error analgsis of numerical algoritl'lms, each zG(CP 2¢is rea”y the aPProximation
of some genuine complex number zeC. Each such z comes with an implici’c error bound

e, >0; this is a real number for which we can guarantee that |z -z]<e . We also define the

relative error bound for ~ by 0, :=$Z/Zc. We ﬁna“y denote }39 € :=2‘_’D <1/8 the “machine
accuracg”.

Remark 3.1. Interval arithmetic [38] (or ball arithmetic [29, Clﬁapter 31) Provicles a sys-
tematic method for tracking error bounds by storing the bounds along with 2. We will

use similar formulas for the computation of e. and p_, but we will not actua“y store the
bounds cluring computations.

3.2. Basic arithmetic

In this section we gjve error bounds and complexitg estimates for fixed Point addi’cion,
subtraction and mul’ciplicationJ under certain simPIthing assumptions. In Particu[ar) in
our DFFTs, we onlg ever need to add and subtract numbers with the same exPonent
We also gjve error bounds for fixed Point convolution of vectors; the complexi’cg of this

imPortant operation is considered later.

For xeR, we define the “round towards zero” function |x] bg Ix]:= Ix] i x=0and
Ix1:=[x] if x<O. For x, yeR, we define [x +y ﬂ = |xT+ | 4] 1. Notice that |21l <|z] and
[l21-z< /2 for any zeC.

PROPOSITION3.2. Letz,u ECP 2¢. Define the ﬁ'xcdpofntsum and difference z+u,z=-u¢ CP 2¢H by
m,i, = I_(mz + mu> /2. Thenz+uandz=ucan be computed/n time O (p) B and

IOZ+/OU
Priy S 5

+e.
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Proof. We have
l(ziu)—(ziu)l B

27P<\/2-27F<e

[mzimu'l m,£m,

ZC‘H
and
|x) =G+ e,+e, p,+p,
2c+l s Zc+l = 2 )
Whence[(ziu)—(z”iﬁ)l/26+‘$(pz+pu)/2+e. |

PROPOSITION 3.3. Letz€ CP 2%andue CP 2. Defne the ﬁxcdpo/ntlorooluctz X € CP 20 /)y

m,x, = 127 m, mu-[ . Thenz*u can be computedin time O (l (ID)> ,and

0.5, S (+p,) (+p,) (I+6).

Proof. We have

lz*u—zul/Zchrc“:HZ_’szmu] —Z_szmu[Z_PS\/z'Z_PSE

and
zu=zdl < lellu=al+lz=zl (ul+la-uD
S 2%¢g +2%¢g, +¢, ¢,
= (p,+p,+p,p,) 25 .
Consequently, |z % u=zdl/2°"%<p +p,+p,p,+e<(1+p,) (1+p,) (1+6) =1, =

ProPosition 33 may be gcncralisecl to numerical cgclic convolution of vectors as fol-

lOWS.

PROPOSITION 3.4. LetkZ1andn:= 2k jetze (C ZCZ> "andue (C Zc“> " Define the ﬁxcdpoini’
‘ o P P
convolutionz % u € (CPZCZ Cu > by

= |y Pk /
m(, *u)l,"' 2 Z mz,i mu’,Z ) Osi<n.
i+ip=i (mod n)

Then

max (1+0¢,5.) ) < max (l+pzl) max (l+,ou,) (I+6).

Proof. Let * denote the exact convolution, and write p.i=max p, and pyi=max o, . As
- J - J

in the Proo{: of Proposition 3.3, we obtain |(z * u),—(z* u),l/Zch'Cf'/< < \/E -2 P<eand

I(Z*U>,'_(Z~*L7>,»l s Z lz,iul«z—fli J,Zl

i+ih=i (mod n)

< (o, *tp,+p0,0,)

Zcz+cu+/<‘

The l:)rooxC is concluded in the same way as Proposi’cion 3.3. O
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3.3. PrccomPuting roots of unity

LetH :={x+g 1€C: y ZO} and I]—l/D 3={x+y iGCP: Y ZO}. Let v:H=H be the branch of the
square root function such that Vel =e%2for 0<ox<y. Using Newton's method [7, Sec-
tion 3.5] and 5chénhage—~5trassen multiplication [50], we may construct a fixed Point
square root function /- IHP_)[HP’ which may be evaluated in time © (p Iog P loglog p),
such that vz —vzlseforall z ¢ H,. For example, we may first compute some u € H such
that lu—vzlse/4 and lul<1, and then take vz := 127 11 27F; the desired bound follows since
€/4’+\/Z~Z_P$e.

LEMMA %.5. LctzE[HP, and assume that |7|=1 and 0, <3 /8. Then p.z<p,te.

Proof. The mean value theorem imPlies that l\/g —JE[ Seg, MaX ey 1/ 2wl where D :=
{weH: lw—z|<e}. Forwep we have lwl=|z|- 1z -zl - |z-w]|=1-3/8-%/8>1/4; hence
l\/zj—«/?|$ez =p,. By construction vz —vzl<e. We conclude that |z - \/z:l$p2+e. m|

Ll k_
PROPOSITION 3.6. Letk€N and/o? k, and let w =22 e may compute 1, w, Wi wh IGCP,

with p,,; <€ foralli, in time O (Z/‘P Iog P loglog p)

Proof. It suffices to compute Lw, ..., wZL_I_IEHP. Starting fromw®=1and cuzk_zzi, foreach
t=k=3 k=4, ...,0, we compute w? fori=1,3, .. 2kt using w2 =V W i i<kt
and w2 =i w227 otherwise. PerForming all computations with tem[:)orarilg increased
Precision P'::P+|gp+2 and corresl:)ondinge':zzl_’py, Lemma?.5 31’6[&5 Py Skese/4. This
also shows that the hgpothesis 0, S3/8is a[wags satisfied, since e/4<1/32<3/8. After

rounclirlg to p bits, the relative error is at most e /4+ \/E 2 Pse. O

3.4. Error analysis for fast Fourier transforms

A t{g/nf algoritl'lm for comPuting DFTs of leng’ch n=25>2is a numerical algoritl'lm that
takes as inPut an n~’cuPle a€ <CP 2‘3> " and computes an aPProximation € (CP 2‘3”‘) ! to

the DFT of a with resPect to w=e2"/n (orw = 21/nin the case of an inverse transForm),
such that

max (1+p5) < max (1+p,) (1+&)7+2

We assume xcor the moment that any such algori’chm has atits disl:)osal a” necessary root

icables with relative error not exceeding €. Pro[:)ositions 3.2 and 33 directl9 implg the fol-
owingz

PROPOSITION3.7. The bufferﬂy a[gorit/zm B f/)atcomloutcs aDF Tof/cngf/) 2 using the formula (ao s

a]> L (ao'i'ab ao;al) s t{g/rt.
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Proof. We have p, < (pao+pal> /2+esmax, p, tes (l+max/pa> (I+e)-1. ]

PROPOSITION 3.8. Letk, ky =1, andlet Ay and A, be i'{g/)i’ a{gorit/zms for computing DI"Ts of /cngi’hs
ZL‘ and Zkz. Then A4 OA’Z isa t{g/rf a{gorit/zrn for comloutingDI: Tsof /cngi’h Zk’+/<2.

Proof. The inner and outer DFTs contribute factors of (i +6)472 and (]+e)5k2_2) and bg
ProPosition 33 the twiddle factor multip[ications contribute a factor of (1462, Thus

max (1+p5) <max (1+p,) (1+¢) G242+ 32 < pax (+p,) C +¢) 2 kitk)—2 i
COROLLARY 3.9. Letk =1. Then 2% s t[gflt a[gor/thm for computing DIFTs of /cngth 2k over C o
whose comp/exiiy is bounded by O (ZL k1 ( ID)) .

4. A SIMPLE AND FAST MULTIPLICATION ALGORITHM

In this section we give the simp[est version of the new integer multiplication algorithm.
The keg innovation is an alternative method for computing DFTs of small lengtlﬁ. This

new method uses a combination of Bluestein's chirp transform and Kronecker substitu-
tion (see sections 2.5 and 2.6) to convert the DFT to a cyclic integer Procluct n@/Q2"-
N Z)[i] for suitable r'.

PROPOSITION4.]. LetISrs P There exists a t{ghta[gorfthm C, z[orcomput/thFTs of /ength 2" over
C P’ whose comp/ex/ty is bounded bﬂ @) <l (ZV)) +27] ( P) > .

Proof. Let n := 27, and suppose that we wish to comPute the DFT of a ¢ (CP Zc>n.
Using Bluestein's chirP transform (notation as in section 2.5), this reduces to computing
a cyclic convolution of suitable F e (CP Zc> [x1/(x" =1 and G ¢ CP[X] J(X"=1. We
assume that the f/ and g have been Precomputed with PriPg <e.

We may regarcl F =2 Fand G':=27G as cyclic Polgnomials with complex integer
coefficients, i.e., as elements of Z[11[x1/ (X"=1). Write F'= Z:(]) F X' and G'= Z:é G/ X',
where F,G/eZ]i] with lF‘,’lSZ’D and lG;lSZP. Now we comPute the exact Procluct H':=F'G'€
ZI11x1/x"=1D using Kronecker substitution. More Preciselg, we have [F] $Zzp+r, soit
suffices to compute the cgclic integer Product HQ@DY=F @D e @Me(@/ @t -D )],
where b =2 p+r+2=0(p). Then H := ' 2°7F is the exact convolution of F and
G, and rounding H to Precision P 9ielcls F*Ge (CP ZC”) [x1/Xx"=1 in the sense of
Proposition 5.4. A final multiplication bg ﬂgie[cls the Fourier coefficients §,GCPZC”.

