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It is well known that Hardy �elds can be extended with integrals, exponentials and
solutions to Pfa�an �rst order di�erential equations f 0 = P (f) / Q(f). From the
formal point of view, the theory of transseries allows for the resolution of more general
algebraic di�erential equations. However, until now, this theory did not admit a sat-
isfactory analytic counterpart. In this paper, we will introduce the notion of a transse-
rial Hardy �eld. Such �elds combine the advantages of Hardy �elds and transseries.
In particular, we will prove that the �eld of di�erentially algebraic transseries over
Rffx¡1gg carries a transserial Hardy �eld structure. Inversely, we will give a su�cient
condition for the existence of a transserial Hardy �eld structure on a given Hardy �eld.

1. Introduction

A Hardy �eld is a �eld of in�nitely di�erentiable germs of real functions near in�nity.
Since any non-zero element in a Hardy �eld H is invertible, it admits no zeros in a suitable
neighbourhood of in�nity, whence its sign remains constant. It follows that Hardy �elds
both carry a total ordering and a valuation. The ordering and valuation can be shown to
satisfy several natural compatibility axioms with the di�erentiation, so that Hardy �elds
are models of the so called theory of H-�elds [AD02, AD01, AD04].

Other natural models of the theory of H-�elds are �elds of transseries [Hoe97, Sch01,
MMD97, MMD99, Kuh00, Hoe06]. Contrary to Hardy �elds, these models are purely
formal, which makes them particularly useful for the automation of asymptotic cal-
culus [Hoe97]. Furthermore, the so called �eld of grid-based transseriesT (for instance) sat-
is�es several remarkable closure properties. Namely, T is di�erentially Henselian [Hoe06,
theorem 8.21] and it satis�es the di�erential intermediate value theorem [Hoe06, the-
orem 9.33].

Now the purely formal nature of the theory of transseries is also a drawback, since it is
not a priori clear how to associate a genuine real function to a transseries f , even in the
case when f satis�es an algebraic di�erential equation over the set Rffx¡1gg of convergent
power series in x¡1 for x ! 1. One approach to this problem is to develop Écalle's
accelero-summation theory [Éca85, Éca87, Éca92, Éca93, Bra91, Bra92], which constitutes
a more or less canonical way to associate analytic functions to formal transseries with a
�natural origin�. In this paper, we will introduce another approach, based on the concept
of a transserial Hardy �eld .

�. This work has partially been supported by the ANR Gecko project.
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Roughly speaking, a transserial Hardy �eld is a truncation-closed di�erential sub�eld T
ofT, which is also a Hardy �eld. The main objectives of this paper are to show the following
two things:

1. The di�erentially algebraic closure in T of a transserial Hardy �eld can be given
the structure of a transserial Hardy �eld.

2. Any di�erentially algebraic Hardy �eld extension of a transserial Hardy �eld, which
is both di�erentially Henselian and closed under exponentiation, admits a transse-
rial Hardy �eld structure.

We have chosen to limit ourselves to the context of grid-based transseries. More generally,
an interesting question is which H-�elds can be embedded in �elds of well-based transseries
and which di�erential �elds of well-based transseries admit Hardy �eld representations. We
hope that work in progress [ADH05, ADH] on the model theory of H-�elds and asymptotic
�elds will enable us to answer these questions in the future.

The theory of Hardy �elds admits a long history. Hardy himself proved that the �eld
of so called L-functions is a Hardy �eld [Har10, Har11]. The de�nition of a Hardy �eld
and the possibility to add integrals, exponentials and algebraic functions is due to Bour-
baki [Bou61]. More generally, Hardy �elds can be extended by the solutions to Pfa�an �rst
order di�erential equations [Sin75, Bos81] and solutions to certain second order di�erential
equations [Bos87]. Further results on Hardy �elds can be found in [Ros83a, Ros83b, Ros87,
Bos82, Bos86]. The theory of transserial Hardy �elds can be thought of as a systematic
way to deal with di�erentially algebraic extensions of any order.

The main idea behind the addition of solutions to higher order di�erential equations to
a given transserial Hardy �eld T is to write such solutions in the form of �integral series�
over T (see also [Hoe05]). For instance, consider a di�erential equations such as

f 0=e¡2e
x
+ f2;

for large x� 1. Such an equation may typically be written in integral form

f =
R
e¡2e

x
+

R
f2:

The recursive replacement of the left-hand side by the right-hand side then yields a �con-
vergent� expansion for f using iterated integrals

f =
R
e¡2e

x
+

R
(
R
e¡2e

x
)2+2 (

R
e¡2e

x
) (

R
(
R
e¡2e

x
)2)+ ���;

where we understand that each of the integrals in this expansion are taken from +1:

(
R
g)(x)=

Z
1

x

g(t) dt:

In order to make this idea work, one has to make sure that the extension of T with
a solution f of the above kind does not introduce any oscillatory behaviour. This is done
using a combination of arguments from model theory and di�erential algebra.

More precisely, whenever a transseries solution f to an algebraic di�erential equation
over T is not yet in T , then we may assume the equation to be of minimal �complexity�
(a notion which re�nes Ritt rank; see section 2.3). In section 2, we will show how to put
the equation in normal form

Lf =P (f); (1.1)

where P 2T fF g=T [F ;F 0;F 00; :::] is a �small� di�erential polynomial and L2T [@] admits
a factorization

L=(@ ¡ '1) ��� (@ ¡ 'r)
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over the complexi�cation T [i] of T . In section 4, it will be show how to solve (1.1) using
iterated integrals, using the fact that the equation (@ ¡ ') f = g admits e

R
' R

e¡
R
' g as

a solution. Special care will be taken to ensure that the constructed solution is again real
and that the solution admits the same asymptotic expansion over T as the formal solution.

Section 3 contains some general results about transserial Hardy �elds. In particular,
we prove the basic extension lemma: given a transseries f and a real germ f̂ at in�nity
which behave similarly over T (both from the asymptotic and di�erentially algebraic points
of view), there exists a transserial Hardy �eld extension of T in which f and f̂ may be
identi�ed. The di�erential equivalence of f and f̂ will be ensured by the fact that the
equation (1.1) was chosen to be of minimal complexity. Using Zorn's lemma, it will �nally
be possible to close T under the resolution of real di�erentially algebraic equations. This
will be the object of the last section 5. Throughout the paper, we will freely use notations
from [Hoe06]. For the reader's convenience, some of the notations are recalled in section 2.1.
We also included a glossary at the end.

It would be interesting to investigate whether the theory of transserial Hardy �elds
can be generalized so as to model some of the additional compositional structure on T.
A �rst step would be to replace all di�erential polynomials by restricted analytic func-
tions [DMM94]. A second step would be to consider postcompositions with transseries x+�
such that �= o(x), starting with �su�ciently �at� transseries f for which Taylor's formula
holds:

f � (x+ �)= f + f 0 �+
1
2
f 00 �2+ ���:

This requires the existence of suitable analytic continuations of f in the complex domain.
Typically, if f 2T��g with g2T>;� (see section 2.1 for the notations), then f � ginv should
be de�ned on some sector at in�nity (notice that this can be forced for the constructions
in this paper). Finally, more violent di�erence equations, such as

f(x)=
1

ee
ex
+ f(x+1);

generally give rise to quasi-analytic solutions. From the model theoretic point view, they
can probably always be seen as convergent sums.

Finally, one may wonder about the respective merits of the theory of accelero-summa-
tion and the theory of transserial Hardy �elds. Without doubt, the �rst theory is more
canonical and therefore has a better behaviour with respect to composition. In particular,
we expect it to be easier to prove o-minimality results [Dri98]. On the other hand, many
technical details still have to be worked out in full detail. This will require a certain
e�ort, even though the resulting theory can be expected to have many other interesting
applications. The advantage of the theory of transserial Hardy �elds is that it is more
direct (given the current state of art) and that it allows for the association of Hardy �eld
elements to transseries which are not necessarily accelero-summable.

2. Preliminaries

2.1. Notations
Let T=R[[[x]]]=R[[T]] be the totally ordered �eld of grid-based transseries in x!1
with real coefficients [Hoe06]. Any transseries is an infinite linear combination f =P

m2T fm m of transmonomials, with grid-based support supp f � T. If f =/ 0, then
the largest element of supp f for 4 is written df and called the dominant monomial
of f . Transmonomials m;n; ::: are systematically written using the fraktur font. Each trans-
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monomial is an iterated logarithm loglx of x or the exponential of a transseries g with n�1
for each n2supp g. The asymptotic relations4;�;�;�;��;��;¡̀a and¡�� onT are de�ned by

f 4 g () f =O(g)

f � g () f = o(g)

f � g () f 4 g4 f
f � g () f ¡ g� g
f �� g () log jf j4 log jg j
f �� g () log jf j � log jg j
f ¡̀a g () log jf j � log jg j
f ¡�� g () log jf j � log jg j:

Given v=/ 1, one also de�nes variants of 4;�, etc. modulo �atness:

f 4v g () 9m�� v; f 4 gm
f �v g () 8m�� v; f � gm
f 4v

� g () 9m�� v; f 4 gm
f �v

� g () 8m�� v; f � gm:

It is convenient to use relations as superscripts in order to �lter elements, as in

T> = ff 2T: f > 0g
T=/ = ff 2T: f =/ 0g
T� = ff 2T: f � 1g:

Similarly, we use subscripts for �ltering on the support:

f� =
X

m2supp f ;m�1
fmm

f��v =
X

m2supp f ;m��v
fmm

T� = ff�: f 2Tg
T��v = ff��v: f 2Tg:

We denote the derivation on T w.r.t. x by @ and the corresponding distinguished inte-
gration (with constant part zero) by

R
. The logarithmic derivative of f is denoted by f y.

The operations " and # of upward and downward shifting correspond to postcomposition
with exp x resp. log x. We �nally write f P g if the transseries f is a truncation of g, i.e.
m� supp f for all m2 supp(g¡ f).

