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Surreal numbers form the ultimate extension of the field of real numbers with infinitely
large and small quantities and in particular with all ordinal numbers. Hyperseries
can be regarded as the ultimate formal device for representing regular growth rates
at infinity. In this paper, we show that any surreal number can naturally be regarded
as the value of a hyperseries at the first infinite ordinal w. This yields a remarkable
correspondence between two types of infinities: numbers and growth rates.

1. INTRODUCTION

1.1. Toward a unification of infinities

At the end of the 19-th century, two theories emerged for computations with infinitely
large quantities. The first one was due to du Bois-Reymond [19, 20, 21], who developed
a “calculus of infinities” to deal with the growth rates of functions in one real variable at
infinity. The second theory of “ordinal numbers” was proposed by Cantor [13] as a way
to count beyond the natural numbers and to describe the sizes of sets in his recently
introduced set theory.

Du Bois-Reymond's original theory was partly informal and not to the taste of Cantor,
who misunderstood it [25]. The theory was firmly grounded and further developed by
Hausdorff and Hardy. Hausdorff formalized du Bois-Reymond's “orders of infinity” in
Cantor's set-theoretic universe [24]. Hardy focused on the computational aspects and
introduced the differential field of logarithmico-exponential functions [28, 29]: such a func-
tion is constructed from the real numbers and an indeterminate x (that we think of as
tending to infinity) using the field operations, exponentiation, and the logarithm. Sub-
sequently, this led to the notion of a Hardy field [12].

As to Cantor's theory of ordinal numbers, Conway proposed a dramatic general-
ization in the 1970s. Originally motivated by game theory, he introduced the proper
class No of surreal numbers [14], which simultaneously contains the set R of all real
numbers and the class On of all ordinals. This class comes with a natural ordering and
arithmetic operations that turn No into a non-Archimedean real closed field. In par-
ticular, w+ 1, w™!, V@, w® — 3 w? are all surreal numbers, where w stands for the first
infinite ordinal.

Conway's original definition of surreal numbers is somewhat informal and draws
inspiration from both Dedekind cuts and von Neumann's construction of the ordinals:
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“If L and R are any two sets of (surreal) numbers, and no member of L is >
any member of R, then there is a (surreal) number {L | R}. All (surreal)
numbers are constructed in this way.”

The notation { | } is called Conway's bracket. Conway proposed to consider {L | R} as the
simplest number between L and R. Indeed, it turns out that one may define a partial
ordering C on No with {L | R} Ca for any number a € No with L <a <R. This so-called sim-
plicity relation has the additional property that any 2 € No can be written canonically as

a = {arlar}
ar == {beNo:b<a,bCa}
ag = {beNo:b>a,bCa)}.

One may regard a; Uag as the set of surreal numbers that were defined before 2 when
using Conway's recursive definition. Conway's bracket is uniquely determined by the
simplicity relation C and vice versa.

The ring operations on No are defined in a recursive way that is both very concise and
intuitive: given x = {xr | xr} and y={yr | yr}, we define

0:={I}
1:=101}
—x = {—xg[—xr}
xX+y = {xp+y,x+yr| xg+y,x+ygr}

1’

{x’y-l—xy’—x’y,’x,’y-l—xy’,—x y |x,y+xy,’—x’y’,,x,’y+xy,—x
(x'exy, x"exg y' €y vy EYr).

It is quite amazing that these definitions coincide with the traditional definitions when
x and y are real, but that they also work for the ordinal numbers and beyond. Subse-
quently, Gonshor also showed how to extend the real exponential function to No [26]
and this extension preserves all first order properties of exp [16]. Simpler accounts and
definitions of exp can be found in [37, 9].

