Even faster integer multiplication

Davip Harvey JORIS van DER KoEVEN?, GREGORE LECERE”
School of Mathematics and Statistics CNRS, Laberateire dinformatique
University of New Seuth Wales Bcole polytechnique
Sydney NSW 2062 91128 Palaiseau Cedex
RAustralia France
Email: d.harvey@unsw.edu.au a. Pmafl vdhoeven@lix.polytechnique.fr

b. Email: lecerf@lix.polytechnique.fr

April 26, 2016

We give a new algorithm for the multiplication of n-bit integers in the bit complexity
model, which s asymptotically faster than all previeusly knewn algorithms. More
precisely, we prove that twoe n-bit integers can be multiplied in time O(n log n Kleg™),
where K =8 and log” n = min {k € [log " log n < }. Assuming standard cenjec—
tures about the distribution of Mersenne primes, we give yet another algorithm that
achieves K =% The fastest previously knewn algerithm was due to Ftirer, who proved
the existence of a complexity bound of the abeve form for sems finite K. We show
that an optimised variant of Firer's a]g@r’itbm achieves (Mﬂy K =16, suggest’ing that

our new algoerithm is faster than Ftrer’s by a factor of 9leg"n,

Kevworps: Integer multiplication, algerithm, complexity beund, PPT

A.CM. suBjecT cLassiFicaTIon: G.1.0 Computer—arithmetic, £.2.1 Number-theoretic com-
putations

AM.S. suBjEeT cLAssIFIGATION: 68UW30, 68Q17, 68UUO

1. InTRODUETION

Let I(n) denote the cost of multiplying two n-bit integers in the deterministic mulbi-
tape Turing model [%0] (commonly called “bit e@mp]exﬂ;y”). Previously, the best known
asymptotic bound for I(n) was due te Pérer [18, 19]. He proved that there is a constant
K >1 such that

|(n) = O(n]@gnﬁ]gg*"), (1.1)

where log x =In x denotes the natural legarithm of x and leg* x the iterated logarithm,
ie.,

log*x = minjk€Mlog¥ x <K, (12)
log™ = loge°- -°log,

for any x €[R with x>0. The main contribution of this paper is a new algerithm that
yields the following imprevement.

THeOREM 1.1. For n > co we have

|(n) = O(n]@gngmg*").

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68Q17&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68Q17&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68Q17&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search

2 EVEN PASTER INTEGER MULTIPLIGATION

Péirer suggested several methods to minimise the value of K in his algerithm, but
did net give an explicit bound for K. In section 7 of this paper, we outline an eptimised
variant of Firer's algorithm that achieves K =16. We do not know how te obtain K <16
using Firer's approach. This suggests that the new algerithm is faster than Férer's by
a factor of 2°°¢'".

The idea of the new algorithm is remarkably simple. Given twe n-bit integers, we
split them into chunks of exponentially smaller size, say around log n bits, and thus
reduce to the problem of multiplying integer polynomials of degree o(n /log n) with
coefficients of bit size (_‘9(]@g n). We multiply the pelynemials using discrete Fourier
transforms (DPTs) over ©, with a working precision of O(log n) bits. To compute the
DFTs, we decompose them inte “short transforms” of exponentially smaller length, say
length around log n, using the Cooley—Tukey methed. We then use Blusstein's chirp
transform te convert each short transform into a pelynemial multiplication problem over
C, and finally convert back to integer multiplication via Krenecker substitution. These
much smaller integer multiplications are handled recursively.

The algorithm Just sketched leads Tmmediately to a bound of the form (1.1). A detailed
proof is given in section % We emphasise that the new methed werks directly ever
€, and does not need special coefficient rings with “fast” roots of unity, of the type
constructed by Férer. Optimising parameters and keeping careful track of constants
leads to Theorem 1.1, which is proved in section 6. We also prove the following condi-
tional result in section 9, where we recall that a Tersenne prime is a prime of the form
p=21-1.

THeorEM 1.2. Let m,(x) denote the number of Mersenne primes less than x. If the functien x =
ﬂm(x)/kc)g 1©g x 18 bounded both from abeve and frem below on (3, 00), then

I(n) = @(n log n ylog” ").

The assumption on 7,(x) is a weakening of the L.enstra-Pomerance-Wagstaff con-
jecture on the distribution of Mersenne primes. The idea of the algorithm is to replace
the coefficient ring © by the finite field [F,[i]; we are then able to exploit fast algorithms
for multiplication module numbers of the form 29-1.

An impoertant feature of the new algerithms is that the same techniques are applic-
able in other contexts, such as polynemial multiplication ever finite fields. Previously,
no Firer-type complexity bounds were known for the latter problem. The details are
presented in the companion paper [22].

In the remainder of this section, we present a brief history of complexity bounds for
integer multiplication, and we give an overview of the paper and of our contribution.
Meore historical details can be found in books such as [21, Chapter 8].

1.1. Brief histery and related werk

Multiplication a]g@r‘ﬂ;bms of e@mp]ex‘ﬂ;y 0(n?) in the number of d“ig“its n were already
knewn in ancient civilisations. The Egyptians used an algorithm based on repeated
doublings and additiens. The Babylenians invented the pesitional numbering system,
while performing their computations in base 60 instead of 10. Precise descriptions of
multiplication methods close to the ones that we learn at school appeared in Europe

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 3

during the late Middle Ages. For historical references, we refer to [62, Section I.5]
and [39, 5]

The first subquadratic algerithm for integer multiplication, with complexity
0(n'°83/1°82) yas discovered by Karatsuba [31, 32, 33]. From a medern viewpoint, Karat-
suba's algoerithm utilises an evaluation-interpolation scheme. The input integers are
cut inte smaller chunks, which are taken to be the coeefficients of two integer poly-
noemials; the polynemials are evaluated at several well-chesen points; their values at
these points are (recursively) multiplied; interpolating the results at those points yields
the product polynemial; finally, the integer product is recovered by pasting tegether
the coefficients of the product polynemial. This cutting-and-pasting procedure is some-
times known as Kronecker segmentaiﬁ@n (see section 2.6).

Sh@rtly after the discovery of Karatsuba's algorithm, which uses three evaluation
points, Toom generalised it so as to use 2 r - 1 evaluation points instead [6%, £3], for
any r 2 2. This leads to the bound I(n) = O(n'°2 Vg™ £or fixed r. Letting r grow

slowly with n, he also showed that I(n) = O(nevwg M@gg) for some constant ¢ >1, and he
remarked that one may take ¢ = 32. The algorithm was adapted to the Turing model
by Cook [10] and is new knewn as Toom-Cook multiplication. Cook alse proved that
one may indeed take ¢ = 32 in the complexity estimate. The next improvement was
obtained by Schénhage [47] by werking moedule several numbers of the form 2¢ - 1
instead of using several polynemial evaluation peints. Knuth claimed that an even
better complexity bound could be achieved by suitably adapting Toom's methed [3%,
Section %4.3.3, Bxercise 5].

The next step towards even faster integer multiplication was the rediscovery of the
fast Pourier transform (PET) by G@dey and Grukey [11] (essent%’aﬂy the same algorithm
was already known to Gauss [28]). The PET yields particularly efficient algorithms for
evaluating and interpolating polynomials on certain special sets of evaluation points.
For example, if B is a ring in which 2 is invertible, and if w € B is a principal 2*-th
root of unity (see section 2.2 for detafiled definitions), then the PPT permits evaluation

and interpolation at the points 1, o, ..., v

using only 0(k 2¥) ring operations in R.
Gonsequently, if P and @ are polynemials in B[X] whese product has degree less than 2%,
then the product PQ can be computed using 0(k 2) ring operations as well.

In [60], Schénhage and Strassen presented two FFT-based algorithms for integer
multiplication. In both algerithms, they first use Kronecker segmentation te convert the
problem to multiplication of integer polynemials. They then embed these polynemials
inte R[X] for a suitable ring B and multiply the pelynemials by using FFTs over R.
The first algorithm takes 8 =€ and o = exp(2 1 1/2%), and works with finite-precision
approximations to elements of €. Multiplications in © fitself are handled recursively,
by treating them as integer multiplications (after appropriate scaling). The second
algorithm, popularly knewn as the Schénhage-Strassen algorithm, takes B = Z/m Z
where m=922"+11s a Permat number. This algorithm is the faster of the twe, achieving
the bound I(n) = 0(n log n log log n). It benefits from the fact that w =2 is a principal
2"-th reot of unity in B, and that multiplications by powers of w can be carried out
efficiently, as they correspond to simple shifts and negations. At around the same time,
Pollard pointed out that one can alse work with 8 =7Z/m Z where m is a prime of the
form m=a 2“+1, since then B* contains primitive 2“~th reets of unity [%1] (although he
did net give a bound for I(n)).

4 EVEN PASTER INTEGER MULTIPLIGATION

Schénhage and Strassen’s algerithm remained the champion for mere than thirty
years, but was recently superseded by Ftrer's algorithm [18] In short, Pérer managed
to combine the advantages of the two algerithms from [80], to achieve the bound

I(n) = O0(n log n 90lleg* ")). Férer's algorithm is based on the ingenious observation that
the ring R = C[X]/(x? " +1) contains a small number of “fast” principal 2'-th roots of
unity, namely the powers of X, but also a large supply of much higher-order roots of
unity inherited from ©. To evaluate an FET over R, he decomposes it into many “short”
transforms of length at mest 27, using the G@@by—arukey method. He evaluates the
short transforms with the fast roots of unity, pausing occasionally to perform “slow”
maltiplications by higher-order roots of unity (“twiddle factors”). A slightly subtle point
of the construction is that we really need, for large &, a principal 2“-th root of wunity
w€R such that ¥ "= X.

In [16] it was shown that the technique from [%41] to compute medule suitable prime
numbers of the form m = a 2 + 1 can be adapted to Firer's algerithm. Although the
complexity of this algorithm is essentially the same as that of Ftrer's algerithm, this
method has the advantage that it dees net require any error analysis for approximate
numerical operations in C.

Date RAuthoers Time complexity

<3000 BC | Unknown [39] 0(n2)

1962 Karatsuba [31, 32] O(n'°8 3108 2)

1963" Toom [5%, 53] 0(n 97V %%

1966 Schénhage [47] 0(n 2V "% (10g 1)¥/2)
1969° | Knuth [3%] 0(n 2V 100)
1971 Schonhage-Strassen [50] | O(n log nlog log n)

2007 Ptirer [18] O(n log n 0lieg” "))

2014 This paper O(nleg n8°% ")

Table 1.1. Histerical overview of known complexity bounds for n—bit integer multiplication.

* |t should be noted that Toem only proved that M(n) =0(n evuDg n/bgg) for seme constant ¢ > 1,
but he remarked that one could take ¢=32. Similarly, Knuth's improved bound was enly stated as
an exercise with indications on how to prove it in the propesed solution.

1.2. Our centributiens and eutline of the paper

Throughout the paper, integers are assumed to be handled in the standard binary rep-
resentation. For our computational complexity results, we assume that we werk on a
Turing machine with a finite but sufficiently large number of tapes [20]. With some
work, it can be verified that three tapes aetuaﬂg suffice for the implementation of
the algerithms in this paper. [evertheless, the seven tape machine of [49] is more
convenient. The Turing machine model is very conservative with respect to the cost of
memory access, which is pertinent from a practical peint of view for implementations
of FFT algoerithms. Mevertheless, other models for sequential computations could be

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 15)

considered [48, 20]. For practical purpeses, parallel models might be more appropriate,
but we will net consider these in this paper. Occasionally, for pelynemial arithmetic over
abstract rings, we will also consider algebraic complexity measures [8, Chapter %4].

In section 2, we start by recalling several classical techniques for completeness
and later use: sorting and array transpesition algerithms, discrete Fourier transforms
(DBTs), the Cooley—Tukey algorithm, FFT multiplication and cenvelution, Bluestein's
chirp transform, and Kronecker substitution and segmentation. In section 3, we also
provide the necessary tools for the error analysis of complex Fourier transforms. Most
of these tools are standard, although our presentation is semewhat ad hoc, being based
on fixed point arithmetic.

In section %4, we describe a simplified version of the new integer multiplication algo-
rithm, witheut any attempt o minimise the aferementioned constant K. As mentioned in
the sketch above, the key idea is to reduce a given DFT over € to a collection of “short”
transforms, and then to convert these short transforms back to integer multiplication
by a combination of Bluestein's chirp transform and Krenecker substitution.

The complexity analysis of Firer's algorithm and the algerithm from section %
invelves functional inequalities which centain pest-compesitions with legarithms and
other slowly growing functions. In section &, we present a few systematic tools for
analysing these types of inequalities. For more information on this quite particular kind
of asymptotic analysis, we refer the reader to [46, 16].

In section 6, we present an eptimised version of the algerithm frem section %,
proving in particular the bound I(n) = 0(n log n 8]@?") (Theorem 1.1), which constitutes
the main result of this paper. In section 7, we outline a similar complexity analysis for
Ftrer's algerithm. Even after several optimisations of the original algorithm, we were
unable to attain a bound better than I(n)=0(n log n 16'°2""). This suggests that the new
algorithm outperforms Ftirer's algorithm by a facter of 9leg’ .

This speedup is surprising, given that the short transforms in Férer's algorithm
invelve eonly shifts, additions and subtractions. The selution te the paradex is that
FPéirer has made the short transforms tee fast. Indeed, they are so fast that tbey make
a negligible contribution to the overall complexity, and his computation is deminated
by the “slow” twiddle facter multiplications. In the new algerithm, we push mere werk
inte the short transforms, allowing them to get slightly slower; the guid pro que is
that we aveid the facter of twe in zero—padding caused by Férer's intreduction of
artificial “fast” roots of unity. The optimal strategy is actually to let the short trans-
forms dominate the computation, by increasing the short transform length relative
to the coefficient size. Ftrer is unable to do this, because in his algerithm these twe
parameters are too closely linked. To underscore just how far the situation has been
inverted relative to Ftirer's algorithm, we point out that in eur presentation we can get
away with using Schénhage-Strassen for the twiddle facter multiplications, witheut any
detrimental effect on the overall complexity.

