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In this paper, we propose a carefully optimized “half-gcd” algorithm for polynomials.
We achieve a constant speed-upwith respect to previous work for the asymptotic time
complexity. We also discuss special optimizations that are possible when polynomial
multiplication is done using radix two FFTs.

1. INTRODUCTION

The computation of greatest common divisors is the key operation to be optimized when
implementing a package for rational number arithmetic. For integers of small bit-length n,
onemay use Euclid's algorithm,which has a quadratic time complexityO(n2). Asymptot-
ically faster algorithms were first proposed by Knuth [20] and Schönhage [29], based on
earlier ideas by Lehmer [22]. Schönhage's algorithm has a logarithmic ≍log n overhead
with respect to integer multiplication, which is believed to be asymptotically optimal.
Many variants and improvements have been proposed since, mainly aiming at faster
practical implementations [36, 32, 23, 26, 4, 27]. All these subquadratic algorithms are
based on a recursive reduction to half of the precision; for this reason it is convenient
to regroup them under the name “half-gcd algorithms”.

An analogous story can be told about the history of polynomial gcd computations. The
polynomial counterpart of Euclid's algorithm was first described by Stevin [33, p. 241].
The first algorithms for polynomial half-gcds are due to Moenck [25] and Brent–Gus-
tavson–Yun [5]; several variants have been developed since [35, 36, 4].

We refer to [10, chapter 11] for a gentle exposition of the polynomial half-gcd algo-
rithm. This exposition also contains a careful analysis of the constant factor in the asymp-
totic time complexity. More precisely, let M(d) be the complexity to multiply two poly-
nomials of degree <d over an abstract effective field 𝕂. Then the gcd of two polynomials
of degree <d can be computed using ≲22M(d) log2 d operations in 𝕂. This complexity
further drops to ≲10M(d) log2 d if the corresponding Euclidean remainder sequence is
“normal” (all quotients in the ordinary Euclidean algorithm are of degree one). The
authors declare that theymade no particular efforts to optimize these constants 22 and 10;
in [10, Research problem 11.11], they ask the question how far these constants can be
lowered. This main goal of the present paper is to make progress on this question.

∗. This article has been written using GNU TEXMACS [18].
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MCA [10] General FFT model Binary FFT model
Normal case 10 /7 2 2 /4 3

General case 22 /17 4 /11 4 /19 12

Table 1. Summary of the constant factors in various cases.

One major motivation for optimizing constant factors in time complexity bounds is
the development of faster implementations. Now practical algorithms for multiplying
large polynomials usually rely on fast Fourier techniques. We will also investigate opti-
mizations that are only possible when multiplications are done in this way. Indeed,
this so-called FFT model allows for various specific optimizations that typically help to
reduce constant factors. We refer to [3] for a nice survey of such tricks and mention
NTL [31] as a software library that was early to exploit them in a systematic way.

A particularly favorable case is when the ground field 𝕂 has primitive 2t-th roots
of unity for all sufficiently large t. We will call this the “binary FFT model”. A good
example is the finite field 𝕂 = 𝔽p for a prime p of the form p= s 2t+ 1, where t is large.
Such finite fields arise naturally after modular reduction, provided that p can be chosen
freely. The binary FFT model allows for additional tricks and is particularly useful for
dichotomic algorithms such as the half-gcd. We refer to section 2 for those results that
will be required in this paper. Note that large polynomial multiplications over general
finite fields are fastest using FFT-based techniques, although onemay not necessarily use
radix two FFTs; see [14, 15] and references therein for the fastest current algorithms.

For convenience of the reader, wewill first describe our newhalf gcd algorithms in the
normal case (see section 4). This will allow us to avoid various technical complications
and focus on the new optimizations. The first idea behind our new half gcd is to make
the update step after the first recursive call particularly efficient, by using a 2×2 matrix
variant of the middle product algorithm [12]. This leads to an algorithm of time com-
plexity ≲ /7 2M(d) log2 d in general and ≲2M(d) log2 d in the FFT model (Proposition 6).
The second idea is to combine this with known optimizations for the (binary) FFTmodel,
such as FFT doubling, FFT caching, and Harvey's variant of the middle product [13]. In
the binary FFTmodel, this allows us to compute half gcds in time ≲ /4 3M(d) log d (Propo-
sition 7 and Corollary 9).

When dropping the normality assumption, the algorithm becomes more technical,
but it turns out that the middle product trick can still be generalized. This is explained in
section 5 and leads to the bound ≲ /17 4M(d)log2 d for general gcds and ≲ /11 4M(d)log2 d in
the FFTmodel (Theorem 15). In the binary FFTmodel, special efforts are needed in order
to enforce the use of DFTs of power of two lengths. We prove the bound≲ /19 12M(d)log2d
in this last case (Theorem 17). See Table 1 for a summary of the new constant factors.

It is well known that polynomial gcds have many applications: fast arithmetic on
rational functions, fast reconstruction of rational functions [10, section 5.7], polynomial
factorization [7], fast decoding of error-correcting codes [2, 24, 9], sparse interpola-
tion [1, 28], etc. Personally, we were mainly motivated by the last application to sparse
interpolation. After the introduction of the tangent Graeffe algorithm [11, 17], gcd com-
putations have often become one of the main practical bottlenecks. For this application,
it is typically possible to work modulo a prime of the form p= s 2t + 1, which allows
us to exploit our optimizations for the binary FFT model.
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Wemade a first implementation of the new algorithm and also programmed the cus-
tomary extension to the computation of subresultants (see [10, section 11.2] and also [21]
for this extension). Work is in progress on HPC implementations of our algorithms and
all required subalgorithms.

A few questions remain for future work. It is likely that the ideas in this paper can be
applied to integer gcds as well, except for the optimizations that are specific to the binary
FFT model. It would also be nice to have counterparts for the “ternary FFT model”,
which could be used for fields 𝕂 of characteristic two (see [17, section 3.4] for an algo-
rithm of this kind in the case of iterated Graeffe transforms). Finally, in view of Bernstein
and Yang's recent ideas from [4], as well as Remark 16, one may wonder whether the
bounds for the normal case can actually be extended to the general case.

Acknowledgments. We are grateful to Michael MONAGAN for triggering this study and
suggesting some early ideas.

2. PRELIMINARIES

2.1. The binary FFT model

The best bounds in this paper will be proved for the so-called “binary FFTmodel”, which
requires special assumptions on the ground field 𝕂. First of all, this model requires 2
to be invertible in 𝕂. Secondly, for any polynomial P∈ 𝕂[x] that occurs during com-
putations, we assume that 𝕂 has a primitive n-th root of unity 𝜔n with n= 2k > deg P.
For convenience, we also assume that 𝜔m = 𝜔n

n/m whenever m divides n. We measure
computational complexity in terms of the number of required field1 operations in 𝕂.
Given P,Q∈ 𝕂[x] with Q≠ 0, we write P quo Q and P rem Q for the quotient and the
remainder of the Euclidean division of P by Q, respectively.

Let 𝕂[x]<n denote the space of polynomials of degree <n. Given P ∈ 𝕂[x]<n
with n=2k, we define its discrete Fourier transform DFTn(P)∈𝕂n by

DFTn(P) ≔ (P(𝜔n
0),P(𝜔n

1), . . . ,P(𝜔n
n−1)).

We will write F(n) for the maximum cost of computing a discrete Fourier transform
of order n or the inverse transformation DFTn

−1: 𝕂n→ 𝕂[x]<n. It is well known [8] that
F(n)=O(n logn). Inwhat follows, wewill always assume that F(n)/n, and F(n)/(n logn)
are non-decreasing (for n⩾ 1 and n⩾ 2, respectively). Therefore, we may just as well
take F(n) ≍ n log n, but it is instructive to keep the notation F(n) to indicate where we
use Fourier transforms.

