
1

General algorithms in asymptotics I

Gonnet and Gruntz' algorithm

by Joris van der Hoeven

LIX

�

Ecole Polytechnique

91128, Palaiseau

France

Email: vdhoeven@lix.polytechnique.fr

July 1994

Abstract

General algorithms in asymptotics are used to obtain automatically a-

symptotic information about explicit functions, or solutions to certain types

of equations. The simplest non trivial problem is the automatic expansion of

exp-log functions. Shackell was the �rst to give an algorithm and Gonnet and

Gruntz were the �rst to implement one. We will clarify the latter one and put

it into a theoretical context. Our study serves as a base for generalisations to

more general classes of functions.

Key words: Asymptotic expansion, exp-log function, transseries, algorithm.

1 Introduction

The problem of expanding exp-log functions has been considered by several authors

and goes back to Hardy's work on L-functions [Har 11]. However, the computational

version of the problem has been settled only recently. Shackell [Sh 90] was the �rst

to give an explicit algorithm and Gonnet and Gruntz [GoGr 92] were the �rst to

give one, which has been implemented in practice. A variant of this latter algorithm

was rediscovered independently by the author [VdH 94a].

We remark that all algorithms make the implicit hypothesis that one can decide

whether an exp-log constant is zero (see [Sh 90] for a discussion). This problem has

been settled by Richardson [Rich 92] modulo Schanuel's conjecture. We also remark

that if we can test whether an exp-log constant is zero, we can also determine its

sign. Indeed, theoretically it su�ces to do
oating point arithmetic at a su�cient

precision. In [VdH *b] we will give a more e�cient algorithm. As counterexamples

to Schanuel's conjecture are probably quite rare, this algorithm should be completely

satisfactory in practice.

In this paper, we show how to exploit from a computational point of view the

theory of transseries (verifying the AFG axiom), invented by Ecalle [Ec 92]. In

2 J. van der Hoeven

fact, the germs at in�nity of most of the usual regular functions are transseries. In

particular this is the case for algebraic exp-log functions. In section 3 we start by

introducing multiseries, which are series with �nitely generated support in R. We

show that the usual operations on powerseries can be generalized to multiseries. Our

point with transseries is that they can be interpreted as lexicographical multiseries

in several variables. Therefore, it su�ces to automate this analogy, which will be

done in section 5. We remark that Shackell as well as Gonnet and Gruntz implicitely

use this theoretical fact, although they do not fully exploit it.

In fact, the algorithm we obtain by using these techniques is not really new;

it is a mere reformulation of the algorithm of Gonnet and Gruntz. However, we

hope that our approach will lead to more transparency in the proofs and a better

theoretical insight. Indeed, as soon as the reader has familiarized himself with the

basic theory of multiseries and transseries, the algorithm, and its correctness proof,

are short and easy to understand.

When we compare our approach to Shackell's one, we observe that the theory of

transseries replaces more or less the theory of Hardy �elds. However, the theory of

transseries has the advantage of being purely algebraic, and we will show in [VdH *c]

that it can be generalized to include transseries in several variables with oscillating

coe�cients. Moreover, when dealing with transseries, one does not need to prove any

analytic results; for example we do not have to care about the presence or absense of

zeros. In fact, the very powerfull summability theory of Ecalle can handle all analytic

aspects of transseries. In particular, it is even possible to obtain the original function

from its expansion. Therefore, as we are concerned with algorithms, we prefer to

bypass all analytic aspects of the problem and to concentrate on the computational

relevant, thus algebraic ones.

Furthermore, the obtained algorithm is di�erent from Shackell's algorithm. In

fact, Gonnet and Gruntz' approach seems to be slightly more practical. First, becau-

se it is the �rst algorithm that has been implemented. Secondly, because the method

used favourizes quickly performing �eld operations on automatic transseries, while

Shackell's method is more oriented towards quick functional composition and in-

version. It seems natural to assume that �eld operations occur more frequently in

practice.

Finally, two slight di�erences between our approach and Gonnet and Gruntz's

one should be noticed. First, our way of constructing transseries implies that we

can avoid using \upward movements" in the case of exp-log functions. This should

slightly accelerate computations in the absence of exponentials. However, the be-

ni�t is small, because upward movements can be implemented e�ciently and will

be needed in [VdH 94b] and [VdH *a] anyhow. Secondly, we don't calculate the

\most rapidly varying subexpressions" in order to expand an expression. Instead,

we gradually compute a \normal base" (see section 5). Computationally, this avoids

performing unnecessary order comparisons. Moreover, this approach simpli�es a lot

the expansion of more general types of functions, as will be shown again in [VdH

Algebraic di�erential equations 3

94b] and [VdH *a]. We remark that similar ideas were used by Salvy in [Sal 91].

I would like to thank J.M. Steyaert for many suggestions and the detection of a

certain number of errors in previous versions of this article.

2 Conventions

It will be convenient to �x a certain number of conventions for this and subsequent

papers.