We have chosen to base most of our algerithms on approximate complex arithmetic.
Instead, following [%1] and [16], we might have cheosen to use modular arithmetic. In
section 8, we will briefly indicate how our main algerithm can be adapted to this set-
ting. This variant of eur algerithm presents several analegies with its adaptation to
polynemial multiplication over finite fields [2%4].

6 EVEN PASTER INTEGER MULTIPLIGATION

The question remains whether there exists an even faster algorithm than the algo-
rithm of section 6. In an earlier paper [17], Firer gave another algorithm of complexity
O(n log n Qﬁ(wg* ")) under the assumption that there exist suFﬁe%’ent]y many Fermat primes,
i.e., primes of the form £, =2?"+1. It can be shown that a careful optimisation of this
algorithm yields the bound I(n)=0(n log n ﬂ]@g*"). Unfortunately, odds are high that A is
the largest Fermat prime. In section 9, we present an algerithm that achieves the bound
I(n) = 0(n log n 4°8"") under the more plausible conjecture that there exist sufficiently
many Mersenne primes (Theorem 1.2). The main technical ingredient is a variant of an
algorithm of Crandall and Fagin [12] that permits efficient multiplication module 27 -1,
despite g not being divisible by a large power of two.

It would be interesting to know whether the new algerithms could be useful in prac-
tice. We have written a prototype implementation of the algerithm from section 8 in
the MATHEMAGIX system [30]. This beth enabled us te check the correctness of our method
and te ebserve running times close to Cnlog n for a suitable constant C. However, our
implementation is an order of magnitude slower than the Gmp library [23]. It sheuld be
possible to significantly reduce this gap through code optimisation and by adjusting
the thresholds and algerithms for higher practical efficiency. But we deubt that even
such a highly optimised implementation of the new algeritbm will be competitive in
the near future. levertheless, the variant for pelynemial multiplication over finite fields
presented in [2%4] seems to be a promising avenue for achieving speedups in practical
computations. Recent woerk confirms this suspicion [25].

Netatiens. We use Hardy's notations £ < g for f =o(g), and f =< ¢ for £ =0(g) and
g=0(r). The symbol R* denotes the set of nen-negative real numbers, and [denotes
§0,1,2,.. 3. We will write 1g n:=[log n/log 2]

Aeknewledgments. We would 1ike to thank the anenymous referees for their detailed
readﬁ’ng‘ and comments.

9. SURVEY OF CLASSICAL TOOLS

This section recalls basic facts on Fourier transforms and related techniques used in
subsequent sections. For more details and histerical references we refer the reader to
standard books on the subject such as [2, 8, 21, 4Y].

2.1 Arrays and serting

In the crur“ing model, we have available a fixed number of linear tapes. An m x - x n,
array MM . ; of b-bit elements is stored as a linear array of m--- n,b bits. We generally
assume that the elements are ordered lexicographically by (R, .. oy 1), though this is just
an implementation detail.

What is significant frem a complexity point of view is that eccasionally we
must switch representations, to access an array (say 2-dimensional) by “rows” er by
“columns”. In the Turing medel, we may transpese an m x ng mabrix of b-bit elements
in time O0(b m no g min (m, no)), using the algorithm of [%4, Appendix] Briefly, the
idea is to split the matrix into two halves along the “short” dimension, and trans-
pose each half recursively.

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 7

We will also require more complex rearrangements of data, for which we resert to
sorting. Suppoese that X fis a totally ordered set, whese elements are represented by
bit strings of length b, and suppese that we can compare elements of X in time O(b).
Then an array of n elements of X may be sorted in time o(bn Ig n) using merge sort
[36], which can be implemented efficiently on a Turing machine.

92.9. Discrete Pourier transferms

Let R be a commutative ring with identity and let n=1 An element w€R is said to be
a principal n—th reet of unity if o"=1and

n—

(0)=0 (2.1)

1
k=0

for all 7€31,....n—1. In this case, we define the discrete Fourier transform (or DET) of an
n—tuple a =(ap,. .., a,-1)€R" with respect to w to be DPT (a)=2=(,...,4,-1)€R" where

~

a = ataw +-o+a, Vi,

That fs, a; is the evaluation of the polynemial AX) =ag+a X+ +a,1 X" at .

If w is a prineipal n—th reot of wunity, then so is its inverse w'=w"", and we have

DPTQ—(DF)TM(Q)) = na.

Indeed, writing b =DPT «(DPT (a)), the relation (2.1) implies that

n—=1 n=1 n-1 n=1 n—1 n=1
L ey (et
b; = ajo JIZZ Z aka)J(')ZZ ag w*’(= ak(ncsf,k):na;,
= 370 k=0 k=0 =0 =0

where &;,=11f 1=k and §;, =0 etherwise.

Remark 2.1. In all of the new algerithms intreduced in this paper, we actually work ever
a field, whese characteristic dess not divide n. In this setting, the cencept of principal
root of unity coincides with the mere familiar primitive reot of unity. The mere general
“principal reot” concept is only needed for discussions of other algorithms, such as the
Schénhage-Strassen algorithm or Firer's algerithm.

23. The Cooley—Tukey FFT

Let w be a principal n-th root of unity and let n = m ng where 1< m <n. Then w™ is
a principal no-th reet of unity and »™ is a principal n—th reet of unity. Mereover, for
any 1€§0,...,m—1 and ©€30,.. ,no— 1, we have

m=1 ng—1

k=0 ko=0
m=1 no—1

= Z " (Z 8hgnytky (wn1)k9;2) (wng)km~ (22)
k=0 ko=0

If Ay and Ag are algerithms for computing DFTs of length m and no, we may use (2.9)
to construct an algorithm A;© Ag for computing DFTs of length n as follows.

8 EVEN PASTER INTEGER MULTIPLIGATION

Por each 4 € {0, ..., m — 1}, the sum finside the brackets correspends to the -
th coefficient of a DFT of the no-tuple (avmess - - -» 8mp-times) € B™ with respect to o™
Eva]uaﬁng these inner DFTs requires m calls to Aq. [ext, we multiply by the twiddle factors
®"2, at a cost of n operations in R. (E\etuaﬂy, fewer than n multiplications are required,
as some of the twiddle facters are equal to 1. This eptimisation, while impertant in
practice, has no asymptotic effect on the algorithms discussed in this paper.) Finally,
for each ©€30,...,no— 1}, the outer sum correspends to the i-th coefficient of a DFT of
an m-tuple in R™ with respect to w™. These outer DFTs require ny calls to Ay

Denoting by Fz(n) the number of ring operations needed to compute a DFT of length
n, and assuming that we have available a precomputed table of twiddle factors, we obtain

Felmng) < mFr(ng)+ ng Fplm)+n.

For a factorisation n=m- - n,, this y‘iekﬁls recursﬁ’ve1y

d

Fe(n) < 2; %Fg(n;)+(d—1)n. (2.3)
The corresponding algoerithm is deneoted A1 © --- 0 A, The © operation is neither
commutative nor associative; the above expression will a]ways be taken to mean (- - (40
Ag) @ Ag) 0 --) 0 Ay

et B be the butterfly algorithm that computes a DFT of length 2 by the formula
(a9, a1) = (ap + a1, a0 — &1). Then B%:=Bo---0 B computes a DFT of length n:=2* in time
F@(Qk): Ok n). fa\]g@r?thms of this type are called fast Fourier transforms (or PPT's).

The above discussion requires several modifications in the “Turing model. Assume
that elements of R are represented by b bits.

Pirst, for Ay © Ao, we must add a rearrangement cest of O(6 n Ig min (m, o))
to ef’ﬁe“ienﬂy access the rows and columns for the recursive subtransforms (see sec—
tlon 2.1). Por the general case A1 @ --- @ A, the total rearrangement cost is bounded
by O(Z;b nlg n;) = (?([9 nlg n).

Second, we will sometimes use nen-algebraic algerithms to compute the subtrans-—
forms, so it may not make sense to express their cost in terms of Fg. The relation (2.3)

therefore becomes

d
n
F(n) < ; ;] F(n;) + (d —1) nmpg+ (7([9 n 1g n), (92})
where F(n) is the (Grur%’ng) cost of a transform of 1ength n ever R, and where my is the
cost of a single multiplication in R.
I?ﬁ’naﬂy, we point out that A;© Ag requires access to a table of twiddle factors ™,
ordered lexicographically by (7, 7o), for 0 7 <m, 0< fa<no. Assuming that we are given

1 we must show how to extract the

as input a precomputed table of the form 1 w,..., 0
required twiddle factor table in the correct order. We first construct a list of triples
(&, fo, & fa), ordered by (#, fa), in time O(n Ig n); then sort by 7 ia in time O(n Ig? n) (see
section 2.1); then merge with the given root table to obtain a table (i, 7, "), ordered by
f 7o, in time O(n ([9 +lg n)); and ﬁnaﬂy sort by (#, 72) in time O(n Ig n (b +lg n)) The total

cost of the extraction is thus O(n Ig n (b +1g n)).

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 9

The corresponding cost for A1 0 --- 0 A, is determined as follows. /c\ssum?ng that
the table 1, w, ..., »" " is given as input, we first extract the subtables of (ny -+ n;)-th
roots of un‘ity for i=d-1,...,2 in time O((m corng e+ m ng) (b +]g‘ n)) = O(n ([9 +]g n))
Extracting the twiddle facter table for the decompesition (m -+ n;q) x n; then cests
O(m- - n; Ig n (b+ g n)); the total over all 7 is again o(n Ig n (b+ Ig n)).

Remark 2.2. An alternative approach is to compute the twiddle facters directly in the
correct order. Uhen working over @G, as in section 3, this requires a slight increase
in the working precision. Similar comments apply to the reot tables used in Bluestein's
algorithm in section 2.5.

2.3 PFast Peurier multiplication

L.et © be a principal n-th reet of unity in B and assume that n is invertible in R.
Consider two polynemials A =ay+ - +a,1 X" and B =by+ -+ b,y X" in R[X] Let
C=cp+ +e,1 X" be the polynemial defined by

¢ = LDPT ADFT,(a) DFT (b)),

where the product of the DFTs is taken pointwise. By construction, we have ¢ = a b,
which means that G(w’)=A(w") B(w’) for all 1€§0,...,n—-1. The product & =sp+---+s,.1 X"
of 4 and B module X" -1 also satisfies $(w')=A4(0w) B(w') for all 7. Consequently, $=4b,
s=DPT_4(5)/n=¢, whence C=S§.

For polynemials 4,8 € R[X] with deg A<n and deg B <n, we thus obtain an algoerithm
for the computation of AB module X" -1 using at most 3 Fe(n) + O(n) eperations in R.
Modular preducts of this type are alse called cyclic convelutions. If deg (A B) < n, then
we may recover the product AB frem its reduction module X" -1 This multiplication
method 1s called FFT multiplication.

If one of the arguments (say B) is fixed and we want to compute many products 4B
(or cyclic convolutions) for different A, then we may precompute DFT ,(b), after which
each new product AB can be computed using only 2Fy(n)+ 0(n) operations in R.

2.5. Bluestein's ehirp transferm

We have shown above how te multiply pelynemials using DFTs. Inversely, it s possible
to reduce the computation of DFTs — of arbitrary length, net necessarily a power of
twe — to pelynemial multiplication [3], as follows.

et » be a principal n—th reet of unity. Fer simplicity we assume that n is even, and

that there exists some n€R with n”=w. Consider the sequences

32 I3
fir=n, gi'=n.

Then o’ =ff;g:-;, so for any a€R” we have

n=1 n=1

3. = ol =r (pf,,) .. (95)

a; a; ; a;f;) gi-;. .

j=0 j=0
RAlso, since n is even,

— "(i’+n)9—- ~12-n2-9nf — -2 _(ﬁ""a)“—-
= = = 2 =

Gi+n =1 n nw gi-

10 EVEN PASTER INTEGER MULTIPLIGATION

Now let Pi=fyag+ - -+Ff, 18, 1X"", G 3:g’o+"'+gn—19("~1 and @ =¢y+ - +e,1 X" =FG
module X" -1 Then (2.5) implies that a; = fic; for all 1€30,...,n-1%. In other words, the
computation of a DFT of even length n reduces to a cyclic convelution product of the
same 1engtb, t@gether with 0(n) additienal operations in B. [otice that the p@ﬂyn@m%’a]
G fs fixed and independent of a in this product.

The @Tﬁy complication in the ‘Tur"ing model is the cost of extraet‘ing the £ in the
correct order, 1.e., in the order 1, 5,7 1% ..., r](“'ﬂg, given as input a precomputed table 1,
n%. .2 We may do this in time O(n1g n(b+1g n)) by applying the strategy from

@

section 2.3 to the pairs (7,72mod 2 n) for 0<7<n. Similar remarks apply to the g;.

Remark 2.3. It is also possible to give variants of the new multiplication algorithms
in which Bluestein's transform is replaced by a different methed for converting DFTs
to convolutions, such as Rader’s algorithm [%3].

9.6. Krenecker substitutien and segmentation

Multiplication in Z[X] may be reduced to multiplication in Z using the classical tech-
nique of Krenecker substitution [21, Gorellary 8.27] Moere precisely, let d >0 and n > 0,
and suppose that we are given twe polynemials A, B € Z[X] of degree less than d, with
coefficients A; and B; satisfying |4;]<2” and [B<2". Then for the product ¢=A B we have
|| < 9218, G@nsequentiy, the coefficients of @ may be read off the integer product
c(27) = A(2") B(2") where 1 :=2n+1g d +2. Notice that the integers |4(27) and [B(27)|
have bit length at mest d/7, and the encoding and decoding processes have complexity
o(dn).

The inverse procedure is Kronecker segmentation. Given n > 0 and d > 0, and nen-
negative integers a <2" and b < 2", we may reduce the computation of ¢:=ab to the
computation of a product € :=ARB of two polynemials A, B € Z[X] of degree less than
d, and with |4] <2* and |B;| < 2* where k:=[n/d] Indeed, we may cut the integers into
chunks of k bits each, s that a =A(2), b=B(2") and ¢=¢(2"). Notice that we may recover
¢ from € using an overlap—add procedure in time o(d (k + Ig d))=0(n+d Ig d). In eur
applications, we will always have d =0(n/1g n), so that O(n+d g d)=0(n).