The theory of Hardy fields focuses on the study of growth properties of germs of actual
real differentiable functions at infinity. An analogue formal theory arose after the intro-
duction of transseries by Dahn and Goring [15] and, independently, by Ecalle [22, 23].
Transseries are a natural generalization of the above definition of Hardy's logarithmico-
exponential functions, by also allowing for infinite sums (modulo suitable precautions
to ensure that such sums make sense). One example of a transseries is
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In particular, any transseries can be written as a generalized series f =) - fum with
real coefficients f, € R and whose (trans)monomials m € ¥ are exponentials of other
(generally “simpler”) transseries. The support supp f :={m & T: f,, # 0} of such a series
should be well based in the sense that it should be well ordered for the opposite ordering
of the natural ordering X on the group of transmonomials ¥. The precise definition of
a transseries depends on further technical requirements on the allowed supports. But
for all reasonable choices, “the” resulting field T of transseries possesses a lot of clo-
sure properties: it is ordered and closed under derivation, composition, integration, and
functional inversion [22, 30, 18]; it also satisfies an intermediate value property for dif-
ferential polynomials [32, 3].
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It turns out that surreal numbers and transseries are similar in many respects: both No
and T are real closed fields that are closed under exponentiation and taking logarithms
of positive elements. Surreal numbers too can be represented uniquely as Hahn series
Yo Mo 4mm with real coefficients a,, € R and monomials in a suitable multiplicative
subgroup Mo of No~. Any transseries f € T actually naturally induces a surreal number
f(w) €No by substituting w for x and the map f+— f(w) is injective [11].

But there are also differences. Most importantly, elements of T can be regarded as
functions that can be derived and composed. Conversely, the surreal numbers No come
equipped with the Conway bracket. In fact, it would be nice if any surreal number could
naturally be regarded as the value f (w) of a unique transseries f at w. Indeed, this would
allow us to transport the functional structure of T to the surreal numbers. Conversely,
we might equip the transseries with a Conway bracket and other exotic operations on
the surreal numbers. The second author conjectured the existence of such a correspon-
dence between No and a suitably generalized field of the transseries [32, page 16]; see
also [2] for a more recent account.

Now we already observed that at least some surreal numbers a € No can be written
uniquely as a = f (w) for some transseries f € T. Which numbers and what kind of func-
tions do we miss? Since a perfect correspondence would induce a Conway bracketon T,
it is instructive to consider subsets L, RC T with L <R and examine which natural growth
orders might fit between L and R.

One obvious problem with ordinary transseries is that there exists no transseries that
grows faster than any iterated exponential x,e*,e®,.... Consequently, there exists no
transseries f € T with f(w) ={w,e®, e®’,... | }. A natural candidate for a function that
grows faster than any iterated exponential is the first hyperexponential E ,, which satisfies
the functional equation

Euo(x+1) = exp Eu(x).

It was shown by Kneser [33] that this equation actually has a real analytic solution on R~.
A natural hyperexponential E,,on No”™” :={c€No:c> R} was constructed more recently
in [8]. In particular, E (w) = {w,e®, e )

More generally, one can formally introduce the transfinite sequence (E,)ycon Of
hyperexponentials of arbitrary strengths &, together with the sequence (L,)xcon of their
functional inverses, called hyperlogarithms. Each E» with n € N~ satisfies the equation

Ewn(x + 1) = Ewn—l(Ele(x))
and there again exist real analytic solutions to this equation [38]. The function E«~ does

not satisfy any natural functional equation, but we have the following infinite product
formula for the derivative of every hyperlogarithm L,:

1
Ly(x) = —.
g Lg(x)

We showed in [6] how to define E,(a) and L,(a) for any « € On and 2 € No”"”.
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The traditional field T of transseries is not closed under hyperexponentials and hyper-
logarithms, but it is possible to define generalized fields of hyperseries that do enjoy this
additional closure property. Hyperserial grow rates were studied from a formal point
of view in [22, 23]. The first systematic construction of hyperserial fields of strength
a < w® is due to Schmeling [38]. In this paper, we will rely on the more recent con-
structions from [17, 7] that are fully general. In particular, the surreal numbers No form
a hyperserial field in the sense of [7], when equipped with the hyperexponentials and
hyperlogarithms from [6].

A less obvious problematic cut L < R in the field of transseries T arises by taking

Vloglogx }
yoeeo

L = {V&, vz +ell8Y, zqellEre

2 Toglog=
R = {2ﬁ,ﬁ+e2"1°gx,ﬁ+e logx +e }

Here again, there exists no transseries f € T with L < f <R. This cut has actually a natural
origin, since any “tame” solution of the functional equation

(x) = JT+eflosy (1.1)
f

lies in this cut. What is missing here is a suitable notion of “nested transseries” that
encompasses expressions like

loglogx+e-” ’

f = Jxtelosrte . (1.2)

This type of cuts were first considered in [30, Section 2.7.1]. Subsequently, the second
author and his former PhD student Schmeling developed an abstract notion of general-
ized fields of transseries [31, 38] that may contain nested transseries. However, it turns
out that expressions like (1.2) are ambiguous: one may construct fields of transseries that
contain arbitrarily large sets of pairwise distinct solutions to (1.1).