We �rst have the problem of naming di�erent types of series: powerseries, Lau-

rent series, Puiseux series, etc. It is natural only to talk about series, if their type

can clearly be deduced from the context. A formal series will always be a series in

its most general meaning and is therefore merely a name for the notation

P

i2I

c

i

f

i

.

A convergent series will be some kind of series which is convergent for some notion

of convergence.

Next, a lot of di�erent types of series with algebraic closure properties have to

be distinguished. The most general type is probably obtained by taking a partially

ordered semigroup M and considering series over some semiring A of the type f =

P

x2M

a

x

x, where f has well-quasi-ordered support (see [VdH 94a]). The set of these

series can be given the usual ring operations. We didn't �nd a completely convenient

name for this kind of series; one could call them generalized power series, or simply

generalized series, or algebraic series, which is perhaps more suggestive.

All other types of series with algebraic closure properties, known by the author,

can be obtained by taking special M 's or by restrictions on the support. The ring

of usual power series is obtained by taking M = N and its quotient �eld by taking

M = Z. Powerseries in several variables are obtained by taking M = N

n

. In

section 3 we introduce the so called multiseries which are obtained by restricting

the support to be �nitely generated. The name is justi�ed by the fact that we can

consider elements of K[[x]] as elements of f 2 K((x

1

; � � � ; x

n

)). The only di�erence

is that the x

i

are comparable from an asymptotic point of view. As an application,

the algebraic closure of K[[x]] is given by K[[x

Q

]]. We also have lexicographical

multiseries in several variables, which are elements of K[[x

A

n

lex

]], where A is a

totally ordered abelian group and A

n

lex

= A

n

is given the lexicographical ordering.

Finally we have series which don't have interesting algebraic closure properties.

For example we mention the Laurent series (which are formal sums

P

n2Z

a

i

x

n

) and

the Puiseux series (which are indexed over Q). These series are only interesting,

when convergent in some way.

A similar discussion is possible concerning transseries, de�ned by Ecalle [Ec 92].

Here, di�erent �elds of transseries can be constructed by considering di�erent types

of �niteness axioms. In this paper we assume that the AFG axiom is veri�ed and

we will denote the �eld of transseries obtained by R[[[x]]], preserving the analogy

4 J. van der Hoeven

with multiseries. This �eld is stable under most of the usual operations including

di�erentiation, composition, inversion, etc. The techniques presented in this paper

can be used in this context. More general types of transseries can be handled with

similar techniques as explained in [VdH 94a].

A second source of possible confusion comes from the concept of e�ectiveness.

In the �eld of computer algebra, we encounter a lot of algebraic structures in which

a certain number of computations can be performed by algorithm. It is convenient

to think about these algorithms as part of the structure, which leads to the concept

of an algorithmic algebraic structure. However this concept has to be handled with

care, because one has to specify very precisely which things can be computed as a

function of which other things and which notion of computability has to be taken.

We start by remarking that the exact meaning of computable can usually easily

be made concrete, for example in the language of Turing machines. However, in this

paper we need a more general notion of computability, when we solve the expansion

problem for exp-log functions modulo the constants problem. Indeed, often we can

compute x under the hypothesis that we can compute y. This notion of relative

computability is usually formalized by using oracles.

Next, we remark that several variants of algorithmic algebraic structures arise

in computer algebra. For example, sometimes we can compute normal forms of

elements of the structure and sometimes we can't. However, it is usually su�cient

that we can represent the elements of our structure in at least one way and that

all relevant computations are compatible with this representation. From now on we

will use the pre�x algorithmic, if this is the case.

In a logical structure, the relevant operations are precisely determined by its

constant, relation and function symbols. For example, in an algorithmic ring, the

addition, substraction and multiplication can be performed by algorithm. Moreover,

we can e�ectively represent 0 and 1. Hence,Zis an algorithmic ring. More generally,

if the algebraic structure satis�es some axioms, these axioms should be veri�ed in

some computational way. For example, in an algorithmic algebraically closed �eld

K, we should be able to compute the solution set of each polynomial equation with

coe�cients in K.

Adopting this spirit of thinking, we get theorems like \if K is an algorithmic

�eld, then we can compute its algebraic closure, which is an algorithmic algebraically

closed �eld". Note the precise statement of this theorem: we not only announce that

the algebraic closure is algorithmic, but we can compute it, when we are given K.

We also note that instead of giving an algorithm and prove its correctness, we often

proceed by announcing a theorem and giving the algorithm. This doesn't prevent us

from giving names to algorithms and comparing di�erent algorithms; it encourages

thinking about computer algebra in terms of algorithmic algebraical structures.

Some special attention has to be paid to series expansions. It is natural to de�ne

a (power-, multi-, trans-)series to be automatic if all its terms can be computed in

Algebraic di�erential equations 5

increasing order. However, this de�nition implies that the set of automatic series is

not stable under the usual algebraic operations. For example, how do we know that

f � f = 0, if f is some automatic series? The trick is to �x an algorithmic set A

of series, which is algorithmically stable under certain operations. A series f in A

will now be said to be automatic, if f can be expanded by some algorithm and if all

data de�ning f , such as its coe�cients and its support, belong to some algorithmic

algebraic structure. We then consider the subset A

a

of computable automatic series

A, which is often algorithmically stable under the wanted operations. Again, by

\computable" we mean that given an element f 2 A

a

we do not only know that f is

automatic, but we can compute an algorithm to expand f . We refer to the sections

3 and 4 for more details.

