
Multiple precision �oating-point arithmetic on
SIMD processors

Joris van der Hoeven

Laboratoire d'informatique, UMR 7161 CNRS
Campus de l'École polytechnique
1, rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau

Email: vdhoeven@lix.polytechnique.fr

April 26, 2017

Current general purpose libraries for multiple precision �oating-point arithmetic such as
Mpfr su�er from a large performance penalty with respect to hard-wired instructions. The
performance gap tends to become even larger with the advent of wider SIMD arithmetic in
both CPUs and GPUs. In this paper, we present e�cient algorithms for multiple precision
�oating-point arithmetic that are suitable for implementations on SIMD processors.

Keywords: �oating-point arithmetic, multiple precision, SIMD

A.C.M. subject classification: G.1.0 Computer-arithmetic

A.M.S. subject classification: 65Y04, 65T50, 68W30

1. Introduction

Multiple precision arithmetic [3] is crucial in areas such as computer algebra and cryptography,
and increasingly useful in mathematical physics and numerical analysis [1]. Early multiple pre-
cision libraries appeared in the seventies [2], and nowadays GMP [7] and MPFR [6] are typically
very e�cient for large precisions of more than, say, 1000 bits. However, for precisions that are
only a few times larger than the machine precision, these libraries su�er from a large overhead.
For instance, the MPFR library for arbitrary precision and IEEE-style standardized �oating-
point arithmetic is typically about a factor 100 slower than double precision machine arithmetic.

This overhead of multiple precision libraries tends to further increase with the advent of wider
SIMD (Single Instruction, Multiple Data) arithmetic in modern processors, such as Intel's
AVX technology. Indeed, it is hard to take advantage of wide SIMD instructions when imple-
menting basic arithmetic for individual numbers of only a few words. In order to fully exploit
SIMD instructions, one should rather operate on suitably represented SIMD vectors of multiple
precision numbers. A second problem with current SIMD arithmetic is that CPU vendors tend
to favor wide �oating-point arithmetic over wide integer arithmetic, whereas faster integer arith-
metic is most useful for speeding up multiple precision libraries.

In order to make multiple precision arithmetic more useful in areas such as numerical analysis,
it is a major challenge to reduce the overhead of multiple precision arithmetic for small multiples
of the machine precision, and to build libraries with direct SIMD arithmetic for multiple precision
�oating-point numbers.

One existing approach is based on the �TwoSum� and �TwoProduct� operations [4, 13] that
allow for the exact computation of sums and products of two machine �oating-point numbers.
The results of these operations are represented as sums x+ y where x and y have no �overlapping
bits� (e.g. blog2 jxjc>blog2 jy jc+53 or y=0). The TwoProduct operation can be implemented

1

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65Y04&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65Y04&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65Y04&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65T50&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65T50&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65T50&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search

using only two instructions when hardware o�ers the fused-multiply-add (FMA) and fused-
multiply-subtract (FMS) instructions, as is for instance the case for AVX2 enabled processors.
TheTwoSum operation could be done using only two instructions as well if we had similar fused-
add-add and fused-add-subtract instructions. Unfortunately, this is not the case for current
hardware.

It is well known that double machine precision arithmetic can be implemented reasonably
e�ciently in terms of the TwoSum and TwoProduct algorithms [4, 13, 15]. The approach
has been further extended in [17, 14] to higher precisions. Speci�c algorithms are also described
in [12] for triple-double precision, and in [9] for quadruple-double precision. But these approaches
tend to become ine�cient for large precisions.

An alternative approach is to represent �oating-point numbers by products mbe, where m is
a �xed-point mantissa, e an exponent, and b2 2N the base. This representation is used in most
of the existing multi-precision libraries such as Gmp [7] and Mpfr [6]. However, the authors
are only aware of sequential implementations of this approach. In this paper we examine the
e�ciency of this approach on SIMD processors. As in [10], we systematically work with vectors
of multiple precision numbers rather than with vectors of �digits� in base b. We refer to [19, 5]
for some other recent approaches.

Our paper is structured as follows. In section 2, we detail the representation of �xed-point
numbers and basic arithmetic operations. We follow a similar approach as in [10], but slightly
adapt the representation and corresponding algorithms to allow for larger bit precisions of the
mantissa. As in [10], we rely on standard IEEE-754 compliant �oating-point arithmetic that
is supported by most recent processors and GPUs. For processors with e�cient SIMD integer
arithmetic, it should be reasonably easy to adapt our algorithms to this kind of arithmetic.
Let � be the bit precision of our machine �oating-point numbers minus one (so that �= 52 for
IEEE-754 double precision numbers). Throughout this paper, we represent �xed-point numbers
in base 2p by k-tuplets of machine �oating-point numbers, where p is slightly smaller than �
and k> 2.

The main bottleneck for the implementation of �oating-point arithmetic on top of �xed-point
arithmetic is shifting. This operation is particularly crucial for addition, since every addition
requires three shifts. Section 3 is devoted to this topic and we will show how to implement
reasonably e�cient shifting algorithms for SIMD vectors of �xed-point numbers. More precisely,
small shifts (of less than p bits) can be done in parallel using approximately 4 k operations,
whereas arbitrary shifts require approximately (log2 k+4) k operations.

In section 4, we show how to implement arbitrary precision �oating-point arithmetic in base
b=2. Our approach is fairly standard. On the one hand, we use the �left shifting� procedures from
section 3 in order to normalize �oating-point numbers (so that mantissas of non zero numbers are
always �su�ciently large� in absolute value). On the other hand, the �right shifting� procedures
are used to work with respect to a common exponent in the cases of addition and subtraction.
We also discuss a �rst strategy to reduce the cost of shifting and summarize the corresponding
operation counts in Table 2. In section 5, we perform a similar analysis for arithmetic in base
b = 2p. This leads to slightly less compact representations, but shifting is reduced to multiple
word shifting in this setting. The resulting operation counts can be found in Table 3.