To establish tig}'ltness, observe that 1 + Pr S (a+ pa’) (1 +e?and P, S € 5O ProPo~
sition 5.4 gields 1+ 0ric) S (+p.) (+* where p, := max; P, we conclude that 1 +tp; S

(+p) @ +6)¢. For r=3%, this means that the algorithm is tight; for r<2, we may take C =
BT
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For the complexitg) observe that the Product in (zZ/ 2 =1 2)[1] reduces to three
integer Products of size O (np)- These have cost © (l (np>> ,and the algori’chm also per-
forms o(n) mu[tiplications in CP’ contributing the © (n | (P)) term. O

Remark 4.2. A crucial observation is that) for suitable Parameters) the DFT algorithm
in Proposition 4.11s actua”y faster than the conventional Cooleg~Tul<eg algorithm of
Coro“arg 3.9. For exampleJ it we assume tha’c I(m) =m (Iog m)HO(DJ then to compute a
transform of length n over C p with n ~ P> the Coo[eg-Tul<eg aPProach has comp[exitg
72 (log n) 20
of rouglﬁlg log n.

, whereas ProPosition 4.1 9ielcls n* (log n) HO(D, an imProvement bg afactor

THEOREM 4.3. Forn—=%, we have
Jfﬁil. ICEg n) l(k;n)
nlg;/7 %g IS;E§I7 lg;r7k;%§/7

ProoF- We first reduce our integer Product to a Polynomial Procluct using Kronecker

CA))

segmentation (section 2.6). Splitting the two n-bit inputs into chunks of b := lg n bits,
we need to compute a Product of Polynomials u,veZ[x] with non~negative b-bit coef-
ficients and clegrees less than m:=rn/b1= O(n/[g n). The coefficients of h := uv have
O([g n) bits, and we may deduce the desired integer Procluct b2 intime o (n).

Let k := lg 2m. To compute uv, we will use DFTs of [ength 2k = O(n/lg n) over
(o where pi=2b+2k+lgk+8= o(lg n). Zero~Padcling u to obtain a sequence
(Ugy -+, UZ/<_|> € (CP 21’> Zk, and similarlg for v, we compute the transforms a,ve (CP 2[’%) 2!

2vi/24 as follows.

with respect tow:=e
Let r:=lg|gn and d :=rk/ﬂ=o(lgn/lglgn). Write k =r|+ -+ rywith = for isd -1
and ry=k=(d =1 rsr. Weuse the algorithm A=A o0 A, (see section 2.3), where
fori</<d—-1we take A, to be the tlght algorlthm C, for DFTs of length Z“’lg glven bg
ProPosmon 4.1, and Where Ay is 279 as in Coro”arg 3.9, In other worcls) we spht the £
usual radix-2 lagers of the FFT into groups of r Iagcrs, handling the transforms in each
group with the Bluestein—Kronecker reduction, and then using ordinarg Cooleg——Tukeg
for the remaining r lagers
b+2k

We next comPute the Pomthse Products /z =00 € CP 27 , and then applg an

inverse transform A’ defined analogouslg to A. A final division by 2k (w]'lich is rea“yjust
an implici’c adjustment of exponents) yields approximations h,¢C | 22b%2k

Since A and A’ are tight bg Prol:)ositions 3.8, 4.1 and Coro”aly 3.9, we have 1 +p; S

(+e)?2 and snmllarly for v. Thus1 +pA <1+ so1 +py, (1+€)%k 5<e><P(9 ke s
(7_5 lgk P <i+ 2578577 after the inverse transform (since expx ST1+2 x for x<1).
Partlcu[ar, g = 22b+2k Py = ZZHZH]SL pte <1/4, so we obtain the exact value of h,, bg

rounding to the nearest integer.
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Now we analgsc the complexitg. Using Proposition 3.6, we first compute a table of
roots 1, w, ..., W2 in time O(?_/< P log P log log p) = O(n lg n), and then extract the
requirecl twiddle factor tables in time O(ZL k (P + k)) = O(n lg n) (see section 2.3).
For the Bluestein reductions) we may extract a table of 27'-th roots in time © (Zk Io) =
o(n), and then rearrange them as required in time O (er (P"‘ r)) = O(lgz n Iglg n) (see
section 2.5). These Precomputations are then all repeated for the inverse transforms.

By Coro”arg 3.9, ProPosition 41and @4, each invocation of A (or A) has cost

o((d-n24 (1 p)+271(p) ) +25792%r, 1(p) +(d ~D 24 1(p) + p24k)
o(d-D2kr1(27p) + (a""ro,) 241(p)+ p2hk)

0

(Ignlglgn]dg n)+l l l(lgn>+nlg )

The cost of the © (2/‘) Pointwise multiplications is subsumed within this bound. O

Itis now a straightporward matter to recover Fiirer's bound.

THEOREM 4.4. For some constant K >1, we have

I(n) = O(n lgn/(log*n)

Proof. Let 7(n):=1(n)/ (n Ig n) forn=2. By Theorem 4.3, there exists X022 and c>1
such that

7(n) < c (7 (Ig?n)+7(Ign)+1)

forall n>xo. Let P (x) :=4-|ogzx for xeR, x>1. Increasing xg if necessarg, we may assume
that () < x—1for x > x5, so that the function ®*(x) := min {j eN: b7/ (x) < xo} is well-
defined. Increasing C if necessary, we may also assume that 7 (n) <3 ¢ for all n<xg.

We prove bg induction on ®*(n) that 7(n) < & O @ forall n. f d*(n) =0, then
n < xg, 5O the bound holds. Now suppose that Pb*(n) 1. Since lgz n<P(n), we have
CD*(Ig n) < CD*(lgz n) S P (D) =Dd*(n) -1, so bg induction 7(n) < Cc 3 O +
c C)@*(n) +c<(3 C)d’*(n)ﬂ.

Fina”g) since (P (x)) <logxJ we have ®*(x) SZIog*x+O(D) soT(n)=0 (K 105*”) for
K:=(3CO)2 O

5. LOGARITHMICALLY SLOW RECURRENCE INEQUALITIES

This section is devoted to develoPing a framework for hanc”ing recurrence inequa[ities,
similar to &0, that appear in subsequent sections.
Let P: (x, ®) = R be a smooth increasing ?unction, for some xo € R. We say that

D*: (xo,®) #R” is an iterator of difdis increasing and if

D(x) = P (D)) +1 CA)
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for all su{;ﬁcientlg large X.
Forinstance, the standard iterated logarithm log* definedin (1.2) is an iterator of log.

An analogous iterator may be defined for any smooth increasing function <: CXO) o) >R

for which there exists some 02X, such that ®(x) sx—1forall x>0. Indeed, in that case,
D (x) := min{keN:P*(x) <0}

is well-defined and satisfies (GA)) for all x>o. 1t will sometimes be convenient to increase
Xg SO that & (x)sx-1is satisfied on the whole domain of .

We say that dis /ogarft/vm/ca//y slow if there exists an teN such that
(Iog"{odbocxp"o x) = logx+ o (5.2)

for x = «. For examPle, the functions log 2x),2 [og X, (Iog x)z and (log X)Ioglogx are
logari’chmica”g slow, with €=0,1,2,3 respectivelg.

LEMMA 5.1, Let - (xo) ) >R bea /ogarithmica//y slow function. Then there exists 0= X0 such that
P (X) <x—1forallx>o. Conscqucn t/y all /ogar/thmlk:a//y slow functions admit iterators.

Proof. The case t=0is clear. For¢= 1 let W:= |og°<b°exp. By induction W(x) <x—1for
large x, s0 & (x) Sexp (logx=1) =x/e<x=1for large x. |

In this paper, the main role Plagecl bg logari’chmica”g slow functions is to measure size
reduction in multiplication algoritl'lms. In other words, multiplication of objects of size nwill
be reduced to multiplication of objec’cs of size n, where n'sd (n) for some logarithmica“y

slow function d (x). The followi ng result asserts that, fromthe Point of view of iterators,

such functions are more or less interchangeable with logx.

LEMMA 5.2, Forany iterator P*ofa /ogar/thmfca//y slow function <P, we have
P*(x) = log*x +o().

Proof. First consider the case where t=01in (5.2), i.e., assume that |<b x) —log xl <c for
some constant ¢ >0 and all x > xo- Increasing xq and ¢ if necessary, we may assume that

D (x) =p" (P (x)) +1 for all x> x5, and that 22> x,.
We claim that

< <2log 4 (53)

stZy =

(NRISS
o

for all y>+ere. Indeed, iF‘%stz% then

~log y<logi-c<b (L) sb () s (2 y) <log (2 4) +c<2log 4.
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Now, given any x>4e2¢ let k :=min{/< eN: log“kx S4ezc}, 50 k>1. Forany J=0, s k-1
we have logo-/x >4e2¢ 50 k-fold iteration of (5.3), starting with Y=x, 3ielcls
logx
2

s@”@&sﬂqg& (osjsk>

Moreover this shows that &’/ (x)>2e*>x, foros < k,sod™(x) =<D*(<D°k x))+k. Since
Pk (x) $Zlog°l<x <8e?“and k= |og*x+ o), we obtain d*(x) = log*x+o(l).