If n⩾ 2 and the discrete Fourier transform of P∈ 𝕂[x]<n at order n/2 with respect
to 𝜔n/2 is known, then it costs F(n/2) +O(n) to compute DFTn(P). Indeed, we already
know (P(𝜔n

0),P(𝜔n
2), . . . ,P(𝜔n

n−2)), so it remains to compute (P(𝜔n
1),P(𝜔n

3), . . . ,P(𝜔n
n−1)).

But this is the DFT of P̃≔P(𝜔nx) rem (xn/2−1) at order n/2 and it takes a linear number
of operations to compute P̃ in terms of P. We call this trick FFT doubling.

1. Using an easy refinement of the analysis, it turns out that the main half gcd algorithms in this paper involve only
a linear number of divisions, so the bulk of the operations are actually ring operations in 𝕂.
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Given P,Q∈ 𝕂[x] with PQ∈ 𝕂[x]<n, we may use the discrete Fourier transform to
compute the product PQ using

PQ = DFTn
−1(DFTn(P)DFTn(Q)). (1)

This is called FFT multiplication. If we fix P of degree d<n, then we may consider the
multiplication map with P as a linear map ×P:𝕂[x]<n−d→𝕂[x]<n. We have

×P = DFTn
−1 ∘×DFTn(P) ∘DFTn∘ 𝜄n−d,

where ×DFTn(P) stands for componentwise multiplication by DFTn(P) in 𝕂n and 𝜄n−d for
the injection of 𝕂[x]<n−d into 𝕂[x]<n.

Given P∈𝕂[x]<n of degree d and R∈𝕂[x]<n, we define theirmiddle product P⋊dR by

P⋊dR = �
i=0

n−d−1

[[[[[[[[[[[[[[[[[[[�
k=0

d

PkRd+i−k]]]]]]]]]]]]]]]]]]]xi. (2)

Let us recall how P⋊dR can be computed efficiently using FFT multiplication.
Let P∈𝕂[x] be of degree d<n, let Q∈𝕂[x]<n−d and R∈𝕂[x]<n. If R=PQ, then we

observe that

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((((((

(

( R0
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

Rn−1 )))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))))))))))))))))

)

)
=

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((((((

(

( P0
⋅⋅⋅ ⋅⋅ ⋅
⋅⋅⋅ P0
Pd ⋅⋅⋅

⋅⋅ ⋅ ⋅⋅⋅
Pd )))))))))))))))))

)))))))))))))))))
)))))))))))))))))
))))))))))))))))

)

)

(((((((((((((((((
(((((((
(
( Q0

⋅⋅⋅
Qn−1−d )))))))))))))))))

)))))))
)
)

.

The matrix in the middle has n rows and n−d−1 columns and we may think of it as the
matrix of the map ×P. If Q=P⋊dR, then we note that

(((((((((((((((((
(((((((
(
( Q0

⋅⋅⋅
Qn−1−d )))))))))))))))))

)))))))
)
)

= (((((((((((((((((
(((((((
(
( Pd ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ P0

⋅⋅ ⋅ ⋅⋅ ⋅
Pd ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ P0 )))))))))))))))))

)))))))
)
)

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((((((((((((((((

(

( R0
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

Rn−1 )))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))))))))))))))))

)

)
.

In other words Q= (×P̃
⊤)(R), where P̃(x) =xdP(1/x) and ×P̃

⊤: 𝕂[x]<n→ 𝕂[x]<n−d stands
for the transpose of ×P̃. Since

×P̃
⊤ = (DFTn

−1 ∘×DFTn(P̃) ∘DFTn∘ 𝜄n−d)⊤

= 𝜄n−d
Τ ∘DFTn

⊤ ∘×DFTn(P̃) ∘(DFTn
−1)⊤

= 𝜋n−d∘DFTn∘×DFTn(P̃) ∘DFTn
−1,

where 𝜋n−d:𝕂[x]<n→𝕂[x]<n−d;P↦P rem xn−d, it follows that

Q=P⋊dR = DFTn(DFTn(P̃)DFTn
−1(R)) rem xn−d.

Taking DFTs with respect to 𝜔n
−1 instead of 𝜔n and using that DFTn,𝜔n

−1 =nDFTn,𝜔n
−1 , we

also obtain

Q = DFTn,𝜔−1(DFTn,𝜔−1(P̃)DFTn,𝜔−1
−1 (R)) rem xn−d

= DFTn,𝜔−1(DFTn,𝜔−1(xd)DFTn,𝜔−1(P(x−1))DFTn,𝜔−1
−1 (R)) rem xn−d

= DFTn,𝜔
−1 (DFTn,𝜔(x−d)DFTn,𝜔(P)DFTn,𝜔(R)) rem xn−d

= DFTn
−1(DFTn(P)DFTn(R)) quo xd. (3)
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This is the alternative formula from [13] that we will use.
From the complexity perspective, let M(d) be the cost to multiply two polynomials

in 𝕂[x]<d. Using FFT multiplication, we see thatM(d)=3F(n)+O(n)=6F(d)+O(d) in
the binary FFTmodel. More generally, if n is even, then any two polynomials P,Q∈𝕂[x]
with deg PQ< n can be multiplied in time 3 F(n) +O(n) =M(n/2) +O(n) using this
method. Similarly, the cost M⊤(d) to compute a middle product (2) with deg P=d and
n=2d−1 satisfiesM⊤(d)=6F(d)+O(d)=M(d)+O(d). If n is even and 0⩽d=degP<n
is general, then P⋊dR can be computed in timeM⊤(n/2)+O(n)=M(n/2)+O(n).

It is important to note that the above results all generalize to the case when the coef-
ficient field 𝕂 is replaced by the algebra 𝕂r×r of r× r matrices with entries in 𝕂. For
instance, assume that P,Q∈𝕂2×2[x] with degPQ<n. Then (1) allows us to compute PQ
using 8 DFTs, 4 inverse DFTs, and n multiplications of 2×2 matrices in 𝕂2×2, for a total
cost of 12F(n)+O(n)=4F(d)+O(d).

2.2. Other models

Although the main focus in this paper is on the binary FFT model, we will also consider
other types of polynomial multiplication. In that case, we will still denote by M(d) and
M⊤(d) the complexities of multiplying two polynomials in 𝕂[x]<d and to compute the
middle product P×dR for P∈𝕂[x] of degree d and R∈𝕂[x]<2d−1. Moreover, we make
the following assumptions on these cost functions:

• We haveM⊤(d)∼M(d).

• The product of any P,Q∈𝕂[x] with degPQ<2d can be computed in time ≲M(d)
and similarly for the middle product P×kR of P,R∈𝕂[x] with deg P=k<2d and
degR<2d.

• The functions M(d), M(d)/d, and M(d)/(d log d) are non-decreasing (for d⩾ 0,
d⩾1, and d⩾2, respectively).

We alsomake the same assumptions for the analogue cost functionsM2×2(d) andM2×2
⊤ (d)

when taking coefficients in 𝕂2×2 instead of 𝕂. In the binary FFT model we have seen
that we may takeM(d) andM⊤(d) to be of the form 𝛼d log2 d+𝛽d for suitable constants
𝛼, 𝛽, after which the above assumptions are satisfied (if d is not a power of two, then
one may use the truncated Fourier transform [16], for instance). They are also verified
for all other commonly used types of multiplication, such as Karatsuba's and Toom's
methods [19, 37], or FFT-based methods for arbitrary radices [30, 6, 15].

In addition, we define μ2×2 to be a constant such thatM2×2(d)∼M2×2
⊤ (d)≲μ2×2M(d)∼

μ2×2M⊤(d) +O(d). We have seen that we may take μ2×2 = 4 in the binary FFT model;
this generalizes to arbitrary FFT models. Using Strassen's method for 2×2 matrix multi-
plication [34], we may always take μ2×2 ⩽7. From a practical point of view, we usually
have 4⩽μ2×2 ⩽8.