The operation counts in Tables 2 and 3 really represent the worst case scenario in which
our implementations for basic arithmetic operations are required to be �black boxes�. Multiple
precision arithmetic can be made far more e�cient if we allow ourselves to open up these
boxes when needed. For instance, any number of �oating-pointing numbers can be added using
a single function call by generalizing the addition algorithms from sections 4 and 5 to take
more than two arguments; this can become almost thrice as e�cient as the repeated use of
ordinary additions. A similar approach can be applied to entire algorithms such as the FFT [10]:
we �rst shift the inputs so that they all admit the same exponent and then use a �xed-point
algorithm for computing the FFT. We intend to come back to this type of optimizations in
a forthcoming paper.

2 Multiple precision floating-point arithmetic on SIMD processors

So far, we only checked the correctness of our algorithms using a prototype implementation.
Our operation count analysis indicates that our approach should outperform others as soon as
k> 5 and maybe even for k= 3 and k= 4. Another direction of future investigations concerns
correct rounding and full compliance with the IEEE standard, taking example on Mpfr [6].

Notations

Throughout this paper, we assume IEEE arithmetic with correct rounding and we denote by F
the set of machine �oating-point numbers. We let � > 8 be the machine precision minus one
(which corresponds to the number of fractional bits of the mantissa) and let Emin and Emax
be the minimal and maximal exponents of machine �oating-point numbers. For IEEE double
precision numbers, this means that �= 52, Emin=¡1022 and Emax= 1023.

In this paper, and contrary to [10], the rounding mode is always assume to be �round to
nearest�. Given x; y 2 F and � 2 f+;¡; �g, we denote by �(x � y) the rounding of x � y
to the nearest. For convenience of the reader, we denote �(x � y) = �(x � y) whenever the
result �(x � y) = x � y is provably exact in the given context. If e is the exponent of x � y
and Emax > e > Emin + � (i.e. in absence of over�ow and under�ow), then we notice that
j�(x � y)¡ x � y j6 2e¡�¡1. For e�ciency reasons, the algorithms in this paper do not attempt
to check for under�ows, over�ows, and other exceptional cases.

Modern processors usually support fused-multiply-add (FMA) and fused-multiply-subtract
(FMS) instructions, both for scalar and SIMD vector operands. Throughout this paper, we
assume that these instructions are indeed present, and we denote by �(x y + z) and �(x y ¡ z)
the roundings of x y+ z and x y¡ z to the nearest.

Acknowledgment. We are very grateful to the third referee for various suggestions and for
drawing our attention to several more or less serious errors in an earlier version of this paper.

2. Fixed-point arithmetic

Let p 2 f6; :::; � ¡ 2g and k > 2. In this section, we start with a survey of e�cient �xed-point
arithmetic at bit precision k p. We recall the approach from [10], but use a slightly di�erent
representation in order to allow for high precisions k> 19. We adapted the algorithms from [10]
accordingly and explicitly state the adapted versions. Allowing p to be smaller than � corre-
sponds to using a redundant number representation that makes it possible to e�ciently handle
carries during intermediate computations. We denote by �= �¡ p> 2 the number of extra carry
bits (these bits are sometimes called �nails�, following GMP [7]). We refer to section 3.5 for
a table that recapitulates the operation counts for the algorithms in this section.

2.1. Representation of �xed-point numbers

Given /1 26C 6 2� and an integer k> 2, we denote by Fp;k;C the set of numbers of the form

x = x0+x1 2
¡p+ ���+ xk¡1 2

¡(k¡1)p; (1)

where x0; :::; xk¡12F are such that

xi 2 Z2¡p for 06 i < k

jx0j < 2�

jxij < C for 0< i<k:

We write x=[x0; :::;xk¡1] for numbers of the above form and abbreviate Fp;k=Fp;k;2�. Numbers
in Fp;k; /4 5 are said to be in carry normal form.

Joris van der Hoeven, 3

x0

x1 2
¡p

� p

p

2¡2p2¡p1

&

Figure 1. Schematic representation of a �xed-point number x=[x0;x1]=x0+x1 2¡p, where &=dlog2Ce.

Remark 1. The paper [10] rather uses the representation x=x0+ ���+xk¡1 with xi2Z 2¡(i+1)p
and jxij<C 2¡ip. This representation is slightly more e�cient for small k, since it allows one to
save one operation in the implementation of the multiplication algorithm. However, it is limited
to small values of k (typically k619), since (k¡1) pmust required to be smaller than¡Emin¡�.
The representation (1) also makes it easier to implement e�cient multiplication algorithms at
high precisions k, such as Karatsuba's algorithm [11] or FFT-based methods [16, 18, 8]. We
intend to return to this issue in a forthcoming paper.

Remark 2. Another minor change with respect to [10] is that we also require xi2Z 2¡p to hold
for the last index i=k¡1. In order to meet this additional requirement, we need two additional
instructions at the end of the multiplication routine in section 2.6 below.

2.2. Splitting numbers at a given exponent
An important subalgorithm for efficient fixed-point arithmetic computes the truncation of
a �oating-point number at a given exponent:

Algorithm Splite(x)

a := �(x+ /3 2 � 2e+�)
return �(a¡ /3 2 � 2e+�)

Proposition 1 from [10] becomes as follows for �rounding to nearest�:

Proposition 3. Given x2F and e2fEmin; :::;Emax¡ �g such that jxj<2e+�¡2, the algorithm
Splite computes a number x~2F with x~2Z2e and jx~¡ xj6 2e¡1.