Now consider the general caset=0. LetYW:= |og°f°<boexp"f) so that W := Cb*oex[:)“( is
an iterator of V. By the above argument Y (x) =log*x+o(l)) and so P*(x) =W*(log°€x) =
log* (Iog"“x) +o() = log*x -t+o()= log*x +oQ. O

The next result) which generalises and refines the argument of Theorem 4.4, is our
main tool for converting recurrence inequalities into actual asymptotic bounds for solu-
tions. We state itina slightlg more general formthanis necessary forthe present paper,

anticipating the more complicated situation that arises in [24].

PROPOSITION 5.3, Let K > 1,5 = O and t€ N. Letxy > exp"f(l), and let P: (xg, ©) > R be
a /ogar/thmica//y slow function such that ® (x) <x—1forallx> Xo- Then there exists a Positivc constant
C (c/cpcno’lhg onxg, P, K, B and ) with the fo//ow/ng Prolocrty.

Let 0 Z x, and L > 0. Let SER, and let T: 5 = R” be any function satis@ing the zfo//owing
recurrence. First, T (3) <L fora//y € 5,3 < 0. Second, fora//y € é,y >g, there cx/si'y], vy Y4 € S with
y,sdb(y), andwe[g/‘:ts Vis oy Vg =0 with Z/ v, =1, such that

) ( -~ ]i )

T(y) S K|+ viT(y) L
IOg{y =1

Then we have T (y) < CLK!og*y—[og*o fora//yeé,y>0.

Proof. Leto, L, 5 and T (x) be as above. Define P (x) :=min{keN: Pk () <0} for x > Xo-
We claim that there exists reN, clepencling onlg on xg and d, such that

<D;(x> < log*x—log*O‘Fr »B.4)

forall x> 0. Indeed, let d*(x) := min {j eN: bV () xo}. First suppose 0 > xo, 50 that

o(P’ (x)

Pd*(0) =1. For any x>0, we have & D (x)>0, s0

®o(¢>;(x)—1+<b*(a>—0 (x)= <b°(<b*(0)“> (o) > X0,

and hence & (x) >Pp’(x) +P (o) -2. This last inequalitg also clearlg holds if g=xg (since
0>-2). By Lemma 5.2 we obtain PSP () -P(@)+o)= Iog*x —log*a+ o).

Define a sequence of real numbers £, ,, ... bg the formula

1+5 iFjsr+a
E. =

J ]+5/c><l3°<~/_r_£_]> ) i J >r+L.
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We claim that
]+5/|Og°{)< < ECD*(X) (55)

for all x>0. Indeed, let = =Pl (x). it st then (5.5) holds as x>0 > xo = cxP"f(l). It
°(j=1)

Now let ye5. We will prove }39 induction on J=Ps(y) that

M and hence lo "“’xZexpo('/_r_e_]> .

>t then Iog*x?J—r }39 5.4, 5O x>exp

T(y) < 50 ()4t i)

forall Y=o The base case j =0, l.e., yso, holds bg assumption. Now assume thatj?],
so y>o. By Iﬁgpotnesis there exist Yy ooy §g€S, 4, SP(y), andy,, ..., y =0 with >.v=1,
such that

T(y) < KE; ZV,T(y,)“
Since P (y,) s (b (y)) =P (y)—1, we obtain

Kﬁjz v, (E]~~-E/_]L(/<»/_’+-~~+/<+1)>+

Bl (k7 +- 424K +L

I\

7(4)

I\

B EjL (k7 ++ K2+ K +1).

Fina”y, the infinite Procluct

E: £, <(+p) ™t [+——
TI. ll; exp’ ok (D
certainly converges, sowe have 7 (y)sEL k7" / (k-1 for y>xo. Setting C:=£K™/ (k-
D, by (5.4) we obtain T (y)= CLKIOg*f/_IOg*O for all y>a. O

6. EVEN FASTER MULTIPLICATION

In this section, we Present an oPtimisch version of the new integer multiplication algo~

rithm. The basic outline is the same as in section 4, but our goal is now to minimise the

“exPansion factor” at each recursion level. The necessary modifications may be sum-
marised as follows.

+  Since Bluestein's C}’IirP transform reduces a DFT to a complex cgclic convo[ution,

we take the basic recursive Problem to be complex cgclic integer convolution, i.e.,

multiplication in(Zz/Q-nz)], rather than orclinarg integer multiPIication.

e In multiPIications involving one fixed o[:)erancl} we reuse the transform of the fixed

OPCT’aﬂd.
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+ In a convolution of leng’ch n with input coefficients of bit size b, the size of the
output coefficients is 2 b + O(lg n>) so the ratio of output to in[:)ut size is 2 +

e ( (Ig n) /b) . We increase b from Ign to (lg n) 2 so as to reduce the inflation ratio
fromo(@) to2+0 (l/lg n) .

« We increase the “short transform length” from Ig n to Gg n)lglgwo(l)’ The com-
Plexitg then becomes dominated by the Bluestein—Kronecker multiplications,
while the contribution from orclinarg arithmetic in CP becomes asgmpto’cica”y
negligiblc. (As noted in section 1, this is Precisely the OPPosi’ce of what occurs

in Flirer's algori’c}'lm.)

We begin with a technical Prcliminarg. To Per?orm multiplication in(Zz/2"-DZ)[i] effi-
cientl9 using FFT multiplica’cion, we need n to be divisible bg a high power of two. We
say that an integer n>%is admissible i 25 | o, where k(n) := Ig n— lg (lgz n) +1 (note that
O<k(n) Slgn forall n=3). We will need a function that rounds agjven n uptoan admissible
integer. For this purpose we define a(n) :=[n /25125 for 123 Note that a(n) may be
coml:)uted intime O (lg n) .

LEMMA 8.1. Letn=%. Then aln) is admissible and

4n

lgzn'

6.0

n<oa(n)<n+

Proof. We have n < a(n) < n+ 2 which imPlies 6.1, Since n/25M < 287 4 d
k(n) $lg n, we have [n/2<"] $Zlg"_K(") and thus a(n) $215", ie., lga(n) =lg n.In Par‘ticular

k(a(n)) =k(n), so a(n) is admissible. (In fact, one easilg checks that a(n) is the smallest
admissible integer >n). m]

Remark 6.2. Itis actua“g Possib[e to c{roP the rec]uirement that n be divisible bg a high
power of two, bg using the Crancla”~l‘agin method (see section 9. We Prmcer to avoid

this aPProac}'I in this section, as it adds an unnecessary lager of complcxit9 to the pre-
sentation.

Now let n be aclmissible, and consider the Problem of comPuting =1 Proclucts
TR ONTRY with u, .. u, ve (Z/Q"-DZ)[1], ie., ¢ Pro&ucts with one fixed oPerand.
Denote the cost of this oPeration bg Ct(n). Our algorithm for this Problem will Perxcorm
t+1forward DFTs and t inverse DFTs, so it is convenient to introduce the normalisation
C,(n)
2t+1

C(n) := sup
=1
This is well-defined since clearlg C,(m=stC(n). Roughly speaking, C(n) may be thought
of as the notional cost of a 5ingle DFT.
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The Problem of multiplying k-bit integers may be reduced to the above Problem bg
using zero~Padding, ie., bg ’caldng ni=a(2 k+1) and t:=1. Since aZ k+1D=0(k) and
Cy(n) £3 C(n), we obtain 1(k) 3 C(0(k)) + 0 (k). Thus it suffices to obtain a good
bound for C(n).

The recursive step in the main multip[ication algorithm involves comPuting “short”
DFTs via the Bluestein—Kronecker device. As Pointed out in section 2.5, this leads to
a cyclic convolution with one fixed oPerancJ. To take aclvantage of the fixed oPerand,
et BP)t(Zr) denote the cost of comPuting t inclepenclent DFTs of length 2" over (CP’
and let BP(Zr) P= SUP,sy prf(zr) /@2 t+1. Then we have the {:o”owing refinement of
Proposition 4.1. As usual we assume that the necessary Bluestein root table has been

Precomputecl.

PROPOSITION 8.3. Letr=%, and assume that 2" divides n' := o ( (Z pt r+Z) Zr> . Then there exists a
t{g/ni' a[gorl’f/)m C} for computing DFTs of /ength 2" over C P with

B,2) < C+o(21(p)).

Proof. We use the same notation and a[gorithm as in the Proo1c of ProPosition 41,
except that in the Kronecker substitution we take b := n' /2722 ptrt2,s0 that the
resulting integer multip[ication takes Place in(Z/Q" - zZ)l. The Proof of tightness
is identical to that of ProPosition 4.1 (this is where we use the assumPtion r=%). For
the complexit9 bound, note that n'is admissible bg construction, so for any t>1we have

BP’t(Z’) < Ct(”'> +O (t 2" (p)) Here we have used the fact that G is fixed over all these
multiplications. Divicling 59 2 t+1and taking suprema over =1 giel&s the result. O

The next result givcs the main recurrence satisfied }33 C(n) (comParc with The-
orem4.%).

THEOREM 6.4. There exists Xa 2?3 anda /ogar/thm/k:a//y slow function < (XO s °°> >R with the fo//owing

/oroloerly. For all admissible n> X0, there exists an admissible n'<S P (n) such that

C(n) 1 C(n)
l— < (8+O(T T*‘O(]). 6.2)
nlgn g n n'ign

Proof. Let n be admissible and sufﬁcientlg Iarge, and consider the Problem of com-
puting ¢>1 Proclucts v, uv, foru, . u,ve(Z/ Q=D Z) . Let ki=x(n) ~ lgn, sothat
25| n, and let b:=pn/2k Xlgzn.