Let us examine the constant μ2×2 a bit more closely in the case of Karatsuba multipli-
cation. The complexity of this method satisfies

M(1) = 𝛼
M(2d) = 3M(d)+𝛽d

JORIS VAN DER HOEVEN 5



for certain constants 𝛼 and 𝛽, which yields M(2k) ∼ (𝛼 + 𝛽) 3k. Similarly, when using
Karatsuba's method to multiply 2×2 matrices, the complexityM2×2(d) satisfies

M2×2(1) = 8𝛼
M2×2(2d) = 3M2×2(d)+4𝛽d,

which leads toM2×2(2k)∼(8𝛼+4𝛽)3k and

μ2×2 = 8𝛼+4𝛽
𝛼+𝛽 .

This analysis can be generalized to general lengths d and to the case when we only use
Karatsuba's method for degrees above a certain threshold. In the latter case, it is usu-
ally favorable to choose the threshold over 𝕂2×2 to be slightly lower than the threshold
over 𝕂.

3. EUCLIDEAN REMAINDER SEQUENCES

3.1. Definition and basic properties
Let P,Q∈𝕂[x] be such that d≔degP>degQ. The Euclidean remainder sequence (Rk)0⩽k⩽ℓ
is defined by

R0 ≔ P
R1 ≔ Q

Rk+1 ≔ Rk−1 remRk.

The length of the sequence is the smallest index ℓ for which Rℓ=0. For 1⩽k⩽ ℓ, we set

Ak ≔ (((((((((((( Rk−1
Rk )))))))))))).

We also define the sequence of Bezout matrices (Bk)1⩽k<ℓ by

Bk ≔ (((((((((((( 0 1
1 −Rk−1 quoRk )))))))))))),

so that

Ak+1 = BkAk,

for 1⩽k⩽ ℓ−1. We have gcd(P,Q)=Rℓ−1.
We regard Bk as a matrix polynomial in 𝕂2×2[x] and say that (Rk)0⩽k⩽ℓ and (Bk)1⩽k<ℓ

are normal if deg Bk = 1 for all k. This is the case if and only if ℓ = d+ 1 and deg Rk =
degRk−1−1=d−k for all k∈{1, . . . ,d}. For i⩽ j, we also define

Bi; j = Bj−1 ⋅ ⋅ ⋅Bi+1Bi,

so that

Aj = Bi; jAi.

(We understand that Bi; j=Id2 if i= j.) In particular,

(((((((((((( gcd(P,Q)
0 )))))))))))) = Aℓ = B1;ℓA1 = B1;ℓ(((((((((((( P

Q )))))))))))),
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so an extended gcd computation essentially boils down to the computation of the matrix
product B1;ℓ =Bℓ−1 ⋅ ⋅ ⋅ B1. In the case of a normal remainder sequence, this is done most
efficiently using binary splitting:

Bi;i+1 = Bi

Bi; j = Bh; jBi;h, i+2⩽ j, h≔� i+ j
2 �.

In essence, this is also how the half-gcd algorithm works.

LEMMA 1. For any 1⩽ i< j⩽ ℓ, we have

deg Bi; j = deg Bi+ ⋅ ⋅ ⋅ +deg Bj−1

degRi = d−deg B1;i+1

In particular, if (Bk)1⩽k<ℓ is normal, then deg Bi; j= j− i and degRi=d− i.

Proof. Let us show by induction on j− i that

deg Bi; j=(deg Bi; j)2,2 = deg Bi+ ⋅ ⋅ ⋅ +deg Bj−1

(deg Bi; j)𝛼,𝛽 < deg Bi+ ⋅ ⋅ ⋅ +deg Bj−1

for any (𝛼,𝛽)∈{(1,1), (1,2), (2,1)}. This is clear if j= i+1, so assume that i+2⩽ j and let
h≔⌊(i+ j)/2⌋. Then

(Bi; j)2,2 =(Bh; j)2,2 (Bi;h)2,2 +(Bh; j)2,1 (Bi;h)1,2,

so the induction hypothesis yields

deg (Bh; j)2,2 (Bi;h)2,2 = deg (Bh; j)2,2 +deg (Bi;h)2,2 = deg Bi+ ⋅ ⋅ ⋅ +deg Bj−1

deg (Bh; j)2,1 (Bi;h)1,2 = deg (Bh; j)2,1 +deg (Bi;h)1,2 < deg Bi+ ⋅ ⋅ ⋅ +deg Bj−1,

whence (deg Bi; j)2,2 = deg Bi+ ⋅ ⋅ ⋅ +deg Bj−1. In a similar way, the induction hypothesis
yields (deg Bi; j)𝛼,𝛽 <deg Bi+ ⋅ ⋅ ⋅ +deg Bj−1 for all (𝛼,𝛽)∈{(1,1), (1,2), (2,1)}.

As to the second relation, we note that

deg Bi = degRi−1−degRi,

whence deg B1;i+1 =deg B1 + ⋅ ⋅ ⋅ +deg Bi=degR0−degRi □

Example 2. Taking P=x4 +2x3−x2 +4 and Q=x3+x2−2x+5, we obtain the following
normal remainder sequence:

R0 = x4 +2x3−x2 +4

R1 = x3 +x2−2x+5 B1 = (((((((((((( 0 1
1 −x−1 )))))))))))) B1;1 = (((((((((((( 1 0

0 1 ))))))))))))
R2 = −x2−4x−1 B2 = (((((((((((( 0 1

1 x−3 )))))))))))) B1;2 = (((((((((((( 0 1
1 −x−1 ))))))))))))

R3 = 10x+8 B3 = ((((((((((((((((((
( 0 1

1 1
10 x+ 8

25 ))))))))))))))))))
) B1;3 = ((((((((((((((

1 −x−1
x−3 −x2 +2x+4 ))))))))))))))

R4 = 39
25 B4 = (((((((((((((((((

0 1
1 −250

39 x− 200
39 ))))))))))))))))) B1;4 = ((((((((((((((((((

( x−3 −x2 +2x+4
1
10 x

2+ 1
50 x+ 1

25
−1
10 x

3− 3
25 x

2+ 1
25 x+ 7

25))))))))))))))
))))
)

R5 = 0 B1;5 = ((((((((((((((((((
((((
(
( 1

10 x
2+ 1

50 x+ 1
25

−1
10 x

3− 3
25 x

2+ 1
25 x+ 7

25

−39
25 R1

39
25 R0 ))))))))))))))))))

))))
)
)
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3.2. Re-indexation of irnormal Euclidean remainder sequences
In the irnormal case, it is convenient to work with an alternative indexation of remainder
sequences for which degRk

∗⩽d−k, as in the normal case. Note that we will not consider
abnormal remainder sequences until section 5 below, so the reader may safely skip this
subsection until there.

Let us now explain our reindexation in detail. For any i∈{1, . . . , ℓ−1}, let

𝜅(i) ≔ d−degRi

We also take

𝜅(0) ≔ 0
𝜅(ℓ) ≔ d+1.

Then we set

R𝜅(i)
∗ ≔ Ri

A𝜅(i)
∗ ≔ Ai

B𝜅(i)
∗ ≔ Bi.

Moreover, for any k∈{𝜅(i)+1, . . . , 𝜅(i+1)−1}, we define

Rk
∗ ≔ Ri+1

Ak
∗ ≔ Ai+1

Bk
∗ ≔ Id2.

For 1⩽ i⩽ j<d, we also define

Bi; j
∗ = Bj−1

∗ ⋅ ⋅ ⋅Bi+1
∗ Bi

∗,

so that we still have

Aj
∗ = Bi; j

∗ Ai
∗.

By construction, for k∈{1, . . . ,d}, we have

degRk
∗ ⩽ d−k

deg B1;k+1
∗ ⩽ k.

As before, we will sometimes write Rk
∗(P,Q) instead of Rk

∗ in order to emphasize the
dependence on P andQ, and similarly for Bk

∗(P,Q), etc. Occasionally, when d is not clear
from the context, we also write Rk

∗(P,Q,d), Bk
∗(P,Q,d), etc.