Krenecker substitution and segmentation can also be used to handle Gaussian inte-
gers (and Gaussian ﬁ’nteger p@]yn@m%’ah), and to compute ege]‘ie convolutions. For
example, given polynomials A, B € Z[i[x]/(x¢ - 1) with 4], [8] < 2", then for € =
AB we have |G| < 277, so we may recover C from the cyclic Gaussian integer pro-
duct @(27)=4(2"7) B(27)e(Z. /(29" -1) Z)[1], where 17 :=2 n +1g d +2. In the other direction,
suppose that we wish to compute a b for some a, b€ (Z /(29" -1) Z)[i] We may assume
that the “real” and “imaginary” parts of a2 and b are nen—negative, and so reduce to
the problem of multiplying 4,8 eZ[x]/(x?-1), where a=A(2") and b=8(2"), and where
the real and °imag5’nary parts of A;, B;€Z][1] are n@n—negatﬁ’ve and have at mest n bits.

3. PIxep PoINT GOMPUTATIONS ANP ERROR BOUNDS

In this section, we consider the computation of DFTs over © in the Turing model.
Elements of € can only be represented approximately on a “Turing machine. We describe
algorithms that compute DFT's approximately, using a fixed-point representation for C,
and we give complexity bounds and a detailed error analysis for these algorithms. Ue
refer the reader to [7] for more details about multiple precision arithmetic.

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 11

For our e@mp]ex‘ﬂ;y estimates we will Free1y use the standard ebservation that I(k n)=
0(I(n)) for any fixed constant k, since the multiplication of two integers of bit length
Skn reduces to k? multiplications of integers of bit length <n, for any fixed =1

3.1. Fixed peint numbers

We will represent fixed point numbers by a signed mantissa and a fixed exponent. More
precisely, given a precision parameter p =%, we denote by €, the set of complex numbers
of the form z=m, 2%, where m,=u+ v i for integers v and v satisfying 2+ v2< 9% fe.,
|zI<1. We write G, 2° for the set of complex numbers of the form « 2°, where « €€, and
e€Z; in particular, for €€, 2° we always have |z|<2°. At every stage of our algerithms,
the exponent ¢ will be determined implicitly by context, and in particular, the exponents
do not have to be explicitly stored or manipulated.

In our errer analysis of numerical algorithms, sach z€ G, 2¢ is really the approxima-
tion of some genuine complex number z € C. Each such z comes with an implicit error
bound ¢, 2 0; this is a real number for which we can guarantee that |z - z|<e. We also
define the relative error bound for z by p.:=¢./2° We finally denote by e:=9""r<1/8 the
“machine accuracy’.

Remark 3.1. Interval arithmetic [38] (or ball arithmetic [29, Chapter 3]) provides a sys-
tematic method for tracking error bounds by stering the bounds along with =. We will
use similar formulas for the computation of ¢, and p., but we will net actually store the
bounds during computations.

3.2. Basic arithmetiec

In this section we give error bounds and complexity estimates for fixed point addition,
subtraction and multiplication, under certain simplifying assumptions. In particular, in
our DFTs, we only ever need to add and subtract numbers with the same exponent. We
also give error bounds for fixed point convolution of vecters; the complexity of this
important operation is considered later.

Por x €[R, we define the “round towards zere” function |x] by [x]:=|x] if x =0 and
|x]:=[x] if x<0. Por x, vy €R, we define I_x +y ﬂ =|x]+ Ly]i. Noetice that =1 < |z| and
lz]-zI< \/§ for any z€ Q.

ProPosITION 3.2. Let z,u € ©, 2° Define the fixed point sum and difference z + o,z ~u € G, 2°*1 b
P P P 4

Myiy -— [(mZ + mu)/g]. Then z + & and z ~ o can be computed in time 0(p), and

pz+ o
Pzia X Tp-'-e'

Preef. We have

l(ziu)-(ziu)]:”mzimu]_ mz;mu

5ot 3 27</2-97<e

and

(zto)-(z£a)l _ete_ptp

2@+1 =~ 9@+1 9 4

whence [(z £) - (Zxa)l/2°7'<(p, +p,) /2 +e. a

12 EVEN PASTER INTEGER MULTIPLIGATION

ProposiTION 3.3. Let z € €, 2% and « € G, 2%. Define the fixed point product z x u € G, 2%+ by
M,y =277 m, mu-|. Then z * u can be computed in time 0(|(p)), and

T+pe, S (1+p)(1+p,) (1+6).

Preef. We have
|z % o=zl /20 e = “_Q_P m, mu] -9 m,m| 2" < \/§ -97P<e

and
zu—zal S |zllu-dl+]z = Z|(lul+]d - al)
S %, +9%¢, +¢,¢,
= (ot pt popa) 2.
Gonsequently, |z % u - Zal/2 < p,+p,+ppyres(1+p,)(1+p,) (1+€) 1. O

Propesition 3.3 may be generalised to numerical cyclic convelution of vectors as
follows.

ProposITION 3.4. Let k = 1 and n := 2% Let z € (@p Qez)n and o € ((Gp Qs")n. Define the fixed point
convolution z * u € (@p QSZ”””‘)T' by

M ig), =277 Z m, my |, OST<n
f+io=1 (mod n)

Then

max (1+peia),) S max (1+p.) max (1+p,) (1+€).

Preef. L.et * denete the exact convelution, and write p, ‘=max;p, and p,=max;p,. RAs
J J

in the proof of Propesition 3.3, we obtain |(z + o); = (z *)|/ 25+ < \/§ -97< e and

(z % U)i -(Z* g)i’l < Z |Z;1 Usg — ;a 5@]

At+ig=7 (med n)

S (patpatpop) 20k,

The proof is concluded in the same way as Proposition 3.3. o

3.3. Precemputing reets of unity

Let [:=§x+yi€C: y 20} and [, :=3x+ y1€C,: y 20} Let v:[d = be the branch of
the square root function such that Ve’ :=e'? for 0< 9< . Using Newten's method [7,
Section 3.5] and Schénhage-Strassen multiplication [60], we may construct a fixed point
square root function V7:[H, > [, which may be evaluated in time o(p log p log log)
such that [Vz - vz|< € for all z€[Hd,. For example, we may first compute some o €[such
that o — vZz|<e/% and |¢|< 1, and then take vz :=|2° «] 277; the desired bound follows since
e/‘4+\/§-Q'P$e.

Lemma 3.6. Let z €, and assume that |z| =1 and p, < 3/8. Then pz<p,+e

Preef. The mean value theorem implies that l\/§ - JEI < e, maxyep [1/(2 vw)l where
D =3weld:|w-z|<eb Por we€D we bave |w|Z|Z]-]Z-2]-lz-w|=1-3/8-3/82=1/%; hence
l\/g— El$£z=pz. By construction [vz - vzlSe. We conclude that l;/_— \/§l$p2+e. O

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 13

ProposITION, 3.6. Let k€M and p 2 k, and let v := 62"/ e may compute 1, w, .. wgkqe@p, with
P S € for all 1, in time O(Qkp log plog log p).

Preef. It suffices to compute 1, w,. . .,mgm“"'eﬂcwlp. Starting from »’=1and w2 * =3, for each
t=k-3,k-%...,0, we compute w'? for 7=1,3,...,2¢ "1 using 02 =V 2" 5 <9k t2

29l @ 29l_gk-2
and 0% =122

otherwise. Performing all computations with tempoerarily increased
precision p':=p +1g p+2 and corresponding € :=2"*, Lemma 3.5 ylelds p, S ke < e/%
This alse shows that the hypethesis p, <3/8 is always satisfied, since e/%#<1/32<3/8.

After rounding to p bits, the relative error is at most e/%+ \/§~Q"/"$ €. a

3.1 PBrrer analysis for fast Feourier transferms

R tight algorithm for computing DFTs of length n=2¢>2 is a numerical algorithm that
takes as input an n—tuple a€ (G, 2°)" and computes an approximation 4€(C, 2°**)" to the
DPT of a with respect to w=6"" (or w=6"2"/" in the case of an inverse transform),
such that

max (1+p;) < max (14 p,) (1+ €)%

We assume for the mement that any such algerithm has at its dispesal all necessary root
tables with relative error not exceeding e. Propositions 3.2 and 3.3 directly imply the
following:

ProposiTion 3.7. The butterfly algerithm 13 that computes a DFT of length 2 using the formula
(a0, a1) > (a0 + a1, a0 ~ &) 7s tight.

Proof. We have p; < (p,,+ p)/ 2+ €< max;p, + e < (1+max;p,) (1+€)-1. a

PROPOSITION 3.8. Let ki, ko = 1, and let Ay and Ao be tight algerithms for computing DFTs of lengths
94 and 2%. Then MO Ag s a tight algorithm for computing DFTs of length Qhrthe,

Preef. The inner and outer DPTs contribute factors of (1+¢)**2 and (1+€)*22, and by

Propoesition 3.3 the twiddle factor multiplications contribute a facter of (1+¢)”. Thus

max (1+ p;) S max (1+p,,) (1+ €)Sh D 2+3h-2) max (1+p,) (1+ ¢)Blhth)2 O

COROLLARY 3.9. Let k=1. Then B is a tight algerithm for computing DFTs of length 2 over G,
whese complexity is bounded by (2% £ 1(p)).

. A SIMPLE ANDP PAST MULTIPLIGATION ALGORITHM

In this section we give the simplest version of the new integer multiplication algorithm.
The key innovation is an alternative method for computing DFTs of small length.
This new method uses a combination of RBluestein's chirp transform and Krenecker
substitution (see sections 2.5 and 2.6) to convert the DET to a eye]“ie ﬁ’nteger product
in (Z/(2"-1)Z)1] for suitable n.

ProposiTION X1, Let 1< r< p. There exists a tight algorithm C. for computing DFTs of length 2 over
@P, whese complexity is bounded by 0(1(27p) + 27 1(p)).

1% EVEN PASTER INTEGER MULTIPLIGATION

Preef. Let n:=2", and suppose that we wish to compute the DET of a€(C,29)". Using
Bluestein's chirp transform (notation as in section 2.5), this reduces to e@mput‘ing a
eyclic convolution of suitable P € (G, 2°)[X]/(X"-1) and 6 € G [X]/(X"-1). We assume
that the f; and ¢; have been precomputed with pr,p, S e

We may regard F:=2°°F and G':=2°G as cyclic polynemials with complex integer
coefficients, 1.e., as elements of Z[1][X]/(x"-1). Urite P’:Z?_—__g) P X and 6'= Z;’;?, G X7,
where F;, 6/ € Z[1] with |[F] < 2° and |6 < 2°. Now we compute the exact product H':=
P e eZi][x]/(x"-1) using Kronecker substitution. More precisely, we have b < 92p%r,
so it suffices to compute the cyclic integer product H'(20)=P(2°) 6'(24)e(Z /(27 -1) Z)[1],
where =2 p+r+2=0(p). Then H =K' 2°2¢ is the exact convelution of P and G,
and reunding H to precision p yields F * 6 € (€, 2°)[X]/ (X" - 1) in the sense of
Proposition 3.%. A final multiplication by f; yields the Fourier coefficients a;€ €, 2°"".

To establish tightness, observe that 1+ ps <(1+p,) (1+ €)? and pg, < €, so Proposition 3.4
yields 1+ peig), < (1+p,) (1+)" where p, :=max;p,; we conclude that 1+ p; < (1+p,) (1+€)°.
For r=3, this means that the algerithm is tight; for ~<2, we may take C.:=B°"

For the complexity, ebserve that the product in (Z /(2" - 1) Z)[1] reduces to three
integer products of size O(n p). These have cost O(I(n p)), and the algorithm also
performs O(n) multiplications in ©,, contributing the 0(n1(p)) term. w

Remark %.2. A crucial observation is that, for suitable parameters, the DFT algorithm
in Propoesition %1 is actually faster than the conventional Cooley-Tukey algerithm of

)1+@(1)

G@r@ﬂary 3.9. For example, if we assume that I(m) = m (]@g m , then to compute a

transform of length n over G, with n ~ p, the Cooley—Tukey approach has complexity
n2 (]@g n)ﬁ?mﬁ))1+@(1)
of roughly log n.

, whereas Propesition %1 yields n? (1@g n , an improvement by a factor

THeorREM 24.3. For n = oo, we have

|(n) _ |(1g’Q n) |(]g n)
nlgn — (]g9n1g1gn+]gn]g]gn+1' (1)

Preef. We first reduce our integer product to a polynemial product using Krenscker
segmentaiﬁ@n (section 2.6). Spﬁtt?ng the two n-bit inputs inte chunks of b = 1g n
bits, we need to compute a product of polynemials w, v € Z[X] with nen-negative b-bit
coefficients and degrees less than m:=[n/b]1=0(n /1g n). The coefficients of h:=w v have
0(1g n) bits, and we may deduce the desired integer product 5(2°) in time O(n).

Let & :=1g (2 m). To compute o v, we will use DFTs of length 2¥ = 0(n/1g n)
over ©,, where p:=26+2k+1g k+8=0(lg n). Zero-padding « to obtain a sequence
(e - oo)€(G, 96) and similarly for v, we compute the transforms a,v€(G, 96+k)2° \yith
respect to w:=e>"?" as follows.

L.et riz]g]gn and disz/r]:(ﬁ(]g n/]g]g n). Write k=n+--+ry with ry:=r for 1<d -1
and ry:=k-(d -1) r<r. We use the algorithm A:=A;0- -0 A, (see section 2.3), where for
1S7<d-1we take A; to be the tight algerithm C. for DETs of length 27 =1g n given by
Proposition 4.1, and where A, is B° as in G@r‘@ﬂar‘y 3.9. In ether words, we split the &
usual radix-2 layers of the FFT inte groups of r layers, handling the transferms in each
group with the Blusstein-Krenecker reduction, and then using ordinary Cooley-Tukey
for the remaining ry layers.

