
GNU TeXmacs:

A free, structured, wysiwyg, technical text

editor

Joris van der Hoeven

Dépt. de Mathématiques (bât. 425)
Université Paris-Sud
91405 Orsay CEDEX

France

December 10, 2008

There is a common belief that wysiwyg technical editors are not suited for editing structured

texts and generating documents with a high typographical quality. In this paper, we analyze

the reasons behind this belief. We next discuss the program GNU TEXMACS and some of its

innovations in relation to the difficulties of structured, wysiwyg, technical text editing.

1. Introduction

The introductions of popular books on TEX and especially LATEX usually start with a celebration of
the benefits of structured documents and generic markup. In this context, LATEX is often compared
to wysiwyg (what you see is what you get) text editors, which are claimed to concentrate only on
visual design and not logical design. See for instance section 1.5 of Lamport’s book on LATEX for
some widely accepted reasons why not to use wysiwyg editors.

In the past decade the empirical observation that it was difficult to write well structured docu-
ments with wysiwyg editors has made place for a doctrine that such a thing would be impossible.
Many people adopted textual ASCII-based text editors like Emacs or Vi as a religion and claim
that such editors would be the sole in which a structured text — a program — can be correctly
visualized.

On the other hand, if systems like TEX and LATEX are so much better than wysiwyg editors,
why is it so that most people are still reluctant to learn TEX or LATEX, and why do wysiwyg editors
still dominate the market?

When we started to develop TEXMACS about four years ago, our main design aim was to solve
this paradox, by creating a wysiwyg and structured technical text editor. The current version of
TEXMACS can be downloaded from

www.texmacs.org

In order to design TEXMACS, we first had to analyze the reasons why the wysiwyg editors from
then were inadequate for the creation of structured documents. These reasons, which are often
of a psychological order, will be studied in section 2. In a second stage, we observed that these
problems were not inherent to wysiwyg editors, and we removed them by developing new editing
techniques. These techniques will be presented in section 3.

Currently, TEXMACS is much more as just a technical text editor. For instance, it is possible to
interface the program with several computer algebra systems. As its name suggests, TEXMACS has
also been inspired by that Emacs editor. For instance, it supports the Guile/Scheme extension
language. In section 4, we will shortly describe some of these additional features.

In section 5, we conclude with the prediction that structured wysiwyg editors will become
very common within five years. Nevertheless, an important question is how this will happen, and
whether some important lessons from the past will be retained.

1

2. Analyzing technical typesetting systems

2.1. Drawbacks of classical wysiwyg editors

When comparing classical wysiwyg editors with TEX or LATEX, the following drawbacks are often
heard or implicitly felt:

Lack of primitives for creating structured text. Most well known wysiwyg editors support
only a very limited set of such primitives (such as sections or HTML tags) and there is usually no
macro expansion mechanism to create new user primitives.

Bad visualization of structured text. One solid common belief is that it impossible to
adequately visualize structural markup using wysiwyg editors (assuming that such markup is
supported). Indeed, when looking at document with a wysiwyg editor, you can not see a priori

whether a section title corresponds to a LATEX-like \section command, or to a piece of text
which has been typeset in an appropriate font.

Wysiwyg editors incite visual typesetting. Even if the above drawback were to be removed,
one might still object that wysiwyg editors incite people towards visual and non structural type-
setting. This thesis is supported by the ease with which it is possible to create visual markup in
classical wysiwyg editors (and the difficulty to create structural markup).

Difficulties to create structured text. Another typical source of irritation is the omnipresence
of fancy menus for symbols and mathematical constructions in wysiwyg editors: it is much faster
to type \frac than to search for a fraction in a popup menu or on an icon bar. This disadvantage
probably stems from the fact that, contrary to TEX and LATEX, the technical add-ons of wysiwyg
editors have usually not been written by mathematicians, physicists or computer scientists who
use their own program every day.

Wysiwyg editors are complex and slow. The design of wysiwyg editors being much more
complicated than a mere typesetting program like TEX, such editors usually need much more
resources, both in memory space and computation time.

Bad document formats. Many wysiwyg editors use proprietary data formats which are not
readable by humans; some of these formats are even patented and one might question whether the
user of such software is the owner of the documents he creates. In any case, text based document
formats have the great advantage that you may edit them with virtually any tool, so that you do
not necessarily need the original wysiwyg editor to modify them.