In the rest of this and subsequent papers, we will denote algorithmic algebraic

structures by capital fraktur letters A;B; � � � . However, automatic series and trans-

series we be denoted in the usual mathematical font. Finally, we remark that we

will sometimes replace words like \computable" by synonyms like \e�ective". Some-

times, we also use words like \compute" in a non algorithmic context. In that case

we talk about abstract algorithms. Whenever confusion might arise, we insist on the

concrete aspect of the computation by saying that it can be done algorithmically.

3 Formal and automatic multiseries

Let A be some abelian totally ordered group. We will say that a subset S � A is

�nitely generated , if there exist x

1

; � � � ; x

n

> 0 in A and a

1

; � � � ; a

n

in Z, such that

each x 2 S can be written as x = b

1

x

1

+ � � � + b

n

x

n

, with a

i

� b

i

2 Z, for each

1 � i � n. If all elements of S are (strictly) positive (resp. negative), we will say

that S is (strictly) positive (resp. negative).

Proposition 1. Each �nite subset of A is �nitely generated. If S and S

0

are

�nitely generated subsets of A, then so are S[S

0

, S+S

0

. Moreover, if S is positive,

then S

�

def

= fx

1

+ � � �+ x

n

jx

1

; � � � ; x

n

2 Sg. is �nitely generated.

Proof. It is clear that if S and S

0

are �nitely generated subsets of G, then so

are their union and their sum. Suppose now that S is positive, that x

1

; � � � ; x

n

are

generators of S and let a

1

; � � � ; a

n

2Zbe such as above. Then the set fb

1

x

1

+ � � �+

b

n

x

n

j8i min(1; a

i

) � b

i

� 1g is �nite, say equal to fy

1

; � � � ; y

m

g. It is easy to see

that each element of S is a sum of y

i

's. But then each element of S

�

is a sum of y

i

's

and hence S

�

is �nitely generated. ~

Suppose now that A is an algorithmic abelian totally ordered Archimedian group

(see section 2 for the de�nition). A subset S is said to be automatic, if it is �nitely

generated and all its elements can be computed in increasing order by algorithm.

6 J. van der Hoeven

Proposition 2. Every �nite subset of A is automatic. If S and S

0

are automatic

sets, then so are S [S

0

, S+ S

0

and S

�

. Finally, if S is automatic and S

0

� S, such

that we can test by algorithm whether x 2 S

0

and S

0

\]x;1[=

=, for each x 2 A,

then S

0

is automatic.

Proof. Of course, every �nite subset of A is automatic. Suppose that S and

S

0

are automatic sets, listed by S = fp

1

; p

2

; � � �g and S

0

= fq

1

; q

2

; � � �g. Then we

can list S [S

0

= fminfp

1

; q

1

g;min(fp

1

; p

2

; q

1

; q

2

gnfminfp

1

; q

1

gg); � � �g and S + S

0

=

fp

1

+ q

1

;min(fp

1

+ q

1

; p

1

+ q

2

; p

2

+ q

1

gnfp

1

+ q

1

g); � � �g. So S [S

0

and S + S

0

a-

re automatic. Similarly, if S has strictly positive support, then we can list S

�

=

f0; p

1

;min(fp

1

; 2p

1

; p

2

gnfp

1

g);min(fp

1

; 2p

1

; 3p

1

; p

2

; p

1

+ p

2

; p

3

gnfp

1

gnfminf2p

1

;

p

2

gg); � � �g. Hence S

�

and (S [f0g)

�

= S

�

are automatic. Suppose �nally that

S and S

0

are such as in the last assertion. If we list S = fp

1

; p

2

; � � �g, then we can

e�ectively extract all elements which belong to S

0

. We avoid possible in�nite loops,

by testing whether S

0

\]p

i

;1[is empty for each i. ~

Let K be a totally ordered �eld and A a totally ordered abelian group, then we

denote by K[[x

A

]] the set of formal series of �nitely generated support included in

A. Thus, an element f 2 K[[x

A

]] is a formal sum f =

P

�2A

f

�

x

�

, such that suppf

is �nitely generated. We say that f is a multiseries in x with support included in

A. In the case when A = R, we will denote K[[x

R

]] by K[[x]].