2.3. Carry propagation
Numbers can be rewritten in carry normal form using carry propagition. This can be achieved
as follows (of course, the loop being unrolled in practice):

Algorithm CarryNormalize(x)

rk¡1 :=xk¡1
for i from k¡ 1 down to 1 do

ci :=Split0(ri)
x~i := �(ri¡ ci)
ri¡1 := �(xi¡1+ ci 2

¡p)
x~0 := r0
return [x~0; :::; x~k¡1]

A straightforward adaptation of [10, Proposition 2] yields:

Proposition 4. Given a �xed-point number x2Fp;k;C with jx0j< 2�¡ 2�¡p and C6 2�¡2�¡p,
the algorithm CarryNormalize returns x~2Fp;k; /1 2+2¡p with x~=x.

4 Multiple precision floating-point arithmetic on SIMD processors

2.4. Addition and subtraction
Non normalized addition and subtraction of �xed-point numbers is straightforward:

Algorithm Add(x; y)

return [�(x0+ y0); :::; �(xk¡1+ yk¡1)]

Algorithm Subtract(x; y)

return [�(x0¡ y0); :::; �(xk¡1¡ yk¡1)]

Proposition 9 from [10] now becomes:

Proposition 5. Let x2Fp;k;C and y2Fp;k;D with S :=C+D+2¡p62�. If jx0+ y0j<2�, then
a=Add(x; y) satis�es a= x+ y 2 Fp;k;S. If jx0¡ y0j< 2�, then b= Subtract(x; y) satis�es
b=x¡ y 2Fp;k;S.

2.5. Double length multiplication
The multiplication algorithm of �xed-point numbers is based on a subalgorithm LongMule
that computes the exact product of two numbers x; y 2 F in the form of a sum x y = h + `,
with the additional constraint that h2Z 2e. Without this additional constraint (and in absence
of over�ow and under�ow), h and ` can be computed using the well known �Two Product�
algorithm: h := �(x y), ` := �(x y ¡ h). The LongMule algorithm exploits the FMA and FMS
instructions in a similar way.

Algorithm LongMule(x; y)

a := �(x y+ /3 2 � 2e+�)
h := �(a¡ /3 2 � 2e+�)
` := �(x y¡h)
return (h; `)

Proposition 4 from [10] becomes as follows for �rounding to nearest�:

Proposition 6. Let x; y2F and e2fEmin+ �; :::; Emax¡ �g be such that jx y j< 2�+e¡2 and
x y 2 Z 2e¡�. Then the algorithm LongMule(x; y) computes a pair (h; `) 2 F2 with h 2 Z 2e,
h+ `= x y, and j`j6 2e¡1.

2.6. General �xed-point multiplication
For C large enough as a function of k, one may use the following algorithm for multiplication
(all loops again being unrolled in practice):

Algorithm Multiply(x; y)

(r0; r1) :=LongMul¡p(x0; y0)
for i from 1 to k¡ 2 do

(h; ri+1) :=LongMul¡p(x0; yi)
ri := �(ri 2p+h)
for j from 1 to i do

(h; `) :=LongMul¡p(xj; yi¡j)
ri := �(ri+h)
ri+1 := �(ri+1+ `)

rk¡1 := �(rk¡1 2p)
for i from 0 to k¡ 1 do

rk¡1 := �(xi yk¡1¡i+ rk¡1)
rk¡1 :=Split¡p(rk¡1)
return [r0; :::; rk¡1]

Notice that we need the additional line rk¡1 :=Split¡p(rk¡1) at the end with respect to [10]
in order to ensure that rk¡12Z2¡p. Adapting [10, Proposition 10], we obtain:

Joris van der Hoeven, 5

Proposition 7. Let x 2 Fp;k;C and y 2 Fp;k;D with jx0j < C, jy0j 6 D, C D 6 2�¡2, and
S := /k 2 (CD+1+22¡p)6 2�. Then r=Multiply(x; y)2Fp;k;S with jr¡ x y j<S 2¡kp.

3. Fast parallel shifting
In this section, we discuss several routines for shifting �xed-point numbers. All algorithms
were designed to be naturally parallel. More precisely, we logically operate on SIMD vectors
x= (x1; :::; xw) of �xed-point numbers xi= [x0

i ; :::; xk¡1
i]. Internally, we rather work with �xed

point numbers x=[x0; :::;xk¡1] whose �coe�cients� are machine SIMD vectors xj=(xj
1; :::; xj

w).
All arithmetic operations can then simply be performed in SIMD fashion using hardware instruc-
tions. For compatibility with the notations from the previous section, we omit the bold face for
SIMD vectors, except if we want to stress their SIMD nature. For actual implementations for
a given k, we also understand that we systematically use in-place versions of our algorithms and
that all loops and function calls are completely expanded.

3.1. Small parallel shifts
Let x= [x0; :::; xk¡1] be a �xed-point number. Left shifts x 2s and right shifts x 2¡s of x with
06 s6 p can be computed by cutting the shifted coe�cients xi 2s resp. xi 2¡s using the routine
Split¡p and reassembling the pieces. The shift routines behave very much like generalizations
of the routine for carry normalization.