2.2. Di�erential �elds of transseries and cuts
Given f 2T, we de�ne the canonical span of f by

span f =max
��
fe¡d(log(m/n)):m; n2 supp f ;m=/ ng: (2.1)

Here the maximum is taken over a �nite set, since f is grid-based. By convention, span f=1
if supp f contains less than two elements. We also de�ne the ultimate canonical span of f by

uspan f =min
��
fspan f�v: v2 supp f g: (2.2)

Here the minimum is again taken over a �nite set. We notice that uspan f =/ 1 if and only
if supp f admits no minimal element for 4.

4 Transserial Hardy fields



Example 2.1. We have

span
�
1+

e¡x

1¡ x¡1

�
= e¡x

uspan
�
1+

e¡x

1¡ x¡1

�
= x¡1

Consider a di�erential sub�eld T of T and let v 2 T�. We say that T has span v,
if span f �� v for all f 2 T and span f ¡̀a v for at least one f 2 T (notice that we do not
require v2e¡T). Since T is stable under di�erentiation, we have v��x¡1 as soon as T *R.
Notice also that we must have T �T��v if T has span v.

A transseries f 2T n T is said to be a serial cut over T , if '2T for every 'C f and
supp f admits no minimal element for 4. In that case, let m 2 supp f be maximal for 4
such that m¡1 supp f4m�� uspan f . Then Hf = f�m and Tf = f4m are called the head
and the tail of f . We say that f is a normal serial cut if f 2T��uspan f, which implies in
particular that Hf =0.

Assuming that T has span v, any serial cut over T is necessarily inT��v. We will denote
by T̂ the set of all f 2T��v which are either in T or serial cuts over T with uspan f ¡̀a v.
Notice that T̂ is again a di�erential sub�eld of T��v.

The above de�nitions naturally adapt to the complexi�cations T[i] and T [i] of T and
di�erential sub�elds T of T. If T has span v, then the set T̂ [i] coincides with the set of
all f 2T��v[i] =T[i]��v which are either in T [i] or serial cuts over T [i] with uspan f ¡̀a v.

2.3. Complements on di�erential algebra

Let T be a di�erential �eld. Following [Kol73, Hoe06], we denote by T fF g the ring of
di�erential polynomials in F over T and by T hF i its quotient �eld. Given P 2T fF g and
i 2N, we recall that Pi denotes the homogeneous part of degree i of P . We will denote
by LP the linear operator in T [@] with LPF =P1(F ). Assuming that P 2T fF gnT , we also
denote the order of P by rP , the degree of P in F (rP) by sP and the total degree of P by tP .
The Ritt rank of P is de�ned to be the pair (rP ; sP). The triple �P =(rP ; sP ; tP) will be
called the complexity of P . Both Ritt ranks and complexities are ordered lexicographically.
Sometimes, we will also write deg P = tP for the total degree of P in F ; :::; F (rp) and
valP 6 degP for the corresponding valuation of P .

As usual, we will denote the initial and separant of P by IP resp. SP and setHP=IP SP .
Given P ; Q2T fF g with P 2/ T , Ritt reduction of Q by P provides us with a relation

IP
�SP

�Q=AP +R; (2.3)

where A2T fF g[@] is a linear di�erential operator, �; �2N and the remainder R2T fF g
satis�es �R< �P . If R=0, then this simpli�es into a relation

HP
�Q=AP ;

by replacing �!max (�; �) and A! IP
max(�;�)¡�

SP
max(�;�)¡�

A.
Let K be a di�erential �eld extension of T . An element f 2K is said to be di�erentially

algebraic over T if there exists an annihilator P 2 T fF g n T with P (f) = 0. An annihi-
lator P of minimal complexity �P will then be called a minimal annihilator and �f=�P is
also called the complexity of f over T . The order rf= rP of such a minimal annihilator P
is called the order of f over T . We say that K is a di�erentially algebraic extension of T
if each f 2K is di�erentially algebraic over T .
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We say that T is di�erentially closed in K, if K n T contains no elements that are
di�erentially algebraic over T . Given �2N3 (resp. r2N), we say that T is �-di�erentially
closed (resp. r-di�erentially closed) in K if �f > � (resp. rf > r) for all f 2 K n T . We
say that T is weakly di�erentially closed if every P 2 T fF g n T admits a root in T . We
say that T is weakly r-di�erentially closed if every P 2 T fF g n T of order 6 r admits
a root in T .

Given a di�erential polynomial P 2 T fF g and ' 2 T , we de�ne the additive and
multiplicative conjugates of P by ':

P+'(F ) = P (F + ')

P�'(F ) = P ('F ):

We have P+'; P�'2T fF g and

�P+' = �P

�P�' = �P

IP+' = IP ;+'

IP�' = 'rP IP ;�'

SP+' = SP ;+'

SP�' = 'SP ;�'

We also notice that additive and multiplicative conjugation are compatible with Ritt reduc-
tion: given '2T and assuming (2.3), we have

IP+'
� SP+'

� Q+' = AP+'+R+'

IP�'
� SP�'

� Q�' = '�rP+�AP�'+ '�rP+�R�':

Remark 2.2. The compatibility of Ritt's reduction theory with additive and multiplicative
conjugation holds more generally for rings of di�erential polynomials in a �nite number of
commuting partial derivations (or with a �nite dimensional Lie algebra of non-commuting
derivations). Similar compatibility results hold for upward shiftings or changes of deriva-
tions (in the partial case, this requires the rankings to be order-preserving).

In the case when T is a di�erential sub�eld of T=R[[T]], we recall that a di�erential
polynomial P 2 T fF1; :::; Fkg may also be regarded as a series in RfF1; :::; Fkg[[T]]. In
particular, we may write P =DP dP +RP for each P 2T fF1; :::; Fkg, where the dominant
partDP 2RfF1; :::;FKg is de�ned to be the coe�cient of dP in P , so thatRP�P . Similarly,
elements P /Q of the fraction �eld T hF1; :::;Fki of T fF1; :::;Fkg may be regarded as series
with coe�cients in RhF1; :::; Fki. Indeed, writing P =DP dP +RP and Q=DQ dQ+RQ,
where DP dP denotes the dominant term of P , we may expand

P
Q
=
DP

DQ
� dP
dQ
�
1+

RP
DP dP

1+
RQ

DQ+dQ

In the case when P ; Q2R[[b1; :::; bn]]fF1; :::; Fkg for some transbasis B= fb1; :::; bng in
the sense of [Hoe06, section 4.4], then P and P /Q may also be expanded lexicographically
with respect to bn; :::; b1.
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2.4. Linear di�erential operators and factorization
Let T be a di�erential �eld and consider a linear di�erential operator L2T [@]=/ . We will
denote the order of L by rL and recall from [Hoe06, section 7.2] that (Lf)/ f is a di�erential
polynomial of order rL¡1 in f y, called the di�erential Riccati polynomial of L. Writing RL
for this polynomial, we thus have Lf =RL(f y) f . Given  2T , we de�ne the multiplicative
conjugate L� and the twist Ln by

L� = L 

Ln =  ¡1L 

We notice that Ln is also obtained by substituting @+ y for @ in L. We say that L splits
over T , if it admits a complete factorization

L= c (@ ¡ '1) ��� (@ ¡ 'r) (2.4)

with c; '1; :::; 'r2T . In that case, each of the twists Ln of L also splits:

Ln = c (@+  y¡ '1) ��� (@+  y¡ 'r):

We say that T is r-linearly closed if any linear di�erential operator of order 6 r splits
over T .

Proposition 2.3. If T is weakly (r¡ 1)-di�erentially closed, then T is r-linearly closed.

Proof. The proof proceeds by induction on r. Let L 2 T [@] be of order r > 0. Then the
di�erential Riccati polynomial RL has order r¡1, so it admits a root 'r2T . Division of L
by @¡ 'r in T [@] yields a factorization L=L~ (@¡ 'r) where L~2T [@] has order r¡ 1. By
the induction hypothesis, L~ splits over T , whence so does L. �

Proposition 2.4. Let L2T [@]=/ be an operator which splits over T and let A;B 2T [@] be
such that L=AB. Then A and B split over T.

Proof. This follows from the Jordan-Hölder theorem for submodules of T [@]. �

Assume now that T is a totally ordered di�erential �eld. A monic operator L2T [@]=/
is said to be an atomic real operator if L has either one of the forms

L = @ ¡ '; '2T
L = (@ ¡ ('¡  i +  y)) (@ ¡ ('+  i)); ';  2T

A real splitting of an operator L2T [@]=/ over T is a factorization of the form

L=K1 ���Ks; (2.5)

where each Ki is an atomic real operator. A splitting (2.4) over T [i] is said to preserve
realness, if it gives rise to a real splitting (2.5) forKi=(@¡'ij) orKi=(@¡'ij) (@¡'ij+1)
and i1< ���< is.

Proposition 2.5. Let L 2 T [@]=/ be an operator which splits over T [i]. Then L admits
a real splitting over T.

Proof. Assuming that L 2/ T , we claim that there exists an atomic real right factor
K 2T [@] of L. Consider a splitting (2.4) over T [i]. If 'r2T , then we may takeK=@¡'r.
Otherwise, we write

L= c�(@ ¡ '�1) ��� (@ ¡ '�r)
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and take K to be the least common multiple of @ ¡ 'r and @ ¡ '�r in T [i]. Since K =K� ,
we indeed have K 2T [@]. Since @ ¡ 'r jL and @ ¡ '�r jL, we also have K jL. In particular,
proposition 2.4 implies that K splits over T [i]. Such a splitting is necessarily of the form

K=(@ ¡ ('¡  i +  y)) (@ ¡ ('+  i)); ';  2T ;

whence K is atomic. Having proved our claim, the proposition follows by induction on r.
Indeed, let L~ 2T [@] be such that L~K =L. By proposition 2.4, L~ splits over T [i]. By the
induction hypothesis, L~ therefore admits a real splitting L~ =K1 ���Ks over T . But then
L=K1 ���KsK is a real splitting of L. �

Corollary 2.6. An operator L 2 T [@]=/ is atomic if and only if L is irreducible over T
and L splits over T [i].