Example 3. Taking P=2x4 +11x3 +3x2−4x+3 and Q=x3 +5x2−5x−2, we have

R0 = 2x4 +11x3 +3x2−4x+3

R1 = x3 +5x2−5x−2 B1 = (((((((((((( 0 1
1 −2x−1 )))))))))))) B1;1 = (((((((((((( 1 0

0 1 ))))))))))))
R2 = x+5 B2 = ((((((((((((((

0 1
1 −x2 +5 )))))))))))))) B1;2 = (((((((((((( 0 1

1 −2x−1 ))))))))))))
R3 = 3 B3 = (((((((((((((((((((

0 1
1 −1

3 x−
5
3 ))))))))))))))))))) B1;3 = ((((((((((((((

1 −2x−1
−x2 +1 2x3 +x2−2x ))))))))))))))

R4 = 0 B1;4 = (((((((((((((((((((
−x2 +1 2x3 +x2−2x

1
3 R1 −1

3 R0 )))))))))))))))))))
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After reindexation 𝜅(0)=0, 𝜅(1)=1, 𝜅(2)=3, 𝜅(3)=4, and 𝜅(4)=5, we obtain

R0
∗ = 2x4 +11x3 +3x2−4x+3

R1
∗ = x3 +5x2−5x−2 B1

∗ = (((((((((((( 0 1
1 −2x−1 )))))))))))) B1;1

∗ = (((((((((((( 1 0
0 1 ))))))))))))

R2
∗ = x+5 B2

∗ = (((((((((((( 1 0
0 1 )))))))))))) B1;2

∗ = (((((((((((( 0 1
1 −2x−1 ))))))))))))

R3
∗ = x+5 B3

∗ = ((((((((((((((
0 1
1 −x2 +5 )))))))))))))) B1;3

∗ = (((((((((((( 0 1
1 −2x−1 ))))))))))))

R4
∗ = 3 B4

∗ = (((((((((((((((((((
0 1
1 −1

3 x−
5
3 ))))))))))))))))))) B1;4

∗ = ((((((((((((((
1 −2x−1

−x2 +1 2x3 +x2−2x ))))))))))))))

R5
∗ = 0 B1;5

∗ = (((((((((((((((((((
−x2 +1 2x3 +x2−2x

1
3 R1 −1

3 R0 )))))))))))))))))))

4. THE NORMAL CASE

4.1. Statement of the non-optimized algorithm
Let P,Q∈𝕂[x] be as in the previous section with remainder sequence (Rk)0⩽k⩽ℓ. We will
write Bk(P,Q) for the corresponding k-th Bezout matrix Bk in case we wish to make the
dependency on P andQ clear. Similarly, we define Bi; j(P,Q)≔Bj−1(P,Q) ⋅⋅ ⋅Bi(P,Q) and
Rk(P,Q)=Bk(P,Q)2,1P+Bk(P,Q)2,2Q. Given a polynomialU∈𝕂[x] and indices i, j, it will
also be convenient to define

Ui; j ≔ Ui+Ui+1x+ ⋅ ⋅ ⋅ +Uj−1x j−1−i

Ui; ≔ Ui;degU+1.

Here we understand that Ui; j≔0 whenever j⩽ i.

LEMMA 4. Given 1⩽k< ℓ such that deg B1 = ⋅ ⋅ ⋅ =deg Bk=1, we have

Bk(P,Q) = Bk(Pd−2k;,Qd−2k;)
B1;k+1(P,Q) = B1;k+1(Pd−2k;,Qd−2k;).

Proof. We have deg Bi; j= j− i for all 1⩽ i⩽ j⩽ ℓ. For i=1, . . . ,k, the relation

Ai = B1;iA1

thus shows that the coefficient (Ri)𝛼 of degree 𝛼 in Ri only depends on coefficients P𝛽
and Q𝛽 of P and Qwith 𝛽>𝛼− i. In particular,

(Ri)d−k−1; =Ri(xd−2kPd−2k;,xd−2kQd−2k;)d−k−1; =Ri(Pd−2k;,Qd−2k;)k−1;

and

−Ri−1 quoRi=−(Ri−1)d−k−1; quo (Ri)d−k−1; =−Ri−1(Pd−2k;,Qd−2k;) quoRi(Pd−2k;,Qd−2k;),

since degRi−1 =d+1− i and degRi=d− i. This shows that

Bi(P,Q)=Bi(Pd−2k;,Qd−2k;).
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By induction on i, we also obtain B1;i+1(P,Q) = B1;i+1(Pd−2k;,Qd−2k;). We conclude by
taking i=k. □

The lemma leads to the following recursive algorithm for the computation
of B1;k+1(P,Q):

Algorithm 1
Input: P,Q∈𝕂[x] and k⩽d=deg P with deg Bi(P,Q)=1 for all 1⩽ i⩽k
Output: B1;k+1(P,Q)

1. If k=1, then return (((((((((((( 0 1
1 −Pd−2; quoQd−2; ))))))))))))

2. Let h≔⌈k/2⌉ and h̃≔k−h

3. Recursively compute M≔B1;h+1(Pd−2h;,Qd−2h)

4. Compute (((((((((((((((((
((
(
( P̃d−h−2h̃;

Q̃d−h−2h̃; )))))))))))))))
)))))
) with (((((((((((((((((

P̃
Q̃ )))))))))))))))))=M (((((((((((( P

Q ))))))))))))
5. Recursively compute M̃≔B1;h̃+1(P̃d−h−2h̃;, Q̃d−h−2h̃)

6. Return M̃M

PROPOSITION 5. Algorithm 1 is correct.

Proof. If k= 1, then the result follows from Lemma 4. If k> 1, then Lemma 4 implies
M = B1;h+1, whence P̃ = Rh and Q̃ = Rh+1. For 1 ⩽ ı̃ ⩽ h̃, we have deg B ı̃(P̃, Q̃) =
deg B ı̃(Rh, Rh+1) = deg Bh+ ı̃(P, Q) = 1. This allows us to apply Lemma 4 once more,
and obtain M̃ = B1;h̃+1(Rh,Rh+1) = Bh+1;k+1(P,Q). We conclude by noting that M̃M =
Bh+1;k+1(P,Q)B1;h+1(P,Q)=B1;k+1(P,Q). □

4.2. Exploiting the middle product

Let us now showhow to compute P̃d−h−2h̃; and Q̃d−h−2h̃; efficiently in step 4 using amiddle
product of 2×2 matrix polynomials. In order to simplify the exposition, we assume that k
is a power of two; in subsection 4.4 we will consider arbitrary lengths. We first decom-
pose all polynomials into blocks of degree <h. More precisely, let

P[i] = Pd−4h+ih;d−3h+ih

Q[i] = Qd−4h+ih;d−3h+ih

P̃[i] = P̃d−3h+ih;d−2h+ih

Q̃[i] = Q̃d−3h+ih;d−2h+ih,

so that

Pd−4h;d+1−h = P[0] +P[1] xh+ P[2] x2h+Pd−hx3h

Qd−4h;d−h = Q[0] +Q[1]xh+Q[2]x2h

and

P̃d−3h; = P̃[0] + P̃[1] xh+ P̃d−hx2h

Q̃d−3h; = Q̃[0] + Q̃[1]xh.
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dd−hd−2hd−3hd−4k

h

P,Q

M

Figure 1. Schematic illustration of the computation of P̃d−3h;d−h and Q̃d−3h;d−h by taking the middle
product of M and the 2×2 matrix with entries Pd−4h;d−2h, Pd−3h;d−h, Qd−4h;d−2h, and Qd−3h;d−h.