We cut the inPuts into 2% chunks of size b,ie., if wis one of the ¢#+1 inPuts, we write
w=wo+w2b+ -+ wyL_ 2(#—1)173 where w € Z[i], and where the real and imaginary parts of
w. have absolute value at most 2°. Thus |w]< /2 -2 <25 and for any p>b+1we may
encode w as a Polynomial we (CPZH]) [X]/(XZL—D.
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We will multiplg the desired (cyciic) Polgnomiais bg using DFTs of iengti'i 2k over CP
where pi=2b+2k+ Ig k+10 = O(lgz n). We construct the DFTs in a similar way to
section 4. Let r:= (lglg n)z andd =1k /= O(lg n/ (lglg n>z>. Write k =+ +r, with
ri=rforisd-tand ry=k—(d =1 r<r. Weuse the tigi'it aigoriti'im A=Ao0A,,
where for1sisd -1 we take A, to be the tigiwt aigorithm C: for DFTs of iengtiw 2" gjven
bg Proposition 63, and where Ay is 279 as in Coro”arg 3.9. Thus, for the first 4 —1

groups of r iagers, we use Bluestein—Kronecker to reduce to compiex integer convo-

lution of size n" :=0((<Z p+r+2> 2r>, and the remaining iagers are handled using orciinarg

Cooleg—frukeg. We write A for the anaiogous inverse transform.
To check the i’iypothesis of Prol:)osition 63, we observe that 2" | n' for smcﬁcientig
large n,asn'is divisible bg 2K where k':=|g n’-lg(lgzn’> +1, and

n (2 ptr+2)2 b2 (Ign)?
lg2n " Ig2 (2p+r+2)27) “(gb+r)* (lglgn)®

Zk'x 2">2"

Denote bg D the cost of a single invocation of A (or A). By Coro”arg 39and (2.4),
we have

D < (d-NB @) +0 (27927 1(p)) +o (d 241(p)) +O (24kb).

The last term is the rearrangement cost, and simpiiiies to O(n ig n). The second term
covers the invocations of Ay, and simPliFies to O(r 2k l(p)), so is absorbed bg the
d 2k l(p) term. The first term covers the invocations of C. By definition BP ZL_,(Zr) <
22k +1) BP (21, and since Zk_r>ig|g n, Proposition 63 gields

B_,@) s (2+o(1/lglgn)) 2t Cid+o (241(p)).
Thus
D < <Z+O<]/lg[gn>> dZL_rC<n’)+O<dZA I(P>> +O<nlgn).

We will use Schéniﬁage—Strassen's aigoritiwm for fixed Point muitiPIications in CP.
Since p = 0(lg? n), we may take 1(p) = O(lg? nlglg nlglglg n). Thus the d 2* 1(p)
term becomes

o5 el aleleln| oo ol @zo(i )
(iglgn)zlgzng n&8ngss”n negn lgle ngn).
(We could of course use our algoriti'im recursivelg for these multiplications; i‘iowcvcr, it
turns out that Sciﬂ(‘jniﬂagc~5trasscn is fast enougi'i, and leads to simPler recurrences. In

fact, the aigoriti'im asgmpto’cica”g sPen&s more time rearranging, data than muitiplging in
(@)
P



DAVID HARVEY, JORIS VAN DER HOEVEN, GREGOIRE L ECERF 25

Since (2 p+r+2)2'= (+b+o(lg n) 2= (#+o(/lglg n)) b 27, and since lg(b27) =
r+O (lglg n) = (]+O(l/|glg n)) r>lglg n, 59 Lemma 6.1 we have
n= (4+o(1/lglgn)) b2,
lgn’ = (I+O(l/lglgn))r.
We also have k=lgn+o(lglgn) and d=k/r+0 ), so

lgn = (1+0(1/lglgn)) &,
d= (+o(/lglgn)) k/r.

‘1’(2”))0’ 1 n[gn
k=r_ — _ _ <
d 25 & hb29 - (AH-O(lg[gn)) n'lgn"

Thus

and consequentlg

1 nlgn
D < (84'0(@)) @C(n')"'O(nlgn).

To com[:)ute the desired ¢ Proclucts, we must execute ¢ +1 forward transforms and ¢
inverse transforms. For each Procluct, we must also Perxcorm O (Z/‘) Pointwise multiplica~
tions in CP’ atcost O (ZL I (p)> =O (n Ig n) . Asinthe PromC of Theorem 4.3, the cost of all
necessary root table Precomputations is also bounded bg O (Z/< I (p)) =0 (n lg n) . Thus

we obtain
C,(n) < @t+)D+O(enlgn).

Dividing }39 Qt+D)n lgn and taking suprema 3i€ld5 the bound (6.2).
The error analgsis is almost identical to the I:)romC of Theorem 4.3, the onl9 difference

beingtlﬁat bis rePlaced 59 b+1. Denoting one of the ¢ Products bg he <(CP 22b+2k +z> [x1/

(sz -1, we have ph$26+lg/<_’p exact19 as in Theorem 43. Thus g $ZZB+ZL+[gL_P+8

<1/4,
and again we obtain A. bg rounding to the nearest integer.
Fina”y we show how to define D(x). We alreaclg observed that lg n~r-~ (Ig lg n)z.

Thus there exists a constant ¢ >0 such that logloglog n's loglogloglog n+C for Iarge n,
50 we may take P (x) :=exp"5 (Iog"d’x+c). o

Now we may prove the main theorem announced in the Introduction.

Proof of Theorem 1.1. Let x, and > (x) be as in Theorem 6.4 Increasing x, if neces-

sary, bg Lemma 5.1 we may assume that P(x)<x—1 for x > X0, and that XOZCXP (exp (D> .
Let 7(n) :=C(n)/ (n lg n) for admissible n=2. By the t}'leorem, there exist constants

B,L>0 such that for all admissible n>xg, there exists an admissible n'sdPd(n) with

7(n) < 8[I+ ) T(n)+L

B
loglog n
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Increasing L if necessary, we may also assume that 7(n) < L for all admissible n < x,.
Taking 5 to be the set of admissible integers, we aPP19 ProPosi’cion 5.3 with K =8, 0:=xp,
t := 2, and for each admissible n > x, setting d =1, y;:=1, y = n and Yy i=n" as above.
We conclude that 7(n) = O(Slog*") and hence C(n) = O(n lg n 8[05*”) as n runs over
admissible integers. We already Pointcd out that 1(L) s3C (0 (L) +o (k). O

7- AN OPTIMISED VARIANT OF FURER'S ALGORITHM

As Pointed out in the lntrocluction, Flrer Provccl that I1(n) = O(n Iog n Klog*"> for some
K > 1, but did not give an explici’c bound for k. In this section we sketch an argument
slﬁowing that one may achieve K =16 in Fiirer's algori’c]')m, bg reusing tools from Previous
sections, esPeciany section 6.

At the core of Fiirer's algori’c]')m is the ring R = C[x]/(x 27 41), which contains the
Principal 27-th root of unity X. Note that g is a direct sum of 2~ copies of C, and hence
not a field ()Cor rz2). A crucial observation is that x is a “fast” root of unitg, in the
sense that multip[ication bg x and its powers can be achieved inlinear time, as in Schon-
hage—Strassen‘s algori’c]')m. For any k>r, we need to construct a 2¥"-th root w of X,

which is itself a 2¢-th Principal root of unity. We recall Fiirer's construction of w as fol-
lows.

27 27
LEMMA 7.1. With R as above, let o=exp—r and g=exp - Then

W (e

w = Z QZ"H

s .IT]'::,' (UZ/H _ szﬂ)

€R

k-r
isa Prif‘la,ba/ ZL~t/7 root of unity with w* = X. The coefficients of w have absolute value <.

Proof. See [19, Section 41. |

As our basic recursive Problem, we will consider multiplication in (Z/@"+1 zZ)Ii,
where nis divisible bg a high power of two. We will refer to the last Pro[:)ertg as “admissi-
bility”, but we will not define it Precisely. We write Ct(”) forthe cost of #=1such Procluc’cs

with one fixed argument, and C(n) i=sup,5C,(n) / (2 +1) for the normalised cost, exactlg

as in section 6.
Fiirer worked with Z / 27 +1) Z rather than (Z / 2" +1) Z)[11, but, since we are
interested in constant Factors, and since the recursive multiPlication s’cep involves mul-

tiplication of complex quantities, it simpliﬁes the exposition to work sgstematica”g with
complexiﬁed objec’cs everywhere.

For suitable parameters r and £, we will encode elements of (Z/ @7 +1) Z)[1] as
(nega)cgc[ic Polgnomia[s inRIY1l/ (VZL + I), where g = C[x1/(x%" +1) as above. We
choose the Paramctcrs la’cer; for now we require onlg that 2*72 divides n and that b :=

n/2kt 2> lg n (s0 that the coefficients are not too small).
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The encocling Proceecls as follows. Given a ¢ Z/Q2"+1) Z, we split a into 2 Par‘lts
a0y -+ Ayl of n/2* bits. Each a, is cutinto 272 even smaller pieces a; o, ..., 3, 52 of b bits.
Then a is encoded as

261 2772+
~ .= J i
-3 /z o X0V,
and an element u = x + gie(Z/ 2 +) D)l is encoded as G =5+ g i. (Notice that the
coefficients of x” are zero for272< g <27 this zero~Padc|ing is the Price Furer pays for
introducing artificial roots of unitg.)
We represent complex coefficients bg clements of CP 2¢ for a suitable Precision
parameter p. The exponent e varies during the algorithm, as explained in [19]; never-
theless, additions and subtractions onlg occur for numbers with the same exponent, as

in the algori’chms from sections 4 and 6.
Given u,ve(Z/2"+1) Z)[i], to success{:ullg recover the Procluct uv from the Po[3~

nomial Product averlyl/ (sz +1), we must choose p>2b+k+r+h, where hisan
allowance for numerical error. Certain|9 r<ks lg n, and, as shown bg Fiirer, we may also
take h=0 (lg n) (an analogous conclusion is reached in sections 4 and 6). Thus we may
assume that p=2b+0 (lg n) .