2.5. Factorization at cuts
Let T be a di�erential sub�eld of T of span v. Given P 2 T [i]fF g and f 2 T̂ [i], we say
that P splits over T̂ [i] at f , if LP+f and P have the same order r and LP+f splits over T̂ [i].

Lemma 2.7. Let T be a di�erential sub�eld of T of span v. Let P 2T [i]fF g be a minimal
annihilator of a di�erentially algebraic cut f 2 T̂ [i] over T [i], which splits over T̂ [i] at f.
Then any minimal annihilator Q2T [i]hf ifF�g of f� over T [i]hf i splits over T̂ [i] at f�.

Proof. Since P�(f�)=0, Ritt division of P� by Q yields

HQ
� P�=AQ (2.6)

for some �2N and A2T [i]hf ifF�g[@]. Additive conjugation of (2.6) yields

HQ+f�
� P�+f�=AQ+f�: (2.7)

By the minimality hypothesis for Q, we have LQ+f�;rQ = SQ(f�) =/ 0 and HQ(f�) =/ 0, so
that val Q+f�= 1 and valHQ+f�= 0. Similarly, we have val P�+f�= 1. Consequently, when
considering the linear part of the equation (2.7), we obtain

HQ+f�;0
� LP�+f�=A0LQ+f�;

whence LQ+f� divides LP�+f� in T [i]hf i[@]. Now LP+f splits over T̂ [i][@], whence so does LP�+f�.
By proposition 2.4, we infer that LQ+f� splits over T̂ [i][@]. Since SQ(f�) =/ 0, we also have
rLQ+f�

= rQ and we conclude that Q splits over T̂ [i] at f�. �

Corollary 2.8. Let T be a di�erential sub�eld of T of span v. Let P 2 T [i]fF g be
a minimal annihilator of a di�erentially algebraic cut f 2 T̂ [i] over T [i], which splits
over T̂ [i] at f. Then any minimal annihilator R2T [i]hf ifGg of Re f over T [i]hf i splits
over T̂ [i] at Re f.

Proof. Applying the lemma to Q = R/2;¡f, we see that LQ+f� splits over T̂ [i]. Now
Q+f�=R+Re f ;/2, whence LR+Re f ;/2 and LRRe f=LR+Re f ;/2;�2 also split over T̂ [i]. �

Lemma 2.9. Let T be a di�erential sub�eld of T of span v, such that T̂ [i] is r-linearly
closed. Let P 2 T [i]fF g be a minimal annihilator of a di�erentially algebraic cut f 2 T̂ [i]
over T [i], such that P has order r. Assume that Re f 2/ T and let S 2T fGg be a minimal
annihilator of Re f over T. Then S splits over T̂ [i] at Re f.

8 Transserial Hardy fields



Proof. Let R be as in the above corollary, so that R splits over T̂ [i] at Re f . Since R has
minimal complexity and S(Re f)=0, Ritt division of S by R yields

HR
�S=AR

for some �2N and A2T[i]hf ifGg[@]. Additive conjugation and extraction of the linear
part yields

HS+Re f ;0
� LS+Re f=A0LR+Re f ;

so LR+Re f divides LS+Re f in T̂ [i][@]. Since the separants of R and S do not vanish at Re f ,
we have

rLR+Re f
= rR = tr deg (T [i]hf ;Re f i: T [i]hf i)

= tr deg (T [i]hRe f ; Im f i:T [i])¡ tr deg (T [i]hf i: T [i])
= tr deg (T hRe f ; Im f i: T )¡ tr deg (T [i]hf i: T [i])

rLS+Re f
= rS = tr deg (T hRe f i: T )

= trdeg (T hRe f ; Im f i: T )¡ tr deg (T hRe f ; Im f i:T hRe f i)

and

rS¡ rR = tr deg (T [i]hf i: T [i])¡ tr deg (T hRe f ; Im f i: T hRe f i) 6 r:

Consequently, the quotient of LS+Re f and LR+Re f has order at most r, whence it splits

over T̂ [i]. It follows that LS+Re f splits over T̂ [i] and S splits over T̂ [i] at Re f . �

2.6. Normalization of linear operators

Let T be a di�erential sub�eld of T of span v�� x. Recall from [Hoe06, Section 7.7] that
Lh= 0 with L 2 T [i][@] admits a canonical fundamental system of oscillatory transseries
solutions �L= fh1; :::; hrg �O with log h1; :::; log hr 2T��v[i]. We will denote by HL the
set of dominant monomials of h1; :::; hr. The neglection relation on T is extended to O by
f �1 if and only if f = f; 1 e

i 1+ ���+ f; p e
i p with f; 1; :::; f; p2T[i]� and  1; :::;  p2T.

We say that L is normal , if we have hi�v1 or Re loghi� logv for each i. In that case,
any quasi-linear equation of the form

Lf = g; f 4v1

with g2T��v[i] admits L¡1 g as its only solution in T��v[i]. If L is a �rst order operator of
the form L=@¡ ', then L is normal if and only if Re '> c vy for some c> 0 or Re '�vy.
In particular, we must have '<v1 and Re '< vy.

Proposition 2.10. Let L2T [i][@] n T [i].

a) There exists a �2R such that Lnv� is normal.

b) If L is normal and �> 0, then Lnv� is normal.

Proof. Let �L= fh1; :::; hrg. For each �2R, the operator Lnv� admits h1/v�; :::; hr/v�

as solutions, which implies in particular that HLnv�=v¡�HL. Now Re log (hi/v�)4 logv,
Re log hi4 log v for all i. Choosing � su�ciently large, it follows that hi/v��v1 for all i
with Re log (hi/v�) 4 log v, so that Lnv� is normal. Similarly, if hi �v 1 for some i with
Re log (hi/v�)4 log v, then hi�vv

� for all �> 0. �
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Proposition 2.11. Consider a normal operator L2T [i][@], which admits a splitting

L=(@ ¡ '1) ��� (@ ¡ 'r)

with '1; :::; 'r2T [i]. Then each @ ¡ 'i is a normal operator.

Proof. We will call h 2T��v[i] e
iT��v normal, if @ ¡ hy is normal. Let us �rst prove the

following auxiliary result: given ' 2 T [i] and h 2 T��v[i] e
iT��v such that @ ¡ ' and h

are normal and h = dh 2/ H@¡', then (@ ¡ ') h is also normal. If Re log h � log v, then
0 =/ (@ ¡ ') h �v

� h, whence Re log (@ ¡ ') h = Re log h + O(log v) � log v. In the other
case, we have h �v 1. Now if hy � ', then (@ ¡ ') h �v 1, since ' <v 1. If hy � ', then
h 2/ H@¡' implies 1 2/ H(@¡')nh, whence ' ¡ hy � 1 / (x log x ���). It again follows that
(@ ¡ ')h<vh/(x log x ���)�v1.

Let us now prove the proposition by induction on r. For r=1, we have nothing to do,
so assume that r > 1. Since L~ = (@ ¡ '2) ��� (@ ¡ 'r) is normal, the induction hypothesis
implies that @ ¡ 'i is normal for all i> 2. Now let h be the unique element in �L n �L~.
Since h is normal, (@¡'i) ��� (@¡'r)h is also normal for i=r; :::;2, by the auxiliary result.
We conclude that @ ¡ '1 is normal, since '1=(L~ h)y. �

Let L and �L = fh1; :::; hrg be as above. The smallest real number � > 0 with
log hi 4v v

¡� for all i will be called the growth rate of L, and we denote �L = �. For all
�2R, we notice that �Lnv�= �L.

Proposition 2.12. Let K;L2T [i][@] be operators of the same order with

K =L+ ov(v
rL�LL):

Then HK=HL.

Proof. Given h2�L, we have

Knh=Lnh+ ov(Lnh);

since hy�v log h4 v¡�L. In particular, Knh;0�vK, whence 12HKnh and dh2HK. �

Proposition 2.13. Given a splitting

L=(@ ¡ '1) ��� (@ ¡ 'r)

with '1; :::; 'r2T��v[i], we have 'i4vv
¡�L for all i.

Proof. Assume for contradiction that 'i �v v
¡�L for some i and choose i maximal with

this property. Setting

K =(@ ¡ 'i+1) ��� (@ ¡ 'r);
the transseries

h=K¡1(e
R
'i)2T��v[i] e

R
'i

satis�es Lh=0, as well as logh�v'i�vv
¡�L. But such an h cannot be a linear combination

of the hi with log hi4vv¡�L. �

Remark 2.14. It can be shown (although this will not be needed in what follows) that an
operator L2T [i][@] splits over T̂ [i] if and only if there exists an approximation L~2T [i][@]
with L~ ¡ L 4v v

� which splits over T [i] for every � 2 R. In particular, T̂ [i] is r-linearly
closed if and only if T [i] is r-linearly closed over T̂ [i].
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2.7. Normalization of quasi-linear equations
Assume now that T is a di�erential sub�eld of T of span v��x. We say that P is normal
if LP is normal of order rP and P=/1�vv

rP�LPLP . In that case, the equation

P (f)=0; f 4v1 (2.8)

is quasi-linear and it admits a unique solution in T��v. Indeed, let f 2 T��v be the
distinguished solution to (2.8). By proposition 2.12, the operator LP+f is normal. If f~2
T��v were another solution to (2.8), then df~¡f would be in HL+f, whence f~� 1, which is
impossible.

Proposition 2.15. Let T be a di�erential sub�eld of T of span v. Let P 2 T [i]fF g be
a minimal annihilator of a di�erentially algebraic cut f 2 T̂ [i] over T [i]. Then there exists
a truncation 'C f and �2R such that P+';�v� is normal.