Then we observe that

(((((((((((((((((
P̃[0] P̃[1]

Q̃[0] Q̃[1] ))))))))))))))))) = M⋊h(((((((((((((((((
P[0] + P[1] xh P[1] + P[2] xh

Q[0] +Q[1]xh Q[1] +Q[2]xh ))))))))))))))))), (4)

where the left hand matrix has degree <h, where M has degree h, and where the right
hand matrix has degree <k; see also Figure 1. The individual term P̃d−hx2h can be recov-
ered in linear time using

P̃d−h = (M1,1P+M1,2Q)d−h=�
i=0

h

[(M1,1)iPd−h−i+(M1,2)iQd−h−i]. (5)

Before we discuss further optimizations that are specific to the binary FFT model, let
us first consider a general multiplication scheme (that satisfies the assumptions from
section 2.2), and analyze the complexity of Algorithm 1 with the middle product opti-
mization.

PROPOSITION 6. The cost of Algorithm 1 with the middle product optimization is bounded by
μ2×2

2 M(k) log2 k+O(M(k)).

Moreover, for a multiplication withM(k)≍k𝜎 for some 1<𝜎 ⩽2, the cost is

≲ μ2×2
2𝜎−1−1

M(k).

Proof. Recall that we assumed k to be a power of two. Then the running time of the
algorithm satisfies the recurrence inequality

T(k) ⩽ 2T� k
2�+2μ2×2M� k

2�+O(k). (6)

Unrolling this relation while using the assumption thatM(k)/(k log k) is non-decreasing
yields the first bound. If M(k) ∼ c k𝜎 for some c> 0 and 1 < 𝜎 ⩽ 2, then the relation (6)
yields T(k)≲ μ2×2 c

2𝜎−1−1 k
𝜎. □

4.3. Implementation in the binary FFT model
In order to efficiently implement Algorithm 1 with the optimizations from the previous
subsection in the binary FFT model, let us again assume that k is a power of two. We
essentially have to compute a 2 × 2 matrix middle product in step 4 and a 2 × 2 matrix
product in step 6. We will do all these computations using DFTs of length k=2h.
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Let us first consider the middle product (4). We have degM=h in (4) and the right
hand side matrix has degree <k. Consequently, we may apply (3) and compute the
middle product using FFT multiplication:

(((((((((((((((((
P̃[0] P̃[1]

Q̃[0] Q̃[1] ))))))))))))))))) = DFTk
−1(((((((((((((((((DFTk(M)DFTk(((((((((((((((((

P[0] +P[1]xh P[1] +P[2]xh

Q[0] +Q[1]xh Q[1] +Q[2]xh )))))))))))))))))))))))))))))))))) quo xh. (7)

We also recall that the individual term P̃d−hx2h can be recovered separately using (5).
As to the matrix product M̃M, its degree is k, which is just one too large to use FFT

multiplication directly. Nevertheless, FFT multiplication still allows us to compute M̃M
modulo xk−1. Then we may simply recover M̃M by computing the leading coefficient
(M̃M)k=M̃hMh separately.

Now the FFT model also allows for “FFT caching” when doing the recursive calls. In
addition to MM̃, we return its DFT transform at the end of the algorithm. When com-
puting the DFT transforms ofM and M̃ at length k, this means that we already know their
DFT transforms at length h, and thereby save half of the work.

Summarizing, this leads to the following algorithm:

Algorithm 2
Input: P,Q∈𝕂[x] and k∈2ℕ such that d=deg P⩾2k and deg Bi(P,Q)=1 for all 1⩽ i⩽k
Output: B1;k+1(P,Q) and DFTk(B1;k+1(P,Q))

1. If k=1, then return B≔(((((((((((( 0 1
1 −Pd−2; quoQd−2; )))))))))))) and DFT1(B)

2. Let h≔k/2

3. Recursively compute M≔B1;h+1(Pd−2h;,Qd−2h) and DFTh(M)
Compute M̂=DFTk(M) using FFT doubling

4. Compute (((((((((((((((((
P̃d−3h;
Q̃d−3h; ))))))))))))))))) with (((((((((((((((((

P̃
Q̃ )))))))))))))))))=M (((((((((((( P

Q )))))))))))) using (7) and (5)

5. Recursively compute M̃≔B1;h+1(P̃d−3h;, Q̃d−3h) and DFTh(M̃)
Compute M̂̃=DFTk(M̃) using FFT doubling

6. Compute M̂̃ M̂ and M̃M=DFTk
−1�M̂̃ M̂�+M̃hMh(xk−1)

Return M̃M and M̂̃ M̂

PROPOSITION 7. Algorithm 2 is correct and its cost is bounded by

/4 3M(k) log2 k+O(M(k)).

Proof. Since the algorithm is simply an adaptation of Algorithm 1 to the binary FFT
model, it is correct by Proposition 5. Let us analyze the costs of the various steps without
the recursive calls.

• The cost of the DFTs in step 3 is bounded by 4F(h)+O(h).

• The cost of step 4 is bounded by 8F(k)+O(k).

• The cost of the DFTs in step 5 is again bounded by 4F(h)+O(h).

• The cost of step 6 is bounded by 4F(k)+O(k).

12 OPTIMIZING THE HALF-GCD ALGORITHM



The total cost of the top-level of the algorithm is therefore bounded by 12F(k)+8F(h)+
O(k)=16F(k)+O(k)= /8 3M(k)+O(k). Consequently, the cost of our algorithm satisfies
the recurrence inequality

T(k) ⩽ 2T� k
2�+ 8

3 M(k)+Ck.

Unrolling this relation while using the assumption thatM(k)/(k log k) is non-decreasing
yields the desired complexity bound. □

4.4. Generalization to arbitrary lengths k
Let us now generalize Algorithm 2 to the case when k is not necessarily a power of two.

Algorithm 3
Input: P,Q∈𝕂[x] and k∈ℕ such that d=deg P⩾2k and deg Bi(P,Q)=1 for all 1⩽ i⩽k
Output: B1;k+1(P,Q)
1. If k=0, then return Id2

2. Let h∈2ℕ be maximal such that h⩽k and h̃≔k−h

3. Compute M≔B1;h+1(P,Q) using Algorithm 2

4. Compute (((((((((((((((((
((
(
( P̃d−h−2h̃;

Q̃d−h−2h̃; )))))))))))))))
)))))
) with (((((((((((((((((

P̃
Q̃ )))))))))))))))))=M (((((((((((( P

Q ))))))))))))
5. Recursively compute M̃≔B1;h̃+1(P̃d−h−2h̃;, Q̃d−h−2h̃)

6. Return M̃M

PROPOSITION 8. Algorithm 2 is correct and its cost is bounded by
/4 3M(k) log2 k+O(M(k)).

Proof. The correctness is proved in the same way as for Algorithm 1. For some universal
constant C, the cost T(k) of the algorithm satisfies the recurrence relation

T(k) ⩽ /4 3M(h) log2 h+T(h̃)+CM(h).

Writing k=k1 + ⋅ ⋅ ⋅ +kp with k1, . . . ,kp∈2ℕ and k1 > ⋅ ⋅ ⋅ >kp, it follows that

T(k) ⩽ �
i=1

p

/4 3M(ki) log2 ki+C�
i=1

p

M(ki)

⩽ M(k)
k (((((((((((((((((�

i=1

p

/4 3ki log2 k+C�
i=1

p

ki)))))))))))))))))
= M(k)( /4 3 log2 k+C),

where we used our assumption thatM(k)/k is non-decreasing. □

COROLLARY 9. Let P, Q ∈ 𝕂[x] and k ⩽ d be such that deg P = d, deg Q = d− 1, and
deg Bi(P,Q)=1 for all 1⩽ i⩽k. Then we may compute B1;k+1(P,Q) in time

/4 3M(k) log2 k+O(M(k)).

