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1. Introduction

Besides Gröbner basis computations, homotopy methods are a popular technique for
solving systems of polynomial equations. In this paper, we will only consider zero dimen-
sional systems. Given such a system

P (z) = 0, (1)

with P =(P1,	 , Pn) and z=(z1,	 , zn), the idea is to find a suitable starting system

Q(z) = 0 (2)

of which all solutions are known, to introduce the homotopy

H(z, t) = (1− t)P (z)+ tQ(z), (3)

and to compute the solutions to P (z)=0 by following the solutions of Q(z)=0 from t=1
to t=0. Two main approaches exist:

Algebraic homotopies. In this setting, the polynomial equations have exact rational
or algebraic coefficients. The homotopy continuation is done exactly using suitable
resultants. At the end of the homotopy, the solutions of the system P (z) = 0 are
again given exactly, as the solutions of simpler systems. The theory was developed
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in [GHMP95, GHH+97, Dur08] and a concrete implementation is available in the
Kronecker system [Lec01].

Numeric homotopies. An alternative approach is to follow the solution paths using
a numeric path tracking algorithm; see [Mor87, Ver96, SW05] and references therein.
This approach is usually faster, partly because most of the operations can be done
at a significantly lower precision. However, the end result is only approximate. In
particular, it cannot be used for the reliable resolution of overdetermined systems.
Several implementations exist for numeric path tracking [Ver99, BHSW06, Ley09].

It is surprising that little effort has been undertaken so far in order to bring both approaches
closer together. Particularly interesting challenges are how to make numeric homotopy
as reliable as possible and how to reconstruct exact end results from the numeric output.
Part of this situation might be due to the fact that interval analysis [Moo66, AH83, Neu90,
JKDW01, Kul08, MKC09, Rum10] is not so well-known in the communities where homo-
topy methods were developed, with the exception of one early paper [Kea94]. The main
objective paper is to systematically exploit interval analysis techniques in the context of
homotopy continuation. We will show how to certify homotopy continuations as well as
single and multiple solutions of the polynomial system P (z)= 0.

Section 3 is devoted to preliminaries from the area of reliable computation. In sec-
tion 3.1, we start by recalling the basic principles of ball arithmetic [vdH09], which is
a more suitable variant of interval arithmetic for our purposes. In section 3.2, we pursue
by recalling the concept of a Taylor model [MB96, MB04], which is useful in order to
compute with reliable enclosures of multivariate analytic functions on polydisks. We also
introduce a variant of Taylors models in section 3.3, which simultaneously encloses an
analytic function and a finite number of its derivatives. In sections 3.4 and 3.5, we discuss
the well known problem of overestimation which is inherent to ball arithmetic. We will
provide some techniques to analyze, quantify and reduce overestimation.

Before attacking the topic of certified path tracking, it is useful to review the theory
of numeric path tracking first. In section 4, we start with the case of non singular paths,
in which case we use a classical predictor corrector approach based on Euler-Newton’s
method. The goal of a numeric path tracker is to advance as fast as possible on the
solution path while minimizing the risk of errors. Clearly, the working precision has to be
sufficiently large in order to ensure that function evaluations are reasonably accurate. In
section 4.4, we show how to find a suitable working precision using ball arithmetic. We
consider this approach to be simpler, more robust and more general than the one proposed
in [BSHW08]. In order to reduce the risk of jumping from one path to another path, we
also need a criterion for checking whether our numeric approximations stay reasonably
close to the true solution path. A numerically robust way to do this is to ensure that the
Jacobian of H does not change to rapidly during each step; see section 4.5 and [BSHW08]
for a related approach. Another technique is to detect near collisions of paths and undertake
special action in this case; see section 4.6.

In section 5, we turn our attention to homotopies (3) such that the end system (1)
admits multiple solutions. We will see that Euler-Newton iterations only admit a linear
convergence near multiple solutions. Therefore, it is useful to search for alternative itera-
tions which admit a better convergence. Now the solution path near a multiple solution is
given by a convergent Puiseux series in t. When letting t→ e2pi t turn around the origin,
we thus fall on another solution path. The collection of paths which are obtained through
repeated rotations of this kind is called a herd. In sections 5.2 and 5.3, we will describe
a new path tracking method with quadratic convergence, which operates simultaneously
on all paths in a herd. The remaining issue of how to detect clusters and herds will be
described in sections 5.4, 5.5 and 5.6.
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In section 6, we turn our attention to the certification of single roots of (1) and single
steps of a path tracker. An efficient and robust method for the certification of solutions to
systems of non linear equations is Krawczyk’s method [Kra69], with several improvements
by Rump [Rum80]. In section 6.1, we adapt this classical method to the setting of ball
arithmetic. In section 6.2, we will see that an easy generalization of this method provides an
algorithm for certified path tracking. An alternative such algorithm was given in [Kea94],
but the present algorithm presents similar advantages as Krawczyk’s method with respect
to other methods for the certification of solutions to systems of non linear equations.
However, both methods still suffer from overestimation due to the fact that error bounds
are computed on a polydisk which contains the solution path. Using the technique of Taylor
models, we will show in section 6.3 that it possible to compute the error bounds in small
tubes around the actual solution path, thereby reducing the problem of overestimation.

In the last section, we consider the more difficult problem of certifying multiple roots.
Deflation is a classical technique in order to solve this difficulty. However, deflation usually
requires the computation of a large number of derivatives of the system, which becomes
prohibitive for large clusters of solutions. Notice that solutions which tend to infinity should
also be considered as being part of one or more large clusters if we want to compute all
solutions to (1). Our certification strategy is again based on the simultaneous consideration
of all solution paths in a herd. In sections 7.2 and 7.3, we will show that a herd of solution
paths can be considered as a single isolated solution path of a new “suitable fattened”
system of equations. From the complexity point of view, if the herd contains r paths, then
the evaluation of the fattened system is only r times more expensive than the evaluation
of the original system, up to logarithmic factors. Moreover, a single large cluster often
contains many different herds, which can be considered separately for our technique. This
is particularly useful for the separation of the various paths which tend to infinity. In
section 7.4, we will show how to certify the global set of solutions to the system f(z) = 0
and how to reconstruct equations for the exact solutions.

2. Notations

Positive elements. Given a subset R⊆R∪{±∞}, we denote

R> = {x∈R: x> 0}
R> = {x∈R: x� 0}

Vector notation. Unless stated otherwise, we will use the L1-norm for vectors u∈Cn:

‖u‖ = |u1|+
 + |un|. (4)

This norm should not be confused with taking componentwise absolute values

|u| = (|u1|,	 , |un|)

For u, v ∈Rn we also define

u6 v ⇔ u16 v1∧
 ∧un6 vn

u< v ⇔ u1<v1∧
 ∧un<vn

max (u, v) = (max (u1, v1),	 ,max (un, vn))

u · v = u1 v1+
 + un vn

If z1,	 , zn are formal variables, then we write

zu = z1
u1
 zn

un
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Matrix notation. We write Kr×c for the set of r× c matrices over a set K. The matrix
norm of a matrix M ∈Cr×c corresponding to the L1-norm (4) for vectors

‖M ‖ = sup
‖z‖=1

‖Mz‖

=
∑

i

max
j

|Mi,j |.

Directed acyclic graphs. We recall that labeled directed acyclic graphs are often used
for the representation of symbolic expressions with potential common subexpressions. For
instance,

×

+

x y

is a typical dag for the expression (x+ y)2. We will denote by sf the size of a dag f . For
instance, the size of the above dag is sf =4.

3. Reliable arithmetic

3.1. Ball arithmetic

Let us briefly recall the principles behind ball arithmetic. Given a normed vector space K,
we will denote by K or B(K,R) the set of closed balls with centers in K and radii in R>.
Given such a ball z∈B(K,R), we will denote its center by cen(z) and its radius by rad(z).
Conversely, given z ∈K and r∈R, we will denote by z+B(r) the closed ball with center z
and radius r.

A continuous operation f : Kd → K is said to lift into an operation f lift: Kd → K on
balls, which is usually also denoted by f , if the inclusion property

f(x1,	 , xd) ∈ f(x1,	 ,xd) (5)

is satisfied for any x1,	 ,xd∈K and x1∈x1,	 , xd∈xd. We also say that f(x1,	 ,xd) is
an enclosure for the set {f(x1,	 ,xd):x1∈x1,	 , xd∈xd}, whenever (5) holds. For instance,
if K is a Banach algebra, then we may take

x+ y = cen(x)+ cen(y)+B(rad(x)+ rad(y))

x− y = cen(x)− cen(y)+B(rad(x)+ rad(y))

xy = cen(x) cen(y)+B(rad(x) (|cen(y)|+ rad(y))+ |cen(y)| rad(x)).

Similar formulas can be given for division and elementary functions. Certified upper and
lower bounds for |x| will be denoted by ⌈x⌉ = |cen(x)| + rad(x) and ⌊x⌋ = max {0,
|cen(x)| − rad(x)}.

It is convenient to extend the notion of a ball to more general radius types, which only
carry a partial ordering. This allows us for instance to regard a vector x= (x1,	 ,xd) ∈
B(K,R)d of balls as a “vectorial ball” with center cen(x)= (cen(x1),	 , cen(xd))∈Kd and
radius rad(x) = (rad(x1),	 , rad(xd))∈Rd. If x= (x1,	 , xd)∈Kd, then we write x∈x if
and only if xi∈xi for all i∈{1,	 , d}. A similar remark holds for matrices and power series
with ball coefficients.
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In concrete machine computations, numbers are usually approximated by floating point
numbers with a finite precision. Let R̃ be the set of floating point numbers at a given
working precision, which we will assume fixed. It is customary to include the infinities ±∞
in R̃ as well. The IEEE754 standard [ANS08] specifies how to perform basic arithmetic with
floating point numbers in a predictable way, by specifying a rounding mode R∈{↓, ↑, l}
among “down”, “up” and “nearest”. A multiple precision implementation of this standard
is available in the Mpfr library [HLRZ00]. Given an operation f :Rd→R, we will denote
by fR: R̃d→ R̃ its approximation using floating pointing arithmetic with rounding mode R.
This notation extends to the case when R and R̃ are replaced by their complexifications C
and C̃= R̃[i].