We must now show how to comPutC a Procluct av, for a,verRl[vy]l/ (sz + l). Fiirer
handles these types of multiplications using “half-DFTs”,i.e., DF Ts that evaluate at odd
powers of n, where neR is a PrinciPaI 2K1_th root of unity such that nzhkr:X (Lemma/.0).
To keep terminolog(j and notation consistent with Previous sections, we Preger to make
the substitution ¢/ (x,v):=a(x,nv), i.e., writing 22%551 a.(xX) v, we put ¢ => (a.n) Y,
and similarly for v and v. This reduces the Problem to computing the Product dvin
RIvl/ (sz 1. The change of variable imposes acostof o (2/‘ mR), where my is the cost
ofa mu[tiplication inR.

S0 now consider a Product v, where 4, verlyl/ (v? =1, Letw:= n%, so that
w? =X, Let d =1k /), and write £ = R+ +rywithr=rforisd-1and r, =k -
(d-1Dr<r.For each i et A, be the algorithm for DF Ts of lengt}'l 2" that aPPIies the usual
Cooley~Tu key metlﬂod, taking advantage of the fast 2/-th root of unity X 2" The com-
Plexitg of A is O (2“” r,lo>J since it Perf:orms 0@ r) linear-time operations on objec’cs
of bit size © (er) . Let D be the complexitg of the algorithm A=A0O--0A, for DFTs of
lcng’c]') 2k over R. Then 2.4) 9ielcls

! L
Dso|> 22|+ [—] 2kme+o(nlgn),
r

/=1

The first term is bounded }39 O (o’ 2k Z"rp) =0 ( (Z“rp) k) =0 (n Ig n) , since p=O b).
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Let us now consider the second term [k/r] 2k Mg, which describes the cost of the

twiddle factor mul’ciplications. This term turns out to be the dominant one. Both Kro-
necker substitution and FFT multiplication may be considered for mul’ciplication in R,
but it turns out that Kronecker substitution is faster (a similar Phenomenon was noted in
Remark 4.2). Sowe reduce multiPlication inR to mul’ciplication in (Z/ 2" +1) 7)[i] where
n=2" (2 ptr+ Z) is admissible and divisible bg 27 For any reasonable definition of
aclmissibilitg we then have n'=(1+0(1)) 27p, Provided that ris somewhat smaller than p- (In
the interests of brevitg, we will not sPeciFH the o) terms for the remainder of the argu-
ment. T]’)eg canall be controlled alongtlﬁe lines of section 6.) Most of the twiddle factors
are reused many times, so we will assume that m, = 2+0()) Cln), where the factor 2

counts the two (rathcr than threc) DFTs needed for each multiplication of size n'. The
term of interest then becomes

r+|glo ZL'HIDL
r n'lgn'

L
H 2km, = @+o() C(m).

r

lgn
Since p=2b+0O (lg n) = (2+ @) (%)) b and 25" b =4 n, this 9ielcls

lg n o+ nlgn
D s (16+0() [Ho(g—)] Slilia= Cm+o(nlgn).

b r nlg n'
To minimise the leading constant, we must choose b to grow faster than Ig n, and r to
grow faster than lg P- For example) ’caldng ri= (lg lg n>z and k := lg n—r=- lg (Igz n)
leads to b=4n /25 x lgz n and lg pX lg bx Iglg n. The function maPPing nto n'is then
bounded bg a logarithmica“g slow function, and a similar argument to section 6 shows

that | (m=0 (n log n ]6105*,7) .

8. FAST MULTIPLICATION USING MODULAR ARITHMETIC

Slﬁortlg after Fiirer's algoritl'lm aPPeared, De et al [15] Presente& a variant based on
modular arithmetic that also achieves the comPlexitg bound I(n) =0 (n log n /<|og*”> for
some K > 1. Roug]'llg speaking, theg replace the coefficient ring, C with the field QP
of p~adic numbers, for a suitable Prime p-In this context, worldng to “finite Precision”
means Pemcorming comPutations inZ/ /DA Z, where 1=1is a Precision parameter.

The main aclvantage of this aPProach is that the error analgsis becomes trivial; indeed
z/ /oAZ is a ring (unh’ke our CP), and arithmetic operations never lead to Precision loss
(unless one divides bg P which never }'laPPens in these algorit]ﬂms). The main disadvan-
tage is that there are certain technical difficulties associated with ﬁnding an aPProPriate
J=% this is discussed in section 8.2 below.

The aim of this section is to sketch an analogue of the a[gorithm of section 6 that
achieves 1(n) =0 (nlog n 8’05*”) using modular arithmetic instead of C. We assume famil-

iari’cy with p~adic numbers, rexcerring the reader to [22] foran elementarg introduction.
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8.1. Sketch of the algorithm

For the basic Probiem, we take muitiPlication nZ/Q2"-NZ, where n is admissible (in the
sense of section 6) and where one of the arguments is fixed over =1 multiPIications. As
before, we take k :=«(n), and cut the inputs into chunksof b:=n/2%=0 (Igzn) bits. Thus
we reduce to multiplging Polgnomials in Z[x1/ (x* =1 with coefficients of at most b bits.
The coefHicients of the Produc’c have at most 2 b+ £ bits.

lLet J= be a Prime such that p =1 (mocl Zk), so that QP contains a Primitive 25_th root
of unitg w. The Probiem of i(inding such P and wis discussed in the next section; for now
we assume only that lg p=0 (lg n). We may then embed the multiPlica’cion Problem into
QP[X]/ (x Zk—])) and use DFTs with respect to w to comPute the Product. Ona Turing

machine, we cannot represent elements of (Q/D exactlg, sowe PerForm all computations

in Z_/IDAZ,WI"ICI"C
[ 2b+k l
A= | 5/—— .
(gp)-

This choice ensures that lg(p@ 22 b+k,so knowleclge of the Procluct in (Z/ IoA Z> [x1/
(x Zk—l) determines it unambiguously in Z[X]/(XZL—D.

To compute each DFT, we first use the Coo|<39~Tui<eg algori’c}'im to clecomPose it
into “short transforms” of Iength 2" where r:= (lglg n) . (As in section 6, there are also
residual transforms of lCﬂgh]’] 2" for some r S, whose contribution to the complexi’cg is
negligible.) Multiplications inZ/ pA Z, such as the multiplications by twiddle factors, are
handled using Schénhage-Strassen‘s algoritl"im, with the divisions bg pA being reduced
to multiplication via Newton's method. We then use Bluestein's algoritlﬁm to convert each
short transform to a cyclic convolution of lengtlﬁ 2" over Z./ IoA Z, and apply Kronecker
substitution to convert this to multiPlication nzZ/Q2" -1 Z, where n'is the smallest

admlissibie integer exceeding 2" (Z)\ ig pt r). This muitiplication is then handled recur-
sive y.

Now, since Ig p= O(lg n), lg p=k, b xlgzn and k = O(lg n), we have 1 = <2+ O(I/
lg n)) b/lg 3 and hence n' = (‘i‘ + O(I/lg lg n)) b Zr,jus’c as in section 6. The rest of
the compiexitg analgsis follows exactig as in the ProoF of Theorem 6.4, excePt for the

computation of P and w, which is considered below.

Remark 8.1. The role of the Precision parameter Ais to gjve some extra iqexibilitg
regarcling the choice of p- if there was an efficient way to find a Prime p=1 (mod 26
larger t]'ian ZZZ’”‘ (but not too muc]'i largcr), and an eiqicient way to iincl a sui’cable Z.k~t}'1
root of unity modulo P then we could a[ways take A:=1and obtain an algoriti‘im working

clirectig over the finite field IFP.
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8.2. ComPuting suitable P and o

Given a transform lengtl'l 2k for k=1, our aimis to find a prime p such that p=1 (mod 29,
i.e., such that 2% divides p~1. Denote bg Po (k) the smallest such prime.

Heath-Brown has coru'ectured that Po () =0 @8k [26], but given the current state
of knowledge in number theory, we are onlg able to prove a result of the 1Co”owing tyPe.

LEMMA 8.2. For all su#fcicnt/y large k we have Po (k) < 2,6/<) and we may compute po (k) in time
Ok LoWy.

Proof. Thisis a special case of Linnik's theorem [36, 71, which states that there exist
constants C and L such that for anya,beN with gcd (a,b) =1, there exists a prime number
p=a (mod b) with p<C bt. The best currentlg known estimate L <52 for L is due to
Xglouris [56]. Applgingthis result for a=1and b =25, we get the bound P<26k for large
enoug]') k. The complexitg bound follows by testing 2k+1,2-2k+1,3-2k+1 . for Primali’cg
until we find p, using a Polynomial time Primality test [1]. O

The cliﬂqcultg with this result — a[reaclg noted in [15] —is that the time required to
find P greatly exceeds the time bound we are trying to prove for (m!