Proof. Modulo multiplication of P andQwith xk, we may assume without loss of gener-
ality that d⩾2k. □
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Algorithm 4
Input: P,Q∈𝕂[x] with degQ<d≔deg P and k⩽d
Output: B1;k+1

∗ (P,Q)

1. If Qd−k;d=0, then return (((((((((((( 1 0
0 1 ))))))))))))

2. If k=1, then return (((((((((((( 0 1
1 −Pd−2; quoQd−2 ))))))))))))

3. Let h≔⌈k/2⌉ and h̃≔k−h

4. Recursively compute M≔B1;h+1
∗ (Pd−2h;,Qd−2h;)

5. Let 𝛿=h−degM, so that deg P̃=d−h+𝛿 and deg Q̃<d−h

Compute (((((((((((((((((
((
(
( P̃d−h−2h̃−𝛿;

Q̃d−h−2h̃−𝛿; )))))))))))))))
)))))
) with (((((((((((((((((

P̃
Q̃ )))))))))))))))))=M (((((((((((( P

Q ))))))))))))
6. If Q̃d−k; =0, then returnM

7. If 𝛿>0, then

• Compute D≔ P̃d−h−2h̃−𝛿; quo Q̃d−h−2h̃−𝛿; and J=(((((((((((( 0 1
1 −D ))))))))))))

We claim that D= P̃ quo Q̃

• Update M≔ JM and let h′≔k−degM⩽ h̃

• Compute (((((((((((((((((
P̃d−k−h′;
Q̃d−k−h′; ))))))))))))))))) for the updated (((((((((((((((((

P̃
Q̃ )))))))))))))))))≔(((((((((((((((((

Q̃
P̃−DQ̃ )))))))))))))))))

8. Recursively compute M̃≔B1;h′+1
∗ (P̃d−k−h′;, Q̃d−k−h′;)

9. Return M̃M

Remark 10. Instead of Algorithm 2, we may also use Algorithm 1 with the middle pro-
duct optimization in step 3. In that case, the complexity bound from Proposition 6 gener-
alizes in a similar way to arbitrary lengths.

5. THE GENERAL CASE

Algorithms 1 and 2 generalize to the abnormal case, modulo several technical adjust-
ments. In this section we describe how to do this.

5.1. Statement of the non-optimized algorithm
Let us first show how to adapt Algorithm 1. Lemma 4 now becomes:

LEMMA 11. Given 1⩽k⩽d, we have

Bk
∗(P,Q) = Bk

∗(Pd−2k;,Qd−2k;)
B1;k+1

∗ (P,Q) = B1;k+1
∗ (Pd−2k;,Qd−2k;).

Proof. We have deg B1;i⩽ i−1 for i=1, . . . ,k, whence the relation Ai
∗ =B1;i

∗ A1
∗ shows that

the coefficient (Ri
∗)𝛼 of degree 𝛼 in Ri

∗ only depends on coefficients P𝛽 and Q𝛽 of P and Q
with 𝛽>𝛼− i. We next proceed in a similar way as in the proof of Lemma 4. □
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PROPOSITION 12. Algorithm 4 is correct.

Proof. IfQd−k;d=0, then the result is obvious. If k=1 andQd−1≠0, then the result follows
from Lemma 11. Assume from now on that k>1 andQd−k;d≠0. Then Lemma 11 implies
M=B1;h+1

∗ , whence P̃=Rh
∗ and Q̃=Rh+1

∗ .
Let i be largest with 𝜅(i) ⩽h. If Q̃d−k; = 0 in step 6, then 𝜅(i+ 1) ⩾ k, so B1;k+1

∗ (P,Q) =
B1;h+1

∗ (P,Q) =M and our algorithm returns the correct answer. Assume from now on
that Q̃d−k; ≠0.

We call 𝛿 ≔ h−deg M the degeneracy after h steps. Let i still be largest with 𝜅(i) ⩽h.
Then we have M=B1;𝜅(i)+1

∗ (P,Q) and deg B1;𝜅(i)+1
∗ (P,Q) = 𝜅(i) = h− 𝛿. In particular, we

see that P̃=R𝜅(i)
∗ =Ri, Q̃=R𝜅(i)+1

∗ =Ri+1, and deg P̃= d− h+ 𝛿. Furthermore, Q̃d−k; ≠ 0
implies that deg Q̃⩾ d− k, so deg Q̃− (d− h− 2 h̃− 𝛿) = deg Q̃− (d− k− h̃− 𝛿) ⩾ h̃+ 𝛿.
Therefore, we computed the h̃+ 𝛿 + 1 leading terms of Q̃ as part of Q̃d−h−2h̃−𝛿;. Now
deg P̃−deg Q̃=d−h+𝛿−deg Q̃⩽ h̃+𝛿, so we only need the h̃+𝛿+1 leading coefficients
of P̃ and Q̃ in order to compute P̃ quo Q̃. This proves our claim that D= P̃ quo Q̃.

After step 7, we thus have P̃=Ri+1, Q̃=Ri+2, andM=B1;𝜅(i+1)+1
∗ (P,Q), where degM=

𝜅(i+ 1). Moreover, deg Ri+1 = d− deg M = d− k + h′ and deg D= d− h+ 𝛿 − (d− k +
h′) = h̃− h′ + 𝛿. In particular, we may indeed retrieve the new value of Q̃d−k−h′; from D
and the old values of P̃d−h−2h̃−𝛿; and Q̃d−h−2h̃−𝛿; at the end of step 7, since d− k− h′−
(d− h− 2 h̃− 𝛿) = h̃− h′ + 𝛿 = deg D. Furthermore, deg Ri+1 − (d− k− h′) = 2 h′, which
allows to apply Lemma 11, and obtain M̃=B1;h′+1

∗ (Ri+1,Ri+2). We conclude that

M̃M = B1;h′+1
∗ (Ri+1,Ri+2)B1;𝜅(i+1)+1

∗ (P,Q)
= B𝜅(i+1)+1;𝜅(i+1)+h′+1

∗ (P,Q)B1;𝜅(i+1)+1
∗ (P,Q)

= B1;𝜅(i+1)+h′+1
∗ (P,Q)

= B1;k+1
∗ (P,Q) □

Remark 13. For efficiency, we chose h= ⌈k/2⌉ in step 3, but it is interesting to note that
the above correctness proof actually works for any choice of hwith 0<h<k. We will use
this property for our FFT version in section 5.3 below, where we will take h to be a power
of two.

5.2. Exploiting the middle product
Contrary to what we did in section 4.2, we do not require k to be a power of two in this
subsection. In fact, it is possible to efficiently implement step 5 in general, using middle
products. This time, we break up our input and output polynomials as follows:

P[i,i+1] ≔ Pd−2k+i(h+𝛿);d−k+i(h+𝛿)

Q[i,i+1] ≔ Qd−2k+i(h+𝛿);d−k+i(h+𝛿)

P̃[i] ≔ P̃d−k+(i−1)(h+𝛿);d−k+i(h+𝛿)

Q̃[i] ≔ Q̃d−k+(i−1)(h+𝛿);d−k+i(h+𝛿).

Then we have (see See Figure 1)

(((((((((((((((((
P̃[0] P̃[1]

Q̃[0] Q̃[1] ))))))))))))))))) = M⋊h−𝛿(((((((((((((((((((
P[0,1] P[1,2]

Q[0,1] Q[1,2] ))))))))))))))))))). (8)
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dd−2hd−3hd−4h

h

P,Q

M

d−h

𝛿

𝛿 𝛿𝛿

Figure 2. Schematic illustration of the matricial middle product in the abnormal case, for even k=
2h.

As before, the coefficient P̃d−h+𝛿 is computed separately using

P̃d−h+𝛿 = �
i=0

h−𝛿

[(M1,1)iPd−h+𝛿−i+(M1,2)iQd−h+𝛿−i]. (9)

Remark 14. In the continuation of Remark 13, we note that the above formulas again
apply for any choice of h with 0<h<k.

Let μ2×2 be as in section 4.2. For the multiplication method that we selected, assume
that the middle product (8) and the final product M̃M can each be computed in time
⩽ /1 2μ2×2M(k)+O(k). Then we have the following generalization of Proposition 6:

THEOREM 15. Let 4⩽μ2×2⩽8 be as in Proposition 6. Then Algorithm 4 with the middle product
optimization runs in time at most

2μ2×2 +3
4 M(k) log2 k+O(k log2 k).

Moreover, for a multiplication withM(k)≍k𝜎 for some 1<𝜎 ⩽2, the cost is

≲2μ2×2 +3
2𝜎 −2 M(k).