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 16

We next compute the pointwise products f;; =g v € G, 9262k and then apply an
inverse transform A’ defined an‘a1@g@us1y to A. A final divisien by 9% (which s reaﬂy just
an implicit adjustment of exponents) yields approximations b€ G, 220*2",

Since A and A’ are tight by Propoesitions 3.8, 4.1 and Corellary 3.9, we have 1+ p;
(1+ €)3*2 and similarly for v. Thus 1+ p;, S(1+ef3 50 T+ p, <1+ ®<oxp(9 ke)
exp(2°71857) < 1+ 2°V847% after the inverse transform (since exp x <1+ 2 x for x < 1),
In particular, g, = 926%2% p, < 92723k Pe < 1/9 5o we obbain the exact value of b; by

reunding to the nearest integer.

<
<

Noew we analyse the complexity. Using Propesition 3.6, we first compute a table of
roots T, ,...,0" " in time 0(2*p log p log log p)=0(n1g n), and then extract the required
twiddle factor tables in time O(2“k (p+£))=0(n Ig n) (see section 2.3). Por the Bluestein
reductions, we may extract a table of 27"'-th reots in time O(2* p) = O(n), and then
rearrange them as required in time (2" r (p+r))= 0(1g9 nlglg n) (see section 2.5). These
precomputations are then all repeated for the inverse transforms.

By G@r@nary 3.9, Propoesition %1 and (2.%), each invecation of A (or A') has cost

O((d =1) 25 (1(27p) + 27 1(p)) + 2474 27 1y 1(p) + (d = 1) 24 1(p) + p 2“ k)
0((d =1 257127 p) + (d + ry) 24 1(p) + p 24 k)

n

1g 1g - |(]g n)+n]g‘ n).

g 0570

The cost of the 0(2%) pointwise multiplications is subsumed within this bound. a
[t s now a straightferward matter to recover Péirer's bound.

THeorEM 44, For some constant K > 1, we have

I(n) = O(n]g nH]@g*").

Preef. Let 7(n):=1(n)/(n Ig n) for n= 9. By Theorem %43, there exists x=2 and € >1
such that

T(n) < € (T(]gﬁ n)+ T(]g n)+1)

for all n>xy. Let $(x):=2%]@ggx for x€R, x>1. Increasﬁng xp if necessary, we may assume
that ®(x)< x =1 for x> x5, so that the function ®*(x):=min {je[n, ¢°j(x)$xo} is well-defined.
|nereas°1’ng ¢ if necessary, we may also assume that T(n)<3 € for all n< x.

We prove by induction on $*(n) that T(n)<(3)Y for all n. IF 9*(n)=0, then n < xo,
so the bound helds. Now suppese that ®*(n) =1 Since 1g? n < ®(n), we have $*(ig n) <
$*(1g2 n) S *((n)) =9*(n) -1, so by induction T(n)<e B)" W+ecB) +e<(3)"

Finally, since d(d(x)) < log x, we have ®*(x) < 2log* x + O(1), so T(n) = O(K'*$" ") for
K:=(3e7 a

5. LOGARITHMICALLY SLOUW RECURRENCE INEQUALITIES

This section is deveted to developing a framewoerk for handling recurrence inequalities,
similar to (%.1), that appear in subsequent sections.

16 EVEN PASTER INTEGER MULTIPLIGATION

Let ®: (x,) > [R be a smooth increasing function, for some x € [R. We say that
&% (xp, 0) > [RZ §s an fterator of $ if ¢* is increasing and if

d*(x) = *(d(x))+1 (6.1)

for all sufficiently large x.

For instance, the standard iterated 1@gar"ﬂ;bm 1@g* defined in (1.2) s an fterater
of log. An analogoeus iterater may be defined for any smoeoth increasing function ¢:
(x9,0) > R for which there exists some o= xg such that ®(x)< x -1 for all x> o. Indeed, in
that case,

¢*(x) = mink el d*(x)< ot

is well-defined and satisfies (5.1) for all x> 0. It will semetimes be convenient to increase
x5 s0 that ®(x)< x -1 3s satisfied on the whole domain of ¢.
We say that ¢ is legarithmically slow if there exists an L€l such that

(1@g°"' oo exp“z)(x) = log x + o(1) (5.9)

for x = co. Por example, the functions log (2 x), 2 log x, (log x)* and (log x)¢'*8* are
logarithmically slow, with €=0,1,2,3 respectively.

Lemma 8.1. Let $: (xo, 00) >R be a logarithmically slow function. Then there exists 0 2 xy such that

@(x) Sx—1forall x>0 Consequently all logarithmically slow functions admit iteraters.

Preef. The case (=0 is clear. For {21, let ¥:=loge®oexp. By induction Y(x)< x -1 for
large x, so ®(x)<exp(log x —1)=x/e < x -1 for large x. m

In this paper, the main role played by logarithmically slow functions is to measure
size reduction in multiplication algorithms. In other words, multiplication of objects of
size n will be reduced to multiplication of @bjects of size n', where n' < $(n) for some
]@g‘arﬁ’tbmﬁ’caﬂy slow function ®(x). The f’@ﬂ@w%’ng result asserts that, from the point of
view of iteraters, such functions are more or less interchangeable with log x.

Lemma 85.2. For any iterater &* of a logarithmically slow function b, we have

¢ (x) =]@g* x+ 0(1).

Preef. First consider the case where t=0 in (6.2), i.e., assume that [P(x) ~log x| < € for
some constant ¢ >0 and all x > x. lnereasﬁ’ng xp and € if necessary, we may assume that
‘1)”()() = d)*((b(x)) +1 for all x > xs, and that 2 e2¢> X0-

We claim that

log ¥
9

for all y>%62°. Indeed, if 5<x<2 y, then

ro| e

gxggy — g(b(x)gg]@gcy (53)

3log y<log s - C<O(L)<D)<D(2)< log (2 y)+ E<2log y.

Now, given any x > %%, let & :=min Skell: log* x <% e2%, so k21 Por any 7=0,...,
k-1 we have]@g°°7x > %26, so k—fold fteration of (5.3), starting with y=x, yields

](L)g‘ojx
2

<9V(x)<2l0g”x (0< j<k)

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 17

Moreover this shows that ®7(x)>262¢ > x for 0< j <k, so $*(x) = O(P*(x)) + k. Since
d(x) £ 2log™ x <8 &?¢ and k=log™ x + O(1), we obtain $*(x)=log* x + O(1).

Now consider the general case (20. Let ¥:=log™ e ®exp”, so that V" :=d*cexp” is
an iterater of Y. By the above argument P(x) =log” x + o(1), and so ¢*(x)=‘P*(]@g°ex)=
]@g*(]@g* x)+0(1)= log* x =€+ 0(1) =log™ x + O(1). a

The next result, which generalises and refines the argument of Theorem 2.4, is our
main teol for converting recurrence inequalities into actual asymptoetic bounds for
solutions. We state it in a slightly mere general form than is necessary for the present
paper, anticipating the more complicated situation that arises in [2%4]

ProposITION 8.3. Let K>1,820 and QGH’L Let xy = exp°z(1), and et O: (xo, 0)>[R be a logarithmically
slow function such that (b(x) S x =1 for all x> xo. Then there exists a positive constant C (c/epench"ng
on xg, P, K, B and) with the following preperty.

Let 0 2 xp and L > 0. Let 5 C€IR, and let T: 5 = R? be any function satisfying the following
recurrence. First, 7'(5/) <L for all y€ S, Y < 0. Second, for all yE€ S, y > 0, there exist yi,. . ., ya € S with
g S®(y), and weights ypi,. .., ys 20 with X, y; =1, such that

]@g)Z Y’ é’f)"'b

Then we have T (y)< CLK"S 471087 gy ally€s, y>ao

T(y) < H(

Preef. Let o, L, 5 and T(x) be as above. Define ®:(x):=min ik €l $*(x) < o} for x > x.
We claim that there exists r€[, depending only on x and d, such that

(b;(x) <]@g* X~]@g'* o+tr (52})

for all x> 0. Indeed, let ®*(x):=min {jéﬂl: ¢ (x)< x0§. Pirst suppose o> xp, so that $*(a)2>1.

For any x>0, we have ¢O)() > 6, so
(i)e(‘b’g(x)*ﬂtb*(a)*ﬂ(x) 2 (i)e(‘b*(o)*ﬂ(o.) > X0,

and hence ®*(x)> &5(x) + d*(0) - 2. This last inequality alse clearly helds if o =x (since
0>-9). By LLemma 6.2 we obtain ¢4 (x) <D (x) - d* (o) + 0(1) = log* x ~log* o + o(1).
Define a sequence of real numbers &, Fo,. .. by the formula

1+B if J Sr+d,
Ej = °('*r*[*(l) °
1+ B /exp™’ (1) 3f j>r+e
We claim that
1+ /]@goe x < Ess(x) (55)

for all x> 0. Indeed, let j:=®5(x). If j<r+¢then (6.5) helds as x > o 2 xy = exp(1). If

Jj=ortt then]@g* X 2 Jor l‘)y (5.%), so x = @xp°(vf'7”1)(1) and hence]@goex > exp°(jfrfﬂf1)(1).
Now let y€5. We will prove by induction on j:=b7(y) that

T(y) S B EL(K + -+ K+1)

18 EVEN PASTER INTEGER MULTIPLIGATION

for all y> x. The base case j =018, y<o, holds by assumption. Now assume that J=1,
so y>o. By hypothesis thers exist y,..., ys €5, yr SP(y), and yi,.. ., s =0 with X,y =1,
such that

T(y) < HEJZ yi T(ys)+ L.
Since $5(y:) < Di(D(y)) =P:(y) -1, we ebtain

T(9) S KE Y, yi(B Bl (kT wk +1) 4L

E]"'Ejb(ﬁj+“‘+/ﬁ/2+ﬁ)+b
< B EL(K + -+ K2R +1).

Finally, the infinite product

— r+l + B —
e=]]e<t+8)"]] (1 exp°"(1))

=1 k=0

certainly converges, so we have T(y) S EL HJ+1/(H - 1) for [T Settﬁ’ng G =
EKT/(K -1), by (6.4) we obtain T(y)< CLK™ ¥°¢7 for all y>o. o

6. EveEn PASTER MULTIPLIGATION

In this section, we present an optimised version of the new integer multiplication
algorithm. The basic outline is the same as in section %4, but eur goal is now to minimise
the “expansion facter” at each recursion level. The necessary modifications may be
summarised as follows.

+ Since Bluestein's chirp transform reduces a DFT to a complex cyclic convelution,
we take the basic recursive problem to be complex cyclic integer convolution,
i.e., multiplication in (Z /(2" -1) Z)[i], rather than ordinary integer multiplication.

+ In multiplications invelving eone fixed eperand, we reuse the transform of the fixed
operand.

* In a convolution of length n with input coefficients of bit size b, the size of
the output coefficients is 2 b + (9(]g n), so the ratio of output to input size is
2+ (‘)((]g n)/b). We increase b from Ig n to (1g n)?, so as to reduce the inflation
ratio froem O(1) to 2+ 0(1/1g n).

+ We increase the “short transform length” from Ig n to (g n)87 00 The com-
plexity then becomes dominated by the Bluestein-Krenecker multiplications, while
the contribution from erdinary arithmetic in €, becomes asymptotically neg-
ligible. (As noted in section 1, this is precisely the opposite of what eccurs in
Pérer's a]g@r?thm.)

We begin with a technical preliminary. To perform meltiplication in (Z /(2" - 1) Z)[i]
efficiently using FFT multiplication, we need n to be divisible by a high power of twe.
We say that an integer n=>3 is admissible if 9<n) | n, where k(n):=1g n-lg (]gQ n)+1 (note
that 0< k(n)<1g n for all n23). We will need a function that reunds a given n up to an
admissible integer. For this purpose we define a(n):=[n/25"] 2" for n>3. Note that
a(n) may be computed in time 0(lg n).

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 19

Lemma 6.1. Let n=3. Then a(n) is admissible and
4n

s (61)

nga(n)$n+

Preef. We have n < a(n) < n + 28, which implies (6.1). Since n /2" < 9%) and
K(n)<1g n, we have [n/2]< 997 and thus a(n)< 28", fe., Ig a(n)=1g n. In particular
K(a(n)) = k(n), so aln) is admissible. (In fact, one easily checks that a(n) is the smallest
admissible integer =n). o

Remark 6.2. [t is actually possible to drop the requirement that n be divisible by a
b?gh power of two, by usﬁ’ng the Grandaﬂ—l?ag‘in method (see section 9). We prefer to
avoid this appreach in this section, as it adds an unnecessary layer of complexity to the
presentation.

Now let n be admissible, and censider the problem of computing ¢ = 1 products
v, oo v with o, .0 vE(Z/(27-1)Z)[3], ie., ¢ products with ene fixed operand. Denote
the cost of this operation by C/n). Our ‘a1g@r"ﬂ;bm for this problem will perform ¢ +1
forward DPTs and ¢ inverse DPTs, so it is convenient to introduce the nermalisation

Ci(n)
S 1231
This is well-defined since clearly C,(n) < ¢ Ci(n). Roughly speaking, C(n) may be thought
of as the notional cost of a single DFT.

The problem of multiplying k-bit integers may be reduced to the abeve problem
by using zero—padding, i.e., by taking n:=a(2k+1) and ¢:=1 Since a(2 k +1)=0(k) and
Ci(n)<3 Cn), we obtain I(k)<3 C(O(k)+ 0(k). Thus it suffices to obtain a good bound for
C(n).

The recursive step in the main multiplication algerithm invelves computing “shert”
DETs via the Bluestein—-Kronecker device. As pointed out in section 2.5, this leads to
a eyclic convelution with ene fixed operand. To take advantage of the fixed eperand, let
Bp,t(@) denote the cost of computing ¢ independent DETs of length 27 over C,, and let
B,(2):=sup;>1B,(27)/(2 ¢ +1). Then we have the following refinement of Propesition 1.
Rs usual we assume that the necessary Bluestein root table has been precomputed.