Proof. Let P~ = P+f and � = rLP~ �LP~. Modulo a multiplicative conjugation by v� for
some �> 0, we may assume without loss of generality that P~� LP~. Modulo an additive
conjugation by f<v1, we may also assume that f �v1. For any �; �> 0 and '= f<vv

�C f ,
we have

P+'=P~+'¡f =P~+ ov(v
�P~);

whence

P+';�v�=P~1;�v�+Ov(v
2�P~)+ ov(v

�P~): (2.9)

Since SP(f)=/ 0, we have P~1=/ 0. By proposition 2.10, there exists a �>� for which LP~;nv�
is normal. Now take �= �+ �. Denoting N = P+';�v�, proposition 2.12 and (2.9) imply

that LN is normal with �LN= � and N=/1�vv
�P~1;�v�� v�LN. �

We say that P 2 T [i]fF g is split-normal , if P is normal and LP can be decomposed
LP = L + K such that L splits over T [i] and K �v vrL�L L. In that case, we may also
decompose P (F )=LF +R(F ) for R(F )=P=/1(F )+KF with R�vv

rL�LL. If L is monic,
then we say that P is monic split-normal . Any split-normal equation (2.8) is clearly
equivalent to a monic split-normal equation of the same form.

Proposition 2.16. Let T be a di�erential sub�eld of T of span v such that T̂ [i] is r-linearly
closed. Let P 2T [i]fF g be a minimal annihilator of a di�erentially algebraic cut f 2T̂ [i] of
order r over T [i]. Let S2T fF g be a minimal annihilator of Re f and assume that rS>rP.
Then there exists a truncation 'CRe f and �2R such that S+';�v� is split-normal.

Proof. By proposition 2.15 and modulo a replacement of f by v¡� (f ¡'), we may assume
without loss of generality that S is normal. By lemma 2.9, S splits over T̂ [i] at Re f . Let
c; '1; :::; 's2 T̂ [i] be such that

LS+f= c (@ ¡ '1) ��� (@ ¡ 's):

Setting �= s �LS, we notice that LS=LS+f+ ov(v
�LS). Now take

L= c<vv�dc (@ ¡ '1;<vv�) ��� (@ ¡ 's;<vv�)2T [i][@]:

Then L= LS + ov(v
�LS) and proposition 2.12 implies that L is normal, with �L= �LS=

�LS+f. Denoting R(F )=S(F )¡LF , we �nally have R�vv
s�LL. �
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3. Transserial Hardy fields

3.1. Transserial Hardy �elds
Let T=R[[[x]]] =R[[T]] be the �eld of grid-based transseries [Hoe06] and G the set of
in�nitely di�erentiable germs at in�nity. A transserial Hardy �eld is a di�erential sub-
�eld T � R of T, together with a monomorphism �: T ! G of ordered di�erential
R-algebras, such that

TH1. For every f 2T , we have supp f �T .

TH2. For every f 2T , we have f�2T .

TH3. There exists an integer d2Z such that logm2T +R logdx for all m2T\T .
TH4. The set T\T is stable under taking real powers.

TH5. We have �(log f)= log �(f) for all f 2T > with log f 2T .

In what follows, we will always identify T with its image under �, which is necessarily
a Hardy �eld in the classical sense.

We always have d>0, since T is stable under di�erentiation. The incomplete transbasis
theorem (see [Hoe06, section 4.4] and below) implies the following properties. If there exist
an m2T\T with logm2/ T , then the integer d in TH3 is unique and called the depth of T .
In that case, f "d is exponential for all f 2T and T contains logd¡1x. If T =/ R and logm2T
for all m 2 T \ T , then TH3 is satis�ed for all su�ciently large d and the depth of T is
de�ned to be +1. Notice that T contains logkx for all su�ciently large k in that case.

Example 3.1. The �eld T = R is clearly a transserial Hardy �eld. As will follow from
theorem 3.12 below, other examples are

R(xR) =
[

�1;:::;�k2R
R(x�1; :::; x�k)

R(eRx) =
[

�1;:::;�k2R
R(e�1x; :::; e�kx):

Remark 3.2. Although the axioms TH4 and TH5 are not really necessary, TH4 allows
for the simpli�cation of several proofs, whereas it is natural to enforce TH5. Notice
that TH5 automatically holds for f 2T > with f � 1 since

�(log f)0= �((log f)0)= �(f 0/f)= �(f)0/�(f)= (log �(f))0;

whence �(log f) = log �(f) + c for some c 2 R. Since both �(log f) ¡ log f� and
log �(f) ¡ log f� are in�nitesimal in G, we have c = 0. Consequently, it su�ces to
check TH5 for monomials f 2T \T with log f 2T .

Proposition 3.3. Let T be a transserial Hardy �eld with x2T. Then the upward shift T "
of T carries a natural transserial Hardy �eld structure with �(f ")= �(f) � ex.

Proof. The �eld T " is stable under di�erentiation, since f "0=(x f 0)" for all f 2T . �

Corollary 3.4. If T has depth d<1, then T "d is a transserial Hardy �eld of depth 0.

We recall that a transbasis B is a �nite set of transmonomials fb1; :::; bng with

TB1. b1; :::; bn� 1 and b1�� ��� �� bn.

TB2. b1= logd¡1x for some d2Z.
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TB3. log bi2R[[b1; :::; bi¡1]] for all 1< i6n.
If d=0, then B is called a plane transbasis and R[[b1; :::; bn]] is stable under di�erentia-
tion. The incomplete transbasis theorem for T also holds for transserial Hardy �elds:

Proposition 3.5. Let B � T be a transbasis and f 2 T. Then there exists a transbasis
B̂�T with B̂�B and f 2R[[BR]]. Moreover, if B is plane and f is exponential, then B̂
may be taken to be plane.

Proof. The same proof as for [Hoe06, Theorem 4.15] may be used, since all �eld operations,
logarithms and truncations used in the proof can be carried out in T . �

Given a set F of exponential transseries in T , the transrank of F is the minimal
cardinal n of a plane transbasis B= fb1; :::; bng with F �R[[b1; :::; bn]]. This notion may
be extended to allow for di�erential polynomials P in F (modulo the replacement of P by
its set of coe�cients).

Remark 3.6. The span and ultimate span of f 2T are not necessarily in T . Nevertheless,
if span f =/ 1 and B= fb1; :::;bng�T is a transbasis for f , then we do have span f ¡̀abi for
some i (and similarly for the ultimate span of f).

3.2. Cuts in transserial Hardy �elds
Let T be a transserial Hardy �eld. Given f 2T and f̂ 2 G, we write f � f̂ if there exists
a '2T with

f �T ' �G f̂ :

We say that f and f̂ are asymptotically equivalent over T if for each '2T (or, equivalently,
for each 'C f), we have

f ¡ '� f̂ ¡ ':

We say that f and f̂ are di�erentially equivalent over T if

P (f)= 0 , P (f̂ )= 0

for all P 2T fF g.

Lemma 3.7. Let T be a transserial Hardy �eld and let f 2T n T be di�erentially algebraic
over T. Let m2 supp f be maximal for <, such that '= f�m2/ T. If ' is a serial cut over T,
then ' is di�erentially algebraic over T and �'6 �f.

Proof. Let P 2 T fF g be a minimal annihilator of f . Modulo upward shifting, we may
assume without loss of generality that P and f are exponential. Since '2T̂ , all monomials
in supp ' are in T , whence there exists a plane transbasis fb1; :::; bng � T for P and '.
Modulo subtraction of H' from f and ', we may assume without loss of generality that
H'=0. Let k be such that uspan' ¡̀abk and let b1

�1 ��� bn
�n be the dominant monomial of '.

Modulo division of f and ' by bk+1
�k+1 ��� bn

�n, we may also assume that ' is a normal serial
cut. But then the equation P (f)= 0 gives rise to the equation P��bk(')=0 for '= f��bk.
The complexity of P��bk is clearly bounded by �P = �f . �

Lemma 3.8. Let T be a transserial Hardy �eld and v2T \T�. Let f 2T��v and f̂ 2 G be
such that f and f̂ are both asymptotically and di�erentially equivalent over T��v. Then f
and f̂ are both asymptotically and di�erentially equivalent over T.
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Proof. Given '2T , we either have '�v
� 1 and

f ¡ ' �T ¡' �G f̂ ¡ '
or '4v

� 1, in which case

f ¡ ' �T f ¡ '�v
�1 � f̂ ¡ '�v

�1 �G f̂ ¡ ':

This proves that f and f̂ are asymptotically equivalent over T .
As to their di�erential equivalence, let us �rst assume that f is di�erentially transcen-

dent over T��v. Given R2T fF g=/ , let us denote

DR= dR
¡1R�v

�dR2T��v:

We have DR(f)=/ 0, DR(f̂)=/ 0 and

R(f) �v
� DR(f) dR (3.1)

R(f̂ ) �v
� DR(f̂) dR; (3.2)

whence R(f)=/ 0 and R(f̂)=/ 0.
Assume now that f is di�erentially algebraic over T��v and let P 2T��vfF g be a minimal

annihilator. Given Q2T fF g, Ritt reduction of Q w.r.t. P gives

IP
�SP

�Q=AP +R;

where A2T fF g[@] and R2T fF g is such that �R<�P . Since �HP <�P and HP 2T��v,
we both have HP(f)=/ 0 and HP(f̂)=/ 0, whence

Q(f) =
R(f)

IP(f)�SP(f)
�

Q(f̂) =
R(f̂)

IP(f̂)�SP(f)�
:

If R = 0, this clearly implies R(f) = R(f̂) = 0. Otherwise, DR vanishes neither at f nor
at f̂ and the relations (3.1) and (3.2) again yield R(f)=/ 0 and R(f̂ )=/ 0. We conclude that
either Q(f)=Q(f̂)= 0 or Q(f)Q(f̂)=/ 0. �

Lemma 3.9. Let T be a transserial Hardy �eld and let f 2 T̂ nT be a di�erentially algebraic
cut over T with minimal annihilator P. Let f̂ 2 G be a root of P such that f and f̂ are
asymptotically equivalent over T. Then f and f̂ are di�erentially equivalent over T.

Proof. Let v2T be such that uspan f ¡̀av. Modulo some upward shiftings, we may assume
without loss of generality that f and P are exponential. Modulo an additive conjugation
by Hf and a multiplicative conjugation by df , we may also assume that f is a normal
cut. Modulo a division of P by dP and replacing P by P��v, we may �nally assume that
P 2T��vfF g.