In order to investigate this ambiguity more closely, let us turn to the surreal numbers.
The above cut L <R induces a cut L(w) < R(w) in No. Nested transseries solutions f to
the functional equation (1.1) should then give rise to surreal numbers f(w) with L(w) <
f(w) <R(w) and such that f(w) — vw,log(f(w) — Jw) — em, ... are all monomials
in Mo. In [5, Section 8], we showed that those numbers f (w) actually form a class Ne that
is naturally parameterized by a surreal number (Ne forms a so-called surreal substruc-
ture). Here we note that analogue results hold when replacing Gonshor's exponentiation
by Conway's w-map a € No+— w” (which generalizes Cantor's w-map when a € On).
This was already noted by Conway himself [14, pages 34-36] and further worked out
by Lemire [34, 35, 36]. Section 6 of the present paper will be devoted to generalizing
the result from [5, Section 8] to nested hyperseries.

Besides the two above types of superexponential and nested cuts, no other examples
of “cuts that cannot be filled” come naturally to our mind. This led the second author
to conjecture [32, page 16] that there exists a field H of suitably generalized hyperseries
in x such that each surreal number can uniquely be represented as the value f(w) of
a hyperseries f € H at x = w. In order to prove this conjecture, quite some machinery
has been developed since: a systematic theory of surreal substructures [5], sufficiently
general notions of hyperserial fields [17, 7], and definitions of (E,),eNo On the surreals
that give No the structure of a hyperserial field [8, 6].



VINCENT BAGAYOKO, JORIS VAN DER HOEVEN 5

Now one characteristic property of generalized hyperseries in H should be that they
can uniquely be described using suitable expressions that involve x, real numbers, infinite
summation, hyperlogarithms, hyperexponentials, and a way to disambiguate nested
expansions. The main goal of this paper is to show that any surreal number can indeed be
described uniquely by a hyperserial expression of this kind in w. This essentially solves
the conjecture from [32, page 16] by thinking of hyperseries in H as surreal numbers
in which we replaced wby x. Of course, it remains desirable to give a formal construction
of H that does not involve surreal numbers and to specify the precise kind of proper-
ties that our “suitably generalized” hyperseries should possess. We intend to address
this issue in a forthcoming paper.

Other work in progress concerns the definition of a derivation and a composition
on H. Now Berarducci and Mantova showed how to define a derivation on No that is
compatible with infinite summation and exponentiation [10]. In [4, 1], it was shown that
there actually exist many such derivations and that they all satisfy the same first order
theory as the ordered differential field T. However, as pointed out in [2], Berarducci and
Mantova's derivation does not obey the chain rule with respect to E,,. The hyperserial
derivation that we propose to construct should not have this deficiency and therefore be
a better candidate for the derivation on No with respect to w.

1.2. Outline of our results and contributions

In this paper, we will strongly rely on previous work from [5, 17, 7, 8, 6]. The main
results from these previous papers will be recalled in Sections 2, 3, and 4. For the sake of
this introduction, we start with a few brief reminders.

The field of logarithmic hyperseries L was defined and studied in [17]. It is a field of
Hahn series L = R[[£]] in the sense of [27] that is equipped with a logarithm log: L~ — L,
a derivation 9: L — L, and a composition o: L x L”> — L. Moreover, for each ordinal
« € On, it contains an element ¢, such that

biof = log f
Ewwrlogwi‘ = gw]l‘Fl_l
logt, = —Z bg1.
B<ua

forall f €L>” and all ordinals «, ;2. Moreover, if the Cantor normal form of « is given by
w=Y"_, wh'n;with y; <--- <pp, then we have

b = Eho---o w’;%;

The derivation and composition on L satisfy the usual rules of calculus and in particular
a formal version of Taylor series expansions.