To avoid this Problem, De et al suggested using a multivariate splitting, ie., bg
encocling each integer as a Polynomial in ZLx, ..., X1 for suitable m, say m = 7. One
then uses m-dimensional DFTs to multiply the Polgnomials. Since the transform length
is shorter, one can get away with a smaller p- Umcortunatelg, this introduces further
zero~Paclding andleads to a Iarger value of ruining our attempt to achieve the bound
o(n log n8[°5*”) )

On the other }'lancl, we note that the Problem onlg rea“y occurs at the toP recursion
level. Indeed, at cleeper recursion levels, there is exloonenﬁa//y more time available at the
Previous level to compute p. So one Possible workaround is to use a different, suffi-
cientlg fast algorithm at the ’cop level, such as Fiirer's a[gori’c}'lm, and then switch to the
a[gorithm sketched in section 8.1 for the remaining, levels. In this way one still obtains the
bound O(n log n 8’05*'7), and asngtoticang almost all of the computation is done using
the algorithm of section 8.1.

If one insists on avoicling C en’cirelg, there are still many choices: one could use the
algori’c]')m of De et al at the top level, or use a multivariate version of the algoritlﬁm of
section 8.1. One could even use the 5chc’jnhage~5’crassen algorithm) whose main recur-
sive step 3ield5 the bound 1(7) = 0 (W/21(7/?) + 5 log n; applging this three times gives
1) = o818 +n Iog n), and then to multiplg integers with /8 bits, one can find a
suitable Prime using Lemma 8.2 in time o (P HeMy =0 (n).
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Another way to work around the Problem is to assume the gencralised Riemann
thO’CI’)CSiS (GRH). De et al Pointed out that under GRH, it is Possiblc to find a suit-
able Prime e%’cientlg using a randomised a[gori’c}'lm. Here we show ’c}'la’c, under GRH, we

can even use deterministic a[gorithms.
LEMMA 8.3. Assume GRH. T’L’C”Po (K=o (ZZk k%), and we may compute pg (k) in time O 2k Loy,

Proof. The first bound is givenin [271, and the comp[exitg bound follows similar|9 to the
Proo1C of Lemma 8.2. O

To use this result, we must modhcg the algorithm of section 8.1 slig]'ltly. Choose a con-

stant C >3 so that we can compute po (k) in time 0 (2% k), as in Lemma 8.3. Increase
the coefficient size from (lg n)z to (Ig n) C_I, and change the definition of aclmissibili’cg
accorclinglg. The transform [ength then decreases to 2~ = O(n/ (lg n) C_]>, and the
cost of comPuting P decreases to onlg O(n lg n). The rest of the comp[exitg analgsis
is essentia”g unchangecl; the result is an algorithm with complexity O(n log n 8’05*"),

working entirelg with modular arithmetic, in which the top recursion level does not need

any sPecia[ treatment.

Fina”g) we consider the comPutation of a suitable aPProximation to a 2¢-th root of
unity in QP'

LEMMA 8.4. Givenk, A =1and a prime p =1 (mod 25 we may find weZ/ ID)\ Z such that © =

w (Cr)nocl [DA> [orsomeprimiﬁve 2k_th root ofunfiy UJGQP, intime O (P]/++€+ (k A log p) Hg) iforany
€>0.

Proof. We may find a generator g of (Z/ply deterministica”g in time O(Io'/‘He) [51].

1) J2k

Then @, = 5<P D72 s a primitive 2k-th root of unity in Z/ p Z, and there is a unique
e L . ~ ‘ ~

primitive 2k-th root of unity cuE(QP congruent to @, modulo p- Given g, we may compute

w (mod pA> using fast Newton li{:ting intime O ( </< A Iog P>]+E> [9, Section 12.3]. |
In the context of section 8.1, we may assume that 1= O( (lg n) OG)) and k=0 (lg n) , SO

the cost of ﬁnding wis O(P‘/Arﬂ). This is certainlg less than the cost of ﬁnding P itself,

usirlg either Lemma 8.2 or Lemma 8.3.

9. CONJECTURALLY FASTER MULTIPLICATION

It is natural to ask whether the aPProac]'les from sections 6, 7 or 8 can be further oPti~

mised, to obtain a Complexitg bound I(n) =0 (n [ognklog*’ﬁ with K <8.
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In Furer's algoritl'lm, the complexitg is dominated bg the cost of mul’ciplications inR=
CIx1/ 2" +1). F we could use a similar aigori’ci'im for a much simPlcr R, then we migi'i’c
achieve a better bound. Such an algori’ci'im was actua”y given bg Fiirer [171, under the
assumption that there exist sugicientlg many Fermat Primes, le., Primes of the form F,=
27" +1. More Preciseiy, his algoritiim requires that there exists a Positive integer k such
that for every m € N, the sequence .y, - Mone
are then com[:)uteci ciirectig over R =7, for suitable m, taking aclvantage of the fact

, contains a Primc number. The DFTs

that I]:Fm contains a fast 2™'-th Primitive root of unitg (namelg the element 2) as well as
a2?"-th Primitive root of unity. It can be shown that a suitabig oPtimisecl version of this
hgpo’che’cicai algorithm achieves K =4 we still paya factor of two due to the fact that we
comPute both forward and inverse transmcorms, and we pay another factor of two for the
zero~Padding in the recursive reduction. Uni:or'tunateiy, itis iil«ilg that Fy= 65537 is the
last Fermat Prime [1»].

In the Kk = 8 algorithm of section 6, a Potentiai bottleneck arises during the
short transforms, when we use Kronecker substitution to multipiy Polgnomials in
CP[X]/(XZIV—]). We rea”g onlg need the high P bits of each coefficient of the Product
(le., of the real and imagjnary Parts), but we are forced to allocate roug]'iig 2p bits
per coefficient in the Kronecker substitution, and then we discard roughlg half of the
output. This Problem is similar to the well-known obstruction that prevents us from using
FFT methods to compute a “short I:)roduct”J i.e., the high n bits or low n bits of the pro-
duct of two n-bit integers, any faster than computing the full 2 » bits.

In this section, we present a variant of the algoritl'lm of section 6, in which the coeffi-
clent ring Cis repiacecl bg a finite field H:P [, where P =29~1is a Mersenne Prime. Thus
“short Products” are replaced bg “cgclic Produc’cs”, namelg bg multiplications modulo

29—-1. This saves a factor of two at each recursion level, and consequentlg reduces K
from8to 4.

This clﬁangc of coefficient ring introduces several technical complications. First, it is
of course unknown if there are iniinite|9 many Mersenne primes. Thus we are forced to

relg on unProveci corjectures about the distribution of Mersenne Primes.

Seconcl, g is always Primc (excePt Possibly at the toP recursion levei). Thus we
cannot cut up an element of Z/P Z. into ec]ual-sizecl chunks with an integrai number
of bits, and still expectto take advantage of cgclic Products. In other words, gisvery far
from being admissible in the sense of section 6. To work around this, we deplog avariant
ofan algoriti'im of Crandall and I:agin [i21, which allows us to work with chunks of varying
size. The Crancia”-l:agin aigoritiim was origina”g Presentecl over C, and ciepenclecl cru-

cia”g on the fact that R contains suitable roots of 2. In our setting, we work over ]F‘P, HE

H:(P'>Z’ where p'= 29 ~1is a Mersenne Prime exPonentiaiig smaller than p- HaPPiIH) [l:P,
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contains suitable roots of 2, and this enables us to adapt their algoritl'lm to our setting,
Moreover, since (p)*—1= 277 2971, the field I, [l contains roots of unity of high
Power~o{:~two orcler, namelg of order qu+‘, sOwe can Perxcorm FFTs overl™ P,[i] very effi-
cientlg.

Fina”g, we can no |onger use Kronecker substitution, as this would reintroduce the
very zero~Padding we are trging to avoid. lnstead, we take our basic Problem to be
Po/ynomfa/ mu[tiplication over (Z / P Z) [i1 (where p= 27 —11s not necessarily Prime).
After the CrandalL-l:agin sPlitting steP, we have a bivariate multiplication Prob[em over
I]:P,[i], which is solved using 2-dimensional FFTs over H:P,[i]. These FFTs are in turn
reduced to 1-dimensional FFTs using standard methods; this dimension reduction is,
rouglﬁlg sPeaking, the analogue of Kronecker substitution in this algorithm. (Indeed,
it is also Possible to gjve an algorithm along these lines that works over € but avoids
Kronecker substitution entirelg; this still 3ic|cls K =8 because of the “short Product”

Problem mentioned above.) For the 1-dimensional transForms, we use the same tech-
nique asin Previous sections: we use Cooleg~Tu‘<eg‘s algoritl'lm to decompose them into

“short transforms” of exPonentiallg shorter lengtlﬁ, then use Bluestein's method to con-

vert them to (univariate) Polgnomial Produc’cs, and ﬁna”g evaluate these Products recur-
sivelg.

9.1. Mersenne Primcs

Let ﬂm(X) denote the number of Mersenne Primes less than x. Based on Probabilistic

arguments and numerical evi&ence, |enstra, Pomerance and WagstaﬁC have conjecturecl
that

CV

Ty (x) ~ [ng loglog X

as x> ® where y=05772...is the Euler constant [55, 42]. Our fast multiplication algo-
rithm relies on the Fo”owing slig]')tlg weaker corjecture.

CONJECTURE 9.1. There exist constants O<a < b such that for allx >3,

a |oglogx <7, (x) <bh loglogx.