2.2. Towards criteria for analyzing the quality of text editors

The drawbacks we have mentioned are actually related to a certain number of criteria, which may
be used to analyze the quality of a text editor or an electronic typesetting system. Again, we made
up a non exhaustive list of possible such criteria. In order to be fair, we now also included a certain
number of criteria which plead in favor of wysiwyg editors.

Support of structural markup. We will not explain the numerous advantages of structural
markup here, since standard books on LATEX do this very well. Support for structural markup
occurs at two levels:

Primitives. Support of some fixed primitives for structural markup, as in HTML.

Extendibility. Support of a macro expansion system to create new primitives and style files.

User friendlyness. The user friendliness of a typesetting system involves many aspects, some
of which we list here:

Simplicity. The system should be sufficiently simple to use. This implies that the user inter-
face should be standard, that the basic editing primitives should have a clear meaning, etc.

Comfort. The system should be comfortable to use. This implies for instance that the editor
should have a high reactivity, that is a fast response to user events. By preference, it
should not be necessary to manually rerun a typesetting engine after each modification.
The readability of text on the screen is also an important and underestimated factor, which
may avoid headaches and such. More generally, one should strive for maximal ergonomics.

2 GNU TeXmacs:

A free, structured, wysiwyg, technical text editor

Distraction. Just like a well typeset document allows the reader to concentrate himself on
reading the actual content of a document (and not be distracted by typesetting issues),
a good editor should allow the user to concentrate on the actual document (and not be
distracted by programming issues and such). One main advantage of using an editor like
TEXMACS is that you can do mathematics while typing a text.

Documentation. Well documented programs help the user to progress, whatever his level,
and in any direction. It is preferable that the documentation comes with the program
itself and that the program is self documenting (for instance, you learn about appropriate
keyboard shorthands when using the menus).

Adequacy. Any program has one or several main objectives, and it is interesting to analyze the
adequacy of the means provided by the program to reach these objectives.

Controlability. In the worst case, a program provides certain features which are so difficult
to exploit that they become useless. This may for instance be the result of an inadequate
user interface. Document formatters like TEX provide full control because of there textual
document format. Yet, their controllability is not always optimal: think about inserting a
new column in a complex table.

Faithfulness. It is also important that the user of a program obtains the result he expects.
From this point of view, the wysiwyg-ness of an editor is an advantage.

Transparency. In order to have full control over a program, the user needs to understand
at each moment what is going on. In particular, the structure of the document should be
transparent for the user. In the case of a text formatter, this is ensured by the fact that
you explicitly see all structural markup. In the case of a wysiwyg editor, one needs other
mechanisms to ensure transparency.

Quality of the endproducts. Usually, the endproduct of a text editor is a printed document
and it is natural to require the typographic quality of such a document to be optimal. Nevertheless,
we may also see the structural richness of a document as a part of its quality, since this richness
makes the document more or less adequate for future reuse, for instance as part of another book
or a website. It is important that an editor makes it possible to produce high quality documents
in our broader sense, and that it encourages the user in writing such documents.

Document format. The choice of a good document format is an important issue for the quality
of a text editor. Good document formats should meet several criteria:

Readability. It is preferable to use a text based document format, so that the documents may
in principle be edited by hand.

Simplicity. If the document format is also sufficiently simple, than it will indeed be able to
edit documents by hand. Simplicity also makes it easier to write converters to other formats.

Comptability. If possible, one should opt for a format which already exists, or which is a
particular case, an extension, or a modification of an existing format.

Permanence. The document format should not change in a predictable way and not to much
from one version of the program to another.

Evolutivity. It is a major advantage of a program to be extendable and that it can be adapted to
other needs in the future. This has been the case for TEX, which gave rise to LATEX and many other
clones. This is also the case for an editor like Emacs, which provides a so called extension language.

Freedom. From a scientific point of view and also in relation with many of the previous criteria,
it is very important that programs and data formats are free. Here we mean free in the sense of
freedom, not price; for a more precise definition, we refer to

http://www.gnu.org/philosophy/free-sw.html

The freedom of software is essential for its development in a scientific way, as has been the case
for a system like TEX. It favorites for instance the evolutivity and the accessibility of the software
and the readability and permanence of the data format.