Proof. The cost of steps 5 and 9 is bounded by ⩽μ2×2 M(k) + O(k), according to the
assumption just above this proposition. In step 7, the computation of D can be done
in time AM(𝛿) +O(1) with A⩽ 4, using Newton's method for fast power series inver-
sion; see, e.g. [3, section 6]. The update of M amounts to two products of degrees <h
by <𝛿, which can certainly be computed in time ≲2M(h). The update of Q̃d−k−h′; can
be computed efficiently using a middle product that takes ≲M(h) additional operations.
Altogether, the cost T(k) of the algorithm satisfies

T(k) ⩽ T(h)+T(h′)+�μ2×2 + 3
2�M(k)+4M(𝛿)+Ck,

for some constant C⩾0. Note also that h+h′+𝛿⩽k and that

𝜑(k)≔ M(k)
max(k, 1) log2 max(k, 2)
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is a non-decreasing function. Let 𝛼≔ μ2×2
2 +1 and 𝛽⩾ 2C

𝜑(1) +3𝛼 be such that

T(k) ⩽ 𝜑(k)(𝛼 log2 k+𝛽)kmax(log2 k, 1) (10)

for all k⩽2log2(A/𝛼)+2. Let us show by induction on k that (10) holds for all k>2log2(A/𝛼)+2

as well. Indeed,

T(k) ⩽ 𝜑(k)(𝛼 log2
2 h+𝛽log2 h)(h+h′)

+2𝛼𝜑(k)k log2 k+A𝜑(k)𝛿 log2 k+Ck
⩽ 𝛼𝜑(k)(log2

2 k−2 log2 k+ /3 2)(h+h′)+𝛽𝜑(k)(log2 k− /1 2)(h+h′)
+2𝛼𝜑(k)k log2 k+4𝜑(k)𝛿 log2 k+Ck

⩽ 𝛼𝜑(k)(log2
2 k−2 log2 k+ /3 2)(k−𝛿)+2𝛼𝜑(k)k log2 k+A𝜑(k)𝛿 log2 k

+𝛽𝜑(k)(log2 k− /1 2)k+Ck
⩽ 𝛼𝜑(k)k log2

2 k−𝛼𝜑(k)(log2
2 k−2 log2 k+ /3 2)𝛿+A𝜑(k)𝛿 log2 k

+𝛽𝜑(k)k log2 k+� /C 𝜑(1) + /3 2 𝛼− /1 2 𝛽�𝜑(k)k
⩽ 𝜑(k)(𝛼 log2 k+𝛽)k log2 k−𝜑(k)(𝛼 log2

2 k− (A+2𝛼) log2 k+ /3 2 𝛼)𝛿
⩽ 𝜑(k)(𝛼 log2 k+𝛽)k log2 k.

This completes the proof of the first bound. We skip the proof of the second one, which
is based on similar arguments. □

Remark 16. The constants in the bounds from Theorem 15 are probably not sharp. The
point is the following: if the quotients in the Euclidean remainder sequence are all of
bounded degree, then the additional cost with respect to the normal case can actually
be bounded by O(M(k)). If, on the contrary, some of the quotients have exceptionally
large degrees, then many of the recursive calls will terminate early at step 6. This will
actually make the constants decrease instead of increase. The only problematic case there-
fore seems to be whenmany of the quotients have moderately large degrees; it would be
interesting to know more about the precise worse case scenario.

5.3. Implementation in the binary FFT model
One important feature of Algorithm 2 is that we use the same length k for all our DFTs.
If k is a power of two, then we may conserve this property in the abnormal case. Indeed,
the final product M̃M causes no problem since its degree is still <k. As to the middle
product (8), we now have degM=h−𝛿 and the degree of the right hand side is still <k.
This allows us to apply (3), which yields

(((((((((((((((((
P̃[0] P̃[1]

Q̃[0] Q̃[1] ))))))))))))))))) = DFTk
−1((((((((((((DFTk(M)DFTk(((((((((((( P[0,1] P[1,2]

Q[0,1] Q[1,2] )))))))))))))))))))))))) quo xh−𝛿. (11)

However, there is no reason why h′ should be a power of two for the second recursive
call. In order to remedy to this problem, we introduce a new parameter ℓ ⩾ k that we
assume to be a power of two and that we will use for the lengths of our DFTs. This
requires a minor adjustment of (11):

(((((((((((((((((
P̃[0] P̃[1]

Q̃[0] Q̃[1] ))))))))))))))))) = DFTℓ
−1((((((((((((DFTℓ(M)DFTℓ(((((((((((( P[0,1] P[1,2]

Q[0,1] Q[1,2] )))))))))))))))))))))))) quo xh−𝛿. (12)

We are now in a position to adapt Algorithm 4 to the binary FFTmodel: see Algorithm 5.
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Algorithm 5
Input: P,Q∈𝕂[x] with degQ<deg P and k⩽ ℓ∈2ℕ with k⩽deg P
Output: B1;k+1

∗ (P,Q) and DFTℓ(B1;k+1
∗ (P,Q))

1. If Qd−k;d=0, then return I≔(((((((((((( 1 0
0 1 )))))))))))) and DFTℓ(I)

2. If ℓ=1, then return B≔(((((((((((( 0 1
1 −Pd−2; quoQd−2; )))))))))))) and DFT1(B)

3. If k⩽ ℓ/2, then

• Recursively compute M≔B1;k+1
∗ (P,Q) and DFTℓ/2(M)

• ReturnM and DFTℓ(M), which we compute using FFT doubling

4. Let h≔ ℓ/2

5. Recursively compute M≔B1;h+1
∗ (Pd−2h;,Qd−2h;) and DFTℓ/2(M)

Compute M̂=DFTℓ(M) using FFT doubling

6. Let 𝛿=h−degM, so that deg P̃=d−h+𝛿 and deg Q̃<d−h
Compute (((((((((((((((((

P̃d−3h−𝛿;

Q̃d−3h−𝛿; ))))))))))))))))) with (((((((((((((((((
P̃
Q̃ )))))))))))))))))=M (((((((((((( P

Q )))))))))))) using (9) and (12)

7. If Q̃d−2h; =0, then returnM and M̂

8. If 𝛿>0, then

• Compute D≔ P̃d−h−2h̃−𝛿; quo Q̃d−h−2h̃−𝛿; = P̃ quo Q̃ and J=(((((((((((( 0 1
1 −D ))))))))))))

• Compute D̂≔DFTℓ(D) and deduce Ĵ≔DFTℓ(J)

• Update M̂≔ Ĵ M̂ and Mk−h′ ≔ Jdeg JMh−𝛿, where h′≔ h̃+𝛿−deg J

• Compute (((((((((((((((((
P̃d−k−h′;

Q̃d−k−h′; ))))))))))))))))) for the updated (((((((((((((((((
P̃
Q̃ )))))))))))))))))≔(((((((((((((((((

Q̃
P̃−DQ̃ )))))))))))))))))

9. Recursively compute M̃≔B1;h′+1
∗ (P̃d−k−h′;, Q̃d−k−h′;) and DFTℓ/2(M̃)

Compute M̂̃=DFTℓ(M̃) using FFT doubling

10. Compute M̂̃ M̂ and M̃M=DFTℓ
−1�M̂̃ M̂�+M̃h′Mk−h′ (xℓ−1)

Return M̃M and M̂̃ M̂

For the complexity analysis, it will be convenient to assume that M(d) satisfies the
properties from section 2.2. In particular, the assumption thatM(d)/d is non-decreasing
implies that M(d)+M(d′)⩽M(d+d′) for all d,d′. Conversely, in the binary FFT model,
it will be convenient to also assume thatM(d+d′)⩽M(d)+M(d′−1)+M (d+d′) for all
d, d′⩾1, and some fixed constant Λ.

THEOREM 17. Algorithm 5 is correct. Moreover, if ℓ⩽2k, then its cost is bounded by

/19 12M(k) log2 k+O(M(k)).