If f is a multiseries, we de�ne its dominant exponent �

f

to be the smallest element

in its support, with the convention �

0

= 1. Furthermore, f

�

f

is said to be the

dominant coe�cient of f and f

�

f

x

�

f

its dominant term. An in�nitesimal multiseries

is a multiseries f with �

f

> 0 (hence f has strictly positive support). The K-algebra

of such series is denoted by K[[G]]

#

. SimilarlyK[[G]]

"

is the set of multiseries with

strictly negative support. We have K[[G]] = K[[G]]

"

L

K

L

K[[G]]

#

,

Let us introduce some asymptotic relations on K[[x

A

]]. The equivalence relation

� is de�ned by f � g , �

f

= �

g

^ f

�

f

= g

�

g

. We de�ne a relation �� on

K[[x

A

]] by f��g , �

f

> �

g

, which is called an asymptotic ordering We also de�ne

� by f � g , �

f

= �

g

. Finally, we de�ne two relations ��� and ��, used to

compare asymptotic scales by f���g , 8N 2N

�

N j�

f

j < j�

g

j and f��g , 9N;M 2

N

�

N j�

g

j � j�

f

j ^ M j�

f

j � j�

g

j.

If f; g 2 K[[G]], we de�ne �f =

P

�2suppf

�f

�

x

�

, f + g =

P

�2suppf[suppg

(f

�

+

g

�

)x

�

and fg =

P

�2suppf+suppg

(

P

�+
=�

f

�

g

)x

�

. It is easy to see that the sum

P

�+
=�

f

�

g

is �nite, for each �. Therefore, �f; f + g and fg are well de�ned and

belong to K[[x

A

]]. Similarly, let h 2 K[[x]] be a usual power series and suppose

that f is in�nitesimal. Then we de�ne

h � f =

X

�2(suppf)

�

0

@

X

n2N

X

�

1

+���+�

n

=�

h

n

f

�

1

� � � f

�

n

1

A

x

�

:

Again it is easy to verify that the coe�cient of each x

�

is a �nite sum and thus well

Algebraic di�erential equations 7

de�ned. Therefore, h � f 2 K[[x

A

]]. In particular, if we take h = �x+ x

2

+ � � � , we

can de�ne 1=(1 + f). More generally, if f 6= 0 and if �

f

is the smallest element in

suppf , then we de�ne 1=f by 1=f = (x

��

=f

�

f

)(1=(x

��

f=f

�

f

)). We �nally de�ne a

total ordering on K[[x

A

]] by taking the positive power series to be those of which

the dominant coe�cient is positive.

Proposition 3. K[[x

A

]] is a totally ordered �eld for the above laws.

Proof. Straightforward veri�cation. ~

There are di�erent ways to de�ne multiseries in several variables. The sim-

plest one is by considering K[[x

A

1

]] � � � [[x

A

n

]]. In that case, the support of f 2

K[[x

A

1

]] � � � [[x

A

n

]] is �nitely generated, but there are no constraints on [

�2A

suppf

�

.

In particular the de�nition is not symmetric in the x

i

's. We de�ne lexicographical

multiseries in several variables to be elements of K[[x

A

1

; � � � ;x

A

n

]]

def

= K[[x

A

n

lex

]], w-

here we give A

n

lex

= A

n

the lexicographical ordering. By proposition 2, this is a �eld

and we observe that it is canonically included in K[[x

A

1

]] � � � [[x

A

n

]]. The inclusion

is strict, if n > 1. We remark that the de�nition is asymmetric in the x

i

's.

Finally we have the set of multiseries in several variables K[[x

A

1

; � � � ; x

A

n

]]

def

=

K[[x

A

n

]], whereA

n

has the usual product partial ordering (it is easy to generalize the

de�nitions to this case). This set forms a ring for the usual operations, but not a �eld

(x

1

+x

2

is not invertible) and we won't use it very much for the moment. We remark

that K[[x

A

1

; � � � ; x

A

n

]] is canonically included in K[[x

A

1

; � � � ;x

A

n

]] and the inclusion is

strict if n > 1. However, by changing variables x

1

= x

1

; � � � ; x

n

= x

n

� � � x

�

n;1

1

, each

element f 2 K[[x

A

1

; � � � ;x

A

n

]] can be seen as an element of K[[x

A

1

; � � � ; x

A

n

]].

It will be convenient to �x some notation for the extraction of coe�cients.

If f is in K[[x

A

1

]] � � � [[x

A

n

]], we denote by [x

�

n

n

]f = f

�

n

the coe�cient in x

n

,

which is a multiseries in x

1

; � � � ; x

n�1

. Inductively, we denote [x

�

i

i

� � �x

�

n

n

]f =

f

�

n

;��� ;�

i

= (f

�

n

;��� ;�

i+1

)

�

i

. If f is in K[[x

A

1

; � � � ; x

A

n

]] one can de�ne [x

�

1

i

1

� � �x

�

k

i

k

]f

for any 1 � i

1

< � � � < i

k

� n, by permuting variables.

Let C be an algorithmic sub�eld of R and K some �eld containg R. Let M be

an algorithmic sub�eld of K[[x

1

; � � � ;x

n

]]. We will suppose that C � K \M and

that for each � 2 C and 1 � i � n we can compute x

�

i

2 M by algorithm. We

will say that f 2 M is an automatic multiseries (w.r.t. M and C), if its support

is automatic, and if for each � 2 suppf , we can compute f

�

2 M by algorithm.

Moreover, if n > 1, we demand all coe�cients f

�

to be automatic as elements of the

algorithmic �eld M \ K[[x

1

; � � � ;x

n�1

]]. We denote by M

a

the set of computable

automatic multiseries f in M.