Joris van der Hoeven 3

3. Techniques for structured wysiwyg editing

In this section we discuss several new techniques, which have been implemented in TEXMACS in
order to fulfill the criteria stated in the previous section. We focus on the techniques related to
structured wysiwyg editing, without striving for exhaustion.

3.1. Structural markup

In order to implement structural markup, one first has to analyze the different types of structural
markup that may occur. We have already distinguished between editors which provide a limited
set of basic primitives like the strong tag in HTML and editors which enable the user to define
his own macros.

A second distinction concerns the nature of the structural markup during typesetting. Simple
structural markup, like the above strong tag, only locally affects the typesetter. More complicated
markup, like an enumeration tag, may necessitate all text after the tag to be retypeset each time
we modify it. Changes in the most complicated forms of structural markup, like references or fields
of a spreadsheet, may require the whole document to be retypeset.

A third distinction concerns the level of interactivity of the structural markup. In the case of
complex markup like references or tables of contents, it is reasonable to perform the necessary
recomputations on explicit request of the user. For computational markup, like Java scripts, it
is reasonable to implement a mechanism to deactivate and reactivate the markup. For simpler
markup, like the strong tag, it is nice if the arguments of the macro can be modified in a more
direct way.

Currently, TEXMACS supports all of the above mechanisms. Likewise TEX, the editor transforms
the logical source tree into a physical box tree. However, in our case, the boxes contain much more
information. In particular, whenever possible, they contain the location of the corresponding code
in the source tree. More details about this correspondence can be found in the help about the
implementation of TEXMACS.

As to user macros, we both provide real macros and lambda expressions . When expanding a
macro, the arguments of the expansion can be modified interactively by the user. For instance, the
LATEX \section command is a macro in TEXMACS. From the technical point of view, the typesetter
remembers the source locations of the arguments of the macro expansion, which are necessary to
associate source locations to the final boxes.

In older versions of TEXMACS, we only provided lambda expressions for the creation of user
macros. The applications of lambda expressions have first to be disactivated, before they can be
edited, and reactivated as soon as you are done. Lambda expressions are still implemented in order
to support computational markup like increasing a section number.

Remark 1. It is also interesting to analyze the difference between TEX/LATEX and XML from the
point of view of structural markup. Indeed, a TEX document is very sequential in nature, because
it is close to a program. An XML document is much closer to a tree, which may be traversed in
parallel. One typical consequence of this difference is that, from the XML point of view, something
like a table of contents is generated by a piece of an XSL style file which is independent from the
sectional macros. On the one hand this independence is attractive; on the other hand the approach
is less “object oriented” and breaks the “orthogonality”. For instance, a new user-provided sectional
macro based on a standard sectional macro will not be taken into account when generating a table
of contents.

3.2. Efficiency of the typesetter

One major problem of wysiwyg (structured) editors is speed, although the constant improvement
of CPU’s plays in favor of such editors. The two main sources of difficulty are the speed of the
typesetter and the speed of displaying typeset text. As a main objective, the required reactivity of
the editor (i.e. the response time to user input), should be small with respect to the typical time
between two keyboard hits.

4 GNU TeXmacs:

A free, structured, wysiwyg, technical text editor

In order to reduce the typesetting time, our main approach is to retypeset a minimal amount
of text at each modification. For the simplicity of the design of the typesetter, we have neverthe-
less decided to retypeset the whole paragraph whenever a part of needs to be retypeset. This is
reasonable, because it will at least be necessary to recompute all line-breaks; this recomputation
usually necessitates a time which is proportional to retypesetting the whole paragraph.

The more complicated question is how to predict which paragraphs have to be retypeset,
especially in presence of dynamic environment variables like section numbers. Our algorithm is as
follows: we need to retypeset at least all paragraphs where a change occurred. For each paragraph
we also remember all changes of the environment variables (like counters of section numbers)
before and after the paragraph. When retypesetting a succession of paragraphs, we compare the
new changes with the former changes. If the changes remain the same, then it is not necessary to
retypeset the subsequent paragraphs.

Our strategy may be refined in the future in two ways. First of all, even when some environment
variables change, it is only necessary to retypeset the paragraphs which effectively involve these
variables. Secondly, one might decide to only retypeset the document up to those paragraphs which
are visible on the screen.