Let K=R and K̃= R̃ or K=C and K̃= C̃. We will denote by K̃ or B(K̃, R̃) the set
of closed balls in K with centers in K̃ and radii in R̃>. In this case, we will also allow for
balls with an infinite radius. A continuous operation f :Kd→K is again said to lift to an
operation f : K̃d→ K̃ on balls if (5) holds for any x1,	 ,xd∈ K̃ and x1 ∈ x1, 	 , xd ∈ xd.
The formulas for the ring operations may now be adapted to

x+ y = cen(x)+l cen(y)+B(rad(x)+↑ rad(y)+↑ ǫ+,x,y)

x− y = cen(x)−l cen(y)+B(rad(x)+↑ rad(y)+↑ ǫ−,x,y)

xy = cen(x)×l cen(y)+

B(rad(x)×↑ (|cen(y)|+↑ rad(y))+↑ |cen(y)| ×↑ rad(x)+↑ ǫ×,x,y),

where ǫ+,x,y, ǫ−,x,y and ǫ×,x,y are reliable bounds for the rounding errors induced by the
corresponding floating point operations on the centers; see [vdH09] for more details.

In order to ease the remainder of our exposition, we will avoid technicalities related to
rounding problems, and compute with “idealized” balls with centers inK∈{R,C} and radii
in R>. For those who are familiar with rounding errors, it should not be difficult though
to adapt our results to more realistic machine computations.

Remark 1. In classical interval analysis so called interval lifts of operations f :Kd→K

are sometimes required to satisfy the inclusion monotonicity property

x1⊆ y1∧
 ∧xd⊆ yd � f(x1,	 ,xd)⊆ f(y1,	 , yd),

for all x1,	 ,xn, y1,	 , yn∈K, which clearly implies the usual inclusion property (5). For
floating intervals, it is easy to ensure this stronger property using correct rounding. In the
ball setting, the exact ring operations in R and C are clearly inclusion monotonic, but it
seems cumbersome to preserve this stronger property for floating balls. For this reason, we
systematically develop our theory without assuming inclusion monotonicity.

3.2. Taylor models

If we are computing with analytic functions on a disk, or multivariate analytic functions
on a polydisk, then Taylor models [MB96, MB04] provide a suitable functional analogue
for ball arithmetic. We will use a multivariate setup with z=(z1,	 , zd) as our coordinates
and a polydisk D=B(ρ)= {z, |z |6 |ρ|} for a fixed ρ=(ρ1,	 , ρd)∈ (R>)d. Taylor models
come in different blends, depending on whether we use a global error bound on D or
individual bounds for the coefficients of the polynomial approximation. Individual bounds
are sharper (especially if we truncate up to an small order such that the remainder is not
that small), but more expensive to compute. Our general setup covers all possible blends
of Taylor models.
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We first need some more definitions and notations. Assume that Nd is given the natural
partial ordering. Let ek denote the k-th canonical basis vector of Nd, so that (ek)k = 1
and (ek)l=0 for l� k. For every i∈Nd, recall that ‖i‖= |i1|+
 + |id|. A subset I ⊆Nd

is called an initial segment , if for any i∈ I and j ∈Nd with j 6 i, we have j ∈ I. In that
case, we write I̊ = {i∈I: i+ {e1,	 ,ed}⊆I} and ∂I = I \ I̊ . In what follows, we assume

that I and J are fixed initial segments of Nd with J̊ ⊆ I. For instance, we may take
I = Tn= {i∈Nd: ‖i‖6n} and J = Tn+1 or J = Tn or J = {0}.

Let K=R or K=C. Given a series f =
∑

i∈Nd fi z
i ∈K[[z]], we will write supp f =

{i ∈Nd: fi � 0} for its support . Given a subset S⊆K[[z]] and a subset S ⊆Nd, we write
fS =

∑

i∈S fi z
i and SS = {g ∈ S: supp g ⊆ S}. If f is analytic on D, then we denote its

sup-norm by

‖f ‖D = sup
z∈D

|f(z)|.

A Taylor model is a tuple P = (ρ,I ,J , cen(P ), rad(P )), where ρ, I and J are as above,
cen(P ) ∈ K[z]I and rad(P ) ∈ R[z]J . We will write T = TD,I ,J = BD(K[z]I ,R[z]J )

for the set of such Taylor models. Given P ∈ T and i ∈ Nd, we will also denote
P = cen(P )+BD(rad(P )) and Pi = cen(P )i + B(rad(P )i). Given an analytic function f

on D, we write f ∈P , if there exists a decomposition

f = cen(P )+
∑

i∈J

εi z
i

with εi∈C[[z]] and ‖εi‖D6 rad(P )i for all i. In particular, if f ∈P , then

f(z) ∈
∑

i∈I∪J

Pi z
i,

for any z ∈D. Given two Taylor models P , Q ∈T, we will say that P is included in Q,
and we write P ⊆Q if f ∈Q for any f ∈P . This holds in particular if Pi ⊆Qi for all i,
in which case we say that P is strongly included in Q and write P ⊑Q. We finally define
̟(P )∈C by

̟(P ) = P0+
∑

i� 0

PiB(ρ)i,

so that f(z)∈̟(P ) for all f ∈P and z ∈B(ρ).
Addition, subtraction and scalar multiplication are defined in a natural way on Taylor

models. For multiplication, we need a projection π = πJ :Nd → J with π(i) 6 i for all i
and π(i) = i if i ∈ J . One way to construct such a mapping is as follows. For i ∈ J , we
must take π(i)= i. For i � J , let k be largest such that ik� 0. Then we recursively define
π(i)=π(i− ek). Given P ,Q∈T, we now define their product by

PQ =
∑

i,j∈I

PiQjBD(ρ)
i+j−π(i+j) zπ(i+j).

Using the observation that zi+j ∈BD(ρ)
i+j−π(i+j) zπ(i+j), this product satisfies the inclu-

sion property that f g ∈PQ for any analytic functions f ∈P and Q∈Q on D.

3.3. D-stable Taylor models

For some applications, it is convenient to use Taylor models for enclosing both an analytic
function and a certain number of its derivatives. Let us show how to incorporate this in
our formalism. Throughout this section, we assume that I = J and that D is an initial
segment with D⊆I.

6 Reliable homotopy continuation



Given a Taylor model P ∈TD,I ,I and i∈D, we notice that ∂iP /∂zi can be regarded
as a Taylor model in TD,I ′,I ′ with I ′= {j ∈Nn: i+ j ⊆I}. Let f ∈D→C be an analytic
function and Q∈TD,I ,I. We define the relations ∈D and ⊆D by

f ∈DP � ∀i∈D,
∂if

∂zi
⊆ ∂iP

∂zi

P ⊆DQ � ∀f ∈DP , f ∈DQ.

Clearly, P ⊑Q⇒P ⊆DQ for all P and Q.
Let ω:Cd→C be an operation. Then ω is said to D-lift to TD,I ,I, if for all P1,	 ,Pd∈

TD,I ,I and all f1 ∈D P1, 	 , fd ∈D Pd, we have ω ◦ (f1, 	 , fd) ∈D ω(P1, 	 ,Pd). Addition,
subtraction and scalar multiplication D-lift in the usual way. As to multiplication, we take

P ×DQ =
∑

i,j∈I
i+j∈I

PiQj z
i+j+

∑

i,j∈I
i+j� I
k∈∂I
k6i+j

Ci,j,kPiQjBD(ρ)
i+j−k zk,

with

Ci,j,k = max
l∈D
l6k

(

∂lzi+j

zi+j−l ∂zl

/

∂lzk

zk−l ∂zl

)

.

In order to see that ×D satisfies the D-inclusion property, it suffices to check that

zi+j ∈D zi×D zj

for all i, j ∈I. This is clear if i+ j ∈I. Otherwise,

zi×D zj =
∑

k∈∂I
k6i+j

Ci,j ,kBD(ρ)
i+j−k zk.

For any l∈D with l6 i+ j, there exists a k ∈ ∂I with l6 k6 i+ j. Hence,

∂lzi+j

∂zl
=

∂lzi+j

zi+j−l ∂zl
zi+j−l

∈ ∂lzi+j

zi+j−l ∂zl
BD(ρ)

i+j−k zk−l

=
∂l

∂zl

[(

∂lzi+j

zi+j−l ∂zl

/

∂lzk

zk−l ∂zl

)

BD(ρ)
i+j−k zk

]

⊆ ∂l(zi×D zj)

∂zl
.

In the particularly useful case when I = J = T1 = {i ∈ Nd: ‖i‖ 6 1}, we notice that
Cei,ej,ei=Cei,ej ,ej

=1 for all i� j and Cei,ei,ei=2 for all i.

3.4. Overestimation

The major problem in the area of ball arithmetic is overestimation. For example, even
though the expression x−x evaluates to zero for any x∈R, its evaluation at any ball in R

with a non zero radius is not identically equal to zero. For instance,

(1+B(0.1))− (1+B(0.1)) = B(0.2).

Algorithms which rely on ball arithmetic have to be designed with care in order to avoid
this kind of overly pessimistic error bounds. In particular, if we evaluate a dag using ball
arithmetic, then a symbolically equivalent dag might lead to better error bounds.
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Consider a continuous function f :Kd→K with K as in section 3.1. We recall that f

is said to lift into an operation f lift:Kd→K if the inclusion property

f(x) ∈ f lift(x)

is satisfied for all x∈Kd and x∈x. Clearly, such a lift is not unique: for any ε:Kd→K

with cen ε(x)=0 for all x, the function falt= f lift+ ε is also a lift of f . If we require that
cen f lift(x)= f(cenx), then the best possible lift is given by

fbest(x) = f(cenx)+B( sup
x′∈x

|f(x′)− f(cenx)|).

In general, this lift may be expensive to compute. Nevertheless, its existence suggest the
following definition of the quality of a lift. The overestimation χf lift(x) of f lift at x is
defined by

χf lift(x) =
rad f lift(x)

rad fbest(x)
. (6)

This quantity is easier to study if we let rad x tend to zero. Accordingly, we also define
the pointwise overestimation function χf lift:Kd→R> by

χf lift(x) = limsup
ε→0

χf lift(x+ ε). (7)

Here ε→ 0 means that cenε=0 and rad ε→ 0.
If f lift is computed by evaluating a dag f , then it would be nice to have explicit formulas

for the pointwise overestimation. For radx→0 and assuming that the lift f std is evaluated
using the default ball implementations of +,− and × from section 3.1 , we claim that there
exists a dag ∇̄ f with

rad f std(x+B(ε)) = (∇̄ f) · |ε|+O(ε2),

for ε→ 0. Indeed, we may compute ∇̄ f using the rules

∇̄ c = (0,	 , 0) (c∈K)

∇̄Xk = (0, 	k−1, 0, 1, 0,	 , 0) (k ∈{1,	 , r})
∇̄(f ± g) = ∇̄ f + ∇̄ g

∇̄(f g) = (∇̄ f) |g |+ |f | (∇̄ g),

where Xk stands for the k-th coordinate function. Now we also have

rad fbest(x+B(ε)) = |∇f | · |ε|+O(ε2),

for ε→ 0. Consequently,

χf std(x) = limsup
ε� 0

(∇̄ f)(x) · |ε|
|(∇f)(x)| · |ε| .