Lemma 1. M

a

is a �eld. Furthermore, if f 2 K[[x]], g 2M

#

a

, and if f :M

#

!M

is algorithmic, then f � g is in M

a

.

8 J. van der Hoeven

Proof. The proof proceeds by induction over n. The case n = 0 is trivial. Suppose

n > 0. If f; g 2M

a

, then the coe�cients of �f; f+g; fg and f=g (when de�ned) can

be computed by the formulas which de�ne them, because of the induction hypothe-

sis. As their di�erences with any �nite (K[[x

1

; � � � ;x

n�1

]] \M)-linear combination

of the x

�

n

's are in M, we can test by algorithm whether their supports are �nite or

not. Therefore their supports are automatic by proposition 2. The same argument

applies to f � g, when f 2 K[[f]], g 2M

#

a

and f � g 2M. ~

4 Formal and automatic transseries

We will give an alternative de�nition of the �eld of transseries de�ned by Ecalle in [Ec

92]. Our de�nition will be purely algebraic and we proceed by successive closures.

Contrary to Ecalle, we will start by closure w.r.t. logarithm and then perform

closure w.r.t. exponentiation. This approach has the computational advantage that

we can often avoid the use of \upward movements" (see [GoGr 92]). We remark that

the construction can easily be extended to the case of transseries over an arbitrary

totally ordered �eld, stable by exponentiation.

The di�erent types of closure we use presuppose that we dispose of a �eld

K = R[[X]], where X is a totally ordered commutative multiplicative group. This

notation is compatible with the former one, if we suppose that X is the group of l-th

powers of some imaginary variable, where l runs over some abelian group isomorphic

to X. However, contrary to before, we will interpret elements of R[[X]] as formal

sums f =

P

'2X

f

'

', so that the support of f is a subset of X. We will also sup-

pose that we partially de�ned the logarithm mapping. In particular, this induces a

partial exponential mapping, by the formula exp lnx = x. We will gradually enlarge

K and de�ne the logarithm for more and more values. We consider the following 4

types of closure:

Type I. (elementary closure): We suppose that ln(xy) = lnx+lny, for all x; y 2 X

in the domain of ln. Next, each a 2 K can be written as a = (c+ ")x, with c 2 R,

in�nitesimal " and x 2 X. We suppose that if ln a is de�ned, then so are ln c, lnx

and ln(1 + "=c) by

ln a = lnx+ ln c+ l

�

1 +

"

c

�

;

where l is a usual power series with coe�cients in R, given by l(x) = x�x

2

=2+ � � � .

Under these hypothesis, the closure of K is precisely the �eld K

0

= K in which ln a

is de�ned by the preceding formula for each a = (c+ ")x, such that c > 0 and such

that lnx is de�ned (with in�nitesimal ", c 2 R and x 2 X). We remark that the

hypotheses we made in the beginning are veri�ed again in K

0

.

Algebraic di�erential equations 9

Type II. (closure by logarithm): Suppose that we can freely decompose the group

X as a product X = f� � � ; 1=x; 1; x; � � �gX

0

, with x >

X

1 et x < y, for all strictly

positif y 2 X

0

. Moreover, suppose that X

0

is precisely the subset of elements of X

for which ln is de�ned. Let us add freely an element l to X. Thus, we consider

X

00

= f� � � ; 1=l; 1; l; � � �gX. We naturally de�ne an ordering on X

00

by demanding

that l

n

, with n � 1 is smaller than each element of X, strictly superior to 1. Then

K is naturally contained in the �eld K

0

= R[[X

00

]] and we can extend the logarithm

mapping by ln(x

n

y)

def

= nl+ ln y, for each x

n

y 2 X and y 2 X

0

. We remark that the

�eldK

0

veri�es the initial hypothesis, which allowed to perform closure by logarithm.

Type III. (closure by exponentiation): We suppose that ln is de�ned for all posi-

tive elements in K and that lnx 2 K

"

, for x 2 X. Consider the totally ordered

additive group X

0

= K

"

. We embed K = R[[X]] in K

0

= R[[X

0

]] by mapping

x 2 X to '(x) = lnx in X

0

and extending by linearity. More generally, we can

de�ne lnx = '(x), for each x 2 X

0

. We remark that the elementary closure of K

0

(when de�ned) again satis�es the initial hypothesis in order to perform closure by

exponentiation.

Type IV. (closure by inductive limit): Consider a sequence K

0

= R[[X

0

]];K

1

=

R[[X

1

]]; � � � of �elds each naturally contained in the next one; this means that X

n+1

extends X

n

and that ln on K

n+1

extends its de�nition on K

n

. Then K = C[[X]],

with X = X

0

[X

1

[� � � naturally contains all the K

n

's.

We remark that the closures of type II, III and IV preserve the elementary closure

conditions. Moreover, if we take X

0

� R as our initial �eld, and if ln is de�ned on

R

�

+

in the usual way, then the conditions are satis�ed.