As to the speed of redisplaying modified text, we apply the classical strategy of using a second
invisible screen buffer in order to reduce flickering: when the whole text has been redisplayed, the
second screen is copied to the visible screen. Actually, we start by redisplaying the text which is
closest to the cursor and end with the text which is the farthest away. Whenever a keyboard event
or a mouse click occurs, redisplaying is interrupted and only the available text is copied from the
second screen to the visible screen. This allows the user to see the updated text close to the cursor
in the case when he types very quickly.

3.3. User interface

A less complicated, yet very important issue is how the user may create structural markup. In the
design of the TEXMACS user interface, we have followed the principle of redundancy: some users
prefer toolbars or menus, others prefer to use the keyboard. For instance, a fraction can be obtained
in the following ways:

1. By pushing the “fraction icon”.

2. Via the “Insert” menu.

3. By typing the TEXMACS keystrokes Escape F.

4. By typing the TEX command \frac and pressing Enter.

Furthermore, TEXMACS attempts to teach users about these alternative ways via messages on the
footer and help balloons. In this way a user can start by exploring the possibilities of TEXMACS

via the menus. As soon as he often needs a certain feature, he will naturally learn a keyboard
shorthand for using this feature in a more efficient way.

Actually, the TEXMACS user interface provides several additional tricks to maximize the user’s
efficiency in entering texts. For instance, in order to obtain the mathematical symbol a, it suffices
to type Alter-a. In order to obtain ® , Å or P , you may use the keystrokes - >, @ +, resp. < | =.
The combination of these tricks and the self documenting properties of the user interface make it
very simple and efficient to learn and use TEXMACS, in comparison with more classical programs
like TEX and LATEX.

In order to obtain a well structured document as an endproduct, we already mentioned the fact
that a good editor should encourage the user to structure his work. In TEXMACS this is accomplished
by suggesting the reader to first choose a document style (without which he will not be able to
do much), or by choosing one for him. Next, the user interface naturally depends on the chosen
document style and on the editing mode (math mode, preamble, etc.). Furthermore, structural
markup is always put in a prominent place.

A more complicated problem, which has not completely been (and probably never will be)
solved is the standardization of structural markup. One indeed has to be careful not to provide
a too abundant number of macros in new styles: this may result in the users getting lost, so that
they will prefer to fall back to more visual markup.

Joris van der Hoeven 5

3.4. Transparency and controllability

Another interesting question is how to make the structure of a document transparent inside a
wysiwyg editor and how to give the user full control over this structure. This question is mainly
a psychological one: the user has to feel the structure in a way which is closest to his mental
representation and he has to have the impression that he has optimal control over his document.

From our point of view, showing an ASCII text which represents the document in coded form
is not necessarily optimal for both of these purposes. Indeed, an expression like

\frac{1}{\alpha_1+\frac{1}{\alpha_2+\frac{1}{alpha_3+\ddots}}}

is not clearer from a structural point of view than its graphical representation1a1 + 1a 2 + 1a 3 + � .
Similarly, the user does not necessarily have optimal control: what about inserting a new column
in a complex TEX table?

Of course, there are also examples where the structure of the document is a priori more
transparent and controllable in its coded form. A good example is the piece of LATEX code

Some \textbf{\red{bold blue}} text.

In a wysiwyg editor, it is not clear whether the text “bold blue” is bold and blue or blue and bold.
Furthermore, how to put the cursor in a position where it is possible to type bold but not blue text?

In the TEXMACS implementation, we were guided by the opinion that the global structure of
a document is clear from its graphical appearance, and that the only place where we need more
information about the structure is at the current cursor position. Consequently, the footer of the
editor both displays the physical and logical properties of the text at the current position. To a
lesser extent, the shape and color of the cursor itself indicate some structural properties.

As to the cursor movement, TEXMACS implements a graphically natural (and not structurally
natural, like many other wysiwyg technical editors) cursor movement. In other words, if you press
on the right arrow key, then your cursor may be expected to go to the right. More precisely, when
moving the cursor around, the user modifies the position of a so called ghost cursor which may be
any position on the screen. The real cursor is chosen as close as possible to the ghost cursor, in a
way that “makes sense”.