If d=1, then this formula simplifies to

χf std(x) =
(∇̄ f)(x)

|f ′(x)| .

Example 2. With d=1, let us compare the dags f =X2− 2X +1 and g=(X − 1)2. We
have ∇̄ f =2X +2 and ∇̄ g=2 |X − 1|, whence

χf std(x) =
|x|+1

|x− 1|
χgstd(x) = 1.
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The example shows that we have an infinite amount of overestimation near double zeros,
except if the dag is explicitly given as a square near the double zero. More generally, for
the dag f =Xn−nXn−1+

(

n

2

)

Xn−2+
 +(−1)n with an n-fold zero, we obtain

χf std(x) =
(|x|+1)n−1

|x− 1|n−1
.

At a distance ε of the zero, ball arithmetic thus produces bounds which are (2/ε)n−1 times
too pessimistic.

Remark 3. An interesting problem is whether a good understanding of the pointwise
overestimation also helps us to bound the overestimation on more general balls. One
concrete question is whether we have

rad f std(x) 6

(

sup
x∈x

χf std(x)

)

rad fbest(x),

for all polynomial dags f and balls x. This inequality seems to hold in all easy cases that
we have looked at, but we do not have a proof that it holds in general.

3.5. Reducing the overestimation

The example 2 shows that standard ball arithmetic generally produces an infinite amount
of overestimation near double or multiple zeros. This raises the problem how to compute
better ball lifts which do not present this drawback.

One possible remedy is to systematically compute the ball lifts using Taylor models.
Indeed, assume that we want to evaluate f at the ball x= c+B(ρ). Let D=B(ρ), I and J
be as in section 3.2 and let T=BD(K[ǫ]I ,R[ǫ]J ) be the corresponding domain of Taylor
models in ǫ= (ǫ1,	 , ǫd). Let ξ= (x1+ ǫ1,	 , xn+ ǫd)∈T

d and consider the Taylor model
evaluation of f at ξ

f(ξ) = P +BD(E).

Then

f tay(x) 6 P std(B(ρ))+B(⌈Estd(B(ρ))⌉)

yields an enclosure of {f(x):x∈x}. Although the evaluation of f tay(x) is usually far more
expensive than the evaluation of f std(x), let us now study how much the overestimation
has been reduced.

Let F =Nd \I and let us introduce the operator D̄F :ε� D̄F(ε), which generalizes the
mapping ε� ε · ∇̄. The operator is defined by induction over the size of f :

(D̄F c)(ε) = 0 (c∈K)

(D̄FXk)(ε) =

{

0 if (0, 	k−1, 0, 1, 0,	 , 0)∈I
εk otherwise

(k ∈{1,	 , r})

(D̄F(f ± g))(ε) = (D̄F f)(ε)+ (D̄F g)(ε)

(D̄F(f g))(ε) = ((D̄F f) |g |+ |f | (D̄F g))(ε)+
∑

i,j∈I\{0}
i+j∈F

εi+j

i! j!
|f (i)| |g(j)|

For ξ=(x1+ ǫ1,	 , xn+ ǫd) as above, we then have

f(ξ) ⊆
(

∑

i∈I

1
i!
f (i)(x) ǫi

)

+BD((D̄
F f)(ρ)).
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Now assume that I = J = Tn= {i ∈Nd: ‖i‖6 n} and let µ be the valuation of f at x. If
µ<n, then we have

rad fbest(x+B(ρ)) = sup
ε∈B(r)

∣

∣

∣

∣

∣

∑

‖i‖=µ

1
i!
f (i)(x) ρi

∣

∣

∣

∣

∣

+O(ρµ+1) (8)

rad f tay(x+B(ρ)) = sup
ε∈B(r)

∣

∣

∣

∣

∣

∑

‖i‖=µ

1
i!
f (i)(x) ρi

∣

∣

∣

∣

∣

+O(ρµ+1) (9)

χf tay(x) = 1. (10)

If µ=n, then we still have (8), but (9) and (10) become

rad f tay(x+B(ρ)) 6 (D̄F f)(ρ)

χf tay(x) = limsup
ε� 0

(D̄F f)(ε)
∣

∣

∣

∑

‖i‖=n

1

i!
f (i)(x) εi

∣

∣

∣

.

If µ>n, then we generally have

χf tay(x) = ∞,

although χf tay(x)<∞ may occur in lucky cases.

4. Numeric path tracking

4.1. General framework

Let Ω be an open subset of Cn and H: Ω×C→Cn an analytic function. We consider H as
a function H(z, t) in z and the time t, where z ∈Ω and t∈C, and also call H a homotopy .
Assuming that H(z1, 1) = 0 for some z1 ∈ Ω and that we are not in a “degenerate” case,
there exists a unique analytic function [0, 1]→Ω: t� zt with H(zt, t)= 0 for all t. We are
interested in the value of zt when t→0. More generally, given a vector z1=(z1

1,	 , z1
k)∈Ωk

of vectors, there exists a unique function [0,1]→Ωk: t� zt with H(zt
1, t)=
 =H(zt

k, t)=0
for all t.

The goal of a numeric path tracker is to approximate the function t� zt as well and as
quickly possible and, above all, to compute its value z0 at the “end point” t= 0. In what
follows, we will denote by R̃=Rp the set of floating point numbers with p bit mantissas.

We also define C̃=Cp=Rp[i], Ω̃=Ω∩C̃ and assume that we have a program for computing

a numeric approximation H̃ : Ω̃× C̃→ C̃n of H. Given z1 ∈ Ω̃ with H̃ (z1, 1)≈ 0, we thus
want to compute z0∈ Ω̃ with H̃ (z0, 0)≈ 0, by following the homotopy.

In many cases, we will be interested in homotopies for solving a system

P1(z)=
 =Pn(z)= 0 (11)

of polynomial equations. The number d of solutions to a generic system of this kind is
given by the Bezout number d= d1
 dn, where di is the total degree of Pi for each i. For
suitable scaling parameters λ1,	 , λn, σ1,	 , σn∈C, we now define H :Cn+1→C by

H1(z, t) = (1− t)P1(z, t)+ t λ1 (zd1−σ1
d1)�

Hn(z, t) = (1− t)Pn(z, t)+ t λn (z
dn −σn

dn).

Let

K = {0,	 , d1− 1}×
 ×{0,	 , dn− 1}

10 Reliable homotopy continuation



For any k ∈K, the point

z1
k = (σ1 e

2pik1/d1,	 , σn e
2pikn/dn)

clearly satisfies H(z1
k)= 0, whereas any z0

k with H(z0
k, 0)=0 satisfies P (z0

k)= 0.
If the system (11) is zero dimensional and the values λ1,	 , λn, σ1,	 , σn are complex

and sufficiently random (we also say that the homotopy is in general position), then the
system H1(z, t) = 
 = Hn(z, t) = 0 is also zero dimensional for every t ∈ [0, 1]. In what
follows we will always assume that the homotopy has been chosen in such a way.

4.2. Solutions at infinity

One classical difficulty with homotopy methods for solving a polynomial system (11) is
that many of the solution paths zt

k may tend to infinity in the sense that (zt
k)i → ∞ for

some i and t→0. Computations which infinities can be avoided by rewriting the equations
in projective coordinates. More precisely, setting zpr = (z0, 	 , zn), the projectivation
Apr∈C[zpr] of a polynomial A∈C[z] is defined by

Apr(z0,	 , zn) = z0
degA

A(
z1

z0
,	 ,

zn

z0
).

Applying this to the system (11), we obtain a new system

P1
pr(zpr) = 
 = Pn

pr(zpr) = 0 (12)

of homogeneous equations in zpr. For a random hyperplane

α0 z0+
 +αn zn = β, (13)

the composite system (12–13) is again zero dimensional, but without solutions at infinity.
It is easy to reconstruct solutions to (11) from solutions to (12–13) and vice versa.

4.3. Predictor corrector methods

Assume that we have a way to approximate the Jacobian JH of H by J̃H: Ω̃→ C̃n×(n+1).
For instance, if H is given by a dag, then a dag for JH can be computed using forward
differentiation, and J̃H just corresponds to the approximated evaluation of this dag.

Assume that we are given y= H̃ (z, t) and J̃H(z, t) at a certain point where H̃ (z, t)≈ 0.
We may write J̃H(z, t) = (U , ẏ) as the horizontal join of two matrices U ∈ C̃n×n and
ẏ ∈ C̃n×1. Given t′ = t + dt close to t, we may find a z(1) for which H̃ (z(1), t′) ≈ 0 using
Euler-Newton’s method

z(1) = z−U−1(y+ ẏ (t′− t)).

The replacement (z, t) (z(1), t′) is called a prediction step. We may still apply the formula
when t′= t, in which case z ′ is usually a better approximation than z to a genuine zero of
H at t than z. In this situation, the replacement (z, t) (z(1), t) is called a correction step.

From the computational point of view, the evaluation of the Jacobian JH̃(z, t) is usually
about n times more expensive than the evaluation of the function H̃ (z, t) itself (except for
large n and sparse JH̃). Instead of reevaluating the Jacobian after the prediction step at
(z(1), t′), it may therefore be worth it to perform a few correction steps using the Jacobian
at (z, t) instead:

z(2) = z(1)−U−1 H̃ (z(1), t′)�
z(κ) = z(κ−1)−U−1 H̃ (z(κ−1), t′).
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Since the convergence of z(1), z(2),	 is only linear, the number κ is typically chosen quite
small (κ 6 3). One full prediction-correction cyclus now just consists of the replacement
(z, t) (z ′, t′)= (z(κ), t′).

From the complexity point of view, the evaluation of H̃ and JH̃ is usually far more
expensive than the cost O(n3) of linear algebra at size n, at least for the examples we
will be interested in here. Therefore, it will not be necessary to device the linear algebra
algorithms with special care (for instance, we may simply compute the inverse U−1 once
and for all, instead of using LU decompositions). On the other hand, we typically want to
increase the step size t′ − t as much as possible, while trying to stay reasonably close to
the true solution path.

4.4. Precision control

One obvious source of numeric errors is when the numeric precision being used is insufficient
for producing sensible results. In [BSHW08], a strategy has been proposed for selecting
a sufficient precision for homotopy methods to be numerically reliable. We will now propose
an alternative method for finding such a precision, whose justification is based on a simpler
argument.