Let us proceed with our construction. By applying repeatedly closure by loga-

rithm to K

0

= R[[X

0

]], we construct a sequence K

0

= R[[X

0

]] � K

1

= R[[X

1

]] �

� � � of �elds which we subsequently close by inductive limit and elementary closure.

Let R

0

[[[x]]] = R[[X]] be the so obtained �eld. Then X is in fact the multiplicative

group of elements of the form

ln

p

x = ln

0

p

0

���k

p

k

= x

p

0

ln

p

1

x � � � ln

p

k

k

x; with

ln

k

x = ln

k times

� � � lnx:

where p belongs to N

(R)

, considered as a multiplicative group. Moreover, ln is de�ned

for all strictly positive elements and maps X into R[[[x]]]

"

.

Next, we de�ne by induction R

n+1

[[[x]]] to be the �eld obtained by closing

R

n

[[[x]]] by exponentiation and then by elementary closure. We denote by R[[[x]]]

the elementary closure of the inductive limit of the sequence R

0

[[[x]]];R

1

[[[x]]]; � � � .

We call it the �eld of transseries with �nitely generated support or just the �eld of

transseries, when no confusion may occur.

10 J. van der Hoeven

We will now draw a parallel between transseries and lexicographical multiseries

in several variables. Let g

1

��� � � ����g

n

be in�nitely big transseries (g

i

��1). We

remark that f���g , ln jf j�� ln jgj (and similarly f��g , ln jf j � ln jgj), for f and

g in R[[[x]]]. Let f 2 R[[g

�1

1

; � � � ; g

�1

n

]] be a multiseries, where we consider the

g

�1

i

's as formal variables. We claim that f induces a transseries, which will also be

denoted by f . We can write g

�1

i

= (c

i

+ "

i

)'

i

, for each i, where '

i

is the dominant

monomial of g

�1

i

and "

i

its dominant coe�cient. Then we formally write

f =

X

�

1

;��� ;�

n

f

�

n

;��� ;�

1

n

Y

i=1

(c

i

+ "

i

)

�

i

'

�

i

i

:

Now (c

i

+ "

i

)

�

i

can be further expanded, for each i:

(c

i

+ "

i

)

�

i

=

X

k2N

X

1

;��� ;

k

2supp"

i

c

i

c

i

� k

!

c

�

i

�k

i

"

i;

1

� � � "

i;

k

1

� � �

k

:

Putting everything together, proposition 1 implies that the support of f , rede�ned

by this formula, is �nitely generated and it is easy to verify that its coe�cients are

all given by �nite sums. Therefore, f is a transseries.

Inversely, we would like to show that each transseries can be interpreted as a

multiseries. In fact, we have a stronger result, which will also allow us to interpret

operations on transseries in terms of operations on multiseries. We only state the

structure theorem, in order to give some theoretical insight. A more general theorem

will be proved in [VdH *a].

Theorem 1. (Structure theorem) Let f

1

; � � � ; f

k

be transseries with �nitely

generated supports. Then there exist in�nitely big g

1

��� � � ����g

n

, such that f

i

2

R[[g

�1

1

; � � � ; g

�1

n

]], for every 1 � i � k. ~

Let C now be an algorithmic sub�eld of R, algorithmically stable by exponen-

tiation and logarithm (of positive elements, of course). Let T be an algorithmic

sub�eld of R[[[x]]]. We suppose that C � T and that ln

�

n

x 2 T can be computed

by algorithm, for each n 2 N and � 2 C. By induction over r 2 N, we de�ne a

transseries f to be automatic of order r (w.r.t. T and C), if the following conditions

are satis�ed:

AT1. There exist g

1

���� � � ���g

n

in T, such that f 2 C[[g

�1

1

; � � � ; g

�1

n

]],

AT2. For each 1 � i � n, we have either g

i

= ln

k

i

x, for some computable k

i

, or

g

i

= e

h

i

, for some computable automatic transseries h

i

��1 of order r � 1,

AT3. f is automatic as a multiseries in g

�1

1

; � � � ; g

�1

n

and all its coe�cients of the

form [g

�

n

n

� � � g

�

i

i

]f are in T.

We allow n to be 0 in the de�nition and 1 � i � n + 1 in AT3. In particular,

f 2 T. We remark that in AT2 and AT3 we obviously assume the transseries and

Algebraic di�erential equations 11

multiseries to be automatic w.r.t. T and C, resp. T \ C[[g

�1

1

; � � � ; g

�1

n

]] and C. We

say that f is automatic, if f is automatic of some order and denote by T

a

the set of

computable automatic transseries.

In order to prove that a transseries is automatic, one has to build a structural

tree, whose nodes are labeled by automatic transseries, such that the children of a

node labeled by f are labeled by the k

i

's and the h

i

's from condition AT2. Such a

tree is called an automatic expansion of f . Given an automatic expansion expansion

of f , we can reconstruct r and g

1

; � � � ; g

n

, such that the above conditions are satis�ed.