ProPOSITION ©.3. Let r 2 3, and assume that 2 divides n' = a((? ptr+ 9) Qr). Then there exists a
tight algerithm C. for computing DFTs of length 9" over @p, with

B,(2) < Cln)+0(2 1))

Preef. UWe use the same notation and algerithm as in the proof of Propesition %41,
except that in the Kronecker substitution we take b:=n'/2"22 p +r + 2, so that the
resulting integer multiplication takes place in (Z/(2" -1 Z)[i] The proof of tightness
is identical to that of Propoesition %4.1 (this is where we use the assumpbion r 2 3). Por
the complexity bound, note that n' is admissible by construction, so for any t 21 we
have B, (27)< C,(n)+ 0(¢ 27 1(p)). Here we have used the fact that G’ is fixed over all these
multiplications. Dividing by 2 #+1 and taking suprema over 21 yields the resuls. a

The next result gives the main recurrence satisfied by C(n) (compare with The-
orem %.3).

20 EVEN PASTER INTEGER MULTIPLIGATION

THEOREM 6.4, There exists xy =3 and a logarithmically slow function ¢: (xo, oo) >R with the following
property. For all admissible n > xy, there exists an admissible n'S ¢(n) scch that

C(n) 1 C(n)
n 1g’ n S (8 * 0(]g]g n)) n'1g’ n' * 0(1) (69)

Preef. L.et n be admissible and sufficiently large, and consider the problem of com-
puting ¢ 21 products e v,.. ., v, for w,..., o, vE (Z/(2-NZ)35] Let k:=x(n)~ Ig n, so
that 2%|n, and let b:=n/2* =<]gg n.

We cut the mputs into 2% chunks of size b, f.e., if w is one of the ¢ +1 inputs, we
write w=wp+ w28+ + wouy 22D where w; € Z[1], and where the real and imaginary
parts of w; have absolute value at most 2°. Thus |wi|< \/— 9 < 951 and for any p=b+1
we may encode w as a polynemial W €(C, 2N x]/(x2 -1).

We will multiply the desired (eyeﬁe) polynemials by using DFTs of length 2¢ over
C, where p:=2b+2k+1gk+10= 0(]g9 n). We construct the DPTs in a similar way to
section 4. Let r:=(lg1g n)’ and d :=[k/r1=0(g n/(Ig1g n)*). Write k=n+---+ry with
ri=rfor i<d-Tand ry:=k=(d 1) r<r. We use the tight algerithm A:=Aj0- -0 Ay, where
for 1S7<d -1 we take A; to be the tight algerithm C. for DFTs of 1engtb 2" given by
Proposition 6.3, and where A, is 8° as in G@r@ﬂary 3.9. Thus, for the first ¢ —1 groups
of rlayers, we use Bluestein-Kronecker to reduce to complex integer convolution of size
n"=a((2 p+r+2)27), and the remaining layers are handled using ordinary Cooley—Tukey.
We write A’ for the analogous inverse transform.

To check the hypothesis of Propesition ©.3, we observe that 27| n’ for sufficiently large
n, as n' is divisible by 2“ where k" :=1g n'—]gOgQ n)+1, and

n' (Qp+r+2)2r _ b2r (]g’ n)a)

K - -
2=]gg n']gg((9p+r+9)9”) a (]gb+r)ﬂ - (]g]gn)u

2r>9r,

Denote by D the cost of a single invocation of A (or A). By Corellary 3.9 and (2.%),
we have

D < (d-1)B,oA27)+0(22%r 1(p))+0(d 21(p)) + O(2% k b).

The last term fis the rearrangement cost, and simplifies to 0(n Ig n). The second
term covers the invecatiens of A4, and simplifies to O(r 2 I(p)), so is abserbed by the
d 2% I(p) term. The first term covers the invecations of C. By definition B,o-(27) <
(2-25+1)B,(2), and since 2k >1g 1g n, Proposition ©.3 yields

B,o(27) < (2+0(1/1g1g n)) 247 C(n) + 0(2* 1(p)).
Thus
D < (9 + @(1/]g]g n)) d 2k C(n') +0(d 2 |(p)) + O(n]g n).

We will use Schénhage-Strassen’s algorithm for fixed point multiplications in C,.
Since p = 0(1g? n), we may take I(p) = 0(1g? n1g g nlg g g n). Thus the d 2*1(p) term

becomes

gn lgiglgn
((1g1g 7]g ~1g” n1g1gn1g1g1gn)_ (n]gn g g n) O(nlg n).

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 21

(We could of course use our algorithm recursively for these multiplications; however, it
turns out that Schénhage-Strassen is fast enough, and leads to simpler recurrences. In
fact, the algorithm asymptotically spends moere time rearranging data than multiplying
in (GP!)

Since (2 p+r+2 2 =%06+0(g n)2=0#+0(1/1g g n) b 2, and since
1g(627)=r+0(1g1g n)=(1+0(1/1g 1g n)) r>1g Ig n, by Lemma 6.1 we have

n = (4+0(1/1g1g n)) b 2",
Ig n' (1 + 0(1/]g Ig n)) r.

We also have k=1g n+0(ig1g n) and d =k/r+0(1), s

Ign = (1+0(1/1g 1g n)) k,
d = (1+0(1/1g1g n)) k/r.

o H(2%b)d 1 nlg n
T _(“0(153‘19‘“)) nlgn”

1 n1gn)
D < (8+0(]g]gn)) n']gn' C(n)+0(n]gn).

To compute the desired ¢ products, we must execute ¢+ 1 forward transforms and #

Thus

and consequently

inverse transforms. Por each product, we must also perform 0(2%) peintwise multiplica-
tions in ©,, at cost 0(2*1(p))=0(n Ig n). As in the proof of Theerem %3, the cost of all
necessary root table precomputations is also bounded by 0(2* I(p)) = 0(n1g n). Thus we
obtain

Ct(n) < (2¢ +1) D+ O(tn]g‘ n).

Dividing by (2¢+1)nlg n and taking suprema yields the bound (6.92).

The error analysis is almost identical to the proof of Theorem %43, the only dif-
ference being that b is replaced by b + 1. Deneting one of the ¢ products by b €
(@, 2222 x]/(x% - 1), we have p, < 98+Igk=p exactly as in Theorem %3. Thus ¢, <
926+2k+Igk=p*8 L4 /9% and again we obtain b by reunding to the nearest integer.

Finally we show how te define d(x). We already observed that 1g n'~ r ~ (]g Ig n)Q.
Thus there exists a constant ¢ >0 such that log log log n'Slog log log log n+ € for large
n, so we may take 9(x)=exp*(log™ x + €). O

New we may prove the main theerem anneunced in the Introduction.

Preef of Theerem 1.1. Let x and ®(x) be as in Theorem 6.%4. Increasing x if necessary,
by Lemma 6.1 we may assume that ®(x) < x ~1 for x> x, and that x> exp (exp (1)).

Let 7(n):=C(n)/(n Ig n) for admissible n > 3. By the theorem, there exist constants
B,L>0 such that for all admissible n> xp, there exists an admissible n'<®(n) with

29 EVEN PASTER INTEGER MULTIPLIGATION

Increasﬁng L if necessary, we may also assume that 7(n) < L for all admissible n < x,.
Taking S to be the set of admissible integers, we apply Propesition 5.3 with K :=8, ¢:=x,
£:=2, and for each admissible n > xy setting d:=1, y1:=1, y:=n and y:=n" as above. We
conclude that T(n)=0(8"°%" "), and hence C(n)=0(n Ig n 8"°2"") as n runs over admissible
integers. We already pointed out that I(k) <3 C(O(k))+ 0(k). o

7. An oPTIMISED VARIANT oF PURER'S ALGORITHM

As pointed out in the Introduction, Pirer proved that I(n) = O(n log n Hk”g*") for some
K >1, but did net give an explicit bound for K. In this section we sketch an argument
showing that ene may achieve K =16 in Férer's algoerithm, by reusing teols frem previeus
sections, especially section 6.

At the core of Fiirer's algorithm is the ring R =@[x]/(x2"+1), which contains the
principal 2-th roet of unity X. Note that R is a direct sum of 2" copies of ©, and
hence not a field (for ~=2). A crucial observation is that X s a “fast” root of uniby, in
the sense that multiplication by X and its powers can be achieved in linear time, as in
Sch@hhage—strassen's algorithm. FPor any k> r, we need to construct a 9k r—th reet o
of X, which is itself a 2“-th principal root of unity. We recall Firer's construction of

w as follows.

27l 27
Lemma 7.1. With R as above, let o = exp Q—T and 0 =exp % Then

ko [T ;4 (x =™/

w = Z 021

s 2 j+1
P Hj;éf(0-21+1—0' J+)

€R

is a principal 2%-th reot of anfty with w?'= X The cosfficients of w have absolute value <1.
Preof. See [19, Section %] i

As our basic recursive problem, we will consider multiplication in (Z /(2" +1) Z)[3],
where n is divisible by a high power of twe. We will refer to the last property as
“admissibility”, but we will not define it precisely. We write Ci(n) for the cost of ¢ 21
such products with ene fixed argument, and C(n)=sup;>1Cy(n)/(2 t+1) for the normalised
cost, exactly as in section 6.

Pirer worked with Z /(2" + 1) Z rather than (Z /(2" + 1) Z)[1], but, since we are
interested in constant factors, and since the recursive multiplication step involves
multiplication of complex quantities, it simplifies the exposition to werk systematically
with complexified objects everywhere.

Por suitable parameters r and &, we will encode elements of (Z /(2" + 1) Z)[i] as
(nega)eyeﬁe polynemials in R[¥]/ (Y% + 1), where R := @[x]/ (X2 + 1) as above. We
choose the parameters later; for now we require enly that 2“2 divides n and that

= n/?"”"Q?Lg‘ n (so that the coefficients are not too small).

The enceding proceeds as follows. Glven a € Z/(2" +1) Z, we split a into 2 parts
a0, . . a0y of n/2% bits. Bach a; is cut into 272 even smaller pieces a;p, .. ., a; 929 of b
bits. Then a is encoded as

9%-1 972

~2_
g = Z QLJXJLYID,
Jj=0

=

=

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 23

and an element « = x + y 1€ (Z /(2" +1) Z)[i] is encoded as & :=x + g 1. (Notice that the
coefficients of X7 are zero for 272< 7 <277 this zero—padding fis the price Ftrer pays
for introducing artificial roots of cm'ity.)

We represent complex coefficients by elements of €, 2° for a suitable precision para-
meter p. The exponent e varies during the algerithm, as explained in [19]; nevertheless,
additions and subtractions only eccur for numbers with the same exponent, as in the
algorithms from sections %4 and 6.

Given o, v € (Z /(2" + 1) Z)[3], to successfully recover the product o v from the
polynemial product @ v € R[Y]/(Y% +1), we must choose p =2 b+ k +r+h, where b s an
allewance for numerical erreor. Gertaﬁ’n]y r<k<lg n, and, as shown by Ptirer, we may also
take b= 0(]3‘ n) (an analogous conclusion is reached in sections % and 6). Thus we may
assume that p=26 + 0(]g n).

We must now show how to compute a preduct o v, for a, v € R[¥]/(¥? +1). Férer
handles these types of multiplications using “half-DPTs”, 16, DPTs that evaluate at
odd powers of 7, where n € R is a principal 2'~th reot of unity such that 2= x
(Lemma 7.1). To keep term?n@]@gy and notation consistent with previous sections, we
prefer to make the substitution U(X,¥):=a(X,n ¥), L.e., writing 522,?:)1 a(X) Y7, we put
U:=Y,(an) Y, and similarly for v and ¥. This reduces the problem to computing the
product v in R[Y]/(Y%-1). The change of variable imposes a cost of O(2* mg), where
mp is the cost of a multiplication in B.

So now censider a preduct ¥ ¥, where &, V € R[¥]/(Y? - 1). Let o = 17, so
that 02 = X. Let d :=[k/r], and write k =n+ -+ ry With rr :=r for 1 < d - 1 and
re=k=(d =1) r<r. Por each 7, let A; be the algerithm for DFTs of length 2 that applies
the usual Coeoley—Tukey methed, taking advantage of the fast 27-th reot of unity x2
The complexity of A; is 0(27*" r; p), since it performs O(27 r;) linear-time operations on
objects of bit size 0(27p). Let D be the complexity of the algerithm A:=Aj0---0 A, for
DFTs of length 2 over B. Then (2.9) yields

d
k
D < 0(; Qkri Qritr r;p) + [;-I 9k mpg + @(n Ig n),

The first term is bounded by 0(d 227 rp)=0((2-*"p) k)= 0O(n Ig n), since p=0(b).

Let us noew consider the second term [k/r] 2¥ mg, which describes the cost of the
twiddle factor multiplications. This term turns out to be the deminant one. Both
Kronecker substitution and FFT multiplication may be considered for multiplication
in R, but it turns out that Kronecker substitution is faster (a similar phenemenen
was noted in Remark %4.2). Se we reduce multiplication in R to multiplication in (Z/
(2" + 1) Z)[7] where n" = 277" (2 p + r + 2) is admissible and divisible by 91 Por any
reasonable definition of adm%’ssﬁ’bmty we then have n' = (1 + o(1) 27 p, provided that r
is somewhat smaller than p. (In the interests of brevity, we will net specify the o(1)
terms for the remainder of the argument. They can all be controlled aleng the lines of
section 6.) Most of the twiddle factors are reused many times, so we will assume that
mg = (2 + o(1)) C(n’), where the factor 2 counts the two (rather than three) DPT's needed
for each multiplication of size n. The term of interest then becomes

r+]gp Q"”Pk

r n'1g’ n’ C(n').

[#]2me = (240

24 EVEN PASTER INTEGER MULTIPLIGATION

Since p=2b+ (9(]g n)= (2 + 0(@%)) b and 27" b =% n, this yields

D < (16+ (1) (1+ o(]g;")) ”?"’ :,g ~ C(n)+ 0(n g n).
To minimise the leading constant, we must choose b to grow faster than Ig n, and r
to grow faster than Ig p. For exampls, taking r:= (1g Ig n)? and k= Ign-r-lg (]gQ n)
leads to b=%n/2""=1g?n and Ig p <1g b =<1g g n. The function mapping n to n'is then
bounded by a logarithmically slow function, and a similar argument to section 6 shows
that 1(n)= 0(nlog n 16'°8"").