Now consider Q2 T��vfF g=/ with �Q< �P . Since Q(f) =/ 0, there exists a 'C f with
f ¡ '�v1 and Q+';=/0�vQ('). But then

Q(f̂)=Q(')+Q+';=/0(f̂ ¡ ')�Q(')=/ 0:

For general Q2T fF g, we use Ritt reduction of Q w.r.t. P and conclude in a similar way
as in the proof of lemma 3.8. �
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3.3. Elementary extensions

Lemma 3.10. Let f 2Tn T and f̂ 2G nT be such that

i. f is a serial cut over T.
ii. f and f̂ are asymptotically equivalent over T.

iii. f and f̂ are di�erentially equivalent over T.
Then T hf i carries the structure of a transserial Hardy �eld for the unique di�erential
morphism �:T hf i!G over T with �(f)= f̂.

Proof. Modulo upward shifting, an additive conjugation by Hf and a multiplicative con-
jugation by df, we may assume without loss of generality that f is an exponential normal
serial cut. Let v2T be such that uspan f ¡̀av. We have to show that T hf i is closed under
truncation and that P (f)�P (f̂) for all P 2T fF g with P (f)=/ 0 (this implies in particular
that � is increasing). Notice that supp f �T implies T hf i \T= T \T.

Truncation closedness. Given P 2T hF i, let us prove by induction on the transrank n of
fP ; f g that P (f)�2T hf i. So let fb1; :::; bng be a plane transbasis for P and f . Assume
�rst that bn�� v. Writing

P =
X
�2R

P� bn
�2R[[b1; :::; bn¡1]]hF i[[bn]];

the sum

P�bn
=

X
�>0

P� bn
�

is �nite, whence

P (f)�bn
=P�bn

(f)=
X
�>0

P�(f) bn
�2T hf i:

By the induction hypothesis, we also have P0(f)�2T hf i and P (f)�2T hf i. If bn ¡̀av, then

P (f)�=P (')�

for a su�ciently large truncation 'C f , whence P (f)�2T .

Preservation of dominant terms. Given P 2 T fF g with P (f) =/ 0, let us prove by
induction on the transrank n of fP ; f g that P (f) � P (f̂). Let fb1; :::; bng be a plane
transbasis for P and f and assume �rst that v �� bn. Since P (f) =/ 0, there exists
a maximal � with P�(f)=/ 0, when considering P =

P
�2RP� bn

� as a series in bn. But then

P (f)�P�(f) bn��P�(f̂) bn��P (f̂);

by the induction hypothesis. If bn ¡̀a v, then there exists an � 2 R such that, for all
su�ciently large truncations 'C f , the Taylor series expansion of P ('+(f ¡ ')) yields

P (f) = P (')+Ov((f ¡ ') v�)
P (f̂ ) = P (')+Ov((f̂ ¡ ') v�):

Taking 'C f such that (f ¡ ') v��vP (f), we obtain

P (f)�P (')�P (f̂):
This completes the proof. �

Theorem 3.11. Let T be a transserial Hardy �eld. Then its real closure T rcl admits
a unique transserial Hardy �eld structure which extends the one of T.
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Proof. Assume that T rcl=/ T and choose f 2T rclnT of minimal complexity. By lemma 3.7,
we may assume without loss of generality that f is a serial cut. Consider the monic minimal
polynomial P 2T [F ] of f . Since P 0(f)=/ 0, we have

deg4f¡'P+'=1

for a su�ciently large truncation 'C f of f (we refer to [Hoe06, Section 8.3] for a de�nition
of the Newton degrees deg4 P ). But then

P+'(g)= 0; g4 f ¡ ' (3.3)

admits unique solutions g and ĝ in T resp. G, by the implicit function theorem. It follows
in particular that f = '+ g. Let f̂ = '+ ĝ and consider  with 'P  C f . Then

P (f)¡P ( ) � P+ ;1 (f ¡  )
P (f̂)¡P ( ) � P+ ;1 (f̂ ¡  )

Since P (f) = P (f̂ ) = 0, we obtain f ¡  � f̂ ¡  , whence f and f̂ are asymptotically
equivalent over T . By lemmas 3.9 and 3.10, it follows that T hf i carries a transserial Hardy
�eld structure which extends the one on T . Since (3.3) has a unique solution ĝ in G, this
structure is unique. We conclude by Zorn's lemma. �

3.4. Exponential and logarithmic extensions

Theorem 3.12. Let T be a transserial Hardy �eld and let '2T� be such that e'2/ T. Then
the set T (eR') carries the structure of a transserial Hardy �eld for the unique di�erential
morphism �:T (eR')!G over T with �(e�')= e��(') for all �2R.

Proof. Each element in f=T (eR') is of the form f=R(e�1'; :::;e�k') for R2T (F1; :::;Fk)
and Q-linearly independent �1; :::; �k 2 R. Given R 2 T (F1; :::; Fk), let fb1; :::; bng be
a transbasis for R. We may write

e'=e'~ bi
�i ��� bn

�n

with bi¡1 �� e'~ �� bi (or the obvious adaptations if i = 1 or i = n + 1). Modulo the
substitution of ' by �i logbi+ ���+�n logbn+'~, we may assume without loss of generality
that �i= ���=�n=0.

If bn�� e', then we may regard f =
P

�2Rf� e
�' as a convergent grid-based series in e'

with coe�cients in T \R[[b1; :::; bn]]. In particular,

f�=

" X
�sign'>0

f� e�'
#
+ f0;�2T (eR'):

Furthermore, if f admits � as its dominant exponent in e', then f � f� e�' holds both in
T and in G.

If e'�� bn, then we may consider R as a series

R2S := (T \R[[b1; :::; bi¡1]])(F1; :::; Fk)[[bi; :::; bn]]

in bi; :::; bn. Since T is closed under truncation, both R�bi
and R�bi

lie in S, whence

f�=R�bi
(e�1'; :::; e�k')+R�bi

(e�1'; :::; e�k')�2T (eR');

by what precedes. Similarly, if R�i;:::;�n bi
�i ��� bn

�n is the dominant term of R as a series in
bi; :::; bn and c e�' is the dominant term of R�i;:::;�n(e

�1'; :::; e�k') as a series in e' (with
c2T \R[[b1; :::; bi¡1]]), then f � c e�' bi

�i ��� bn
�n holds both in T and in G.
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This shows that T (eR') is truncation closed and that the extension of � to T (eR') is
increasing. We also have T (eR')\T=(T \T) eR'. In other words, T (eR') is a transserial
Hardy �eld. �

Theorem 3.13. Let T be a transserial Hardy �eld of depth d < 1. Then T ((logd x)R)
carries the structure of a transserial Hardy field for the unique differential morphism
�:T ((logdx)R)!G over T with �((logdx)�)= (logdx)� for all �2R.

Proof. The proof is similar to the proof of theorem 3.12, when replacing e' by loglx. �

3.5. Complex transserial Hardy �elds
Let T be a transserial Hardy �eld. Asymptotic and di�erential equivalence over T [i] are
de�ned in a similar way as over T .

Proposition 3.14. Let T be a transserial Hardy �eld. Let f 2T[i] be a serial cut over T [i]
and f̂ 2G[i]. Then f and f̂ are asymptotically equivalent over T [i] if and only if Re f and
Re f̂ as well as Im f and Im f̂ are asymptotically equivalent over T.

Proof. Assume that f and f̂ are asymptotically equivalent over T [i] and let ' C Re f .
Consider  =(Im f)�Re f¡'P Im f . We have '+ iC f , so that f ¡'¡ i� f̂ ¡'¡ i.
Moreover, f ¡'¡ i�Re f ¡', whence Re f ¡'�Re f̂ ¡' and Re f�Re f̂ . The relation
Im f� Im f̂ is proved similarly. Inversely, assume that Re f and Re f̂ as well as Im f and
Im f̂ are asymptotically equivalent over T . Given 'C f , we have Re '; Im '2T , whence
there exist g;h2T with Re f ¡Re'� g�Re f̂ ¡Re' and Im f ¡ Im'�h� Im f̂ ¡ Im'.
It follows that f ¡ '� g+h i� f̂ ¡ ', whence f � f̂ . �

Proposition 3.15. Let T be a transserial Hardy �eld, f 2T and f̂ 2G. Then f and f̂ are
di�erentially equivalent over T [i] if and only if they are di�erentially equivalent over T.

Proof. Di�erential equivalence over T [i] clearly implies di�erential equivalence over T .
Assuming that f and f̂ are di�erentially equivalent over T , we also have

P (f)=0, (ReP )(f)= 0^ (ImP )(f)=0, (ReP )(f̂)= 0^ (ImP )(f̂)= 0,P (f̂)=0

for every P 2T [i]fF g. �

Remark 3.16. Given f 2 T and f̂ 2 G, it can happen that f and f̂ are di�erentially
equivalent over T [i], without Re f and Re f̂ being di�erentially equivalent over T . This
is for instance the case for T =R(xR), f = ex and f̂ = i ex. Indeed, the di�erential ideals
which annihilate f resp. f̂ are both F 0¡F .