Let p be the current working precision. Our method is based on the following idea: when
evaluating y = H̃ (z, t), the actual precision q of the result is usually smaller than p and
of the form q= p− c for some fixed constant. We will call q the effective precision and we
may expect the numeric evaluations to be reliable as long as p is picked sufficiently large
such that q> τ0 remains above a certain threshold τ0> 0 (e.g. τ0= 10).

We still need a more precise definition of the effective precision or a simple way to
compute it. Assuming that H̃ admits a ball lift, we may evaluate y= H̃ (z , t) at the ball
(z , t)= (z+B(0), t+B(0))∈B(Cp,Rp)n+1. Then

qrel(z, t) = min
i

⌊

log2
|cen(yi)|
rad(yi)

⌋

provides an estimate for the relative precision of y. If H̃ (z, t) ≈ 0, then this precision
is potentially quite low. In that case, we may also consider qrel(z, t

′) at the next time
t′= t+ dt. Instead of performing one extra ball evaluation, we may also use the following
approximation of qrel(z, t

′):

qrel
∗ (z, t′) = min

i

⌊

log2
|cen(yi)+ H̃t(z, t)i dt|

rad(yi)

⌋

.

We now take

q= q(z, t, t′) = min
i

⌊

log2
max {|cen(yi)|, |cen(yi)+ H̃t(z, t)i dt|}

rad(yi)

⌋

.

for the current effective precision at (z, t) and assuming a current step size dt.

4.5. Step size control

Since purely numeric homotopy methods are usually being designed for speed, the main
focus is not on being 100% fool proof. Nevertheless, it remains worth it to search for cheap
ways in order to detect errors and adapt the stepsize so as to avoid potential errors.

Now assume that we perform one full prediction correction cyclus (z, t) (z ′, t′). We
first need a criterion for when to accept such a step. The main problem with the design of
numeric criteria is there is no way to decide whether a numeric quantity is small or large;
such checks can only be performed with respect to other quantities. Instead of checking
whether we remain close to the genuine solution path, it is therefore more robust to check
that the Jacobian J̃H does not change not change to quickly on the interval [t, t′].
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More precisely, let y= H̃ (z, t), (U , ẏ)= J̃H(z, t), y ′= H̃ (z ′, t′) and (U ′, ẏ ′)= J̃H(z
′, t′).

Then it is natural to only accept steps for which

‖U−1U ′− 1‖ 6 τ1, (14)

for a fixed threshold τ1 < 1 (e.g. τ1 =
1

4
). Here we may use any matrix norm ‖·‖, so it is

most convenient to chose one which is easy to compute:

‖M ‖ =
∑

i

max
j

|Mi,j |.

The condition (14) is not fully satisfactory yet, since it relies on the expensive computation
of a Jacobian U ′. This is acceptable if the step has a good chance of being accepted (since we
will need the Jacobian anyway for the next step), but annoying if the step is to be rejected.
Before checking (14), it is therefore wise to perform a few cheaper checks in order to increase
the probability that (14) will hold indeed. In particular, if κ> 2, then we may verify that

‖U−1 (y ′− y(1))− (z ′− z(1))‖ 6 τ2 ‖z ′− z(1)‖ (15)

for the max-norm on vectors, where τ2 6 τ1 (e.g. τ2 =
1

2
τ1) and y(1) = H̃ (z(1), t′). This

simplified check is linked to (14) by remarking that y ′ − y(1) ≈ U ′ (z ′ − z). The new

check (15) should not be applied when z ′ and z(1) are too close for y ′ and y(1) to be
computed with sufficient precision. More precisely, it should really be replaced by the check

{

‖U−1 (y ′− y(1))− (z ′− z(1))‖6 τ2 ‖z ′− z(1)‖∨
‖z ′− z(1)‖6 2−τ3q(z,t,t

′) ‖z(1)‖,
(16)

where τ3 is slightly smaller than one (e.g. τ3 =
3

4
) and q(z, t, t′) stands for the “effective

working precision” from section 4.4.
In addition to the above checks, one might wish to ensure that y ′ is reasonably small

after each step. Unfortunately, there is no satisfactory reference with respect which small-
ness can be checked, except for y(1), 	 , y(κ−1). The best we can do therefore consists of
checking whether y(1), y(2),	 tend to 0 at some indicated rate:

{

‖y(i+1)‖6 τ4 ‖y(i)‖∨
‖z(i+1)− z(i)‖6 2−τ4q(z,t,t

′) ‖z(i)‖,
(17)

for all i<κ, where τ4< 1 (e.g. τ4=
1

2
). Again, we need to insert a safety exemption for the

case when the convergence is exceptionally good.
Once that we have a criterion on whether a step (z, t) (z ′, t′) should be accepted,

an algorithm for automatic stepsize control is easily implemented: assuming that we are
walking from t = 1 to t = 0, we start by setting dt 6 −1. Given t and dt, we try a step
(z, t) (z ′, t′) until t′6 t+dt. If the step fails, then we set dt6 λfaildt with λfail< 1 (e.g.

λfail=
1

2
), and retry for the smaller stepsize. Otherwise, we accept the step t6 t′ and set

dt6 λokdt for the next step, where λok> 1 (e.g. λok= 2
√

).

4.6. Near collisions

Another way to look at the numerical error problem is to investigate what can actually
go wrong. Theoretically speaking, around each true solution path zt, there exists a small
tube Tt of variable polyradius rt, where Newton’s method converges to the true solution zt.
As long as our current approximation z at time t remains in this tube Tt, no errors will
occur. Now the Newton iterations have a strong tendency of projecting back into the tubes,
especially if we use the additional safeguard (17). Nevertheless, it might happen that we
jump from one tube into another tube, whenever two solution paths come close together.
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If we are considering a homotopy for solving a polynomial system P1 = 
 = Pn, then
various solution paths will actually meet at t=0 if the system admits multiple roots. Such
multiple roots are an intrinsic difficulty and we will need dedicated “end game” strategies
to ensure good numeric convergence in this case (see section 5 below).

For t > 0, and for suitably prepared functions H , the Lebesgue probability that two
solutions paths meet at a point is zero. Nevertheless, we may have near collisions, which
usually occur in pairs: the probability that more than two paths simultaneously pass close
to a same point is extremely low.

So assume that we have a near collision of two solution paths. Then we have a true
collision at (z∗, t∗) for some complex time t∗ near the real axis. Locally around this collision
point, the two paths are then given by

zt
± = z∗± u t− t∗

√
+O(t− t∗),

for some vector u. If we only know zt
+ at a few points, then we may try to compute z∗, t∗

and u, and also check whether the second path zt
− indeed exists.

Now assume that we have approximated zt
+ and derivative żt

+=dzt
+/dt at two times

t1> t2. Denote these approximations by z̃1= z̃1
+≈ zt1

+, ż̃1≈ żt1
+, z̃2= z̃2

+≈ zt2
+ and ż̃2≈ żt2

+.
Then

ż̃i ≈ u

2 ti− t∗
√

for i∈ {1, 2}, whence we may use the following approximations for z∗, t∗ and u:

t̃∗ 6 (ż̃2)2 t2− (ż̃1)2 t1

(ż̃2)2− (ż̃1)2

ũ 6 2 ż̃2 t2− t̃∗
√

z̃∗ 6 z̃2− ũ t2− t̃∗
√

.

We next perform several safety checks. First of all, we obtained t̃∗ as the division of two
vectors; we may use the mean value of the componentwise divisions and check that the

variance remain small. We next verify that z̃1 − ũ t1− t̃∗
√

and z̃∗ are reasonably close.

We also verify that the Newton iteration starting at z̃2
− = z̃∗ − u t2− t̃∗

√

converges to

a solution close to z̃2
−. We finally verify that the same thing holds for z̃2̄

±= z̃∗±u t2̄− t̃∗
√

instead of z̃2
±, where t2̄=Re (2 t̃∗− t2).

We will not go into technical details on the precise numerical checks here, since sec-
tion 5.3 below contains a similar discussion for the case of multiple roots at t=0. We may
also adapt the herd iteration from section 5.2 below to near collisions, which allows for the
simultaneous continuation of zt

+ and zt
−. Contrary to the case when t→0, we also need to

recompute better estimations of t∗ at every step, which can be done via the simultaneous
computation of zt

± and the two “conjugate” paths zt̄
± with t̄ =Re (2 t̃∗− t). Indeed, using

the higher order expansion

zt
± = z∗± u t− t∗

√
+ v (t− t∗)+w (t− t∗)

3/2+O((t− t∗)
2),

we get

zt
++ zt

− = 2 z∗+2 v (t− t∗)+O((t− t∗)2)

zt̄
++ zt̄

− = 2 z∗+2 v (t̄ − t∗)+O((t̄ − t∗)2)

żt
++ żt

− = 2 v+O(t− t∗),
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from which we may deduce high quality approximations of t∗ and z∗. As soon as t̄ − t is
small with respect to Im t∗, then the junction between paths and their conjugates occurs
and we know how to traverse the near collision.

5. Multiple roots

5.1. Straightforward Euler-Newton type methods

Consider a homotopy induced by a polynomial system (11) with a zero dimensional set of
solutions. It frequently occurs that some of the solutions are multiple roots, in which case
the predictor corrector algorithm slows down significantly when t approaches 0. This is
due to the fact that Newton’s method only has a linear convergence if we are approaching
a multiple root, whereas the convergence is quadratic for single roots.

In order to get a better understanding of this phenomenon, it is instructive to quantify
the slow down in the case of an r-fold root of a univariate polynomial P , which is more or
less representative for the general case. In the neighbourhood of the root α, we have

P+α(z) 6 P (α+ z) = c zr+O(zr+1),

with c=
1

r!
P (r)(α). Hence, the Newton iteration becomes

z ′ = z− P+α(z)

P+α
′ (z)

=
(

1− 1

r

)

z+O(z2).

In particular, we see that we need roughly r iterations in order to divide z by e. We also
notice that P (α+ z) is roughly divided by e at every iteration. For complexity measures,
it is more reasonable to study the speed of convergence of P (α+ z) rather than z itself.
Indeed, the relative precision of an r-fold root is intrinsically r times smaller than the
working precision.

If we are rather considering a homotopy H(z, t)=(1− t)P (z)+ t Q(z), then we usually
have q=Q(α)� 0. Locally, we may thus write

H(α+ z, t) = c zr+ q t+O(zr+1)+O(z t).

Assume that we have H(α+ z, t)= 0 for small z and t > 0, so that

zr = − q

c
t+O(zr+1).

Then the Euler-Newton iteration for step size dt yields

z ′ = z − q dt
r c zr−1

=

(

1− dt
r t

)

z+O(z2).