8. FAST MULTIPLIGATION USING MODULAR ARITHMETIC

Shortly after Firer's algorithm appeared, De et al [16] presented a variant based on
modular arithmetic that alse achieves the complexity bound I(n) = o(n log n K'°S'") for
some K >1 Roughly speaking, they replace the coeefficient ring € with the field Q, of
p-adic numbers, for a suitable prime p. In this context, working to “finite precision”
means performing computations in Z/p" Z, where 1211s a precision parameter.

The main advantage of this appreach is that the error analysis becemes trivial;
indeed Z / p* Z is a ring (unlike our ©,), and arithmetic operations never lead to
precision loss (unless one divides by p, which never happens in these algorithms). The
main disadvantage is that there are certain technical difficulties associated with finding
an appropriate p; this is discussed in section 8.2 below.

The aim of this section is to sketch an analogue of the algerithm of section © that
achieves I(n)= O(n log n glog” ”) us‘ing modular arithmetic instead of ©. We assume famil-
iarity with p—adic numbers, referring the reader to [22] for an elementary intreduction.

8.1. Sketeh of the algerithm

Por the basic problem, we take multiplication in Z /(2" -1) Z, where n is admissible (in
the sense of section 6) and where one of the arguments s fixed over ¢ =1 multiplications.
Rs before, we take k :=«(n), and cut the inputs inte chunks of b:=n/2" = 0(]g9 n) bits.
Thus we reduce to mcﬂt“ipw‘ing p@]yn@mﬁ’ab in Z[x]/(x% -1) with coefficients of at most
b bits. The coefficients of the product have at mest 2 b+ k bits.

et p be a prime such that p=1(med 2¢), so that Q, contains a primitive 2“~th root of
unity w. The preblem of finding such p and w is discussed in the next section; for now
we assume only that g p= 0(ig n). We may then embed the multiplication preblem into
Q,[x]/(x* 1), and use DPTs with respect to w to compute the product. On a Turing
machine, we cannot represent slements of Q, exactly, so we perform all computations

in Z/p*Z where
4= [Qb+k‘
(g p)-1|

This choice ensures that 1g(p") =2 b + £, so knowledge of the product in (Z./ " Z) X1/
(x2 -1) determines it unambiguously in Z[x]/(x2 -1).

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 26

To compute each DFT, we first use the Cooley—Tukey algerithm to decompese it
into “short transforms” of length 27, where r := (Ig 1g n)>. (As in section 6, there
are also residual transforms of length 27 for seme ry < r, whese contribution to the
complexity is negligible.) Multiplications in Z / p* Z, such as the multiplications by
twiddle facters, are handled using Schénhage-Strassen’s algorithm, with the divisions
by p* being reduced to multiplication via lNewton's method. We then use Bluestein's
algorithm te convert each short transform to a cyclic convolution of length 27 over
Z./ p* Z, and apply Krenecker substitution to convert this to multiplication in Z /(2" -
1) Z, where n' is the smallest admissible integer exceeding 2- (2 A Ig p + r). This
multiplication is then handled recursively.

Now, since Ig p = 0(1g n), Ig p 2k b=1g? n and k = 0(]g n), we have A =
(2+0(1/1g n)) 6/1g p, and hence n'=(%+0(1/1g1g n)) b 2", just as in section 6. The rest
of the complexity analysis fellows exactly as in the proof of Theerem ©.4, except for the
computation of p and w, which is considered below.

Remark 8.1. The role of the precision parameter 1 is to give some extra flexibility
regarding the choice of p. If there was an efficient way to find a prime p =1(mod 2¥)
larger than 22¢** (but not tee much larger), and an efficient way to find a suitable 2“~th
root of unity module p, then we could always take 1:=1and obtain an algerithm werking
directly over the finite field [F,.

8.2. Cemputing suitable p and

Given a transform length 9% for k=1, our aim is to find a prime p such that p=1(mod 2¥),
i.e., such that 2% divides p—1. Denote by po(k) the smallest such prime.

lHeath-Brown has e@njeetured that py(k) = 0(2% k2) [26], but given the current state
of knowledge in number theory, we are only able to prove a result of the following type.

Lemma 8.2. For all sufficiently large k we have p@(k) < Qm, and we may compute po(k) in time
9(95* A,O("I))b

Preef. This is a special case of Linnik's theorem [36, 37], which states that there exist
constants € and L such that for any a, b € N with ged (a, b) = 1, there exists a prime
number p =a (moed b) with p < Eb" The best currently known estimate L <862 for L is
due to Xyleuris [66]. Applying this result for a =1and b=2* we get the bound p < 96k
for large enough k. The complexity bound follows by testing 2+ +1,2-2F+1,3-2%+1,. ..
for primality until we find p, using a pelynemial time primality test [1]. O

The difficulby with this result — already noted in [16] — is that the time required to
find p greatly exceeds the time bound we are trbﬁng to prove for I(n)!

To aveid this problem, De et al suggested using a multivariate splitting, ie., by
encoding each integer as a pelynemial in Z[X, ..., X,] for suitable m, say m 2 7. One
then uses m—dimensional DFTs to multiply the polynemials. Since the transform length
is shorter, one can get away with a smaller p. Unfortunately, this intreduces further
zero—padding and leads to a larger value of K, ruining eur attempt to achieve the bound
O(n]@g n 88" ").

26 EVEN PASTER INTEGER MULTIPLIGATION

On the ether hand, we note that the problem only really eccurs at the tep recursion
level. Indeed, at deeper recursion levels, there is exponentially more time available at the
previous level to compute p. So one possible workaround is to use a different, suffi-
ciently fast algorithm at the top level, such as Ptirer's algorithm, and then switch to the
algorithm sketched in section 8.1 for the remaining levels. In this way ene still ebtains
the bound O(n log n 8'°¢""), and asymptotically almoest all of the computation is dene
using the algoerithm of section 8.1.

If one insists on aveiding (6 entirely, there are still many choices: one could use the
algorithm of De et al at the top level, or use a multivariate version of the algorithm of
section 8.1. One could even use the Seh@nhage—strassen algorithm, whese main recursive
step yields the bound I(n) = 0(n"2 1(nV2) + 1 log n), applying this three times gives
I(n) = 0(n"31(n"8) + n log n), and then to malbiply integers with n"? bits, one can find a
suitable prime using L.emma 8.2 in time O(n3* W)= 9(n).

Anether way to werk areund the preoblem is to assume the generalised Riemann
hypethesis (GRKH). De et al pointed out that under GRH, it is possible to find a sultable
prime efficiently using a randemised algerithm. Here we show that, under GRH, we can
even use deterministic algerithms.

Lemma 8.3. Assume GRH. Then po(k) = 0(92" kg), and we may compute po(k) in time 0(9kk0(1)).

Preef. The first bound is given in [27], and the complexity bound fellows similarly to
the proof of L.emma 8.2. a

To use this result, we must modify the algerithm of section 8.1 slightly. Choose
a constant € >3 so that we can compute po(k) in time O(2* £°), as in Lemma 8.3. Increase
the coefficient size from (1g n) to (1g n)¢", and change the definition of admissibility
accordingly. The transform length then decreases to 2~ = 0(n /(]g n)¢™"), and the cost
of computing p decreases to only 0(n Ig n). The rest of the complexity analysis fis
essentially unchanged; the result is an algerithm with complexity O(n log n 8'°s™m),
working entirely with modular arithmetic, in which the top recursion level does not need
any special treatment.

Finally, we consider the computation of a suitable approximation to a 2“~th root of
unity in @,

Lemma 8.4, Given k,A=1and a prime p="1(med 2¥), we may find W€Z/ p* 7 such that &= w(mod p*)
for some primitive 2“~th root of unity w € Q,. in time 0(p1/u+6 + (A'/H@g p)1+6) for any € > 0.

Preef. We may find a generator ¢ of (Z/p Z)" deterministically in time 0(p"**) [61].

Then wp = g’(/"q)/gk

is a primitive 2*-th reot of unity in Z/p Z, and there is a unique
primitive 2“-th reet of unity w€Q, congruent to wy medule p. Given wy, we may compute

o (mod p*) using fast Newten lifting in time O((k1leg p)"°) [9, Section 12.3]. O

In the context of section 8.1, we may assume that 1= (9((]g n)0(1)) and &= (9(]g n), S0
the cost of finding w is 0(p"*). This is certainly less than the cost of finding p itself,
using either Lemma 8.2 or LLemma 8.3.

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 97

9. GONYECTURALLY PASTER MULTIPLIGATION

[t is natural to ask whether the approaches from sections ©, 7 or 8 can be further
optimised, to obtain a complexity bound I(n)=0(n log nK'°$ ") with K <8.

In Farer's algorithm, the complexity is deminated by the cost of multiplications in
R=C[x]/(x2"+1). If we could use a similar algorithm for a much simpler 8B, then we
might achieve a better bound. Such an algorithm was actually given by Féirer [17], under
the assumption that there exist sufficiently many Fermat primes, i.e., primes of the form
F,=22"+1 Mere precisely, his algorithm requires that there exists a positive integer &
such that for every m €I, the sequence F,.1,. . ., Fons contains a prime number. The DFTs
are then computed directly over B =[P for suitable m, taking advantage of the fact
that [Fr, contains a fast 2"*'-th primitive root of unity (namely the element 2) as well
as a 22"-th primitive reot of unity. It can be shown that a sultably optimised version
of this hypothetical algorithm achieves K =% we still pay a factor of two due to the
fact that we compute both forward and inverse transforms, and we pay another factor
of two for the zero—padding in the recursive reduction. Unfertunately, it is likely that
Py =68537 is the last Permat prime [13].

In the K = 8 algorithm of section 6, a potential bottleneck arises during the
short transforms, when we use Kronecker substitution to multiply pelynemials in
C,[x]/(x* -1). We really only need the high p bits of each coefficient of the pro-
duct (f.e., of the real and ?magﬁnary parts), but we are forced to allocate roughly 2p
bits per coefficient in the Kronecker substitution, and then we discard roughly half
of the output. This problem is similar to the well-known obstruction that prevents
us from using FFT metheds to compute a “short preduct’, i.e., the high n bits or low
n bits of the product of two n-bit integers, any faster than computing the full 2 n bits.

In this section, we present a variant of the algerithm of section 6, in which the
coefficient ring © is replaced by a finite field [F[i], where p = 27 - 1 is a Mersenne
prime. Thus “shert products” are replaced by “cyclic products”, namely by multiplications
module 29 - 1. This saves a factor of two at each recursion level, and consequently
reduces K from 8 to 1.

This change of coefficient ring introduces several technical complications. First, it
is of course unknown if there are infinitely many Mersenne primes. Thus we are forced
to rely on unproved cenjectures about the distribution of Mersenne primes.

Second, g is always prime (except possibly at the top recursion level). Thus we
cannot cut up an element of Z/p Z into equal-sized chunks with an integral number
of bits, and still expect to take advantage of cyclic products. In ether werds, ¢ is very
far from being admissible in the sense of section 6. To work areund this, we deploy a
variant of an algoerithm of Grandall and Fagin [12], which alloews us to work with chunks
of varying size. The Crandall-Fagin algerithm was eriginally presented over ©, and
depended crucially on the fact that [R contains suitable roots of 2. In our setting, we
work over [[1]Z[F,., where p'=27-11s a Mersenne prime exponentially smaller than
p- Happily, [F, contains suitable reots of 2, and this enables us to adapt their algerithm
to our setting. Moreover, since (p)P-1=29*1(2971-1), the field [F,[i] contains roots of
unity of high power-of-twe erder, namely of order 9271 so we can perform FFTs over

[P, [i] very efficiently.

28 EVEN PASTER INTEGER MULTIPLIGATION

Finally, we can no longer use Kronecker substitution, as this woeuld reintreduce
the very zero-padding we are trying to aveid. Instead, we take our basic problem teo
be polynomial multiplication over (Z/p Z)[i] (where p =27 -1 1s not necessarily prime).
RAfter the Grandall-Fagin splitting step, we have a bivariate multiplication problem over
[F,[i], which is solved using 2-dimensional FFTs over [F,[i] These FFTs are in turn
reduced to 1-dimensional PETs using standard methods; this dimension reduction fs,
roughly speaking, the analogue of Kronecker substitution in this algorithm. (Indeed, 3t
is also possible to give an algorithm aleng these lines that werks over © but aveids
Kronecker substitution entirely; this still yields K = 8 because of the “short product”
problem mentioned above.) Por the 1-dimensional transforms, we use the same technique
as in previeus sections: we use Cooley—Tukey's algorithm to decompose them into “short
transforms” of exponentially shorter length, then use Bluestein's method to convert them
to (univariate) pelynemial products, and finally evaluate these products recursively.

9.1. Mersenne primes

Let 7,(x) denote the number of Mersenne primes less than x. Based on probabilistic
arguments and numerical evidence, L.enstra, Pemerance and magstaf’f’ have C@njectured
that

G'Y
77.',,,(x) ~ @]@g]@gx
as x = oo, where v = 0.8772... is the Buler constant [65, #2]. Our fast multiplication
algorithm relies on the following slightly weaker e@njeeture.

ConJECTURE 9.1. There exist constants 0 < a < b such that for all x >3,

a 1@g 1@g x <7, (x)<b 1@g 1@g X.

ProPOsITION 9.2. Assume Conjecture 9.1 and let ¢ :=b/ a. For any integer n = 2, there exists a Mersenne
Y 4 &4

prime p =29 =1 in the interval 2" < p < 2. Given n, we may compute the smallest such p, and find a

primitive 991 _th reot of anity in Fp[ﬂ, in time O(n(3+‘”(1))c).

Preef. The required prime exists since for n=2 we have
7a(27)> alog log (27) = aclog n + a log log 2> b log n + b log log 2= b log log(2") > ,(2").

An integer of the form 27 - 1 may be tested for primality in time ¢2*°" using the
Lucas-L.ehmer primality test [13] A simple way to compute p is to apply this test
successively for all g€in+1,.. ,[n°f}; this takes time 0(n®Me) A primitive 297'-th root
of unity » may be computed by the formula o := 9277 4 (=312 "1 e .[i] in time O(g2*°W),
see [46] or [1%, Corollary &]. i

9.92. Grandall and I'-’agin's algerithm revisited

Let p=27-1be a Mersenne number (not necessarily prime). The main integer multipli-
cation algorithm depends on a variant of Grandall and Fagin's algerithm that reduces
maltiplication in (Z/p Z)E[X]/(X™ - 1) to multiplication in P, [1][X, ¥]/(xX™ -1, ¥ 1),
where p'=27-11s a suitably smaller ersenne prime (assuming that such a prime exists).