PROPOSITION 9.2. Assume Corjecture 9tandletc = b/ a For any integer n = 2, there exists a
Mersenne prime p = 29=1jn the interval 27 < p< 27", Given n, we may compute the smallest such P and

find a primitive 2 q+l~t/7 root of unity in I p 11, in time ©(n G+o(D) ).

Proof. The required Prime exists since for n=2 we have

7. 2")>a loglog 2™ =ac log n+a loglogz> b |og n+b logloglz b loglog(l”) >5 (27).
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2+o( using the

An integer of the form 29 -1 may be tested for Primalitg in time g
Lucas—Lehmer Primalitg test [13]. A simple way to compute P is to aPP19 this test suc-
cessivelg for all getn+1, .., Inclh this takes time 0 (n¥*oMe) | A primitive 29"_th root
of unitg w may be computecl bg the formula w :=22q_2+ (—ﬁ)zq_zieﬂzp[i] in time O(q2+o(])>3

see [45] or [14, Corollarg 5]. |

9.2. Crandall and Fagin's algorithm revisited

Let P =27-1be a Mersenne number (not necessarilg Prime). The main integer mu[tipli-
cation algorithm cJePends on a variant of Crandall and Fagin's algorithm that reduces
multiplication in (2/ p2) [11x1/ (x*~1) to muktiplication in 1=, [ [x, ¥1/ (<=1, vV =1,
where P'zzq’—] isa 5uitably smaller Mersenne Prime (assuming that such a Prime exists).

To exPIain the idea of this reduction, we first consider the simPler univariate case, in
which we reduce multiplication in (Z/P Z) [ilto multiplication in H:P,[i] [v1/(vM=1). Here
we rccluire that v < g, that gccl (N, q’) =1 and that g'z2 [q/N‘l +|gN+§. For any keN, we
will write N, ={0, ..., k-1} and 7, ={=(k=1, ..., k=1}.

Assume that we wish to compute the Procluct of u,ve (Z/_/ P Z) 1. Considering uand

v as elements of INP[i] modulo ps we &ccompose them as

N-1 N-I
=D 2% v=D 20, .1
/=0 /=0
WI’]CFC
e = l-qi/N],

Uy, v; € INZc/H—c/[i].

We regarcl vy, and v, as comPlex “cligits” of u and v, where the base 2°+7¢ varies with the
position /. Notice that e,,,—¢, takes onlg two Possib[e values: I_q/Nj or [q/N1 .
ForOs/<nN, let
c = Nel«—q/, (9Z>

sothat Osc,<n. For any Osy, h<N, define 6, ,€Z as follows. Choose 0€{0, 1} so that

i:=ji+ip—0N lies in the interval 0O</<n, and put

i 1= @,i+e,,z—e[—0q.
From (9.2), we have
cte,ma=N(ete, =) =g (i+p=N=NG, .
Since the left hand side lies in the interval (=nv,2 v), this shows that 6[11[26{0, 1}. Now, since
27=1 (mod p) and ete =e+s (mocl q) , we have
1 2 12

N=1 N-1

N-I
uv = Z u, \/,/ZZ.C“'JW:’2 = Z w2 (mocl lD),
=0

=0 =0
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WI’]C!‘C

w, 1= E Zmulv
A

i+i=i (mod V)

Since |u| < \/_ Z and sxmllarlg for vy, We have w, € Z [l1. Note that we may

/v +1
recover uv from Wos -+ Wy N time O(q), by a standard ovcrlaP~ach Proccclure (Pro~
vided that n=0O (q/lg q)

Let /‘l be the nverse O‘F q modulo N tlﬁls nverse CXIStS SIHCC we assumecl gCCl (N q )
I. Let@: zhelr . so that

oV=2m=2
since 2 has order g’ in H:P,. The quantitg ) Plags the same role as the real v-th root of 2
aPPearing in Crancla“-—lzagin‘s algorithm.
Now define Polynomials u,velr, L1Lyv1/ (V=1 bg (1:=0% and v =6 for 0<i<n,

and let w= Wot-+w,_ vV =gy be their (CHC[IC) Product Then

~ .- OC - < c c —c _ 6,’,

M//”_'@ M//'-' Z (J/V/ ZQ V/Z_'zz'qquliv/}_

it+iy=i (mod N)

coincides with the reinter[:)retation of w, as an element of FP,[i]. Moreover, we may
recover w, unambiguouslg from w, as g=2 [q/N‘l +lg v +3and w e Z‘P[q/N.‘HN [il.

Altogether, this shows how to reduce multiPlication n (Z_ / P Z) i1l to mul’ciplication in
F G101/ (D,

Remark 9.3. The pair (¢4, ¢4p) can be comPuted from (e, c) ino (lg q> bit operations,
s0O we may compute the SEqUENCes cg;, .-+, Cy— and Coy -+ Cy— INtime O (N lg q) . Moreover,

since ¢, —¢; takes on only two Possible valucs, we may compute the sequence g, ..., 0%

using o) multiPlications in H:P,[i].

9.3. Bivarniate Cranda“—-Fagin reduction
Generalising the discussion of the Previous section, we now show how to reduce mul-
tip[ication n (Z/_/p Z) [1Ix1/ &M =1, for a given M > 1, to mu[tiplication in H:P,[i] [x,
y1/(x™ =1, y¥ =1). For this, we require that v < g, that gcd(N, q’) =1 and that g =
z[q/N1+lg(M/\/} +3.

Indeed, consider two cyclic Polgnomials u=ugt e Fu, XM and vEyg ey, XM
in (Z/P Z) [11x1/ (XM =1). We cut each of the coefficients u, v € (Z./ID Z> [i] inton
chunks Y j and v, OF bit size at most [q/N] usmg the same vargmg base s’crategzj as

above. With 8¥=2 and c/ as beFore we next form the bivariate cychc Polynomlals

U= u,»}/rQC'/XiY‘j, vi=y v,,}jec»/x"v/
/’,J V Lo
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in [FP,[i] X, v1/ (XY =1, ¥V =1). Setting
= - 0y J
W= gV ZW,’-/Q X'y
I}J
the same arguments as in the Previous section 3ield

S, .
- M,
VV!',‘/' Z Z Z u/],J] V’zjr/z'

i+i=i (mod M) ji+ = j (mod M)

Usingt]')e assumption that q>2 [q/N] +|g (MN)+3, we recover the coefficients W and

!

hence the Product uv, from the bivariate cgclic convolution Product w=uv.

9.4. Conjectura"y faster multiplication

Let g=2 and P :=27-1 (not necessarilg Prime) . We will take our basic recursive Problem to
be multiPlication n (Z/pZ} [11x1/ (xM=1) for suitable M. We need M somewhat larger
than g this is analogous to the situation in section 6, where we chose a “short transform

length” somewhat larger than the coefficient size. Thus we set M = M (q) = Z’J@) where
u(q)is defined as follows.

LEMMA 9.4 There exists an increasing function p: IN=IN such that

0xu(9)~(log: ) (logelogz 4) <2 ©3)

fora//q =2, and such that we may ComIDute u(q) jn time (Iog ‘7) |+o(]).

Proof. Let f(q) = (logz q) <logz log2 q). Using [é], we may construct a function
5(9g) such that lg(q) - f(q)] <1/ g forall g>2, and which may be comPute& in time
(log q)”o(]). One checks that z[(q +l> -f(9)=22/¢g for all g=2,s0 g(q +1> > z[(q +

1 1 1
1) P > f(q +1) —52 (9) +;?g(q) for g=2. Thus g(9) is increasing, and p(q) =
l_g (9) +§/ZJ has the desired properties. -

We say that an integer n>2 is admissible if it is of the form n= gM where M :=m (9) for
some g =2, (This should not be confused with the notion of aclmissibilitg of section 6.)
An element of (Z/P Z) [11x1/ (XM =1) is then rePresented }39 2 n bits. Note that g
gM(q)is strictlg increasing, so there is a one-to-one correspondence between integers

g=2 and admissible n. For x>2 we define B(X) to be the smallest admissible integer n>x.

LEMMA 95 We have ,B (n) =0 (n) asn—>®. GivennZ2, we mat cornlout'e ,B (n) S and the corresloond/ng

g, intime o(n).

Proof. From (9.3) we have (g +1) m(q+1)/ (q M(q)) = O(Z“(qﬂ)_”(q)) = o(D; this
immediate[g implies tha’cﬁ(n) =0(n).
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SuPPose that we wish to compute B(n) for some n. We assume that n is large enougi'i
that the definition 9o =2 ll8n/ (gl lelals D ol s sense and so that go>2. One checks
that (Iogz ‘70) (Iogz logZ ‘70) = lg n, 50 U(qo) = Ig n and hence goM(go0)Zn. To find the
smallest suitable g, we may simplg compute gM(q) for each g=2,3,..., 90, and compare
with n. This takes time © (‘70 (log ‘70) HO(D) =o(n). !

Now let g=2, p:= 27-1and M = m (9)- Consider the Problem of comPuting =
Proclucts TR with Upyoevy Uy VE (Z/ID Z) [1Ix1/(x™=1). We denote bg C,(n) the
compiexity of this Problem, where n:= gM(q)is the admissible integer corresPonciing to
g. As in section 6, we define C(n) i=sup5C,(n) /(2 t+1).