In [7], Kaplan and the authors defined the concept of a hyperserial field to be a field
T = R[[%]] of Hahn series with a logarithm log: T> — T and a composition law
o:L x T>” — T, such that various natural compatibility requirements are satisfied. For
every ordinal a, we then define the hyperlogarithm L, of strength a by L,: T>~ — T>7;
fr—lyo f. We showed in [6] how to define bijective hyperlogarithms L,:No~> — No~”
for which No has the structure of a hyperserial field. For every ordinal «, the functional
inverse E,:No~” — No~~ of L, is called the hyperexponential of strength a.
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The main aim of this paper is to show that any surreal number a € No is not just an
abstract hyperseries in the sense of [6], but that we can regard it as a hyperseries in w.
We will do this by constructing a suitable unambiguous description of a in terms of w,
the real numbers, infinite summation, the hyperexponentials, and the hyperlogarithms.

If a = f(w) for some ordinary transseries f, then the idea would be to expand 2 as a
linear combination of monomials, then to rewrite every monomial as an exponential of
a transseries, and finally to recursively expand these new transseries. This process stops
whenever we hit an iterated logarithm of w.

In fact, this transserial expansion process works for any surreal number a € No. How-
ever, besides the iterated logarithms (and exponentials) of w, there exist other monomials
a EMo”™ := {m &Mo:m > 1} such that L,(a) is a monomial for all # € N. Such mono-
mials are said to be log-atomic. More generally, given y € On, we say that a is L #-atomic
if L,(a) €Mo for all « <w!. We write Mo, for the set of such numbers. If we wish to fur-
ther expand an L »-atomic monomial a as a hyperseries, then it is natural to pick y such
that a is not L _ x+1-atomic, to recursively expand b:= L, and then to write a=E x(b).

Unfortunately, the above idea is slightly too simple to be useful. In order to expand
monomials as hyperseries, we need something more technical. In Section 5, we show that
every non-trivial monomial m& Mo \ {1} has a unique expansion of exactly one of the
two following forms:

m = e¥ (Lg(w)), (1.3)
where e Mo, 1€ {-1,1}, and B € On, with supp ¢ >log(Lg(w)); or
m = e¥ (Lg(E.(w)))", (14)

where e¥ € Mo, 1€ {-1,1}, BEON,ae wO™ with Bw<wa, supp ¥ >log(Lg(Ex(1))), and
where E, u lies in Mo, \ L<y Moy Moreover, if @ =1 then it is imposed that ¢ =0,
t=1, and that u cannot be written as u = ¢ + ¢ b where ¢ € No, e € {—1,1}, b € Mo,
and b <supp ¢.

After expanding m in the above way, we may pursue with the recursive expansions
of 1 and u as hyperseries. Our next objective is to investigate the shape of the recursive
expansions that arise by doing so. Indeed, already in the case of ordinary transseries,
such recursive expansions may give rise to nested expansions like

loglogw-#e'“

J@ +eVoswte (1.5)
One may wonder whether it is also possible to obtain expansions like

loglogw +e- ‘+logloglogw+log logw

J@ +eVioswre +log w. (1.6)

Expansions of the forms (1.5) and (1.6) are said to be well-nested and ill-nested, respec-
tively. The axiom T4 for fields of transseries in [38] prohibits the existence of ill-nested
expansions. It was shown in [10] that No satisfies this axiom T4.

The definition of hyperserial fields in [6] does not contain a counterpart for the
axiom T4. The main goal of section 4 is to generalize this property to hyperserial fields
and prove the following theorem:

THEOREM 1.1. Every surreal number is well-nested.
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Now there exist surreal numbers for which the above recursive expansion process
leads to a nested expansion of the form (1.5). In [5, Section 8], we proved that the class Ne
of such numbers actually forms a surreal substructure. This means that (No, <,C) is iso-
morphic to (Ne, <, Cne) for the restriction Cye of C to Ne. In particular, although the
nested expansion (1.5) is inherently ambiguous, elements in Ne are naturally parame-
terized by surreal numbers in No.

The main goal of Section 6 is to prove a hyperserial analogue of the result from [5, Sec-
tion 8]. Now the expansion (1.5) can be described in terms of the sequence /@, ylog w,
Vloglog w,.... More generally, in Section 6 we the define the notion of a nested sequence
in order to describe arbitrary nested hyperserial expansions. Our main result is the fol-
lowing:

THEOREM 1.2. Any nested sequence X induces a surreal substructure Ne of nested hyperseries.