Following our criterion (14), we should have
∣

∣

∣

∣

(

1− dt
r t

)

r−1

− 1

∣

∣

∣

∣

6 τ1.

Roughly speaking, this means that dt6 τ1 t. Hence, t is multiplied by 1− τ1 at every step
and z is multiplied by 1− τ1 every r steps.
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5.2. The herd iteration

For high precision computations, it would be nice to have an algorithm with quadratic
convergence in t. Before we give such an algorithm, let us first introduce some terminology
and study the behaviour of the solutions paths when t→ 0.

By assumption, we are given a system (11) with an r-fold root α∈Ω. Consider a solution
path zt for the homotopy with limt→0 zt=α. Since zt is algebraic in t, we may expand

zt = α+ c1 t
1/p+ c2 t

2/p+
 ,

as a Puiseux series in t for a certain ramification index p (which we assume to be taken
minimal). Now letting t turn around 0 once, we have

ze2p it = α+ c1ω t1/p+ c2ω
2 t2/p+
 ,

where ω = e2pi/p. When turning repeatedly, we thus obtain p pairwise distinct solutions
paths zt

k6 ze2p ikt with k∈{0,	 , p−1}. We will call such a family of solution paths a herd .
Contrary to the homotopy methods from section 4, which operate on individual paths,

the iteration that we will present now simultaneously operates on all paths in a herd.
Consider a solution path zt with limt→0 zt = α as above and the corresponding herd
zt
k= ze2p ikt with k ∈{0,	 , p− 1}. We assume that both z̃t

k≈ zk and ż̃t
k≈ żt

k are known for
a given t>0 and all k∈{0,	 , p−1}. Let (F0,	 , Fp−1) and (Ḟ0,	 , Ḟp−1) denote the FFT-

transforms of the vectors (z̃t
0,	 , z̃t

p−1) and (ż̃t
0,	 , ż̃t

p−1
) with respect to ω−1. Then we have

Fk =
∑

i=0

k−1

z̃t
iω−ik

= n tk/p (ck+ ck+p t+O(t2))

t Ḟk =
n

p
tk/p (k ck+(k+ p) ck+p t+O(t2)).

for all k. We now compute c̃0,	 , c̃2p−1 using the formulas

c̃k+p 6 1

n t1+k/p

(

t Ḟk− k

p
Fk

)

= ck+p+O(t)

c̃k 6 1

n tk/p
(Fk− c̃k+p t)

= ck+O(t2).

For t′> 0 of the order of t2, we now have

zt′
k = z̃t′

k+O(t2)

z̃t′
k 6 c̃0+ c̃1ω

k (t′)1/p+
 + c̃2p−1ω
(2p−1)k (t′)(2p−1)/p, (18)

for all k∈{0,	 , p−1}. We call (18) the herd prediction. This prediction may be corrected
using κ conventional Newton iterations at time t′, for a fixed constant κ ∈ N \ {0}.
A complete cyclus of this type will be called a herd iteration.

5.3. Step size control for herd iterations

Several technical details need to be settled in order to obtain a robust implementation of
herd iterations. First of all, we need a numeric criterion for deciding when the approxima-
tions z̃t

k≈ zt
k and ż̃t

k≈ żt
k are of a sufficient quality for starting our herd iteration. Clearly,

the error of the approximation should be in O(t2).
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Wemay first ensure ourselves that the approximation can not substantially be improved
using Newton iterations: let (z̃t

k)′ be the result of applying one Newton iteration to z̃t
k at

time t. Then we check whether

relerr(z̃t
k, (z̃t

k)′) 6 |z̃tk− (z̃t
k)′|

|z̃tk |
6 τ5 t

2, (19)

for some threshold τ5, such as τ5=
1

2
(although this check becomes unstable if z̃t

k≈ 0, we
notice that this situation cannot arise systematically for t→ 0).

The check (19) for k ∈ {0,	 , p− 1} does not yet guarantee that the z̃t
k correspond to

approximate evaluations of the Puiseux expansions. In order to check that this is indeed
the case, we first compute the c̃k as described in the previous section. Defining

c̃(t) = c̃0+ c̃1 t
1/p+
 + c̃2p−1 t

(2p−1)/p,

we next evaluate z̃t
k+1/2

= c̃(e2pik+pi t) for all k∈{0,	 , p} and apply one Newton iteration

at time t to the results, yielding (z̃t
k+1/2

)′. We now check whether

relerr(z̃t
k+1/2

, (z̃t
k+1/2

)′) 6 τ6 t
2, (20)

for some threshold τ6, such as τ6 = 1, and all k. Of course, this second check is more
expensive than the first check (19). The thresholds should therefore be adjusted in such
a way that the second check is likely to succeed whenever the first one does.

The above criteria can also be used for deciding whether a proposed herd iteration
from t to t′ should be accepted or not. We still have to decide how to chose t′. For a fixed
constant γ > 1 and a positive integer s which may change at every step, we will take

t′ = 2−γs

t.

If a step is accepted, then we increase s by one or a larger integer smaller than 1/log2 γ.
If a step is not accepted, then we decrease s by one and repeat the same procedure until
acceptance or s= 0. If s= 0, then we have either reached the best possible accuracy for
the current working precision, or our p paths did not really converge to the same point α.
The first case occurs whenever the effective precision from section 4.4 drops below a given
threshold. In the latter case, we revert to individual homotopies for further continuation.

5.4. Detection of clusters

Let us now go back to the initial polynomial system (11) and assume that we have com-
puted numerical approximations of all d= d1 
 dn individual homotopies (zt

k)k∈K up till
a certain time t > 0. We need a way to partition the individual paths into herds. One
obvious way is to follow all solution paths from t to e2pi t and deduce the corresponding
permutation of K. However, this computation is quite expensive, so it would be nice to
have something faster.

A first step towards the detection of herds is to find all clusters, i.e. all groups of paths
which tend to the same limit α. Here we notice that one cluster may contain several herds,
as in the example

x2 = t

y2 = t,

where all four solution paths (xt, yt) = (ǫx t
√

, ǫy t
√

) with ǫx, ǫy ∈ {−1, 1} tend to the
quadruple root (0, 0) of x2= y2=0. This cluster contains two herds (xt, yt)= (± t

√
,± t

√
)

and (xt, yt)= (± t
√

,∓ t
√

).
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Now let z̃t
k≈ zt

k and ż̃t
k≈ żt

k for all k ∈K. For each k ∈K, we consider the ball

zt
k = z̃t

k+B(2 t ż̃tk).

The radii of these balls has been chosen with care, such that, with high probability, any
two paths which belong to the same herd are also in the same connected component of
Z6 ⋃

k∈K
zt
k. This is best verified on the case of path zt=α+ c t1/p+
 . Then the next

path in the cluster is ze2p it=α+ c ω t1/p+
 and

1

2
|ze2p it− zt| ≈ c

2
|ω− 1| t1/p

6
2 c

p
t1/p

≈ 2 t żt.

An efficient way to separate different connected components of Z is via projection. Let
λ∈R2n be a random vector of real numbers of length ‖λ‖=1. Then any point z∈Cn may
be projected to the vector product πλ(z)=λ · (Re z, Im z)∈R. Applying this projection to
our balls zt

k, we obtain intervals xk. We may sort the xk (and the corresponding zt
k) on their

centers in timeO(d logd) and compute the various connected components of X6 ⋃

k∈K
xk

using a linear pass. Whenever xk and xl are in different connected components, then so
are zt

k and zt
l. Assuming that t is sufficiently small, application of this procedure for 2 n

random vectors λ results with probability one in the separation of all connected components
corresponding to different clusters.

5.5. Detection of herds

Let K ′⊆K be a set of indices such that the zk with k∈K ′ form a cluster with limit α. We
still need a way to find the various herds inside the cluster. In a similar way as in section 5.3,
we may improve the quality of our approximations z̃ k and ż̃ k via Newton iteration until
z̃t
k= zt

t+O(t2) and ż̃t
k= żt

k+O(t). From now on, we assume that we have done this.
For each k ∈K ′ and i∈{1,	 , n}, we may write

(zt
k)i = αi+ ci

k tβi
k

+
 ,

for some ci
k∈C\ {0} and βi

k ∈Q>. We obtain a good approximation A≈α+O(t) using

α̃ =
1

|K ′|
∑

k∈K ′

z̃t
k. (21)

If |K ′| is not too large (so that βi
k has a small numerator and denominator), then we also

obtain reasonably accurate approximations β̃i
k≈ βi

k and c̃i
k≈ ci

k by

β̃i
k =

t (ż̃t
k)i

(z̃t
k)i−αi

c̃i
k = (z̃ k−α) t−β̃k

.

and check whether

ze2p it
k ≈ α̃ + c̃k e2piβ̃

k

tβ̃
k

is indeed close to some z̃k ′

with k ′∈K ′. Doing this for all k∈K ′, we thus obtain a candidate

permutation σ:K ′→K ′ with ze2p it
k = zt

σ(k) for all k ∈K ′. Each cycle in this permutation
induces a candidate herd. Using the criteria from 5.3, we may next check whether the
quality of the candidate herd is sufficient. If not, then we may always resort to the more
expensive computation of the solution path from t to e2pi t.
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5.6. Synchronization

Our algorithms for the previous sections for cluster and herd detection rely on the avail-
ability of approximations z̃t

k≈ zt
k on all paths at the same time t. Usually the individual

homotopies are launched in parallel and advance at different speeds. Consequently, the
synchronization of all paths at the same time t is a non trivial matter.

Strictly speaking, we notice that it is not necessary to synchronize all paths, but rather
those paths which belong to the same cluster or herd. In particular, we will concentrate
on those paths which tend to multiple roots.

So consider a path zt
k which tends to a multiple root α. As long as zt

k is approximated
using an individual continuation, we have seen that the convergence to t→0 is linear. For
a fixed γ < 1 (such as γ =

1

2
), the computation of zt

k at all “checkpoints” t= γ, γ2, γ3, 	
thus only requires a constant overhead. At every checkpoint, we may now launch the
algorithm for the detection of clusters. For every candidate cluster K ′, we next determine
the checkpoint γi with highest i at which zγi

k is available for all k ∈ K ′. We launch our
algorithm for the detection of herds at this checkpoint t= γi.

In addition, it is a good practice to check that we still have points on all d= d1
 dn
paths at every checkpoint. For paths zt

k which tend to a single root, we may approximate zγi
k

for large i using a single step continuation from t=0 to t= γi. For the approximation of α
using (21), we notice that it important that no paths of the cluster are missing or counted
twice. Indeed, in the contrary case, we only have A=α+O(tβ) with βi=mink∈K ′ βi

k for
all i, which is insufficient for the computation of accurate approximations of βi

k and ci
k.