We say that the expansion is of order r and with respect to g

1

; � � � ; g

n

. If T = T

a

,

then we say that T is an automatic expansion �eld .

We remark that the order of f only has a meaning with respect to some �xed

expansion, because expansions aren't unique. We also remark that if f can be

expanded w.r.t. g

1

; � � � ; g

n

and if g is an automatic transseries of the form e

h

with

h��1 or ln

k

x, not equivalent to any of the g

i

's, then f can be expanded w.r.t. the

g

i

's, with g inserted. From now on, when we talk of an automatic transseries, we

will often implicitely �x some automatic expansion.

We observe that given an automatic expansion of f , its limiting behaviour is

quite obvious. Indeed, f = 0 can be tested in T, and the sign of f can be computed

by taking the sign of the dominant coe�cient of f (or just the sign of f , if n = 0).

Similarly, we can compute the limit limf of f . If f 2 C, we have limf = f . Else,

let c be the dominant coe�cient of f . If c > 0, we have limf = 0. If c = 0, we have

limf = limf

0

. Finally, if c < 0, we have limf = (signf)1.

5 Standard expansions of transseries

We would now like to obtain closure results for automatic transseries. Unfortunately,

if we have two automatic transseries, the corresponding g

i

's need not to be the same.

We therefore need some e�ective version of the structure theorem. Let us make this

idea more precise. We say that a set B of transseries of the form e

g

(with g��1)

or ln

k

x is a base w.r.t. a certain expansion of f , if all the g

i

's are in B and B is

recursively a base for each h

i

, whenever g

i

= e

h

i

. A base B is said to be weakly

normal , if g

1

��g

2

) g

1

= g

2

, for g

1

; g

2

2 B. Now let f

1

; � � � ; f

n

be transseries, which

can all be expanded w.r.t. a certain weakly normal base. Then the usual operations

on the f

i

's can be performed by considering them as automatic multiseries.

Unfortunately, the concept of weakly normal base is not strong enough for certain

future applications (see [VdH 94b] and [VdH *a]). A weakly normal base B is said

to be normal , if h can be expanded w.r.t. strictly smaller elements of B, whenever

e

h

2 B. Moreover, we demand ln

k

x to be in B, whenever ln

k+1

is. Another

advantage of using normal bases is that expressions like e

x+e

�x

2

�e

x

will be expanded

in e

x

and not in e

x+e

�x

2

.

Di�erent approaches to compute normal bases are possible: Gonnet and Gruntz

12 J. van der Hoeven

just compute a maximal element of the base, called a most rapidly varying subexpres-

sion. Next, they recursively expand all subexpressions w.r.t. this element. Finally,

the coe�cients are expanded. In fact, they don't really compute a normal base,

but it is easy to extract one from their algorithm. A similar approach is to const-

ruct the normal base before expanding the coe�cients, by using the same rewriting

techniques as Gonnet and Gruntz.

We will choose a slightly di�erent appoach, where the weakly normal base is

constructed gradually during the expansion of subexpressions. This means that we

have a static variable B w.r.t. the expansion algorithm, which contains a normal

base. A new element is inserted into B, each time we encounter a new equivalence

class for �� during the execution. In this case, we will have to check that B remains

normal. Automatic expansions w.r.t. B will be refered to as standard expansions.

We will give an extendable version of the algorithm; in its present form, it can

handle exp-log expressions, but in future papers, we will be able to extend it. More

precisely, the algorithm assumes that we dispose of an algorithmic �eld T satisfying

the above conditions, and that we access to elements of T by means of expression

trees. These are labeled trees, so that the label of the root determines an algorithm

that recursively converts the tree to elements of T. For example, exp-log expressions

are trees, whose leafs are labeled by x or elements of Q and whose nodes are labeled

by +;�; �; =; ln or exp. By abuse of notation, we denote these trees in the same

way as the actual elements of T they represent. Now the algorithm below shows

how to associate expansions to trees whose root is labeled precisely by the previous

possibilies; as the algorithm is recursive, other possibilities can be added later (see

[VdH 94b] and [VdH *a]).

Algorithm expand(f). The algorithm takes as input an expression f and computes

a standard expansion of f w.r.t. T. It disposes of a static variable B, which is ini-

tialized by fxg.

case f = x or f 2 Q: f forms it's own standard expansion.

case f = f

1

+ f

2

; f = f

1

� f

2

; f = f

1

f

2

or f = f

1

=f

2

: Compute standard expansions

of f

1

and f

2

and apply lemma 1 to compute a standard expansion of f . An error is

returned in the case when f = f

1

=f

2

, and f

2

= 0 in T.

case f = ln f

1

: Compute a standard expansion of f

1

is in g

1

; � � � ; g

n

. Next compute

c; �

1

; � � � ; �

n

2 C, such that f

1

= cg

�

1

1

� � � g

�

n

n

(1 + "), where "��1. By lemma 1, we

can compute a standard expansion of f using the formula

ln f

1

= ln(1 + ") + ln(cg

�

1

1

� � � g

�

n

n

) = ln(1 + ") + ln c+ �

1

ln g

1

+ � � � + �

n

ln g

n

;

because each g

i

is either of the form ln

k

x, or e

h

i

, where we can recursively compute

a standard expansion of h

i

. Possibly, if g

1

= ln

k

x and ln

k+1

x 62 B, we insert ln

k+1

x

into B. An error is returned if c < 0, or f

1

= 0.