Moreover, the cursor position is determined by an x and a y coordinate as well as an infinitesimal
horizontal d -coordinate, which allows the user to position the cursor in a very precise way in
presence of structural markup. The figure below illustrates the use of this coordinate in the above
example of bold blue text. We start with the cursor being positioned after the ‘e’ in ‘Some’ and
show what happens if one pushes thrice the cursor key ‘® ’.

Similarly, the following figure illustrates what happens when the cursor is initially positioned after
the ‘u’ in ‘blue:

6 GNU TeXmacs:

A free, structured, wysiwyg, technical text editor

4. Additional features of TeXmacs

Let us now briefly mention some additional features of TEXMACS, which are not related so to say to
structured wysiwyg editing, but which do make the system interesting in comparison with similar
existing software.

4.1. Computer algebra systems

It is reasonably easy to interface a computer algebra system with TEXMACS. Such interfaces already
exist for the systems Pari GP, Macaulay 2 and Gtybalt. More interfaces are currently under
development. In this context, TEXMACS can both be used as a graphical front-end to the computer
algebra system and as a text editor, which enables the user to directly include the results of his
computations in an article.

The objective that it should be possible to interface TEXMACS with computer algebra systems
has some repercussions on its design. For instance, formulas should have semantics in a natural
way. We adopted the strategy that an intelligent parser should be able to assign a semantics to a
formula. For this reason, we demand the user to explicitly type the multiplication symbol, since
in the TEX formulas

$a(b+c)$ $f(b+c)$

it is not clear a priori when we implicitly understand a multiplication to be present. Another
problem when interfacing TEXMACS with a computer algebra system is that automatically gen-
erated formulas should be typeset in a satisfactory way. This necessitates new hyphenation
techniques, which are still under development.

4.2. Typesetting innovations

It is often believed that TEX is the ultimate program for professional typesetting. Indeed, TEXMACS

incorporates many techniques from TEX. Nevertheless, there are a few points where we think that
we made useful innovations:· We use a global algorithm for page breaking.· Consecutive lines, such that the upper line descends to much downwards and the lower line

ascends to much upwards (at different places), are “crunched together” as far as possible.· TEXMACS both supports vertical space before and after a paragraph; the maximum of both
is taken. The vertical space between two consecutive theorems without proof is not doubled.

Several other optimizations can be foreseen and the “technical art” of electronic typesetting is
fortunately not yet dead.

4.3. Extension language

In a similar way as Emacs comes with the Emacs/Lisp extension language, TEXMACS provides
Guile/Scheme as an extension language. At the moment, the extension language is mainly
useful for programming the keyboard shorthands and the menus of the user interface. We also
implemented regions of text with an associated scheme program, which is executed each time one
clicks on the region.

In the future, other extension languages like Python or Caml might be supported. We also
plan to use them for other purposes, like executable markup (similar to Java scripts). Executable
markup may actually occur in several ways: as scripts, as formulas in a spreadsheet, or as executable
enhancements of a style file.

5. Conclusion

We hope that the present paper (or, even better: the actual TEXMACS program) convinced the
reader that structured wysiwyg editing of mathematical texts is possible and desirable. A careful
analysis of the psychological factors that lead to the rejection of (structured) wysiwyg editors in
the past makes it possible to eliminate these drawbacks in the future. Despite a few temporary
shortcomings (mainly speed), TEXMACS presently shows that it indeed possible to efficiently edit
structured documents in a wysiwyg manner.

Joris van der Hoeven 7

Actually, we conjecture that, within five years, most mathematicians, physicists, computer sci-
entists, etc. will use wysiwyg editors to write their documents. Furthermore, such wysiwyg editors
may grow into real “technical office platforms”, capable of producing and visualizing documents or
web pages, and interacting with computer algebra systems and numerical analysis programs.

In our opinion it is important that such tools can be used freely by scientists and others. In
this light, TEXMACS is not just a structured wysiwyg editor: it is also a free editor. The fact that
TEX and LATEX are free programs made it possible to share knowledge about techniques for
beautiful and efficient electronic typesetting, and many people contributed to their development
with pleasure. This has been a good tradition: we have to ensure that the benefits of TEX and
LATEX will live and honor the scientific tradition of free exchange by carrying it on.

P.S.: the present document was written using TEXMACS.

8 GNU TeXmacs:

A free, structured, wysiwyg, technical text editor