6. Certified homotopies

6.1. Certification of Newton’s method

Consider an analytic function f : Ω→Cn on some open subset Ω of Cn and assume that f
admits a ball lift. Given an isolated root z of f , it is well known that Newton’s method
converges to z in a small neighbourhood of z. It is a natural question to explicitly compute
a ball neighbourhood for which this is the case. One method which is both efficient and
quite tight was proposed by Krawczyk [Kra69]. Recall that Jf denotes the Jacobian of f .

Theorem 4. Let u ∈ C
n, u = cen u and let g: u → Cn be an analytic function. Let

Jg(u)∈C
n×n be a ball enclosure of the set imJg. If

g(u)− Jg(u)B(radu) ⊆ u,

then g admits a fixed point z ∈u.

Proof. For any z ∈u, we have

g(z) = g(u)+

∫

0

1

Jg(u+ (z −u) t) (z −u) dt.

Since Jg(u) is convex, we also have
∫

0

1

Jg(u+(z −u) t) dt ∈ Jg(u).

Hence

g(z) ∈ g(u)+Jg(u) (u− u)

⊆ u.

It follows that g is an analytic function from the compact ball u into itself. By Brouwer’s
fixed point theorem, we conclude that there exists a z ∈u with g(z)= z. �
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Corollary 5. Let u ∈ C
n, u = cen u and let V ∈ Cn×n be an invertible matrix with

V Jf(cenu)≈ 1. If Ω⊇u and

u−V f(u)+ (1− VJf(u))B(radu) ⊆ u,

then the equation f(z)= 0 admits a root z ∈u.

Proof. We apply the theorem for g(z)= z− V f(z). �

The above method is still a bit unsatisfactory in the sense that it does not guarantee
the uniqueness of the solution. Denoting by int(X) the interior of a subset X of Rn, the
following sharpening of the method is due to Rump [Rum80].

Theorem 6. With the notations from theorem 4, if

g(u)−Jg(u)B(radu) ⊆ int(u),

then g admits a unique fixed point in u.

Proof. Let us first show that the spectral norm (i.e. the norm of the largest eigenvalue)
of any M ∈Jg(u) is <1. Indeed, our assumption implies

rad (Jg(u)B(radu)) < radu.

Now consider the norm ‖v‖ = max (|v1|/rad u1, 	 , |vn|/rad un) on Cn. Then, for any
M ∈Jg(u) and v with ‖v‖=1, we have

|Mv | 6 rad (MB(|v |))
6 rad (MB(radu))
6 rad (Jg(u)B(radu))
< radu,

whence ‖Mv‖< 1. This is only possible if the spectral norm of M is <1.
Now consider ϕ(z) = z − g(z). By what precedes, any matrix M in Jϕ(u)= 1− Jg(u)

is invertible. For any two distinct points z, z ′∈u, we have

ϕ(z ′)− ϕ(z) =

∫

0

1

Jϕ(z+(z ′− z) t) (z ′− z) dt.

Since Jϕ(u) is convex, there exists a matrix M ∈Jϕ(u) with

M =

∫

0

1

Jϕ(z+(z ′− z) t) dt.

By what precedes, it follows that ϕ(z ′)− ϕ(z)=M (z ′− z)� 0. We conclude that g(z)� z

or g(z ′)� z ′. The existence of a fixed point follows from theorem 4. �

Corollary 7. With the notations of corollary 5, if

u−V f(u)+ (1−V Jf(u))B(radu) ⊆ int(u),

then the equation f(z)= 0 admits a unique root z ∈u.

Proof. Application of theorem 6 for g(z)= z −V f(z). �

Assuming that we have computed a numeric approximation z̃ to a root z of f , a second
question is how to find a suitable ball z ∋ z̃ for which the corollaries apply. Starting with
z06 z̃ +B(0), a simple solution is consider the sequence defined by

zi+1 = cenzi+B(max (radzi, rad (K(zi)− cen zi))) (22)

⊇ zi∪K(zi),
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where

K(u) = cenu−V f(cenu)+ (1−V Jf(u))B(radu)

Whenever K(zi) ⊆ int(zi), then we are done. In order to ensure the convergence of this
method, we need to tweak the recurrence (22) and replace it by

zi+1 = cen zi+B((1+ ε)max (rad zi, rad (K(zi)− cenzi))+ η), (23)

for suitable small positive constants ε and η. We refer to [Rum80] for more details on this
technique, which is called ε-inflation.

6.2. Certification of a numeric homotopy continuation

Assume that the polynomial system (11) admits only simple roots and that we have
obtained numeric approximations z̃ k= z̃0

k for all these roots using a numeric path tracker.
Then theorem 5 suffices for the joint certification of the numeric approximations {z̃ k}k∈K.
Indeed, using the above technique, we first compute balls zk ∋ z̃ k for which theorem 5
applies. To conclude, it then suffices to check that these balls are pairwise disjoint. This
can be done using the same algorithm as for the detection of clusters, which was described
in section 5.4.

In the case when two balls zk and zk ′

do intersect, then we recompute approximations
for the paths zt

k and zt
k ′

using a smaller step size, that is, by lowering the constant τ1
in (14). We keep doing so until none of the balls zk intersect; even if some of the paths zt

k

may have been permuted due to numerical errors, the final set of all zk is correct if none of
the balls intersect. Indeed, each of the balls contains a solution and there can be no more
solutions than the number predicted by the Bezout bound.

If zk and zk ′

intersect then, instead of recomputing the paths zt
k and zt

k ′

using smaller
and smaller step sizes, we may also search for a way to certify the entire homotopy com-
putations. This will be the topic of the remainder of this section. Let us first show how
to adapt the theory from the previous section to certified path tracking. From now on, we
assume that H : Ω×C→Cn is an analytic function which admits a ball lift.

Theorem 8. Let (u, t)∈Cn×C be such that u⊆Ω. Let J = (∂H/∂z)(cenu, cen t) and
let V ∈Cn×n be an invertible matrix with V J ≈ 1. If

cenu−VH(cenu, t)+ (1−V
∂H

∂z
(u, t))B(radu) ⊆ int(u),

then the equation H(z, t)= 0 admits a unique root z ∈u for each t∈ t.

Proof. Let t∈ t and consider the function g:u→Cn; z� z −H(z, t). Then u− VH(u,
t) encloses im g and 1−V

∂H

∂z
(u, t) encloses imJg, and we conclude by theorem 6. �

Clearly, for any t, t′∈ t, theorem 8 ensures the existence of a unique solution path from
t to t′ in the tube u× [t, t′]. As at the end of the previous section, the question again arises
how to compute balls u and t for which the conditions of the theorem are likely to be
satisfied. Since the computation of ∂H

∂z
(u, t) is expensive, it is important to keep down the

number of iterations of the type (22) or (23) as much as possible (say at most one iteration).
Now assume that we performed a numeric homotopy computation from (z, t) to (z ′, t′).

Then a reasonable first guess is to take

u = /1 2 (z+ z ′)+B(c (z ′− z))

t = /1 2 (t+ t′)+B( /1 2 (t
′− t)),
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for some c > /1 2, say c = 1. Unfortunately, if one of the components of z ′ − z tends to
zero, then this guess turns out to be inadequate. Therefore, it is recommended to use an
additional inflation proportional to the norm of z ′− z:

u = /1 2 (z+ z ′)+B(c (z ′− z)+ c′ ‖z ′− z‖),
for some small c′> 0, say c′= /1 10. Another idea is to use the radius of the previous step
as a reference (except for the very first step, of course). For instance, if our previous step
went from ( z8 , t8 ) to (z, t), then we may take

u = /1 2 (z+ z ′)+B(c (z ′− z)+ c′′ (z − z8 )
t′− t

t− 8t
),

for some small c′′> 0, say c′′= /1 10.

6.3. Certification via tubular models

One important disadvantage of the method from the previous section for the certification of
one path tracking step is that we use global error bounds on the tube u× t. Consequently,
the inaccuracy radu of u is proportional to the step size 2 radt, whence any overestimation
in the evaluation of H or JH due to the inaccuracy in u requires a reduction of the step size.

For this reason, it is much better to follow the solution path as closely as possible instead
of enclosing it in a “square tube”. This can be achieved via the use of Taylor models. Using
D-stable Taylor models, it is possible to simultaneously compute of accurate enclosures
for H and JH on the tube.

More precisely, let rǫ∈ (R>)n, rδ∈R> and D=B(rǫ)×B(rδ). For a fixed k in N\ {0},
let I =J be an initial segment of Nn+1 of the form

I = 0×{0,	 , k}∪ {e1,	 ,en}× {0}
and let D=T1={i∈Nn+1:‖i‖61}. A D-stable Taylor model in BD(C[ǫ, δ]I ,R[ǫ, δ]I) will
also be called a tubular model . We will write TD,I for the set of tubular models. Given
y ∈TD,I

n , we let ycst∈C
n and ylin∈C

n×n be such that

(ycst)i = ̟(yi)

(ylin)i,j = ̟
(

∂yi

∂ǫj

)

,

for all i, j ∈{1,	 , n}.

t

z

δ

ǫ

rδ

rǫ

zt

Figure 1. Illustration of a solution path zt in a tube.
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Theorem 9. Let c=(cǫ, cδ)∈Ω×C, r=(rǫ, rδ)∈ (R>)n×R>, D=B(r) and let

E(δ) = E0+
 +Ek1 δ
k

be an approximation of the solution εδ to H(cǫ+ εδ, cδ+ δ)= 0. For instance, if k=1 and
H(c)≈ 0, then we may take E(δ)≈−VF δ, with V ≈ (∂H/∂z)(c)−1 and F ≈ (∂H/∂t)(c).
Consider u∈TD,I

n and v ∈TD,I with

ui = (cǫ)i+ ǫi+E(δ)i

v = cδ+ δ.

Let g(z, t)= z −VH(z, t), x= g(cǫ+E(δ), v), y= g(u,v). If

xcst+ ylinB(rǫ) ⊆ int(cǫ+B(rǫ)), (24)

then the equation H(z, t)= 0 admits a unique solution z ∈ cǫ+E(t− cδ)+B(rǫ), for every
t∈ cδ+B(rδ).