Algorithm SmallShiftLeft(x; s)

u := 2s¡p

`0 := �(ux0)
for i from 1 to k¡ 1 do

hi := �(uxi+ /3 2 � 2�)
hi := �(hi¡ /3 2 � 2�)
`i := �(uxi¡hi)
ri¡1 := �(`i¡1 2p+hi)

rk¡1 := �(`k¡1 2p)
return [r0; :::; rk¡1]

Algorithm SmallShiftRight(x; s)

u := 2¡s

hk¡1 := �(uxk¡1+ /3 2 � 2�)
hk¡1 := �(hk¡1¡ /3 2 � 2�)
for i from k¡ 2 down to 0 do

hi := �(uxi+ /3 2 � 2�)
hi := �(hi¡ /3 2 � 2�)
`i := �(uxi¡hi)
ri+1 := �(`i 2p+hi+1)

return [h0; r1; :::; rk¡1]

Proposition 8. Let s2f0; :::; pg. Given a �xed-point number x2Fp;k;C with C6 2�¡s¡2 and
jx0j< 2�¡s¡C 2¡p¡ 2¡p¡1¡s, the algorithm SmallShiftLeft returns r 2Fp;k; /1 2+C2s¡p+2¡p¡1
with r= x 2s.

Proof. In the main loop, we observe that hi :=Split¡p(u xi) and u xi22s¡2pZ. The assumption
C62�¡s¡2 guarantees that Proposition 3 applies, so that hi2Z 2¡p and jhi¡u xij62¡p¡1. The
operation `i := �(u xi¡hi) is therefore exact, so that u xi=hi+ `i, 2p `i22s¡p, and j`ij6 2¡p¡1.
Since ju xij < C 2s¡p, we also have jhij < C 2s¡p + 2¡p¡1. Now j`i¡1 2pj 6 /1 2 if i > 1 and
j`i¡1 2pj< 2�¡C 2s¡p¡ 2¡p¡1 if i=1. Combined with the facts that jhij<C 2s¡p+2¡p¡1 and
hi; `i¡1 2p 2Z 2¡p, it follows that the operation ri¡1 := �(`i¡1 2p+ hi) is also exact. Moreover,
jri¡1j< /1 2+C 2s¡p+2¡p¡1 if i>1 and jri¡1j<2� if i=1. The last operation rk¡1 :=�(`k¡1 2p)
is clearly exact and jrk¡1j= j`k¡1 2pj6 /1 2. Finally,X

i=0

k¡1

ri 2
¡pi =

X
i=1

k¡1

ri¡1 2
¡p(i¡1)+ rk¡1 2

¡p(k¡1)

=
X
i=1

k

`i¡1 2
p¡p(i¡1)+

X
i=1

k¡1

hi 2
¡p(i¡1)

= `0 2p+
X
i=1

k¡1

`i 2
¡p(i¡1)+

X
i=1

k¡1

hi 2
¡p(i¡1)

6 Multiple precision floating-point arithmetic on SIMD processors

= x0 2
s+

X
i=1

k¡1

xi 2
s¡pi

= 2s
X
i=0

k¡1
xi 2¡pi:

This proves that r=x 2s. �

Proposition 9. Let s2f0; :::; pg. Given a �xed-point number x2Fp;k;C with C 6 2�+s¡2 and
jx0j < min (2�+s¡2; 2�), the algorithm SmallShiftRight returns r 2 Fp;k; /1 2+C2¡s+2¡p¡1 with
jr¡x 2¡sj6 2¡pk¡1.

Proof. Similar to the proof of Proposition 8. �

3.2. Large parallel shifts
For shifts by s = � p bits with � < k, we may directly shift the coe�cients xi of the operand.
Let � = �0+ �1 2 + ���+ �`¡1 2

`¡1 be the binary representation of � with �0; :::; �`¡1 2 f0; 1g.
Then we decompose a shift by �p bits as the composition of ` shifts by either 0 or 2i p bits for
i=0; :::; `¡ 1, depending on whether �i=0 or �i=1. This way of proceeding has the advantage
of being straightforward to parallelize, assuming that we have an instruction to extract a new
SIMD vector from two given SIMD vectors according to a mask. On Intel processors, there
are several �blend� instructions for this purpose. In the pseudo-code below, we simply used �if
expressions� instead.

Algorithm LargeShiftLeft(x; �)

d := 1
while d<k do

b := (� and d)=/ 0
for i from 0 to k¡ 1¡ d do

xi := (if b then xi+d else xi)
for i from k¡ d to k¡ 1 do

xi := (if b then 0 else xi)
d := 2 d

return [x0; :::; xk¡1]

Algorithm LargeShiftRight(x; �)

d := 1
while d<k do

b := (� and d)=/ 0
for i from k¡ 1 down to d do

xi := (if b then xi¡d else xi)
for i from d¡ 1 down to 0 do

xi := (if b then 0 else xi)
d := 2 d

return [x0; :::; xk¡1]

The following propositions are straightforward to prove.

Proposition 10. Let s 2 f0; p; :::; (k ¡ 1) pg. Given a �xed-point number x 2 Fp;k;C with
x0= ���=xs/p¡1=0, the algorithm LargeShiftLeft returns r2Fp;k;C with r= x 2s.

Proposition 11. Let s 2 f0; p; :::; (k ¡ 1) pg. Given a �xed-point number x 2 Fp;k;C with
jx0j<C, the algorithm LargeShiftRight returns r2Fp;k;C with jr¡x 2¡sj<C (1+21¡p) 2¡pk.

Combining with the algorithms from the previous subsection, we obtain the routines
ShiftLeft and ShiftRight below for general shifts. Notice that we shift by at most k p bits.
Due to the fact that we allow for nail bits, the maximal error is bounded by (C +1) 2¡pk.