Most results from the previous sections generalize to the complex setting in a straight-
forward way. In particular, lemmas 3.7, 3.8 and 3.9 also hold over T [i]. However, the
fundamental extension lemma 3.10 admits no direct analogue: when taking f 2T[i] n T [i]
and f̂ 2 G[i] n T [i] such that the complexi�ed conditions i , ii and iii hold, we cannot
necessarily give T hRe f i the structure of a transserial Hardy �eld. This explains why some
results such as lemmas 2.9 and 2.16 have to be proved over T instead of T [i]. Of course,
theorem 3.11 does imply the following:

Theorem 3.17. Let T be a transserial Hardy �eld. Then there exists a unique algebraic
transserial Hardy �eld extension T rcl of T such that T rcl[i] is algebraically closed.
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4. Analytic resolution of differential equations

Recall that G stands for the di�erential algebra of in�nitely di�erentiable germs of real
functions at +1. Given x0 2 R, we will denote by Gx0 the di�erential subalgebra of
in�nitely di�erentiable functions on [x0;1). We de�ne a norm on Gx0

4 =ff 2Gx0: f 41g by

kf kx0= sup
x>x0

jf(x)j

Given r2N, we also denote Gx0;r
4 = ff 2Gx0: f ; :::; f (r)4 1g and de�ne a norm on Gx0;r

4 by

kf kx0;r=max fkf kx0; :::; kf (r)kx0g:
Notice that

kf gkx0;r6 2r kf kx0;r kgkx0;r:

An operator K: Gx0!Gx0 (resp. K: Gx0!Gx0;r) is said to be continuous if there exists an
M 2R with kKf kx06M kf kx0 (resp. kKf kx0;r6M kf kx0) for all f 2 Gx0. The smallest
such M is called the norm of K and denoted by 9K9x0 (resp. 9K9x0;r). The above
de�nitions generalize in an obvious way to the complexi�cations Gx0

4 [i] and Gx0;r
4 [i].

4.1. Continuous right-inverses of �rst order operators
Let T be a transserial Hardy �eld of span v�� ex. Consider a normal operator @ ¡ ' with
' 2 T [i] and let x0 be su�ciently large such that Re ' does not change sign on [x0;1).
We de�ne a primitive �2G of ' by

�(x)=

( R
1
x
'(t) dt if ' is integrable at 1R

x0

x
'(t) dt otherwise

Decomposing �=<+= i, we are either in one of the following two cases:

1. The repulsive case when e<�v1.

2. The attractive case when both e<�v1 and e<�� v.

Notice that the hypothesis v�� ex implies R0=Re '< vy< 1.

Proposition 4.1. The operator J =(@ ¡ ')x0
¡1, de�ned by

(Jf)(x) =

8<: e�(x)
R
1
x
e¡�(t) f(t) dt (repulsive case)

e�(x)
R
x0

x
e¡�(t) f(t) dt (attractive case)

(4.1)

is a continuous right-inverse of L= @ ¡ ' on G4[i], with

9J9x0 6




 1

Re '






x0

: (4.2)

Proof. In the repulsive case, the change of variables <(t)=u yields

(Jf)(x) = e�(x)
Z
1

<(x)
e¡u¡=(<

inv(u))i f(<inv(u))

<0(<inv(u))
du :

It follows that

j(Jf)(x)j 6 e<(x)
Z
1

<(x)
e¡u kf kx





 1
<0






x

du = kf kx




 1
<0






x
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for all x>x0, whence (4.2). In the attractive case, the change of variables ¡<(t)=u leads
in a similar way to the bound

j(Jf)(x)j 6 e<(x)
Z
¡<(x0)

¡<(x)
eu kf kx0





 1
<0






x0

du

= [1¡ e<(x)¡<(x0)] kf kx0




 1
<0






x0

6 kf kx0




 1
<0






x0

;

for all x> x0, using the monotonicity of <. Again, we have (4.2). �

Corollary 4.2. In the attractive case, the operator

J�: f 7¡! (Jf)(x)+� e�(x) kf kx0

is a continuous right-inverse of L on G4[i], for any �2C.

4.2. Continuous right-inverses of higher order operators
Let T be a transserial Hardy �eld of span v�� ex. A monic operator L2T [i][@] is said to
be split-normal , if it is normal and if it admits a splitting

L=(@ ¡ '1) ��� (@ ¡ 'r) (4.3)

with '1; :::; 'r2T [i]. In that case, proposition 2.11 implies that each @¡'i is a normal �rst
order operator. For a su�ciently large x0, it follows that L admits a continuous �factorwise�
right-inverse Jr ��� J1 on G[i]4, where Ji=(@ ¡ 'i)x0

¡1. We have

9Jr ��� J19x0 6 9Jr9x0 ���9J19x0:

Proposition 4.3. v�Jr ���J1: Gx0
4 [i]!Gx0;r

4 [i] is a continuous operator for every � >r �L.

Proof. Given f 2 G4[i], the the �rst r derivatives of (v�Jr ��� J1) f satisfy

[(v�Jr ��� J1) f ](i) =
X
j=r¡i

r

ci;j (v
�Jj ��� J1) f ;

with

c0;r = 1

ci+1;j = ci;j
0 + � vy ci;j+ 'j ci;j+

1

 j+1
ci;j+1:

By proposition 2.13 and induction on i, we have ci;j 4v v
¡i�L for all i; j. Since � > r �L,

it follows that

k[(v�Jr ���J1) f ](i)kx0 6 Ci kf kx0; (4.4)

for all f 2G4[i] and i, where

Ci =
X
j=r¡1

r

kv� ci;jkx09Jj9x0 ���9J19x0:

We conclude that

9v�Jr ���J19x0;r6max fC0; :::; Crg: �

Proposition 4.4. If L 2 T [@] and the splitting (4.3) preserves realness, then Jr ��� J1
preserves realness in the sense that it maps Gx0

4 into itself.
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Proof. It clearly su�ces to prove the proposition for an atomic real operator L. If L has
order 1, then the result is clear. Otherwise, we have

L=(@ ¡ (a¡ b i + by)) (@ ¡ (a+ b i))

for certain a; b2T . In particular, we are in the same case (attractive or repulsive) for both
factors of L. Setting '= a+ b i, let � = <+ = i be as in the previous section. Consider
f 2Gx0

4 and g=J2J1 f . In the repulsive case, we have

g(x)= b(x) e�
�(x)

Z
x0

xe2i=(t)

b(t)

Z
x0

t

e¡�(u) f(u) du dt:

In particular, we have g(x0) = g 0(x0) = 0, whence g 2 Gx0
4 , since g satis�es the di�erential

equation Lg= f of order 2 with real coe�cients. In the attractive case, we have

g(x)= b(x) e�
�(x)

Z
1

xe2i=(t)

b(t)

Z
1

t

e¡�(u) f(u) dudt;

so that g; g 04v1. Since Lg=Lg�= f , the di�erence g�¡ g satis�es L(g�¡ g)=0. Now 0 is
the only solution with h4v1 to the equation Lh=0. This proves that g�= g. �

4.3. The �xed point theorem
Let T be a transserial Hardy �eld of span v�� ex and consider a monic split-normal quasi-
linear equation

Lf =P (f); f � 1; (4.5)

where L 2 T [i][@] has order r and P 2 T [i]fF g has degree d. Of course, we understand
that L is a monic split-normal operator with P �vv

r�L. We will denote by vP > r �L the
valuation of P in v (i.e. P �vv

vP for P =/ 0 and v0=1). We will show how to construct
a solution to (4.5) using the �xed-point technique.

Proposition 4.5. Given � with r �L < � < vP, let Jr;nv� ��� J1;nv� be a continuous
factorwise right-inverse of Lnv� beyond x0 and consider the operator

�: f 7¡! (Jr ��� J1)(P (f)) (4.6)

on Gx0;r
4 . Then there exists a constant Cx0 with

k�(f + �)¡�(f)kx0;r 6 Cx0 (1+ ���+ kf kx0;r
d ) (k�kx0;r+ ���+ k�kx0;r

d ); (4.7)

for all f ; � 2 Gx0;r
4 .

Proof. Consider the Taylor series expansion

P (f + �) =
X
i

P (i)(f) �(i)

=
X
i

"X
j

Pj
(i)
f (j)

#
�(i)

Since Pj
(i)�vv� for all i and j, we may de�ne Ax0 by

Ax0=
X
i;j



v¡�Pj(i)

x0 (4.8)

and obtain

kv¡� (P (f + �)¡P (f))kx06Ax0 (1+ ���+ kf kx0;rd ) (k�kx0;r+ ���+ k�kx0;r
d ):
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On the other hand, for each g 2Gx0 with g4 v�, we have

k(Jr ���J1)(g)kx0;r = k(v�Jr;nv� ��� J1;nv�)(v¡� g)kx0;r 6 Bx0 kv¡� gkx0;
where

Bx0=9v�Jr;nv� ���J1;nv�9x0;r (4.9)

Consequently, the proposition holds for Cx0=Ax0Bx0. �

Theorem 4.6. Let (4.5) be a monic split-normal equation and let � be such that r �L <
�<vP. Then for any su�ciently large x0, there exists a continuous factorwise right-inverse
Jr;nv� ��� J1;nv� of Lnv�, such that the operator (4.6) satis�es

k�(f + �)¡�(f)kx0;r6
1

2
k�kx0;r (4.10)

for all

f ; � 2B
�
Gx0;r
4 ;

1

2

�
=

n
f 2Gx0;r

4 : kf kx0;r6
1

2

o
:

Moreover, taking x0 such that kP0kx0;r 6
1

4
, the sequence �(n)(0) tends to a unique �xed

point f 2B(Gx0;r
4 ;

1

2
) for the operator �.

Proof. Since v¡� Pj
(i)� 1 for all i; j, the number Ax0 from (4.8) tends to 0 for x0!1.