Proof. For an illustration of the proof, see figure 1. Let u = cen(u) ∈ C[ǫ, δ]n and v =
cen(v)∈C[δ]. By construction, and using the facts that ∂u/∂ǫ=1 and ∂v/∂ǫ=∂E/∂ǫ=0,
we have

g(u(0, δ), v(δ)) ∈ xcst
∂g

∂u
(u(ǫ, δ), v(δ)) ∈ ylin

for any ǫ ∈ B(rǫ) and δ ∈ B(rδ). For a fixed t ∈ cδ + B(rδ), it follows that ylin encloses
(∂g/∂u)(·, t) on the disk U6 cǫ+E(t− cδ)+B(rǫ). Our hypothesis (24) also implies that

g(cǫ+E(t− cδ), t)+ ylinB(rǫ) ⊆ int(U).

From theorem 6, we conclude that g(·, t) admits a unique fixed point z ∈U . �

In order to apply the theorem, it remains to be shown how to find a good tube, i.e.
how to choose cǫ, cδ, rǫ, rδ and E(δ). For a fixed order k of the approximation, the idea is
to adjust cǫ and E(δ) such that rǫ can be chosen minimal.

Let us first consider the first order case k = 1. Assume that we performed a numeric
path continuation from (zt, t) to (zt′, t

′) and that both żt and żt′ are approximatively
known. Then there exists a unique curve z̃s of degree three with z̃t = zt, z̃t ′ = zt′, z̃̇t = żt

and z̃̇t′ = żt′. Let z̃̃s be a linear curve which minimizes the maximum µi of |(z̃s− z̃̃s)i| on
[t, t′] for every i. Then we take cδ=(t+ t′)/2, rδ=(t′− t)/2, cǫ= ẑct and E(δ)= z̃̇̃ct δ. We
may also take rǫ= c µ for some fixed c> 1 such as c=2. However, for better performance
it is recommended to apply an additional inflation to rǫ, similar to what we did in the
previous section.

For higher orders k, we proceed in an essentially similar way. We first compute a high
order numeric polynomial approximation z̃s of zs. For orders >3, this may require the
accurate approximation of additional points (zt′′, t

′′) with t′′ ∈ (t, t′) on the solution
path. We next find a k-th order polynomial ẑs which approximates z̃s as good as possible
and choose our tube in a similar way as above. It should be noticed that the evaluation
g(u,v) in theorem 9 is at least thrice as expensive as the numeric evaluation of JH. This
makes it worth it to improve the quality of the numeric approximations of points zt, zt′, zt′′
on the curve using one or more additional Newton iterations. The use of higher order
approximations makes it possible to choose rǫ very small, thereby avoiding a great deal of
the overestimation due to the use of ball arithmetic.
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7. Certification of multiple roots

7.1. The univariate case

In section 5.1, we have studied in detail the numeric determination of a multiple root
of a univariate polynomial. It is instructive to take up this study and examine how we
certify such multiple roots. Since the property of being an r-fold root is lost under small
perturbations, this is actually impossible using ball arithmetic. The best we can hope for
is to certify the existence of r roots in a small ball, or the existence of an r-fold root of
a small perturbation of the polynomial (see also [Rum10]). In this section we adopt the first
point of view; a variant of the approach to perturb the polynomial itself will be studied in
the next sections.

So consider a polynomial P with an approximate r-fold root at c∈C and assume that
we wish to certify that P admits exactly r roots in the ball c+B(ρ), for some ρ> 0. One
first strategy is to make use of the Taylor series expansion of P at c. More precisely, let
T=TD,I ,I be the set of univariate Taylor models in ǫ with D = B(ρ) and I = {0,	 , s}
for some s> r. Evaluating P at c= c+ ǫ, we obtain a Taylor model Q = P (c) with the
property that P (c+ z)∈Q0+
 +Qs z

s for any z∈B(ρ). It remains to be shown that any
Q∈Q admits r roots in B(ρ). We claim that this is the case if

⌈Q0+
 +Qr−1B(ρ)r−1+Qr+1B(ρ)r+1+
 +QsB(ρ)s⌉ < ⌊Qr⌋ ρn. (25)

Indeed, assume that we have (25) and let Q∈Q. Then

|Q(z)−Qr z
r | < |Qr z

n|

for all z with |z |= ρ. By Rouché’s theorem, it follows that Q(z) and Qr z
r admit the same

number of roots on B(ρ). If r becomes large, or if P admits other roots close to B(ρ),
then the bound (25) often does not hold. In that case, one may use more sophisticated
techniques from [Sch82, vdH11] in order to certify that Q admits r roots in B(ρ). From
the complexity point of view, the series expansion method requires O(M(r)) evaluations
of P , where M(r) denotes the cost of multiplying two polynomials of degrees 6r.

Another approach is to apply Rouché’s theorem in a more direct way by computing P on
a path γ starting at ρ and which circles around the origin once. If the reliable image P ◦ γ
of this path avoids the origin, then the number of roots of P coincides with the number
of times that P ◦ γ turns around the origin. More precisely, let ω = e2pi/R for a suitable
R>r (see also below) and let zi=ωi+B(| ω

√ −1|) for i∈{0,	 ,R−1}. Then we evaluate
yi=P (zi) and check whether 0 � yi for all i. If this is the case, then

r ′ =
1
2 p

∑

i=0

R−1

arg
cen(yi+1modR)

cen(yi)

yields the exact number of roots of P inside B(ρ). This method requires R evaluations of P ,
but R needs to be sufficiently large if we want to ensure a reasonable chance of success for
the method.

Let us investigate the choice of an appropriate R in more detail on the simplest example
when c=1 and

P (z) = zr− r zr−1+
(

r

2

)

zr−2+
 +(−1)r.

24 Reliable homotopy continuation



Consider the evaluation of P at z=1+ ρ+B(ǫ). We have

P (z) = P (1+ ρ)+B(σ)
= ρr+B(σ)

σ =
∑

k=0

r
(

r

k

)

((1+ ρ+ ǫ)k− (1+ ρ)k)

= (2+ ρ+ ǫ)r− (2+ ρ)r

For small ǫ, the condition 0 � P (z) thus implies

r (2+ ρ)r−1 ǫ ≈ (2+ ρ+ ǫ)r− (2+ ρ)r < ρr.

Roughly speaking, for ρ→ 0, this means that

ǫ <
1

r

( ρ

2

)

r−1 ρ

R >
ρ

p ǫ
> r

(

2

ρ

)

r−1
.

We recall from example 2 that (ρ/2)r−1 also corresponds to the punctual overestimation
of the ball evaluation of P at 1 + ρ. If we want to reduce R to a quantity which does
not depend on ρ, then it follows from the considerations in section 3.5 that we need to
evaluate P using Taylor models of order at least r. However, in that case, we might just
as well use the first method based on a direct series expansion of P at c.

7.2. Certification of herd homotopies

Let us now consider a more general system (11) and assume that we are given a herd of
solution paths zt

1,	 , zt
r which all tend (at least approximately) to the same limit α. Instead

of viewing the zt
i as distinct individual paths, we would like to consider the whole herd

t� Zt= {zt1,	 , zt
r} as a single multivalued path.

From the algebraic point of view, it is more convenient to rather consider the ideal It
which annihilates Zt instead of Zt itself. There are several ways to represent this ideal It
by a system Σt of polynomial equations. One option is to require that Σt be a reduced
Gröbner basis for It. Another option is to use Kronecker representations. Since we are
computing with balls of a fixed bit precision, coefficient growth is not a problem, so it best
to choose a simple representation which minimizes the number of coefficient parameters.

Now recall that each zt
i can be considered as a vector zt

i = (zt,1
i , 	 , zt,n

i ) of Puiseux
series zt,j

i in t of valuations >0. Setting

At(z1) = (z1− zt,1
1 )
 (z1− zt,1

r ),

we notice thatAt(z1) is invariant if we turn t once around the origin. This means thatAt(z1)
is really an analytic function in t at the origin. Assuming general position, At(z1) is actually
the minimal annihilator of {zt,11 ,	 , zt,1

r }. In what follows, we will represent It by the system
of polynomials



















(zt,1)
r−Ut,1(zt,1) = At(zt,1)

zt,2−Ut,2(zt,1)�
zt,n−Ut,n(zt,1),

(26)
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where deg Ut,i < r for each i. Now instead of evaluating the homotopy H at an ordinary
point (z, t)∈Ω×C, we may evaluate H at a point (z, t)∈An×C, where A is the quotient
algebra C[u]/(ur − Ut,1(u)). When evaluating at the multivalued point Zt represented
by (26), we would take zt,1=u, zt,2=Ut,2(u),	 , zt,n=Ut,n(u). This leads to a lift of H as
a homotopy HA: ΩA×C→An, for some open subset ΩA of An.

In order to apply theorem 8, we need a homotopy over C rather than A. Therefore,
let us show how to reformulate HA as a homotopy H [r]: Ω[r]×C→Cnr for a suitable open
subset Ω[r] of Cnr. The idea is to encode the system (26) by a vector

Sys(zt,1
1 ,	 , zt,1

r ) = ((Ut,1)0,	 , (Ut,1)r−1,	 , (Ut,n)0,	 , (Ut,n)r−1) ∈ Cnr.

More precisely, given a point

(Σ, t)= (Σ1,0,	 ,Σ1,r−1,	 ,Σn,1,	 ,Σn,r−1, t) ∈ Cnr×C,

we denote Σi=Σi,0+
 +Σi,r−1 u
r−1 for each i. Let A=C[u]/(ur−Σ1(u)) and consider

the evaluation y ∈An of H at z1= u, z2=Σ2(u),	 , zn=Σn(u) and t. This is possible if
z ∈ Ω for any root z of the system (z1)

r − Σ1(z1) = 0, z2 = Σ2(z1), 	 , zn = Σn(z1). There
exists a unique point

Y =(Y1,0,	 , Y1,r−1,	 , Yn,1,	 , Yn,r−1) ∈ Cnr,

such that yi=Yi,0+
 +Yi,r−1 u
r−1 for all i. We take H [r](Σ)=Y . If H can be computed

by a dag of size sH then H [r] can be computed by a dag of size s
H [r]=O(M(r) sH), since

a multiplication in A can be done using a dag of size O(M(r)).

Theorem 10. Let (Σ, t) ∈ C
nr × C be such that Σ ⊆ Ω[r] and 0 ∈ t. Assume that the

system H(z, t) = 0 admits no multiple zeros for t∈ t∩R>, and let t0∈ t∩R> and z∗
1,	 ,

z∗
r∈Cn be such that H(ui, t0)= 0 for all i and

Sys(z∗
1,	 , z∗

r) ∈ Σ.