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 29

To explain the idea of this reduction, we first consider the simpler univariate case, in
which we reduce multiplication in (Z/ p Z)[i] to multiplication in [P, [i][¥]1/(vY"?-1). Here
we require that 1 < g, that ged(/2, ¢)=1and that ¢'=2[q/N1+1g N +3. Por any k€M,
we will write I, =30,.. k-1 and Z,=35-(k-1),.. . k-1

Assume that we wish to compute the preduct of w,v€(Z/p Z)[i]. Considering u and
v as elements of [I,[i] medule p, we decompose them as

n-1 n-1
o= VA 26", V= v; 28", (91)
7=0 7=0
where
6; = [Gl 7 / IZ -L

uvp € m&mrﬂ:[ﬂ-

We regard o; and v; as complex “digits” of v and v, where the base 2%7% varies with

@

the position 7. [otice that e;.1-e; takes only two possible values: lg/nN]er[qg/N]
For 0<7<1, let

Cy = /26{_6];, (92)

so that 0<¢; < /). Por any 0< #, %< 17, define &;,;,€Z as follows. Choose €10, 1 so that
7i=f+ie-0ol] les in the interval 0<7</], and put

O = eyten—e;—0g.
Prom (9.2), we have
eytoey—cer=1] (%Jf%_sf)_6](71+f2_7):f25ﬁ,@-

Since the left hand side lies in the interval (-7, 2 17), this shows that &, €10, . Now,
since 29=1(mod p) and e;+ e, = 6; + &;;, (mod ¢), we have

n-1
vV = Z
7=0

BN

-1 n-
.+ @2
Uy Vi 9% % = Z w; 28 (m@d p),
0 =0

ia
where
w; = Z 95'”7’@ Uy Vige
#i+io=1 (med 1)

Since oy < \/§ - 9la/l gnd similarly for v, we have w; € Zu{q/wq[ﬂ. Note that we may
recover v v from wy,...,wy-1in time 0(q), by a standard overlap-add procedure (provided
that 72 =0(q/1g q)).

Let h be the inverse of ¢ moedule /7; this inverse exists since we assumed ged(lz,
g)=1 Let 0:=2"€lF,, so that
o1 =951 =9,

since 2 has order ¢' in [F,. The quantity 6 plays the same role as the real /J-th root of
2 appearing in Crandall-Fagin's algorithm.

Now define polynemials &, V€ [I[Y]/(Y"-1) by & :=6%¢; and V;:=0% v; for 0S7 <1,
and let W=Wp+ -+ Wy YT :=UV be their (eycﬁc) product. Then

~ e e — —c: — et e, e _ S5,
w; =07 U = Z 99’”&"/@—2 g 7"’1’1‘/?’2_2 211)72011’1‘/1’9

fi+ig=7 (mod 17)

30 EVEN PASTER INTEGER MULTIPLIGATION

coincides with the reinterpretation of w; as an element of [F,[1] Moreover, we may
recover w; unambiguoeusly frem w;, as ¢ 2 2 [q/ N1 +1g N +3 and w; € Zuyq/mqq[‘i].
Rltegether, this shows how te reduce multiplication in (Z./ p Z)[3] to multiplication in
P,y]/ (v =1).

Remark 9.3. The pair (611, ¢i21) can be computed from (e;, ¢;) in 0(1g q) bit operations,
so we may compute the sequences e,. . .,e;-1 and ep,. . ., cp-1 in time O(IZ]g q). Moreover,
sinee ¢;41—c; takes on @n]y two possible values, we may compute the sequence 6~,...,0°"
using O(77) multiplications in [F,[1]

9.3. Bivariate Crandall-Pagin reductien

Generalising the discussion of the previeus section, we now show how to reduce mul-
tiplication in (Z/p Z)5[X]/(X™ - 1), for a given M 21, to multiplication in [F,[i][X,
¥]1/(x™ -1, ¥? - 1). Por this, we require that 1 < g, that ged(lz, g) = 1 and that
g 220g/R]+1g (M) +3.

Indeed, consider two cyclic polynomials u=cy+ +ay 1 X" and v=vy+- -+ vy g X"
in (Z/p Z)3X]/(x™ - 1). We cut each of the coefficients o, v; € (Z/ p Z)[3] into N
chunks o; ; and v; ; of bit size at mest [q/ 7], using the same varying base strategy as

above. With 6" =2 and ¢; as befors, we next form the bivariate cyclic polynomials
U= 07X Y, V=) v 69Xy
i.j i.j
in B0, v]/(X™ -1, 7" -1). Setting
W= V=Y w095 Y,
i
the same arguments as in the previous section yield
— 5.7.
Wf,j - Z Z 2 2 Clﬁ’ﬁ Vf%jg.
fi+io=1 (mod M) f+jo=j (mod N)

Using the assumption that ¢'=2[q/N1+1g(MNR)+3, we recover the coefficients w; ;, and
bence the product vv, from the bivariate cyclic convelution preduct W =U V.

9.12. Cenjecturally faster multiplication

Let ¢ = 2 and p := 29 - 1 (net necessarﬂy pr%’me). We will take our basic recursive
problem to be multiplication in (Z/p Z)[[x]/(X™ - 1) for suitable M. We need M
somewhat larger than g; this is analogous to the situation in section 6, where we chose
a “shert transform]ength” somewhat larger than the coefficient size. Thus we set
m=m(q):=2"9 where u(q) is defined as follows.

Lemma 9.4, There exists an increasing function N ~»M sueh that

0<u(q) - (logs q) (logs logs ¢) < 2 (9.3)

for all g 2 2, and such that we may compute u(q) in ¢ime (]@g q)1+0(1).

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 31

Preef. Let r(q):= (]@gg q) (]@gg logo q). Using [6], we may construct a function g¢(q)
such that |g(q) - f(q)|<1/q for all g2, and which may be computed in time (1@g q)1+‘”(1).
1

One checks that (g +1)-r(q)=2/g for all ¢=22,s0 glg+N=r(g+1)- pre =f(qg +1)—%2
f’(q)"‘%? g(q) for ¢22. Thus g(q) is increasing, and 1(q):=| g(q)+3/2] has the desired

properties. |

We say that an integer n=>2 is admissible if it is of the form n=gq M where M :=M(q)
for some g = 2. (This should net be confused with the netieon of admissibility of
section 6.) An element of (Z/p Z)i][x]/(X™ 1) is then represented by 2 n bits. Note
that g~ g M(q) is strictly increasing, so there is a one—to-one correspondence between
integers g = 2 and admissible n. For x 22 we define f(x) to be the smallest admissible
integer n = x.

Lemma 9.5. We have ﬁ(n)z O0(n) as n=>c0. Biven n=>2, we may cempuite ﬁ(n), and the cerresponding

g, in time @(n).

Preef. Prom (9.3) we have (g+1) M(g+1)/(g M(g)) = 0(24a* V)= (1), this immediately
implies that B(n)=0(n).

Suppose that we wish to compute f(n) for some n. We assume that n is large enough
that the definition g := ollg »/(g'g n1g1g1g] 1ales sense and so that g = 2. One checks
that (]@gg @) (]@gg logo qo)B]g n, so ((qo) 21g n and hence qv M(qv) = n. To find the smallest
suitable g, we may simply compute g M(q) for each ¢ =2,3,..., g, and compare with n.
This takes time O(q(log q0)" M) = o(n). O

Now let g =2, p:=27-1and M = M(q). Consider the problem of computing ¢ =1
products o v, ..., o v with o,.. .o, v €(Z/p Z)E[X]/(X™ - 1). We denote by C(n) the
complexity of this problem, where n:=gq M(q) is the admissible integer corresponding to
g. As in section 6, we define C(n):=sup;>1C,(n)/(2¢+1).

Notice that multiplication of twoe integers of bit size <k reduces te the above
problem, for =1, via a suitable Kronecker segmentation. Indeed, let n:=p(8 k)= g M(q)
for some g, and encede the integers as integer polynemials of degree less than M /2
with coefficients of bit size m:=[k/(M /2)]. The desired product may be recovered from
the product in (Z/p Z)5][Xx]/(x™-1), as

4k q
2m+1g (M/2)S -+ p(q) S5 +plq)S g -1

for large g. Thus, as in section 6, we have I(k) <3 C(0(k))+ 0(k), and it suffices to obtain
a good bound for C(n).

Now suppese additionally that p =29 -11s prime. In this case (Z/p Z)3]=R,[i] is
a field, and as noted above, it contains 29"'-th roots of unity, se we may define DPTs
of length 2" over [F,[i] for any r< g +1 In particular, for r< g we may use Bluestein's
algorithm to compute DFTs of length 2°. Denote by B, ,(27) the cost of evaluating ¢
independent DFTs of length 2" over [F,[1], and put B,(27) :=sup;>1B, (27)/(2 ¢ +1). Here
we assume as usual that a 2*'-th root of unity is knewn, and that the corresponding
Bluestein root table has been precomputed.

32 EVEN PASTER INTEGER MULTIPLIGATION

et us apply these definitions in the case r:=Ilg M, this is permissible, as Ig M < ¢
for sufficiently large g. Since convelution of length M over [F[i] is exactly the basic
recursive problem, and since one of the operands is fixed, we have Bq,t(m) < Cln) +
0(t m I(q)), where n:=g M, and hence

B,(m) < C(n)+o0(mI(q)). (9.%)

THeorREM 9.6. Assume @@nj@eture 9.1 Then there exists xs = 2 and a legarithmically slow function ¢:
(xo, 00) >R with the following preperty. For all admissible n > xg, there exists an admissible n'< (b(n)

such that
C(n) 1 C(n)
) < (n+0(1g1g1gn)) ot 95)

Preef. Let n:= g M with M = M(q). Assume that we wish to compute ¢ = 1 products
with ene fixed operand. Our goal is to reduce te a problem of the same form, but for
exponentially smaller n.

Cheese parameters. Let p'=27 -1 be the smallest Tersenne prime larger than olig M.

By Propesition 9.2, we have olig M < < 9llg M \hence (1g m)*< g'<(1g m)*, for some
abseolute constant ¢ > 1 Moreover, we may compute p', together with a primitive 29
th root of unity w in [F,[i], in time 0((lg m) &) =o(n Ig n). We define Mm':=M(q) and
=g M.

The algorithm must perform various multiplications in [,[1], at cest 0(I(g)). For
simplicity we will use Schénhage-Strassen’s algerithm for these multiplications, 6., we

will take 1(¢)=0(q'1g ¢'1g1g ¢). Since Ig ¢'=0(g g M)=0(1g 1g n), we have
I(¢) = 0(q1g1g niglgig n).

Crandal'l—l'—’agin reduction. We use the framework of section 9.3 to reduce the basic
maltiplication problem in (Z/p Z)[A][X]/(X™ -1) to multiplication in I [T][x, ¥]1/(x™ -1,
¥ -1) for suitable /7. We take 17 :=2's where

2gq
'g qglglg q)

q9
[a 5l
We also write L:=2". The definition of s makes sense for large g since ¢ = (]g my? =
(1g qlglg q)’. Let us check that the hypotheses of section 9.3 are satisfied for large
g. We have L = ¢q/(q Ig 1g g) and hence s = Ig 1g g; in particular, s # ¢, so
ged(2,¢)=1 and alse } < q/q' < q/1g g. Since N =Ls>2 q/(q'—1gQ g), we also have
2[q/N1< g -1g? g+ 0(1), and thus 2[q/N1+1g (MN)+3< ¢ since 1g(Mn)=0(lg q1g1g q).
We also note for later use the estimate

1
Mg = (%@(@’@’n))"‘

Indeed, since s <1glg g we have

_ 1 q
° (% 0(@‘ Ig 6/)) 2(q-1g2)’

0

[
11

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 33

and we already noticed earlier that (g% ¢)/ ¢'=0(1/(1g 1g ¢)°)=0(1/1g g q).

To assess the cost of the @randaﬂ—?ag“in reduction, we note that computing the e;
and ¢; costs 0(N] Ig q)=0(n Ig n) (see Remark 9.3), the splitting itself and final everlap-
add phase require time O(# n), and the various multiplications by 0, 6 and 6% have cest

oemn 1(g))=0nl(q)/ ¢)=0(tnlg n).

Reduction te pewer-ef-twe lengths. [lext we reduce multiplication in [F [i][X, Y]/
(x™ =1, 77 -1) to multiplication in R[X,Z]/(x™ -1, 2" -1), where R =P [T[[u]/(us-1).
In fact, since ged(b, s) =1, these rings are isemorphic, via the map that sends X to X
and ¥ te Z . Evaluating this isomerphism corresponds to rearranging the coefficients
according to the rule 7+~ (i, #), where 7 €10,...,7 -1 is the exponent of ¥ and where
=7 mod L and :=7 mod s are the exponents of Z and ¢. This may be achieved in time
o(¢mn g n (g'+ Ig n))=0(tn Ig n) using the same sorting strategy as in section 2.3.
The inverse rearrangement fis handled similarly.

Reduction te univariate transferms. Por multiplication in R[X,Z]/(x™-1,25-1), we
will use bivariate DFTs over R. This is possible because [F,[i] contains both M-th and
L-th primitive roots of unity, namely w2 /M and 02"/t since g'>1g M and ¢'>1g L. More
precisely, we must perform #+1forward bivariate DFTs and ¢ inverse bivariate DFTs of
length M x L over R, and ¢ MM L, multiplications in R. Each bivariate DFT reduces further
to s M univariate DFTs of length L ever [F,[i] (with respect to Z) and s L univariate
DETs of length M over IP,[i] (with respect to X). Interspersed between these steps are
varfous matrix transpese operations of total cost O(¢s ML Ig(s M L) ¢)=0(tn Ig n), to
enable efficient access to the “rows” and “columns” (see section 2.1).