When constructing J1;nv� ; :::; Jr;nv� using proposition 4.1, the number Bx0 from (4.9)
decreases as a function of x0. Taking x0 su�ciently large so that Cx0 = Ax0 Bx0 6

1

4
, we

obtain (4.10). By induction over n, it follows that

k�n(0)¡�n¡1(0)kx0;r 6
1

2n+1

k�n(0)kx0;r 6
1
2
¡ 1

2n+1
:

Now let Ĝx0;r
4 be the space of r times continuously di�erentiable functions f on [x0;1),

such that f ; :::; f (r) are bounded. This space is complete, whence �n(0) converges to a limit
f 2 B(Ĝx0;r

4
;
1

2
). Since this limit satis�es the equation (4.5), the function f is actually

in�nitely di�erentiable, i.e. f 2B(Gx0;r
4 ;

1

2
). �

4.4. Asymptotic analysis
With the notations from the previous section, assume now that T [i] is (1;1;1)-di�erentially
closed in T[i]��v, i.e. any solution f 2T[i]��v to an equation (@ ¡ ') f = g with '; g 2T [i]
is already in T [i]. Each Ji is the right-inverse of an operator @ ¡ 'i with 'i 2 T [i]. Now
@ ¡ 'i also admits a formal distinguished right-inverse J~i. Consequently, the operator �
also admits a formal counterpart

�~: f 7¡! (J~r ��� J~1)(P (f)):
For each n2N, we have

�~n+1(0)¡�~n(0)�v�~
n(0)

so the sequence �~n(0) also admits a formal limit f~ in T̂ [i]. In order to show that the
�xed point f from proposition 4.6 and f~ are asymptotically equivalent over T [i], we need
some further notations. Given f 2G4[i] and f~2T [i], let us write f � f~ if f ¡ f~� vR, i.e.
f ¡ f~� v� for all �2R. We also write f �r f~ if f � f~; :::; f (r)� f~(r).
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Proposition 4.7. For f ; g 2 G4[i], f~; g~2T [i] and r 2N, we have

f �r f~^ g�r g~ ) f + g�r f~+ g~

f �r f~^ g�r g~ ) f g�r f~g~
f �r+1 f~ ) f 0�r f~0

Proof. Trivial. �

Proposition 4.8. For f 2G4[i], f~2T [i] and r 2N with f ; f~�vv
�, we have

f �r f~) Ji f �r+1 J~i f~:

Proof. Let us �rst show that

f � 0) Ji f �1 0: (4.11)

Given �> � with f 4 v�, we have Ji;nv� (v¡� f)4 1, whence Ji f 4 v�. Moreover,

(Ji f)
0=  i

¡1 f + ' (Ji f); (4.12)

whence f 4 v�) (Ji f)
0 4 v�+� for some �xed �. This proves (4.11). More generally,

r additional applications of (4.12) yield

f �r 0) Ji f �r+1 0:

Now assume that f �r f~ and write

Ji f ¡ J~i f~= Ji (f ¡ f~)+ (Ji¡ J~i) (f~):

By what precedes, we have Ji(f ¡ f~)�r+1 0. On the other hand,

(Ji¡J~i)(f~)= c e
R
'i

for some c2C. Since @¡'i is normal, we either have e
R
'i�vR (in which case (e

R
'i)(i)�vR

for all i2N) or c=0. In both cases, we get (Ji¡ J~i)(f~)�r+1 0, so that Ji f �r+1J~i f~. �

Theorem 4.9. Let T be a transserial Hardy �eld of span v�� ex such that T [i] is (1; 1; 1)-
di�erentially closed in T��v. Consider a monic split-normal quasi-linear equation (4.5)
without solutions in T. Then there exist solutions f 2G[i] and f~2 T̂ [i] to (4.5), such that f
and f~ are asymptotically equivalent over T [i].

Proof. With the above notations, let f and f~ be the limits in G[i] resp. T̂ [i] of the
sequences �n(0) resp. �~n(0). Given g 2T [i], there exists an n with

�n+1(0)¡�n(0)�v g:

At that point, we have

f ¡ g��n(0)¡ g��~n(0)¡ g� f~¡ g

In other words, f and f~ are asymptotically equivalent over T [i]. �

Theorem 4.10. Let T be a transserial Hardy �eld of span v�� ex. Consider a monic split-
normal quasi-linear equation (4.5) without solutions in T such that L and P have coe�cients
in T. Assume that one of the following conditions holds:

a) T is (1; 1; 1)-di�erentially closed in T��v and rL= rP =1.

b) T [i] is (1; 1; 1)-di�erentially closed in T[i]��v.
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Then there exist solutions f 2 G and f~2 T̂ to (4.5), such that f and f~ are asymptotically
equivalent over T.

Proof. In view of propositions 2.5 and 4.4, we may assume that Jr ��� J1 and � preserve
realness in all results from sections 4.3 and 4.4. In particular, the solutions f and f~ in the
conclusion of theorem 4.9 are both real. �

5. Differentially algebraic Hardy fields

5.1. First order extensions

Lemma 5.1. Let T be a transserial Hardy �eld of span v �� ex. Let L = @ ¡ ' 2 T [@] be
a normal operator. Let f~ 2 T̂ 4 and g 2 T 4 be such that f~ is transcendental over T and
Lf~= g. Then there exists an f 2G4 with Lf = g, such that f and f~ are both di�erentially
and asymptotically equivalent over T.

Proof. With the notations of section 4.1, let f =Jg. Given a truncation  C f~, we claim
that

f ¡  �J(g¡ ( 0¡ ' )):
Indeed, consider

�=  ¡J( 0¡ ' )2R e�:

In the attractive case,  �v e
� implies � = 0. In the repulsive case, we have e� �v

� 1 and
again �� 0. By proposition 4.8, we also have

f~¡  =J~(g¡  0+ ' )� J(g¡  0+ ' ):

Since  0 ¡ '  =/ g, it follows that f~¡  � f ¡  , whence f and f~ are asymptotically
equivalent over T . Furthermore, LF ¡ g is a minimal annihilator of f~ over T , since f~
is transcendental over T . Lemma 3.9 therefore implies that f and f~ are di�erentially
equivalent over T . �

Theorem 5.2. Let T be a transserial Hardy �eld. Let T fo� T be the smallest di�erential
sub�eld of T, such that for any P 2T fofF g=/ with rP 6 1 and f 2T we have P (f)=0)
f 2T fo. Then the transserial Hardy �eld structure of T can be extended to T fo.

Proof. By theorems 3.11, 3.12 and 3.13, we may assume that T is closed under the
resolution of real algebraic equations, exponentiation and logarithm. Assume that T fo=/ T
and let P 2 T fF g=/ be of minimal complexity �P = (1; s; t), such that P (f) = 0 for some
f 2T fo. Without loss of generality, we may make the following assumptions:

� f and P are exponential (modulo upward shifting).

� f is a serial cut (by lemma 3.7).

� f is a normal cut (modulo additive and multiplicative conjugations by Hf resp. df).

� P 2T [i]��vfF g, where v2T \T satis�es uspan f ¡̀av (modulo replacing P by P��v).

� P is monic split-normal (modulo proposition 2.16, additive and multiplicative con-
jugations, and division by dP).

By Zorn's lemma, it su�ces to show that T hf i carries the structure of a transserial Hardy
�eld, which extends the structure of T .
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If s= t=1, then lemma 5.1 implies the existence of an f̂ 2 G4 such that f and f̂ are
both asymptotically and di�erentially equivalent over T��v. Hence, the result follows from
lemmas 3.8 and 3.10.

If t> 1, then T and T��v are (1;1;1)-di�erentially closed in T resp. T��v. Now v�� ex,
since f is exponential. Therefore, theorem 4.10 provides us with an f̂ 2G4 with P (f̂ )=0,
such that f and f̂ are asymptotically equivalent over T��v. We conclude by lemmas 3.9, 3.8
and 3.10. �

5.2. Higher order extensions

Lemma 5.3. Let T be a transserial Hardy �eld of span v�� ex. Let L= @ ¡ '2 T [i][@] be
a normal operator. Let f~2 T̂ [i]4 and g 2 T [i]4 be such that Re f~ has order 2 over T and
L f~ = g. Then there exists an f 2 G4[i] with Lf = g, such that Re f and Re f~ are both
di�erentially and asymptotically equivalent over T.

Proof. The fact that f and f~ are asymptotically equivalent over T is proved in a similar
way as for lemma 5.1. It follows in particular that Re f and Re f~ are asymptotically
equivalent. Since lcm(L; L�) annihilates f , f�, f~ and f~

�, it also annihilates both Re f and
Re f~. The fact that Re f~ has complexity (2; 1; 1) over T now guarantees that lcm(L;L�) is
a minimal annihilator of Re f~. We conclude by lemma 3.9. �

Theorem 5.4. Let T be a transserial Hardy �eld. Let T dalg�T be the smallest di�erential
sub�eld of T, such that for any P 2T dalgfF g=/ and f 2T we have P (f)= 0) f 2T dalg.
Then the transserial Hardy �eld structure of T can be extended to T dalg.

Proof. By theorems 3.12, 3.13 and 5.2, we may assume that T is closed under exponen-
tiation, logarithm and the resolution of �rst order di�erential equations. Assume that
T dalg=/ T and let P 2T [i]fF g=/ be of minimal complexity �P =(r; s; t), such that P (f)=0
for some f 2T dalg[i] with Re f 2/ T . Let Q2T fF g be a minimal annihilator of Re f and
notice that rQ> rP , since Re f 2/ T . Without loss of generality, we may make the following
assumptions:

� f , P and Q are exponential (modulo upward shifting).

� f is a serial cut (by the complexi�ed version of lemma 3.7).

� f is a normal cut (modulo additive and multiplicative conjugations by Hf resp. df).

� P 2T [i]��vfF g and Q2T��vfF g, where v2T \T satis�es uspan f ¡̀av (modulo the
replacement of P and Q by P��v resp. Q��v).

� Q is monic split-normal (modulo proposition 2.16, additive and multiplicative con-
jugations, and division by dQ).

By Zorn's lemma, it now su�ces to show that T hRe f i carries the structure of a transserial
Hardy �eld, which extends the structure of T .

If r= s= t=1, then lemma 5.3 and the fact that T is 1-di�erentially closed imply the
existence of an f̂ 2G4[i] such that Re f and Re f̂ are both asymptotically and di�erentially
equivalent over T��v. The result follows by lemmas 3.8 and 3.10.

If �P =/ (1; 1; 1), then T [i] and T [i]��v are (1; 1; 1)-di�erentially closed in T[i] resp.
T[i]��v. Now v �� ex, since f is exponential. Therefore, theorem 4.10 provides us with
a g 2G4 with Q(g)=0, such that Re f and g are asymptotically equivalent over T��v. We
conclude by lemmas 3.9, 3.8 and 3.10. �

Corollary 5.5. There exists a transserial Hardy �eld T, such that for any P 2T fF g and
f ; g 2T with f < g and P (f)P (g)< 0, there exists a h2T with f <h< g and P (h)=0.
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Proof. Take T = R(xR)dalg and endow it with a transserial Hardy �eld structure. Let
P 2T fF g and f ; g2T with f < g be such that P (f) P (g)<0. By [Hoe06, Theorem 9.33],
there exists a h2T with f <h< g and P (h)= 0. But P (h)=0 implies h2T . �

Corollary 5.6. There exists a transserial Hardy �eld T, such that T [i] is weakly di�er-
entially closed.