In Section 7, we reach the main goal of this paper, which is to uniquely describe any
surreal number as a generalized hyperseries in w. This goal can be split up into two
tasks. First of all, we need to specify the hyperserial expansion process that we infor-
mally described above and show that it indeed leads to a hyperserial expansion in w,
for any surreal number. This will be done in Section 7.2, where we will use labeled trees
in order to represent hyperserial expansions. Secondly, these trees may contain infinite
branches (also called paths) that correspond to nested numbers in the sense of Section 6.
By Theorem 1.2, any such nested number can uniquely be identified using a surreal para-
meter. By associating a surreal number to each infinite branch, this allows us to construct
a unique hyperserial description in w for any surreal number and prove our main result:

THEOREM 1.3. Every surreal number has a unique hyperserial description. Two numbers with
the same hyperserial description are equal.

2. ORDERED FIELDS OF WELL-BASED SERIES

2.1. Well-based series

Let (M1, x,1, <) be a totally ordered (and possibly class-sized) abelian group. We say that
S CIM is well-based if it contains no infinite ascending chain (equivalently, this means
that S is well-ordered for the opposite ordering). We denote by R[[D1]] the class of
functions f:9t— R whose support

supp f = {meM: f(m)£0}

is a well-based. The elements of 9t are called monomials and the elements in R* 9t are
called terms. We also define

term f := {fpm:meEsupp f},

and elements T € term f are called terms in f.

We see elements f of S as formal well-based series f =) fum where fy:=f(m)ER
for all me M. If supp f # @, then df:=max supp f € M is called the dominant monomial
of f. Forme M, we define f.n:=) . funand f.:= f.q. For f,¢ €S, we sometimes write
f+g=f+gifsuppg< f. Wesay that a series g €S is a truncation of f and we write g f
if supp (f — ) >g. The relation < is a well-founded partial order on S with minimum 0.
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By [27], the class S is field for the pointwise sum

(f+8) = ) (futgmim,

fg =) ( > fugn)m,

m up=m

and the Cauchy product

where each sum )’ _ f.gy is finite. The class S is actually an ordered field, whose
positive cone S~ ={f €S: f >0} is defined by

S” = {fE€S:f#0A fo,>0}.

The ordered group (90, x, <) is naturally embedded into (S~, %, <).
The relations < and < on M extend to S by

f<g = Rfl <Kl
f <X ¢ e JFIreR”, |fl < rigl

We also write f =g whenever f < gand g< f. If f,g are non-zero, then f <g (resp. f g,
resp. f =g¢) if and only if 0 <0, (resp. 0y X0, resp. 0r=10g).

We finally define
Sy = {fES:supp fCIM”}
S< := {fES:supp fCM<} = {f€S:f<1}, and
S>> = (fES:f>R} = {fE€S:f20Af>1).

Series in S, S and S~ are respectively called purely large, infinitesimal, and positive
infinite.
2.2. Well-based families
If (f)ieris a family in S, then we say that (f;);e1 is well-based if
i. ;e supp fiis well-based, and
ii. {iel:me&supp f;} is finite for all m e M.
Then we may define the sum ), cifi of (fi)ier as the series
Y fi= X (X Gow)m
iel m \igl

If U=R[[]]is another field of well-based series and ¥:S — U is R-linear, then we say
that ¥ is strongly linear if for every well-based family (f;)ic;in S, the family (Y (f;))iec1

in U is well-based, with
‘P(Zﬁ) =Y Y.

iel iel

2.3. Logarithmic hyperseries

The field LL of logarithmic hyperseries plays an important role in the theory of hyperseries.
Let us briefly recall its definition and its most prominent properties from [17].
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Let a be an ordinal. For each 7y <&, we introduce the formal hyperlogarithm ¢, :=L, x
and define £, to be the group of formal power products [=]], _, 4[7” with [, € R. This
group comes with a monomial ordering > that is defined by

[>1 < Gmm7<mw¢w > 0.