Let J=(∂H [r]/∂Σ)(cenΣ,cent) and let V ∈Cnr×nr be an invertible matrix with V J≈1. If

Σ−VH [r](Σ, t)+ (1−V
∂H[r]

∂Σ
(Σ, t))B(radΣ) ⊆ int(Σ), (27)

then there exist unique paths zt
1,	 , zt

r∈Ω with H(zt
i, t)= 0, zt0

i = zi
∗ and

Sys(zt
1,	 , zt

r) ∈ Σ,

for all i∈{1,	 , r} and t∈ t∩R>.

Proof. By theorem 8, there exists a unique solution Σt∈Σ to the system f [r](Σt, t) = 0,
for each t ∈ t, whence a unique set {zt1, 	 , zt

r} with Sys(zt
1, 	 , zt

r) = Σt. The uniqueness
implies that this set coincides with the set of analytic continuations of the solution paths of
f(zt, t) from t0 to t for each t∈ t∩R>. After reordering, this shows that there exist unique
paths zt

1,	 , zt
r∈Ω with H(zt

i, t)=0, zt0
i = z∗

i and Sys(zt
1,	 , zt

r)∈Σ, for all i∈ {1,	 , r} and
t∈ t∩R>. Now for t→0, solutions of monic equations of the form zt,1

r −Σ1(zt,1)=0 remain

bounded. By continuity, the zt
i therefore tend to limits in Ω, and Sys(z0

1,	 , z0
r)∈Σ. �

Using the univariate root certification methods from section 7.1, we may also compute
ball enclosures for z0

1,	 , z0
r. The theorem therefore provides a way to certify all solutions

of a numeric homotopy associated to a polynomial system (11), even in the presence of
multiple solutions.
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Indeed, let {ztk: k ∈ K} be the set of all solution paths. For some small t0 > 0, we
perform a certified homotopy continuation from t = 1 until t = t0, using the techniques
from section 6. This is possible since the zt0

k are pairwise distinct, when assuming general
position. We next partition K =K1∐
 ∐Kκ, such that {ztk: k∈Ki} is either a singleton
or a herd for each i. For each singleton, we try to apply theorem 8 for t ∋ 0 and for each
herd, we try to apply theorem 10. If this works, then we obtain the desired enclosures for
the solutions of (11), counted with multiplicities. If not, then we choose a smaller t0 and
repeat the same procedure.

For the termination of this algorithm, it remains to be checked that theorem 10 indeed
applies if t0 is sufficiently small. In other words, setting P [r](Σ) = f [r](Σ, 0), we have to
show that ∂P [r]/∂Σ is invertible. We will only give a rough justification, which we intend
to work out in a forthcoming paper. Assuming the contrary and “general position”, the
perturbation H [r] of P [r] would exhibit a non trivial monodromy in t, and contradict our
assumption that the set Zt is stable under monodromy. We finally notice that our algorithm
also works in degenerate situations if we let zt

1,	 , zt
r be a cluster of paths instead of a herd.

Remark 11. As we already noticed before, there is no purely numeric test for knowing
whether a herd tends to an r-fold root α. Nevertheless, if we assume that this is indeed
the case, then we notice that α can be approximated with a precision which is close to the
current working precision. Indeed, if the herd is given by the system (26), then we may
approximate α using α̃16 (U0,1)r−1/r, α̃26 U0,2(α̃1),	 , α̃r6 U0,r(α̃1).

7.3. Algorithmic improvements

Although we have shown how to translate the homotopyHA:ΩA×C→An into a homotopy
H [r]: Ω[r] × C → Cnr, we do want to exploit the multiplication in A for computational
purposes. In particular, we want to exploit this structure for the computation of the
Jacobian J

H [r]. As in the case of usual Jacobians, we may compute JHA
by evaluating H

at zt,1=u, zt,2=Ut,2(u)+ ǫ2,	 , zt,n=Ut,n(u)+ ǫn and t+ δ in the deformed algebra

D = C[u, ǫ1,	 , ǫn, δ]/(u
r−Ut,1(u)− ǫ1, ǫi ǫj , ǫi δ, δ

2).

Denoting the result of this evaluation by y = (y1, 	 , yn), we may write yi = yi,cst +
yi,1 ǫ1 + 
 + yi,n ǫn + ẏi δ, where yi,cst and yi,j are polynomials of degrees <r in u.
Reinterpreting the yi,j as elements of A (which is correct modulo an error in ǫ1), we obtain

JHA
=





y1,1 
 y1,n ẏ1� � �
yn,1 
 yn,n ẏn



∈An×(n+1).

Now for any x∈A, multiplication by x inA can be represented by a matrix Mat(x)∈Cn×n

in the monomial basis 1, u, 	 , ur−1 of A. Similarly, any matrix M ∈ Am×n induces
a Cmr×nr block matrix

Mat(M) =







Mat(M1,1) 
 Mat(M1,n)� �
Mat(Mm,1) 
 Mat(Mm,n)





.

By construction, we now have

∂H[r]

∂Σ
= Mat

(

∂HA

∂z

)

(

∂H [r]

∂Σ

)

−1
= Mat

(

∂HA

∂z

)

−1
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Now the computation of ∂HA/∂z and its inverse can be done using dags of sizes
O(n M(r) sH), whence multiplication of ∂H [r]/∂Σ or its inverse with a vector in Cnr

can be done a dag of size O(n M(r) sH). In particular, the evaluation of the left hand
side of (27) can be done using a dag of size O(n M(r) sH) over C. This is better than
a direct computation of ∂H [r]/∂Σ which requires a dag of size O(n2

M(r) sH).
A second issue which has been hidden by the current presentation concerns numeric

stability. If the herd indeed tends to an r-fold root α when t→0, then ur−Ut,1(u) tends to
(u−α1)r. Now straightforward arithmetic inC[u]/(u−α1)r tends to be quite unstable. For
instance, the evaluation of a polynomial of degree d typically gives rise to a precision loss
of O(d) digits. This can be avoided using a shift: instead of working inA=C[u]/((u−α1)r)
and evaluating at z1 = u, we rather work in A′ = C[u]/(ur) and evaluate at z1 = u + α.
More generally, if A=C[u]/(ur−Ut,1(u)), then we take A′=C[u]/((u−σ)r−Ut,1(u−σ)),
where σ=(Ut,1)r−1/r, and evaluate at z1= u+ σ.

Another question is whether we can avoid using the extra time parameter t for the final
certification. Indeed, corollary 7 is sufficient for the certification of a single isolated root.
More generally, let zt

1,	 , zt
r be a cluster of solutions which tend to an r-fold root α. We

may forget about the last equation Pn and, for some small δ ∈C, compute all solutions to
the system P1(z)=
 =Pn−1(z)= zn−αn− δ=0 which are close to α (e.g. by homotopies
starting at the zi,t). The system H ′=(P1,	 , Pn−1):C

n→Cn−1 may then be regarded as
a homotopy with respect to the time zn−αn. Given a herd z1,	 , zr

′∈Cn of solution paths,
we may then try to construct the system (H ′)[r

′] as usual and consider Pn as a polynomial
equation on the 1-dimensional solution surface of this system. This more intrinsic technique
is particularly effective if r ′ = 1, in which case we really have to compute the roots in
a disk of a univariate analytic equation. For r ′> 1, the homotopy H ′ does not need to be
in general position, and we have not yet worked out the corresponding theory in detail.

7.4. Global certification

Even if the coefficients of the system (11) are all rational or algebraic, then the computed
solutions are only numeric approximations. For some applications, it is useful to have exact
representations of the solutions. This allows for instance to check whether a given other
polynomial with rational coefficients vanishes on the solution set or on some points of the
solutions set.

The Kronecker representation provides one useful exact representation for the set of
solutions. Modulo a generic linear change of coordinates, we may assume without loss of
generality that for any distinct solutions z, z ′ of (11), their first coordinates z1 and z1

′ are
also distinct. Let z1,	 , zk ∈Cn be the distinct solutions of (11). Then the Kronecker rep-
resentation for Z={z1,	 , zk} is the unique n-tuple (Q,V2,	 ,Vn)=KZ=(QZ , V2

Z ,	 , Vn
Z)

of univariate polynomials with degQ= k, Qk=1, degV2<k,	 ,degVn<k, such that Z is
annihilated by the system

Q(z1) = 0

Q ′(z1) z2 = V2(z1)�
Q′(z1) zn = Vn(z1).

Assume now that Z =X ∐ Y. Then we notice that KZ can be computed in terms of KX

and KY using

QZ = QXQY

Vi
Z = Vi

XQY +QXVi
Y ,

for all i. This yields an efficient dichotomic algorithm for the numeric computation of KZ.
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Assume now that (11) has rational coefficients and that we have computed numeric
approximations z̃ 1, 	 , z̃k of z1, 	 , zk with bit precision p. By remark 11, even if z̃ i

approximates a multiple root, then z̃ i is still known with a precision close to p. Using the
above method, we may thus compute a numeric approximation K̃Z of KZ with an accuracy
of approximately p bits. We apply rational number reconstruction [GG02, Chapter 5] in
order to provide a guess for KZ with rational coefficients. We may check whether this
guess is correct by evaluating P at z1 = u, z2 = V2(u)/Q′(u), 	 , zn = Vn(u)/Q′(u) over
A=Q[u]/(Q(u)). By evaluating over suitable algebras with nilpotent elements, we may
check in a similar way whether the multiplicity of each root matches with the numeric
multiplicity. If one of these checks fails, then we double the bit precision, use Newton’s
method to improve the approximations z̃ 1,	 , z̃ k, and keep iterating.

7.5. Local algebras

Consider a cluster (zt
k)k∈C of paths which tend to a common root α and decompose

C=H1∐
 ∐H η such that (zt
i)i∈H j is a herd in the cluster for each j. Each herd (zt

i)i∈H j

gives rise to an ideal It
j which is represented by a system of the form (26). The intersection

Jt = It
1∐
 ∐It

η

can be computed by Gröbner basis techniques and the limit J0 at t = 0 yields the local
ideal of the system (11) at the multiple root.

Example 12. Let us consider the very simple example

P1 = z1
2

P2 = z2
2

with the homotopy

H1 = (1− t) z1
2+ t (z1

2− 1) = z1
2− t

H2 = (1− t) z2
2+ t (z2

2− 1) = z2
2− t

For small t > 0, we have the solution paths

zt
1 = ( t

√
, t
√

)

zt
2 = (− t

√
,− t

√
)

zt
3 = ( t

√
,− t

√
)

zt
4 = (− t

√
, t
√

).

Both (zt
1, zt

2) and (zt
3, zt

4) form a herd, with corresponding ideals

Jt
1 = (z1

2− t, z2− z1)

Jt
2 = (z1

2− t, z2+ z1).

We have

Jt = (z1
2− t, z2

2− z1
2)

and J0=(z1
2, z2

2).
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