Algorithm ShiftLeft(x; s)

� :=min (bs/pc; k¡ 1)
s :=min (p; s¡ �p)
x :=LargeShiftLeft(x; �)
x :=SmallShiftLeft(x; s)
return x

Algorithm ShiftRight(x; s)

� :=min (bs/pc; k¡ 1)
s :=min (p; s¡�p)
x :=LargeShiftRight(x; �)
x :=SmallShiftRight(x; s)
return x

Joris van der Hoeven, 7

3.3. Uniform parallel shifts

The routines LargeShiftLeft and LargeShiftRight were designed to work for SIMD vectors
x=(x1; :::; xw) of �xed-point numbers and shift amounts �=(�1; :::; �w). If the number of bits
by which we shift is the same � = �1 = ��� = �w for all entries, then we may use the following
routines instead:

Algorithm UniformShiftLeft(x; �)

for i from 0 to k¡ 1 do
j := i+�
xi := (if j <k then xj else 0)

return [x0; :::; xk¡1]

Algorithm UniformShiftRight(x; �)

for i from k¡ 1 down to 0 do
j := i¡ �
xi := (if j> 0 then xj else 0)

return [x0; :::; xk¡1]

3.4. Retrieving the exponent

The IEEE-754 standard provides an operation logb for retrieving the exponent e of a machine
number x2F: if x=/ 0, then 2e6 jxj< 2e+1. It is natural to ask for a similar function on Fp;w,
as well as a similar function logw in base 2p (that returns the exponent e with 2pe6 jxj< 2pe+1
for every x2Fp;k with x=/ 0). For x=0, we understand that logb(x)= logw(x)=¡1.

The functions LogB and LogW below are approximations for such functions logb and logw.
More precisely, for all x2Fk;p;C in carry normal form with jxj< 1, we have

LogB(x)¡ 1 6 logb(x) 6 LogB(x) (2)
LogW(x)¡ 1 6 logw(x) 6 LogW(x): (3)

The routine LogB relies on the computation of a number �=Compress(x)2F with j�¡xj6
jxj 2¡� that only works under the assumption that k p<¡Emin. It is nevertheless easy to adapt
the routine to higher precisions by cutting x into chunks of b¡Emin/pc machine numbers. The
routine LogW relies on a routine HiWord that determines the smallest index i with xi=/ 0.

Algorithm Compress(x)

� := �(x0+x1 2
¡p)

for i from 2 to k¡ 1 do
� := �(�+xi 2

¡ip)
return �

Algorithm HiWord(x)

r :=1
for i from k¡ 1 down to 0 do

r := (if xi=0 then r else i)
return r

Algorithm LogB(x)

return logb(�(Compress(x) (1+2¡�)))

Algorithm LogW(x)

return ¡1¡HiWord(x)

Proposition 12. The routines Compress, HiWord, LogB and LogW are correct.

Proof. In Compress, let �i be the value of � after adding xi 2¡ip and notice that �i 2 2¡pi
for all i. If �i+1 = �i + xi 2

¡ip for all i, then �k = x and Compress returns an exact result.
Otherwise, let i be minimal such that �i+1 =/ �i + xi 2

¡ip. Then j�i + xi 2
¡ipj > 2�+1¡(i+1)p

and j�i+1j > 2�+1¡(i+1)p, whence jxi 2¡ipj < /4 5 2
¡�¡1 j�i+1j and j�i+1 ¡ (�i ¡ xi 2

¡ip)j 6
2¡�¡1 j�i+1j. Moreover, the exponent e of �i+1 is at least � + 1 ¡ (i + 1) p. For j > i,
we have jxj 2¡jpj < /4 5 2

¡jp, whence the exponent f of xj 2¡jp is at most ¡(i + 1) p ¡ 1.
This means that �(�i+1 + xj 2

¡jp) = �i+1, whence �i+1 = �i+2 = ��� = �k and j�k ¡ xj 6
j�i+1¡ (�i¡ xi 2¡ip)j+ jxi+1 2¡(i+1)p+ ���+ xk¡1 2

¡(k¡1)pj< 2¡�¡1 j�kj+2¡(i+1)p6 2¡� j�kj.
The bound (2) directly follows.

8 Multiple precision floating-point arithmetic on SIMD processors

The algorithm HiWord is clearly correct. Assume that x =/ [0; :::; 0] and let i be minimal
with xi=/ 0. Then we have jxi 2¡ipj> 2¡(i+1)p, whereas jxi+1 2¡(i+1)p+ ���+ xk¡1 2

¡(k¡1)pj<
/5 6 2

¡(i+1)p, so that /1 6 2
¡(i+1)p < jxj. If i > 0, then we also get jxi 2¡ipj < /4 5 2

¡ip, whence
jxj< /5 6 2

¡ip. If i=0, then jxj< 1 by assumption. This shows that (3) holds as well. �

3.5. Operation counts

In Table 1 below, we have shown the number of machine operations that are required for the
�xed-point operations from this and the previous section, as a function of k. Of course, the
actual time complexity of the algorithms also depends on the latency and throughput of machine
instructions. We count an assignment z := (if b then x else y) as a single instruction.

k 2 3 4 5 6 7 8 9 10 11 12
Carry normalize 4 8 12 16 20 24 28 32 36 40 44
Add/subtract 2 3 4 5 6 7 8 9 10 11 12
Multiply 8 18 33 53 78 108 143 183 228 278 333
Small shift 7 11 15 19 23 27 31 35 39 43 47
Large shift 3 8 10 18 21 24 27 40 44 48 52
General shift 12 21 27 39 45 53 60 77 85 92 100
Uniform shift 4 6 8 10 12 14 16 18 20 22 24
Bit exponent 3 4 5 6 7 8 9 10 11 12 13
Highest word 3 4 5 6 7 8 9 10 11 12 13

Table 1. Operation counts in terms of machine instructions (the results are not necessarily normalized).