Notice that multiplication of two integers of bit size <k reduces to the above Problem,
for t =1, via a suitable Kronecker segmentation. Indeed, let n:= (8 k) = gM(q) for
some g, and encode the integers as integer Polynomials of clegree less than M/2 with

coefficients of bit size m:= [k/m/2DT. The desired Procluct may be recovered from the
Product in (Z/pl) [1Ix1/xM=1, as

4k g
2’”*’5W/2>$7+u<q>Sgw(q)Sq—'
for Iarge g Thus, as in section 6, we have (k) s3C(o(k) + ok, and it suffices to

obtain a goocl bound for C(n).
Now suppose additiona“g that p= 27-1is prime. In this case (Z/P Z> [il1= ]F‘P[i] is

a field, and as noted above, it contains 27"_th roots of unity, so we may define DFTs
of Iengti‘i 2" over [l:P[i] for any r S g+l In Par‘lticular, for r< g we may use Bluestein's
algoriti'im to compute DFTs of |ength 2". Denote bg B%f(l”) the cost of evaluating t
indePendent DFTs of lengt]'i 27 over [FP [, and put Bq(l"} = SUP,sy B%t(.?f) /@2 t+1).
Here we assume as usual that a 2*'-th root of unity is known, andthat the corresPonciing
Bluestein root table has been Precomputed.

Let us applg these definitions in the case r := lg M; this is Permissible, as lg M< g
for suﬁicientlg Iarge g Since convolution of lengt]'i M over [l:P[i] is exactly the basic
recursive Problem, and since one of the oPerands is fixed, we have bq}t(lvl) sC,(n) +

O(tM l(q)>) where n:= gM, and hence

B, (M) < C+o(MI(q)). ©.4)

THEOREM 9.6. Assume Corjecture 9.1, Then there exists xoZ=2 and a /ogarithm/ca//y slow function P

<XO s ®) =R with the zfo//owfng /Droperiy. For all admissible n > X0» there exists an admissible n' < b (n)

such that

C(n) 1 C(n)

. < (AHO(I o T -+O(1). 9.5
ngn gggn n gn
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Proof. Let n:= gM with M = m (g9). Assume that we wish to compute t > Prociucts
with one fixed oPerand. Our goai is to reduce to a Problem of the same i:orm, but for

exponentia”g sma“er n.

Choose Paramctcrs. Let p’=2‘71—] be the smallest Mersenne Prime largcr than Z(lng.
By Proposi’cion 9.2, we have Z([gM)Z< P'<2(15M>ZC, whence (lg M)ZS g's (lg M)ZC, for some
absolute constant ¢>1. Moreover, we may compute P togetiier with a Primitive 29 th
root of unity w in I]:P,[i]) in time O((lg M) (Eroey = o (n lg n). We define m7:=m (q) and
n':=qg'M'.

The aigori’chm must Perxcorm various multiPIications in ]FP'U]’ at cost O(l(q')). For

5iml:>iicit9 we will use 5chénhage—~5trassen's algorithm for these muitiplications, ie., we
will take | (q) =0 (q’ig q’igig q’). Since lg q'zo(igig M) =O<lglg n), we have
1(9) = o(qglgnlslglsn)

Cranc]a”—-l:agin reduction. We use the framework of section 93 to reduce the basic
multiplication Problem in (Z/PZ> [IIx1/xM=1 to multiplication in H:P,[i] [x,v1l/(xM-
1 yN=1) )COF suitable N. We take N:=2ts where

¢ = | [i]
"8l glglsq)

g
s:i= 2|————— | +1.
L“(q"*gz q)l

We also write L := 2'. The definition of s makes sense for Iarge g since g = (lg M)Z X
(lg q Ig lg q)z. Let us check that the l'lgpotheses of section 9% are satisfied for large
g. We have L% q/ (q’lglg q) and hence s xiglg g; in Particuiar, s#* g, 50 gcci(N, q') =1,
and also v x q/q'< q/lg g. Since N=Ls>2 q/(q’—lgz q), we also have 2 I—q/N} <
q'—lgz q+O(l), and thus 2 [q/N] +|g(MN) +3< g’ since lg(/\//N) =0 (lg g lglg q> .

We also note for later use the estimate

el

Indeed, since sxiglg g we have

! g
5 = Z ]
( +O(’5’5 q]) 20(g-lg?q)

and we alreadg noticed earlier that (igz q) / g'=0 (]/ <lgig q) Z) =0 (i/lglg q) i

To assess the cost of the Crandaii~Fagin reduction, we note that com[:)uting the =

and ¢, costs O (N ig q) =0 (n lg n) (see Remark 9.3), the splitting itself and final overiap~
add Pi’iase rec]uire time O(tn), and the various mul’ciplications bg 6, 65 and 67 have cost

o(tmn1(q))=o(tn1(q)/ g) =0 (tnlgn).
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Reduction to Power—of—two |cngths. Next we reduce multiplication inF P,[i] [x,vl/
XM=1,v"=1 to multiPlication in #[x,z1/(x"=1,z=1), where %= ﬂ:P,[i] [ul/(us=1.
In fact, since gcd (L, s) =1, these rings are isomorphic, via the map that sends X to x
andytozu. Evalua’cirig this isomorPi‘iism corresPoncis to rearranging the coefficients
according to the rule 7= (i, ), where 7 €{0, ..., N =1} is the exponent of v and where
ir:=imod L and j:=/mods are the exponents of z and u. This may be achieved in time
@) (tMN lg N (q’ + ig N)) =0 (tn lg n) usirig the same sorting strategg as in section 2.3.

The inverse rearrangement is handled simi[arly.

Reduction to univariate transforms. For mul’ciplication in®[x,z]1/xXM=1,z5-1), we
will use bivariate DFTs over %. This is Possible because ]F‘P,[i] contains both m-th and

ZqVH/M and wzq'ﬂ/L

L-th Primitive roots of unity, namelg w , since q'>lg/\xl and q'>lg L. More
Precisely, we must Pericorm ¢+1 forward bivariate DFTs and ¢ inverse bivariate DFTs of
length MX L over ®,and tML multiPIications in #. Each bivariate DFT reduces further to
sM univariate DF Ts of [ength L over H:P,[i] (with resPect to z) and s L univariate DF Ts of
length M over IF P,[i] (with resl:)ec’c to X). lnterspersed between these ste[:)s are various
matrix transpose oPerations of total cost © (ts ML Ig(s ML) q') =0 (tn lg n), to enable
efficient access to the “rows” and “columns” (see section 2.1).

Multiplications in % are handled }39 zero~Pacldirig, j.e., we first use Cooley~Tui<ey to
muitiplg n IFP, lal/ ((Jzﬂgslﬂ—l), and then reduce modulo ¢/°=1. The total cost of these
multiplications is O(tML slgs l(q’)) = O(tn lg s I(q)/ q’) =o(tnlglgn (Iglglg n)?) =
o(tnlgn).

Reduction to short transforms. Consider one of the “long” univariate DFTs of
leng’ciﬂ 2k e{m, L} over H:P,[i]. We decompose the DFT into “short” DFTs of lengtl'i M

as follows. Let r:=lgm=0 (lglg nlglglg n)andd:=[k/rl=0 (gn/ (lglg nlglglg n)),
and write £ =n+try whererixri:or]SiSc/—lanci ryi=k—=(d -1 r<r. Weuse
the aigori’chm A= A o0 A, where for1s/sd —1we take A, to be the algorithm
based on Bluestein's method (discussed imme&iatelg before (9.4)), and where A s the
usual Cooley~Tui<ey algori’c}'im over H:P,[i]. LetD, be the costof a singlc invocation of A

(or of the corresponding inverse transform A?. E)g 2.4) we have
Dy s (d-DB_ @) +o (27 21()) +o(d21(g)) +o (24glgn).

The cost of Precomputing the necessary root tables is only @) <Zk l(q')). 159 definition
bq,’zi_r(r) <(2-2kr+7) Bq,(M’). From (9.4) and the estimate 257> lglg n, the first term

becomes

d-DB 20 s 2+o(/lglgn)) (d-n2frCm+o (d247m1(q)).
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The contribution to D, from all terms involving l (q) is

21
Zﬂggagggn7%%”§§8J=C%ﬁ¢%n%

o(2* (ry+d)1()) =o[

SO
D, < (2+0(1/lglgn)) (d-D25rC(m)+0 (245 lgn).

Denoting bg D the cost of a bivariate DFT of leng’cl') M x L over #, we thus have (ignoring,

the transposi’cion costs, which were included earlier}

D= sLDlgM+sM D[gL
L

I |
Il lonr |1 M Tgar |

—] C(n) +O<sLMq'lgn>
1 lg (L)
(z+o( ))sLM—C(n')+O<5LMq'Ign>

I\

I\

lglg n melg e
1 nlgn ' |
< (4""0([%’5”)) n'lgM’C<n>+O<n gn)

Moreover, since
len  lgg 1 1
B B o) |siro| |,
lg/\/l' lg/\/l' Iglg q' Iglglgn

1 nlgn
D < (‘H_O(lglglgn)‘) n’lgn’C(n')*'O(nlgn).

We must Perf:orm 2 t+1 bivariate DFTs; the bound (9.5) then follows exac’cly as inthe

we get

Proomc of Theorem 6.4

For Iarge n, we have log g'=0 (loglog M) =0 (loglog n) , 5O log n'= |og g+o (/1 ( q)) =
O (log q |oglog q’> =0 (loglog n |ogloglog n). Thus there exists a constant ¢ >0 such
that logloglog n's loglogloglog n+C for large n, and we may take b (x) :=e><P°5 (log"*x +
). o

Proof of Theorem 1.2. Follows from Theorem 9.6 and Prol:)osition 5.3, analogously to
the F)roomC of Theorem1.1. O
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