Proof. Take T =Rdalg. By a straightforward adaptation of [Hoe06, Chapter 8] (see also
[Hoe01, theorem 9.3]), it can be shown that any di�erential equation P (f)=0 of degree d
with P 2T [i]fF g admits d distinguished solutions inT[i] when counting with multiplicities.
Let f be such a solution. Since P (f) = P�(f�) = 0, both Re f and Im f are di�erentially
algebraic over T , whence f 2T [i]. �

Corollary 5.7. There exists a di�erentially Henselian transserial Hardy �eld T, i.e., such
that any quasi-linear di�erential equation over T admits a solution in T.

5.3. Di�erential Newton polynomials for Hardy �elds
Let H be a di�erentially algebraic Hardy �eld extension of a transserial Hardy �eld T .

Proposition 5.8. Given "2H�, there exists an l2N with "� (loglx)¡1.

Proof. The functional inverse j"¡1jinv of j"¡1j satis�es an algebraic di�erential equation
P (j"¡1jinv) = 0 over T . Let Phii f hii be the leading term of P for its logarithmic decom-
position. As in [Hoe06, Section 8.1.4]. there exists an l 2N with P (f) � Phii f

hii for all
f < explx . It follows that j"¡1jinv� explx and "� (loglx)¡1. �

Given a di�erential polynomial P 2 HfF g=/ , we de�ne its dominant part to be the
unique monic DP 2RfF g such that P = `P (DP +EP) for some `P 2H and EP 2HfF g�.
Here DP is said to be monic if its leading coe�cient w.r.t. F (rP); :::; F equals 1.

Theorem 5.9. Given P 2HfF g=/ , there exists a polynomial NP 2R[F ] (F 0)N with

DP "l = NP

EP "l = oex(1)

for all su�ciently large l2N.

Proof. As in the proof of [Hoe06, Theorem 8.6], we have

wtDP >wvDP >wtDP ">wvDP "> ���;

so we may assume without loss of generality that wtDP "i= wvDP "i= w is constant for
all i2N. Now

P " = `P " (DP "+EP ")

= `P " (DP "+EP ")
= `P " (e¡wxDP "+EP ");

whence

`P " = `P " e¡wx (5.1)
DP " = DDP " (5.2)
EP " = EP " ewx: (5.3)
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Indeed, we must have

EP " ewx=(EP[<w]"+EP[>w]") ewx� 1;

because EP[<w]" ewx< 1 would imply wtDP "<w. Applying [Hoe06, Lemma 8.5] to (5.2),
and similarly for P "; P ""; :::, we get

DP "l=DP 2R[F ] (F 0)w

for all l2N.
By proposition 5.8 and (5.3), we have EP ;[>v] �loglx 1 and EP "l+1;[>v] �ex 1 for some

l 2 N. Modulo upward shiftings, we may thus assume without loss of generality that
EP ;[>v] �ex 1. More generally, assume that EP ;[>v] �ex 1 for some v < w. By (5.3), this
implies EP "l;[>v]�ex 1 for all l2N and

EP ";[!] = (EP ;[v]"[!]+EP ;[>v]"[!]) ewx

= e(w¡v)x (EP ;[!]"+ oex(1)); (5.4)

for all ! of weight v. We claim that there exists an l2N with

EP ;[v]� [(logl¡1x)0]w¡v: (5.5)

Assume the contrary and consider a coe�cient EP ;[!] of weight v with

 = EP ;[!]
w¡ vp < (logl¡1x)0

for all l 2N. Without loss of generality, we may assume that  and
R
 are in H. Then

proposition 5.8 implies
R
 < 1 and even

R
 � 1 (by integrating from +1 when possible).

Again by proposition 5.8, it follows that
R
 � logl x and  � (logl x)0 for some l 2N. But

then (5.4) yields

EP "l;[!]= [(loglx)0]v¡w"l (EP ;[!]"l+ oex(1))� 1;

which contradicts the fact that EP "l� 1. The relations (5.5) and (5.4) imply the existence
of an l 2N with EP "l+1;[v]�ex 1. By induction on v =w; w ¡ 1; :::; 0 and modulo upward
shiftings, we may thus ensure that EP ;[>v]�ex 1 for all v6w. �

The polynomial NP in theorem 5.9 is called the di�erential Newton polynomial of P .
The generalization of this concept to H allows us to mimic a lot of the theory from [Hoe06,
chapter 8] in H. In what follows, we will mainly need a few more de�nitions. The Newton
degree of an equation

P (f)=0; f � ' (5.6)

with P 2HfF g and '2H=/ is de�ned by deg�'P =degNP�'. Setting


̂=
1

x log x log2x ���
we also de�ne

deg�
̂P =min
'� 
̂

deg�'P:

We say that f �' is a solution to (5.6) modulo o( );  2T [f
̂g if deg� P+f>0. We say
that H is di�erentially Henselian, if every quasi-linear equation over H admits a solution.
Given a solution f to (5.6), we say that f has algebraic type if NP�f is not homogeneous
and di�erential type in the other case. The following proposition is proved along the same
lines as [Hoe06, proposition 8.16]:
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Proposition 5.10. Let f be a solution to (5.6) of di�erential type and let i be the degree
of NP�f. Then f

y is a solution modulo o(
̂) of RPi.

Remark 5.11. In this section, we assumed that H is a di�erentially algebraic Hardy �eld
extension of a transserial Hardy �eld T . We expect that the theory can be adapted to even
more general H-�eld. This is one of the objectives of a current collaboration with Lou van
den Dries and Matthias Aschenbrenner [ADH].

5.4. Transserial models of di�erentially algebraic Hardy �elds

Theorem 5.12. Let T be a transserial Hardy �eld and H a di�erentially algebraic Hardy
�eld extension of T, such that H is di�erentially Henselian and stable under exponentiation.
Then there exists a transserial Hardy �eld structure on H which extends the structure on T.

Proof. By theorems 3.11, 3.12 and 5.2, we may assume that T is closed under the resolu-
tion of real algebraic equations, exponentiation and integration. Assume that H=/ T and
choose P 2T fF g of minimal complexity �P =(r; s; t), such that either

C1. P (f)=0 for some f 2H.

C2. P (f) = 0 modulo o(m 
̂) for some f 2H, m2 T \T and P admits no roots in T
modulo o(m 
̂). Moreover, T is �P -di�erentially closed in H.

Modulo upward shifting, we may assume without loss of generality that P is exponential.
In view of Zorn's lemma, it su�ces to show that there exists a transserial Hardy �eld
structure on T hf i which extends the structure on T .

Let � be the set of f~2T such that f ¡ f~� supp f~. The set � is totally ordered for P,
so there exists a minimal well-based transseries f~ with 'P f~ for all '2�. We call f~ the
initializer of f over T . Assume �rst that f~ 2 T . Then we may assume without loss of
generality that '=0, modulo an additive conjugation by '. Now f is of di�erential type,
since f �m for no m2T \T. Let i2N be such that RPi(f

y)= 0 modulo o(
̂). Since RPi
has lower complexity than P , there exists a g 2 T with RPi(g) = 0 modulo o(
̂). Since T
is truncation closed we may take g 2 T�
̂. But then f � e

R
g 2 T \ T. This contradiction

proves that we cannot have f~2T .
Let us now consider the case when f~2/ T . Since deg�supp f~P+f~> 0, there exists a root

'Q f~ of P in the set of well-based transseries with complex coe�cients. But P admits only
grid-based solutions, whence f~2T. By construction, f and f~ are asymptotically equivalent
over T . Let v2T \T be such that uspan f~¡̀a v. Modulo an additive and a multiplicative
conjugation we may assume without loss of generality that f~ is a normal cut. In case C2,
we notice that supp f~�m 
̂, whence m�v

� 1, since uspan f~= v. Consequently, we always
have P��v(f~)=0.

We claim that the cuts f and f~ are di�erentially equivalent over T . Assume the
contrary and let Q2T��vfF g be a minimal annihilator of f~. By lemma 2.15 and modulo
an additive and multiplicative conjugation, we may assume without loss of generality that
f~�v1 and that Q is normal. Since H is di�erentially Henselian, it follows that Q admits
a root g �v 1 in H. Now �Q < �P in case C1 and �Q 6 �P in case C2, so this root is
already in T , by the induction hypothesis. But Q admits at most one solution in T��v,
whence f~= g��v2T . This contradiction completes the proof of our claim. By lemma 3.10,
we conclude that T hf i carries the structure of a transserial Hardy �eld extension of T . �

Corollary 5.13. Let T be a transserial Hardy �eld and H a di�erentially algebraic Hardy
�eld extension of T, such that H is di�erentially Henselian. Assume that H admits no non-
trivial algebraically di�erential Hardy �eld extensions. Then H satis�es the di�erential
intermediate value property.
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Proof. The fact that H admits no non-trivial algebraically di�erential Hardy �eld exten-
sions implies that H is stable under exponentiation. By theorem 5.12, we may give H the
structure of a transserial Hardy �eld. By theorem 5.4, we also have T dalg=T . We conclude
in a similar way as in the proof of corollary 5.5. �

It is quite possible that there exist maximal Hardy �elds whose di�erentially algebraic
parts are not di�erentially Henselian, although we have not searched hard for such exam-
ples yet. The di�erentially algebraic part of the intersection of all maximal Hardy �elds
is de�nitely not di�erentially Henselian (and therefore does not satisfy the di�erential
intermediate value property), due to the following result [Bos87, Proposition 3.7]:

Theorem 5.14. Any solution of the equation

f 00+ f =ex
2

is contained in a Hardy �eld. However, none of these solutions is contained in the inter-
section of all maximal Hardy �elds.
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