Proof. The correctness is proved in a similar way as the correctness of Proposition 12,
while using Remarks 13 and 14.

The total cost of steps 5, 6, 9, and 10 is 16F(ℓ)+O(ℓ), as in the proof of Proposition 7.
As to the update step 8, the computation of D requires O(M(𝛿)) operations. The com-
putation of D̂ and Ĵ costs ∼F(𝛿) k/𝛿 ⩽F(ℓ) +O(ℓ), whereas the multiplication Ĵ M̂ takes
linear time.
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Now let p≔ deg P̃ and q≔ Q̃ before the updates, so that p= q+ 𝛿 + 𝜂 with 𝜂 ⩾ 0 and
deg D=p− q. Since h′ =h−𝜂, the lowest 𝜂 coefficients of Q̃d−3h; do not matter in step 9.
During the update, this means that we essentially need to compute (DQ̃d−3h−𝛿;)d−3h+𝜂;.
Now, using FFT multiplication, the computation of

(DQ̃d−3h−𝛿;)d−3h+𝛿; =D⋊q−p Q̃d−3h−𝜂;d−h−𝜂

takes one direct and one inverse DFT of length ℓ of total cost 2 F(ℓ) +O(ℓ), since we
already know D̂. The remaining coefficients (DQ̃d−3h−𝛿;)d−3h+𝜂;d−3h+𝛿 can be computed
in time O(M(𝛿)).

If k> /ℓ 2, then h= /ℓ 2 and the above analysis shows that the time complexity T(k, ℓ) of
the algorithm satisfies

T(k, ℓ) ⩽ max
/ℓ 2+h′+𝛿⩽k

�T( /ℓ 2, /ℓ 2)+T(h′, /ℓ 2)+ 19
6 M(ℓ)+AM(𝛿)+Cℓ�,

for suitable constants A and C. If k⩽ /ℓ 2, then the FFT doubling in step 3 can be done in
time 2F(ℓ)+O(ℓ), so

T(k, ℓ) ⩽ T(k, /ℓ 2)+ 1
3 M(ℓ)+Cℓ,

by increasing C if necessary. In the bound for T(k, ℓ) when k> /ℓ 2, the term AM(𝛿) pol-
lutes the complexity analysis. Our next objective is to reduce to the case when the sum
T(h′, /ℓ 2)+AM(𝛿) is replaced by T(k− /ℓ 2, ℓ).

We start with the definition of an upper bound T̄(k,ℓ) for T(k,ℓ) as follows. For k⩽1,
we take T̄(k, 1)≔T(k, 1). For /ℓ 2 <k⩽ ℓ∈2ℕ with ℓ⩾2, we define

T̄(k, ℓ) ≔ max
/ℓ 2+h′+𝛿⩽k

�T̄( /ℓ 2, /ℓ 2)+ T̄(h′, /ℓ 2)+ 19
6 M(ℓ)+AM(𝛿)+Cℓ�.

For k⩽ /ℓ 2 with 2⩽ ℓ∈2ℕ, we take

T̄(k, ℓ) ≔ T̄(k, /ℓ 2)+ 1
3 M(ℓ)+Cℓ. (13)

Using an easy induction, we note that T̄(k, ℓ) is increasing in k for fixed ℓ. If ℓ ⩾ 2 and
/ℓ 2 <k⩽ ℓ, then there exist h′ and 𝛿 with /ℓ 2 +h′+𝛿⩽k such that

T̄(k, ℓ) = T̄( /ℓ 2, /ℓ 2)+ T̄(h′, /ℓ 2)+ 19
6 M(ℓ)+AM(𝛿)+Cℓ. (14)

Given 𝛿′ with k′≔k+𝛿′⩽ ℓ, it follows that

T̄(k′, ℓ) ⩾ T̄( /ℓ 2, /ℓ 2)+ T̄(h′, /ℓ 2)+ 19
6 M(ℓ)+AM(𝛿+𝛿′)+Cℓ

⩾ T̄( /ℓ 2, /ℓ 2)+ T̄(h′, /ℓ 2)+ 19
6 M(ℓ)+AM(𝛿)+AM(𝛿′)+Cℓ

= T̄(k, ℓ)+AM(𝛿).

More generally, for any 0⩽k<k′⩽ ℓ, we claim that

T̄(k, ℓ)+AM(k′−k) ⩽ T̄(k′, ℓ)+2Λ ℓ,

where Λ is the constant from before the statement of this theorem.
We prove our claim by induction on the smallest i with k> ℓ /2i. We already dealt

with the case when i= 1, so assume that i> 1. If k′ ⩽ /ℓ 2, then (13) and the induction
hypothesis with /ℓ 2 in the role of ℓ yield

T̄(k′, ℓ)− T̄(k, ℓ) = T̄(k′, /ℓ 2)− T̄(k, /ℓ 2)
⩾ AM(k′−k)−Λ ℓ.
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In particular,

T̄(k, ℓ)+AM( /ℓ 2−k) ⩽ T̄( /ℓ 2, ℓ)+Λ ℓ.

If k′> /ℓ 2, then we have shown above (with /ℓ 2 in the role of k) that

T̄( /ℓ 2 +1, ℓ)+AM(k′− ( /ℓ 2 +1)) ⩽ T̄(k′, ℓ),

whence

T̄(k, ℓ)+AM(k′−k) ⩽ T̄(k, ℓ)+AM( /ℓ 2−k)+AM(k′− ( /ℓ 2 +1))+Λk′
⩽ T̄( /ℓ 2, ℓ)+AM(k′− ( /ℓ 2 +1))+Λ ℓ+Λk′
⩽ T̄( /ℓ 2 +1, ℓ)+AM(k′− ( /ℓ 2 +1))+Λ ℓ+Λk′
⩽ T̄(k′, ℓ)+2Λ ℓ,

as claimed.
Now consider /ℓ 2<k⩽ℓ∈2ℕ with ℓ⩾2 and let h′ and 𝛿 be such that /ℓ 2+h′+𝛿⩽k. Then

our claim implies

T̄(h′, /ℓ 2)+AM(𝛿) ⩽ T̄(h′+𝛿, /ℓ 2)+Λ ℓ ⩽ T̄(h− /ℓ 2, /ℓ 2)+Λ ℓ.

Plugging this into (14), while setting C′≔C+Λ, we obtain

T̄(k, ℓ) ⩽ T̄( /ℓ 2, /ℓ 2)+ T̄(k− /ℓ 2, /ℓ 2)+ 19
6 M(ℓ)+C′ ℓ. (15)

for all ℓ ⩾2 and /ℓ 2 <k⩽ ℓ. Unrolling this inequality for k= ℓ, we deduce that there exists
a constant C′′ with

T̄(ℓ, ℓ) ⩽ /19 12M(ℓ) log2 ℓ+C′′M(ℓ)

for all ℓ ∈2ℕ. For general k= k1 + ⋅ ⋅ ⋅ + kp with k1, . . . ,kp∈2ℕ and k1 > ⋅ ⋅ ⋅ >kp, combining
this bound with (13) and (15) yields

T̄(k, ℓ) ⩽ 19
12 �

i=1

p

M(ki) log2 ki+C′′�
i=1

p

M(ki)+ 19
6 �

i=1

log2ℓ

M(2i)+C′ �
i=1

log2ℓ

2i+O(1)

⩽ M(k)
k (((((((((((((((((

19
12 �

i=1

p

ki log2 k+C′′�
i=1

p

ki)))))))))))))))))+ 19
3 M(ℓ)+2C′ ℓ+O(1)

= M(k)( /19 12 log2 k+C′′)+ /19 3M(ℓ)+2C′ ℓ+O(1).

Under the assumption that ℓ⩽2k, we have /19 3M(ℓ)+2C′ ℓ=O(M(k)), whence T(k, ℓ)⩽
T̄(k, ℓ)⩽ /19 12M(k) log2 k+O(M(k)). □
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