Algebraic di�erential equations 13

case f = expf

1

: Compute a standard expansion of f

1

. If f

1

is bounded (limf

1

is

�nite), then we can expand f

1

by lemma 1. In the other case, we can test whether

there exists a g = exph 2 B, so that f

1

� h. If this is the case, we compute

� = limf

1

=h and recursively expand exp f

1

= g

�

exp(f

1

� �h). In the other case,

test whether f

1

can be expanded in elements of B strictly smaller than g. If this

is the case, insert exp jf

1

j into B, so that exp f

1

= exp jf

1

j)

sign f

1

is a standard ex-

pansion of exp f

1

. If this is not the case, suppose that the expansion of f

1

were

in g

1

���� � � ���g

n

, where g

i

��g. Then compute ' and " so that f

1

= ' + ", with

' = (f

1

)

0;

n+1�i�

��� ;0

. Now we expand f = exp' exp ", which can be done by inserting

exp j'j into B and applying lemma 1.

otherwise: Check whether f can be expanded by one of the extensions of expand.

If this is not the case an error is returned.

It is easy to verify that B remains normal during the execution. Therefore, the

correctness of the algorithm is easy to check. Finally, its termination is clear by struc-

tural induction, except when we are repeatedly in the case f = ln f

1

, with f

1

� h and

exph 2 B. But this can only happen a �nite number of consecutive times, because

B remains �nite and unchanged during such a loop and as exp(f

1

� �h)��� exp(f

1

),

we expand smaller and smaller (for ���) exponentials during the loop, each of which

is equivalent (for ��) to some element of B.

Remark. If we just want an expansion of f w.r.t. some weakly normal base, we

can content ourselves with inserting exp jf

1

j into B, even if f

1

can not be expan-

ded in elements of B strictly smaller than g (in the case where f = exp f

1

). We

also remark that in the case when no expansion algorithm is found for f , we can

return the expression f instead of an error, possibly by expanding its subexpressions.

By an exp-log function we mean an element of the smallest �eld containing Q

and stable by exponentiation and logarithm of positive elements. We will denote by

T the �eld of exp-log functions and by C its intersection with R. Shackell gave an

algorithm which decides about equality of exp-log functions, modulo the constant

problem (see [Sh 89a]). The constant problem has been solved by Richardson modulo

Schanuel's conjecture in [Rich 92]. This implies that we can compute signs of exp-

log constants modulo this conjecture, by evaluating them with a su�cient precision

(in fact, a more practical algorithm to determine signs of constants will be given in

[VdH *c]). Hence, the hypotheses on T and C in the previous section are satis�ed.

Applying the algorithm, we get

Theorem 2. Schanuel's conjecture implies that the �eld of exp-log functions is an

automatic expansion �eld. ~

14 J. van der Hoeven

6 Bibliography

[Ec 92] J. Ecalle. Introduction aux fonctions analysables et preuve constructive de la conjec-

ture de Dulac. Hermann, collection: Actualit�es math�ematiques.

[GoGr 92] G.H. Gonnet, D. Gruntz. Limit computation in computer algebra. Technical

report 187, ETH. Z�urich.

[Har 11] G.H. Hardy. Properties of logarithmico-exponential functions. Proceedings of the

London mathematical society 10,2 (p 54-90).

[Rich 92] D. Richardson. The elementary constant problem. Proc. ISSAC 92 (p 108-116).

[Sal 91] B. Salvy. Asymptotique automatique et fonctions g�en�eratrices. PhD. thesis, Ecole

Polytechnique, France.

[Sh 89a] J. Shackell. A di�erential-equations approach to functional equivalence. Proc.

ISSAC 89, Portland, Oregon, A.C.M., New York, (p 7-10).

[Sh 89b] J. Shackell. Zero-equivalence in function �elds de�ned by algebraic di�erential

equations. Preprint.

[Sh 90] J. Shackell. Growth estimates for exp-log functions. Journal of symbolic compu-

tation 10 (p 611-632).

[VdH 94a] J. van der Hoeven. Outils e�ectifs en asymptotique et applications. Research

report LIX/RR/94/09, Ecole Polytechnique, France.

[VdH 94b] J. van der Hoeven. General algorithms in asymptotics II, Common operations.

Research report LIX/RR/94/10, Ecole Polytechnique, France.

[VdH *a] J. van der Hoeven. General algorithms in asymptotics III, Algebraic di�erential

equations. In preparation

�

.

[VdH *b] J. van der Hoeven. General algorithms in asymptotics IV, Comparing constants.

In preparation

�

.

[VdH *c] J. van der Hoeven. General algorithms in asymptotics V, Generalized transseries.

In preparation

�

.

�

Will appear as a research report at the Ecole Polytechnique.