4. Floating-point arithmetic in base 2

Let p, k and � be as in section 2. We will represent �oating-point numbers as products

x = mbe;

where m2Fp;k is the mantissa of x and e2E := f¡2�; :::; 2�g its exponent in base b2 2N. We
denote by Fp;k bE the set of all such �oating-point numbers. We assume that the exponents in E
can be represented exactly, by machine integers or numbers in F. As in most existing multiple
precision libraries, we use an extended exponent range. For multiple precision arithmetic, it is
indeed natural to support exponents of at least as many bits as the precision itself.

In this section, we assume that b=2. The main advantage of this base is that �oating-point
numbers can be represented in a compact way. The main disadvantage is that normalization
involves expensive shifts by general numbers of bits that are not necessarily multiples of p. Notice
that b=2 is also used in the Mpfr library for multiple precision �oating-point arithmetic [6].

4.1. Normalization

Given /1 26 C 6 2�, we denote Fp;k;C 2E = fm 2e:m 2Fp;k;C ; e 2 Eg. Numbers in Fp;k; /4 5 2
E are

again said to be in carry normal form and the routine CarryNormalize extends to Fp;k 2E by
applying it to the mantissa. We say that a �oating-point number x=m 2e with m 2Fp;k is in
dot normal form if we either have m=0 or /1 2¡ 2¡p6 jmj< 1. If x is also in carry normal form,
then we simply say that x is in normal form. In absence of over�ows, normalizations can be
computed using the routine Normalize below. In the case when the number to be normalized
is the product of two normalized �oating-point numbers, we need to shift the mantissa by at
most two bits, and it is faster to use the variant QuickNormalize.

Joris van der Hoeven, 9

Algorithm Normalize(m 2e)

m0 :=CarryNormalize(m)
s :=¡1¡LogB(m0)
m0 :=ShiftLeft(m0; s)
e0 := e¡ s
e0 :=max (e0;¡2�)
e0 := (if m0

0 =0 then ¡2� else e0)
return m0 2e

0

Algorithm QuickNormalize(m 2e)

s :=¡1¡LogB([m0;m1])
m0 :=SmallShiftLeft(m; s)
e0 := e¡ s
e0 :=max (e0;¡2�)
return m0 2e

0

Proposition 13. Given m 2e2Fp;k 2E with jmj<1 and e> p k¡2�, the algorithm Normalize
returns a normal number m0 2e

0 2 Fp;k 2E with m0 2e
0
= m 2e. If jmj > 2�+2¡p, then so does

QuickNormalize.

Proof. If m = 0, then CarryNormalize returns [0; :::; 0] and it is easy to verify that the
proposition holds. Assume therefore that m =/ 0, so that s < k p. By Proposition 4, we have
CarryNormalize(m) 2 Fp;k; /1 2+2¡p. Using Proposition 8, it follows that m0 2 Fp;k;C with

C = /1 2 + (/1 2 + 2¡p) 2(s rem p)¡p + 2¡p¡1 6 /3 4+ 2¡p < /4 5, whence m0 is carry normal. We also
have m 2e =m0 2e¡s and 21¡s/(1 + 2¡�) 6 jm0j < 2¡s, whence /1 2 ¡ 2¡p 6 jm0j < 1. This also
implies jm0j=/ 0 and e0=e¡s, since jm0¡m0

0 j6C 2¡p+ ���+C 2¡(k¡1)p. We conclude thatm0 2e
0

is dot normal and its value coincides with m 2e. If jmj > 2�+2¡p, then it can be checked that
' :=Compress([m0;m1]) still satis�es j'¡mj6 jmj 2¡� and that s6 p¡2. From Proposition 8,
it again follows that m02Fp;k;C with C = /1 2+(/1 2+2¡p) 2¡2+2¡p¡1< /4 5, whence m0 is carry
normal. The remainder of the correctness of QuickNormalize follows as before. �

4.2. Arithmetic operations
Addition and subtraction of normalized floating-point numbers are computed as usual, by
putting the mantissa under a common exponent, by adding or subtracting the shifted man-
tissas, and by normalizing the result. By increasing the common exponent by two, we also
make sure that the most signi�cant word of the addition or subtraction never provokes a carry.

Algorithm Add(m1 2
e1;m2 2

e2)

e :=max (e1; e2)+ 2
m1
0 :=ShiftRight(m1; e¡ e1)

m2
0 :=ShiftRight(m2; e¡ e2)

m :=Add(m1
0 ;m2

0)
return Normalize(m 2e)

Algorithm Subtract(m1 2
e1;m2 2

e2)

e :=max (e1; e2)+ 2
m1
0 :=ShiftRight(m1; e¡ e1)

m2
0 :=ShiftRight(m2; e¡ e2)

m :=Subtract(m1
0 ;m2

0)
return Normalize(m 2e)

Floating-point multiplication is almost as e�cient as its �xed-point analogue, using the
following straightforward:

Algorithm Multiply(m1 2
e1;m2 2

e2)

m :=Multiply(m1;m2)
e := e1+ e2
return QuickNormalize(m 2e)

Remark 14. Strictly speaking, for normal numbers m1 2
e1 and m2 2

e2, it is still necessary
to prove that jMultiply(m1; m2)j < 1. This conclusion can only be violated if jm1j and jm2j
are very close to one. Now it can be shown that a carry normal mantissa m with m < 1 and
1¡ 2(p¡1)¡kp<m< 1 is necessarily of the form m=[1; 0; :::; 0;¡"]. For numbers of this form, it
is easy to check that jMultiply(m1;m2)j< 1.