Multiplications in R are handled by zero—padding, ie., we first use Cooley—Tukey

to multiply in I}?P.[ﬂ[ﬂ]/(ﬂﬂﬁgsm - 1), and then reduce module #° - 1. The total cost of
these multiplications is O(t ML s Ig s I(g))=0(¢tn Igs1(q)/ ¢)=0(tn Iglg n (]g Iglg n)?)=
O(t n]g n).
Reductien te shert transferms. Consider one of the “long” univariate DFTs of
length 2“€3m, L} over F,[i] We decompose the DFT inte “short” DFTs of length M’
as follows. Let r:=1g M'=0(g g nlg1g g n) and d :=[k/r]=0(1g n/(ig 1g n g 1g Ig n)),
and write k=n+ - +r; where r;i=r for 1<7<d-1and ry,:=k-(d -1 r<r. We use the
algorithm A:=A0---0 A,, where for 1<7<d-1we take A; to be the algorithm based
on Bluestein's methed (discussed °immed°iate]y before (9.2)), and where A, is the usual
Cooley—Tukey algorithm over [F,[i]. Let D, be the cost of a single invecation of A (or
of the e@rresp@nd%’ng fnverse transform A). By (2.4) we have

D, < (d-1)B0-{2)+0(247 27 r,1(g)) + 0(d 2% 1(¢)) + 0(2* ¢ Ig n).

The cost of precomputing the necessary root tables is only 0(2* I(g)). By definition
B,o(2)<(2- 257 +1)B,(M). Prom (9.%) and the estimate 2" > 1g 1g n, the first term
becomes

(d-1B,2A(2) < (2+0(1/1g1g n)) (d =1) 24 C(n) + 0(d 2" M"1(q)).

The contribution to D, froem all terms invelving I(g") is

g n
02" (ry +) 1(q)= ‘?(% ARl R) =o(2q1g n),

34 EVEN PASTER INTEGER MULTIPLIGATION

51¢]
D, < (2+0(1/1g1g n)) (d 1) 2~ C(n)+ 0(2* ¢'1g n).

Denoting by D the cost of a bivariate DFT of length M x L ever R, we thus have
(%’gn@r%’ng the transpesition costs, which were included earlier)

D = sz]gm+s77’l D]gb

((1) lem| m oL | L
2+0 (s[{]g—Jw+s7’nlg—JW)C(n')+0(sbmq']gn)
m)

IN

" \lglgn)) gm g m

2+ 0l ——||sL. M =——=C(n)+0(sL Mg'1g n

" ligign)) ot g m (s mq1g n)
([AR

< |3+0 L Tw]gn,
L \lglgn))nigm

Moreover, since

IN

C(n)+ O(n]g‘ n).

]g n' 3]g q B 1 3 1
gm g 7”'_“0(@‘19‘ q')_1+0(1g1g1gn)’

we get

D < (il-+ 0(]g]f;]g n)) ::g : C(n')+ O(n]g n).

We must perform 2 ¢ + 1 bivariate DPTs; the bound (9.5) then fellows exactly as in
the proof of Theorem 6.%4.

For large n, we have log ¢'= O(Mg log 777) = 0(1@g log n), s0 log n'=log ¢ + 0(u(q) =
0(]@g g log log q) = 0(1@g log n log log log n). Thus there exists a censtant € >0
such that log log log n' < log log log log n + € for large n, and we may take ®(x) =
exp®(log™ x + €). o

Preof of Theerem 1.2. Follows from Theorem 9.6 and Proposition 6.3, analogously to
the proof of Theorem 1.1. w

BIBLIOGRAPHY

[11 M. Agrawal, . Kayal, and I, Saxena. PRIMES is in P. Annals of Math., 160(2):781-793, 200%.

[2] A V. Aho,) B. Hoperoft, and J. D. Ullman. The desig'n and analysis of computer algorithms. Add?s@n—mes]ey,
1974.

[3] L. | Bluestein. A linear filtering approach to the computation of discrete Fourier transform. /EEE
Transactions on Audie and Electreaceustics , 18(‘4):‘451—‘455, 1970.

[#] A Bestan, P. Gaudry, and E. Schost. Linear recurrences with polynemial coefficients and application
to integer facterization and Cartier—Manin eperater. SIAM J. Compet., 36:1777-1806, 2007.

[8] C.B. Boyer. A History of Mathematics. Princeton Unfv. Press, first paperback edition, 1985.

[6] R. P. Brent. Past multiple-precision evaluation of elementary functions. , Assec. Comput. Mach,
923(2):242-951, 1976.

[7]1 R. P. Brent and P. Zimmermann. Medern Computer Arithmetic. Gambridge University Press, 2010.

[8] P. Birgisser, M. Clausen, and M. A. Shekroellabi. Algebraic comploxity theory. Springer—Verlag, 1997.

[9] K. Gohen, G. Frey, k. Avanzi, Ch. Doche, T. Lange, K. Nguyen, and F. Vercauteren, editers. AHandbook
of elliptic and hyperelliptic curve cryptegrapby. Discrete Mathematics and its Applications. Chapman &
Hall/GRC, Boca Raton, PL., 2006.

[10] S. A. Cook. On the minimum computation time of functions. PhD thesis, Harvard Un“iversi’ty, 1966.

Davip HarveY, Joris van Der Hoeven, GREGORE LECERF 35

1] J. W. Cooley and J. W. Tukey. An algerithm for the machine calculation of complex Fourier serfes.
Math. Computat., 19:297-301, 1968.

[12] R. Grandall and B. Pagin. Discrete weighted transforms and large-integer arithmetic. Math Comp.,
62(205):305-32%, 199%.

[13] R. Grandall and C. Pomerance. Prime numbers. A computational perspective. Spr'inger, New York, 2nd edition,
2008.

[13] R. Creutzburg and M. Tasche. Parameter determination for complex number-theeretic transforms
using cyclotomic pelynomials. Math Comp., 59(185):189-200, 1989.

[18] A. De, P. P. Kurur, C. Saha, and R. Saptharishi. Past integer multiplication using moedular arithmetic.
SIAM J. Comput., 42(2):685-699, 2013.

[16] J E’eaﬂe. Intreduction aux fonctions analysables et precve constructive de la conjecture de Dulac. Hermann, col-
lection: Actualités mathématiques, 1992.

[17] M. Pérer. On the complexity of integer multiplication (extended abstract). Technical Report GS-89-
17, Pennsylvania State University, 1989.

[18] M. Pérer. Paster ?nteger mulbiplication. In Proceedings of the Thirty-llinth ACTN Symposium on Theory of
Compating, STOC 2007, pages &57-66, New York, Y, USA, 2007. ACT Press.

[19] M. Pérer. Paster integer multiplication. SIAM J Comput, 39(3):979-1005, 2009.

[20] M. Férer. How fast can we multiply large integers on an actual computer? In A. Parde and A. Viela,
editors, Proceedings of LATI) 201% Theeretical Informatics: Ilth L.atin American Sympesium, Mentevidee, lraguay,
volume 8392 of Lect. Notes Comput. Sci., pages 660-670. Springer Berlin Heidelberg, 2014.

[21] J. ven zur Gathen and J. Gerhard. Medern Computer Algebra. Gambridge University Press, New York,
NY, USA, 3rd edition, 2013.

[22] P. Q Gouvéa. p-adic numbers. An intreduction. Universitext. Springer-Verlag, Berlin, 1993.

[23] T. Granlund et al. GMP, the GNU multiple precision arithmetic library. http://gmplib.org, 1991
Latest version 6.0.0 released in 20134

[23] D. Harvey, J. van der Hoeven, and G. Lecerf. Faster peolynemial multiplication over finite fields.
Technical report, AL, 2014, http://hal.archives-ouvertes.fr.

[25] D. Harvey, J. van der Hoesven, and 6. Lecerf. Fast polynemial multiplication over Fow. Technical
report, AL, 2016. http://hal.archives-ouvertes.fr/hal-01265278.

[26] D. R. Heath-Brown. Almest-primes in arithmetic progressions and short intervals. Math Proc.
Cambridge Philes. Sec., 83(3):357-375, 1978.

[27] D.R. Heath-Brown. Zero—free regions for Dirichlet L-functions, and the least prime in an arithmetic
progression. Proc. Londen Math. Soc. (3), 6H2):265-338, 1992.

[28] M. T. Heideman,D. k. Johnsen, and C. S. Burrus. Gauss and the history of the fast Pourier transform.
Arch. Hist. Exact Sei, 3%(3):265-977, 1985.

[29] J. van der Hoeven. journéss Nationales de Caleul Formel (2011), velume 2 of Les cours du CIRM, chapter
CGaleul analytique. GEDRAM, 2011. Exp. No. %, 85 pages, http://ccirm.cedram.org/ccirm-bin/fitem?
id=CCIRM_2011__2_1_A4_0.

[30] J. van der Hoeven, 6. Lecerf, B. Mourrain, et al. Mathemagix, 2002. http://www.mathemagix.org.

[31] A. Karatsuba and J. Ofman. VMmHokeHHe MHOTOSHAUHBIX umcel Ha aBToMaTax. Doklady Akad. lauk SSSR,
7:293-29%, 1962. English translation in [32]

[32] A Karatsuba and J. Ofman. Multiplication of multidigit numbers on automata. Seviet Physics Doklady,
7:6956-896, 1963.

[33] A. A. Karatsuba. The complexity of computations. Prec. of the Steklov Inst. of Math., 211:169-183, 1995.
English translation; Russian original at pages 186-202.

[3%] D. B. Knuth. The Art of Computer Programming, velume 2: Seminumerical RAlgorithms. Addison-Wesley,
1969.

[35] D. B. Knuth. The Art of Computer Programming, velume 3: Serting and Searching. Addisen-Wesley,
Reading, A, 1998.

[36] Yu. V. Linnik. On the least prime in an arithmetic progression |. The basic theorem. Rec. Math. (Mat.
Sbernik) N.S., 16(57):139-178, 19%%.

[37] *Yu. V. Linnik. On the least prime in an arithmetic progression Il. The Deuring-keflorenn phenem-
enon. Rec. Math. (Mat. Sbornik) .S., 15(57):347-168, 19%%.

[38] R.B. Moere. Interval Analysis. Prentice kall, Englewood Cliffs, I,]., 1966.

[39] O. Neugebauer. The Exact Sciences in Antiguity. Brewn Univ. Press, Providence, R, 19567.

http://gmplib.org
http://gmplib.org
http://gmplib.org
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://www.mathemagix.org
http://www.mathemagix.org
http://www.mathemagix.org

36 EVEN PASTER INTEGER MULTIPLIGATION

[70] C. H. Papadimitriou. Gomputational Complexity. Addisen-Wesley, 199%.

[#1] J M. Pollard. The fast Pourier transform in a finite field. Math. Comp., 25(11%):366-37%, 1971.

[#2] C. Pomerance. Recent developments in primality testing. Math. Intelligencer, 3(3):97-105, 1980/81.

[#3] G M. Rader. Discrete Fourier transforms when the number of data samples is prime. Prec. IEEE,
56(6):1107-1108, June 1968.

[’l"l'] K. R. Rao, D. N, Kim, and JJ Hwaﬂg. Fast Fourier Transform - Algerithms and Applications. Sﬁgﬂiﬁs and
Communication Technelogy. Springer-Verlag, 2010.

[#8] | S. Reed and T. K. Trueng. The use of finite fields to compute convelutions. /EEE Trans. Inform.
Theory, T-21:208-213, 1976.

[36] M. C. Schmeling. Corps de transséries. PhD thesis, Université Paris-VIl, Prance, 2001,

[37] A Schénhage. Multiplikation grefer Zahlen. Computing, 1(3):182-196, 1966.

[#8] A. Schénhage. Storage medification machines. SIAM J on Comput, 9:490-6508, 1980.

[#9] A Schénhage, A. F. W. Grotefeld, and E. Vetter. Fast Algorithms - A Meltitape Turing Machine Implementa-
tion. Bl-Wissenschaftsverlag, Mannheim, Leipzig, Wien, Ztirich, 199%.

[50] A. Schénhage and V. Strassen. Schnelle Multiplikation groRer Zahlen. Computing, 7:281-292, 1971.

[51] 1 Shparlinski. On finding primitive reots in fintte fields. Theoret Comput. Sci, 167(2):273-275, 1996.

[62] D. B. Smith. History of Mathematics, velume 2. Deover, 1988.

[63] A. L. Toom. The complexity of a scheme of functional elements realizing the multiplication of
°1’ntegers. Soviet Mathematics, H(2):714-716, 1963.

[6%] A. L. Toem. O cnoxmOoCTH cxXeMBI U3 PYHKIMOHATBHBIX 3J€MEHTOB, PEaTH3YIOIIell YMHOKEHNE TIeNbIX YUCET.
Deklady Akad. Nauk SSSR, 160:496-498, 1963. English translation in (53]

[65] S. Wagstaff. Divisers of Mersenne numbers. Math. Comp., H0(161):385-397, 1983.

[86] T.Xylouris. On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet
L-functions. Acta Arith., 1:66-91, 2011.

	1. Introduction
	1.1. Brief history and related work
	1.2. Our contributions and outline of the paper

	2. Survey of classical tools
	2.1. Arrays and sorting
	2.2. Discrete Fourier transforms
	2.3. The Cooley–Tukey FFT
	2.4. Fast Fourier multiplication
	2.5. Bluestein's chirp transform
	2.6. Kronecker substitution and segmentation

	3. Fixed point computations and error bounds
	3.1. Fixed point numbers
	3.2. Basic arithmetic
	3.3. Precomputing roots of unity
	3.4. Error analysis for fast Fourier transforms

	4. A simple and fast multiplication algorithm
	5. Logarithmically slow recurrence inequalities
	6. Even faster multiplication
	7. An optimised variant of Fürer's algorithm
	8. Fast multiplication using modular arithmetic
	8.1. Sketch of the algorithm
	8.2. Computing suitable p and ω

	9. Conjecturally faster multiplication
	9.1. Mersenne primes
	9.2. Crandall and Fagin's algorithm revisited
	9.3. Bivariate Crandall–Fagin reduction
	9.4. Conjecturally faster multiplication

	Bibliography