10 Multiple precision floating-point arithmetic on SIMD processors

4.3. Shared exponents
If we are computing with an SIMD vector m 2e=(m1 2e

1
; :::;mw 2e

w
) of �oating-point numbers,

then another way to speed up shifting is to let all entries share the same exponent e=e1= ���=ew.
Of course, this strategy may compromise the accuracy of some of the computations. Nevertheless,
if all entries are of similar order of magnitude, then the loss of accuracy is usually limited to
a few bits. Moreover, by counting the number of leading zeros of the mantissa of a particular
entry mi 2e, it is possible to monitor the loss of accuracy, and redo some of the computations if
necessary.

When sharing exponents, it becomes possible to use UniformShiftLeft and Uni-
formShiftRight instead of LargeShiftLeft and LargeShiftRight for multiple word shifts.
The routine logb should also be adjusted: if the individual exponents given by the vector e =
(e1; :::; ew), then logb should now return the vector (e; :::; e) with e=max (e1; :::; ew). Modulo
these changes, we may use the same routines as above for basic �oating-point arithmetic.

4.4. Operation counts
In Table 2, we give the operation counts for the various variants of the basic arithmetic opera-
tions+,¡ and� that we have discussed so far. For comparison, we have also shown the operation
count for the algorithm from [14] that is based on �oating-point expansions (notice that p= �
is somewhat better for this algorithm, since our algorithms rather use p� �¡ 4).

Due to the cost of shifting, we observe that additions and subtractions are the most costly
operations for small and medium precisions k 6 8. For larger precisions k > 12, multiplication
becomes the main bottleneck.

k 2 3 4 5 6 7 8 9 10 11 12

� Individual exponents 51 84 108 150 177 204 231 288 318 348 378
Shared exponents 55 79 103 127 151 175 199 223 247 271 295

� Individual exponents 31 35 54 78 107 141 180 224 273 327 386
Shared exponents 32 36 55 79 108 142 181 225 274 328 387

� FP expansions 138 193 261 342 436 543 663 796 942 1101 1273

Table 2. Operation counts for arithmetic �oating-point operations in base 2.

5. Floating-point arithmetic in base 2p

As we can see in Table 2, additions and subtractions are quite expensive when working in
base b = 2. This is due to the facts that shifting is expensive with respect to this base and
that every addition involves three shifts. For this reason, we will now examine �oating-point
arithmetic in the alternative base b=2p. One major disadvantage of this base is that normalized
non zero �oating-point numbers may start with as many as p¡ 1 leading zero bits. This means
that k should be increased by one in order to achieve a similar accuracy. We notice that the
base b=2p is also used in the native mpf layer for �oating-point arithmetic in theGmp library [7].

Carry normal forms are de�ned in the same way as in base b=2. We say that a �oating-point
number x=m 2ep with m2Fp;k is in dot normal form if jmj< /4 5 and either m=0 or m0=/ 0.
We say that x is in normal form if it is both in carry normal form and in dot normal form.

5.1. Addition and subtraction
In section 4.2, we increased the common exponent of the summands of an addition by two in
order to avoid carries. When working in base 2p, a similar trick would systematically shift out
the least signi�cant words of the summands. Instead, it is better to allow for carries, but to
adjust the routine for normalization accordingly, by temporarily working with mantissas of k+1
words instead of k.

Joris van der Hoeven, 11

Algorithm Normalize(m 2ep)

m0 := [0;m0; :::;mk¡1]
m0 :=CarryNormalize(m0)
� :=HiWord(m0)
m0 :=LargeShiftLeft(m0; �)
e0 := e+1¡ �
e0 :=max (e0;¡2�)
e0 := (if m0

0 =0 then ¡2� else e0)
return [m0

0 ; :::;mk¡1
0] 2e

0p

Modulo this change, the routines for addition and subtract are now as follows:

Algorithm Add(m1 2
e1p;m2 2

e2p)

e :=max (e1; e2)
m1
0 :=LargeShiftRight(m1; e¡ e1)

m2
0 :=LargeShiftRight(m2; e¡ e2)

m :=Add(m1
0 ;m2

0)
return Normalize(m 2ep)

Algorithm Subtract(m1 2
e1p;m2 2

e2p)

e :=max (e1; e2)
m1
0 :=LargeShiftRight(m1; e¡ e1)

m2
0 :=LargeShiftRight(m2; e¡ e2)

m :=Subtract(m1
0 ;m2

0)
return Normalize(m 2ep)

5.2. Multiplication

The dot normalization of a product becomes very particular when working in base 2p since this
can always be accomplished using a large shift by either 0 or p or 2 p bits. Let LargeShiftLeft�

be the variant of LargeShiftLeft obtained by replacing the condition d<k by d6 2. In order
to achieve an accuracy of about (k¡ 1) p bits at least, we extend the mantissas by one machine
coe�cient before multiplying them. The routine QuickNormalize suppresses the extra entry.

Algorithm QuickNormalize(m 2ep)

m0 :=CarryNormalize(m)
� :=HiWord([m0;m1;m2])
m0 :=LargeShiftLeft�(m0; �)
e0 := e¡�
e0 :=max (e0;¡2�)
return [m0

0 ; :::;mk¡1
0] 2e

0p

Algorithm Multiply(m1 2
e1p;m2 2

e2p)

m1
0 := [(m1)0; :::; (m1)k¡1; 0]

m2
0 := [(m2)0; :::; (m2)k¡1; 0]

m :=Multiply(m1
0 ;m2

0)
e := e1+ e2
return QuickNormalize(m 2ep)

5.3. Operation counts

In Table 2, we give the operation counts for �oating-point addition, subtraction and multipli-
cation in base 2p. In a similar way as in section 4.3, it is possible to share exponents, and the
table includes the operation counts for this strategy. This time, additions and subtractions are
always cheaper than multiplications.

k¡ 1 2 3 4 5 6 7 8 9 10 11 12

� Individual exponents 31 49 67 92 107 122 147 183 201 219 237
Shared exponents 31 43 55 67 79 91 103 115 127 139 151

� Individual exponents 40 61 87 118 154 195 241 292 348 409 475
Shared exponents 41 62 88 119 155 196 242 293 349 410 476

� FP expansions 138 193 261 342 436 543 663 796 942 1101 1273

Table 3. Operation counts for arithmetic �oating-point operations in base 2p.

12 Multiple precision floating-point arithmetic on SIMD processors

Bibliography

[1] D. H. Bailey, R. Barrio, and J. M. Borwein. High precision computation: mathematical physics and
dynamics. Appl. Math. Comput., 218:10106�10121, 2012.

[2] R. P. Brent. A Fortran multiple-precision arithmetic package. ACM Trans. Math. Software , 4:57�70, 1978.
[3] R. P. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge University Press, 2010.
[4] T. J. Dekker. A �oating-point technique for extending the available precision. Numer. Math., 18(3):224�242,

1971.
[5] N. Emmart, J. Luitjens, C. C. Weems, and C. Woolley. Optimizing modular multiplication for nvidia's

maxwell gpus. In Paolo Montuschi, Michael Schulte, Javier Hormigo, Stuart Oberman, and Nathalie Revol,
editors, 23nd IEEE Symposium on Computer Arithmetic, ARITH 2016, Silicon Valley, CA, USA, July 10-
13, 2016 , pages 47�54. IEEE, 2016.

[6] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: a multiple-precision binary
�oating-point library with correct rounding. ACM Trans. Math. Software , 33(2), 2007. Software available
at http://www.mpfr.org.

[7] T. Granlund et al. GMP, the GNU multiple precision arithmetic library. http://gmplib.org, from 1991.
[8] D. Harvey, J. van der Hoeven, and G. Lecerf. Even faster integer multiplication. Journal of Complexity ,

36:1�30, 2016.
[9] Yozo Hida, Xiaoye S. Li, and D. H. Bailey. Algorithms for quad-double precision �oating-point arithmetic.

In Proc. 15th IEEE Symposium on Computer Arithmetic, pages 155�162. IEEE, 2001.
[10] J. van der Hoeven and G. Lecerf. Faster FFTs in medium precision. In 22nd Symposium on Computer

Arithmetic (ARITH), pages 75�82, June 2015.
[11] A. Karatsuba and J. Ofman. Multiplication of multidigit numbers on automata. Soviet Physics Doklady ,

7:595�596, 1963.
[12] C. Lauter. Basic building blocks for a triple-double intermediate format. Technical Report RR2005-38,

LIP, ENS Lyon, 2005.
[13] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé,

and S. Torres. Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010.
[14] Jean-Michel Muller, Valentina Popescu, and Ping Tak Peter Tang. A new multiplication algorithm for

extended precision using �oating-point expansions. In Paolo Montuschi, Michael Schulte, Javier Hormigo,
Stuart Oberman, and Nathalie Revol, editors, 23nd IEEE Symposium on Computer Arithmetic, ARITH
2016, Silicon Valley, CA, USA, July 10-13, 2016 , pages 39�46, 2016.

[15] T. Nagai, H. Yoshida, H. Kuroda, and Y. Kanada. Fast quadruple precision arithmetic library on parallel
computer SR11000/J2. In Computational Science - ICCS 2008, 8th International Conference, Kraków,
Poland, June 23-25, 2008, Proceedings, Part I , pages 446�455, 2008.

[16] J.M. Pollard. The fast Fourier transform in a �nite �eld. Mathematics of Computation , 25(114):365�374,
1971.

[17] D. M. Priest. Algorithms for arbitrary precision �oating-point arithmetic. In Proc. 10th Symposium on
Computer Arithmetic, pages 132�145. IEEE, 1991.

[18] A. Schönhage and V. Strassen. Schnelle Multiplikation groÿer Zahlen. Computing , 7:281�292, 1971.
[19] D. Takahashi. Implementation of multiple-precision �oating-point arithmetic on Intel Xeon Phi coproces-

sors. In Computational Science and Its Applications � ICCSA 2016: 16th International Conference, Beijing,
China, July 4-7, 2016, Proceedings, Part II , pages 60�70, Cham, 2016. Springer International Publishing.

Joris van der Hoeven, 13

http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://gmplib.org
http://gmplib.org
http://gmplib.org

	1. Introduction
	Notations

	2. Fixed-point arithmetic
	2.1. Representation of fixed-point numbers
	2.2. Splitting numbers at a given exponent
	2.3. Carry propagation
	2.4. Addition and subtraction
	2.5. Double length multiplication
	2.6. General fixed-point multiplication

	3. Fast parallel shifting
	3.1. Small parallel shifts
	3.2. Large parallel shifts
	3.3. Uniform parallel shifts
	3.4. Retrieving the exponent
	3.5. Operation counts

	4. Floating-point arithmetic in base 2
	4.1. Normalization
	4.2. Arithmetic operations
	4.3. Shared exponents
	4.4. Operation counts

	5. Floating-point arithmetic in base 2^p
	5.1. Addition and subtraction
	5.2. Multiplication
	5.3. Operation counts

	Bibliography