By what precedes, L., :=R[[£.,]] is an ordered field of well-based series. If &, B are
ordinals with 8 <&, then we define £g4) to be the subgroup of £, of monomials [ with
[, =0 whenever y<p. As in [17], we define

Liga = RI[£gm]]
g:= ] La
aeOn
L = R[[£]].

We have natural inclusions £ 4) C £, C £, hence natural inclusions Lg.) CL<, CL.
The field L., is equipped with a derivation 0: L., — L, which satisfies the Leibniz

rule and which is strongly linear: for each 7y <«, we first define the logarithmic derivative

of £, by &1:=TT, <y {71 € £, The derivative of a logarithmic hypermonomial [ € £, is

next defined by
al := ( Y w;) L
y<a
Finally, this definition extends to L, by strong linearity. Note that ¢, = —L for all

[Tt
y<a. For f €L, and ke N, we will sometimes write f®:= 0k f. <

Assume that « = w" for a certain ordinal v. Then the field L, is also equipped with
a composition o: L, x L2, — L, that satisfies:

e For gelLZ;, the map Lo, — L, f — fog is a strongly linear embedding [17,
Lemma 6.6].

e For feL.,and g,he L, we have goh€ L2, and fo(goh)=(fog)oh [17,
Proposition 7.14].

e For g€ L2, and successor ordinals u < v, we have {0 {,i-={,n—1 [17,
Lemma 5.6].

The same properties hold for the composition o: L x L”*” — L, when « is replaced by On.
For 7y <a, the map L, — L, f+— f o {, is injective, with range L, ) [17, Lemma 5.11].
For g € L4, we define g'” to be the unique series in L., with ¢g'70 ., =g¢.

3. SURREAL NUMBERS AS A HYPERSERIAL FIELD

3.1. Surreal numbers
Following [26], we define No as the class of sequences
au—{=1,1}

of “signs” —1, +1 indexed by arbitrary ordinals « € On. We will write dom a € On for
the domain of such a sequence and a[f] € {—1,1} for its value at B €dom a. Given sign
sequences a and b, we define

aC b e doma C domb A (VBedoma, a[f]=Db[B])



10 SURREAL NUMBERS AS HYPERSERIES

Conway showed how to define an ordering, an addition, and a multiplication on No that
give No the structure of a real closed field [14]. See [5, Section 2] for more details about
the interaction between C and the ordered field structure of No. By [14, Theorem 21],
there is a natural isomorphism between No and the ordered field of well-based series
R[[Mo]], where Mo is a certain subgroup of (No~, x, <). We will identify those two
fields and thus regard No as a field of well-based series with monomials in Mo.

The partial order (No,C) contains an isomorphic copy of (On, €) obtained by iden-
tifying each ordinal « with the constant sequence (1)<, of length . We will write v <
On to specify that v is either an ordinal or the class of ordinals. The ordinal w, seen as
a surreal number, is the simplest element, or C-minimum, of the class No™”.

For a, B € On, we write a + 8 and a x B for the non-commutative ordinal sum and
product of « and S, as defined by Cantor. The surreal sum and product &« + § and a
coincide with the commutative Hessenberg sum and product of ordinals. In general, we
therefore have a + #a + B and a f#a x B.

For y € On, we write w” for the ordinal exponentiation of base w at . Gonshor also
defined an exponential function on No with range No~. One should not confuse w” with
exp(ylog w), which yields a different number, in general. We define

wO" := {w7:yE€0n},
Recall that every ordinal - has a unique Cantor normal form
v = wln+---+whn,,

wherereN, ny,...,n,eN>%and m,...,1,€0On with 771> --- > ,. The ordinals #; are called
the exponents of v and the integers n; its coefficients. We write p < o (resp. p L ) if each
exponent 7; of the Cantor normal form of ¢ satisfies p < w" (resp. p< w™’).

If 7y, B are ordinals, then we write y < § if Yy N < B, we write v < B if there existsann € N
with ¥ <Bn, and we write y =< § if both < and v < B hold. The relation < is a quasi-
order on On. For 77,8, €On with > w" and y< w", we have B+ y=p + 7. In particular,
we have y+1=++1 for all y€On.

If 1 € On is a successor, then we define y._ to be the unique ordinal with y=pu_+1.
We also define p_:= p if p is a limit. Similarly, if « = w”, then we write &, := w" .

3.2. Hyperserial structure on No

We already noted that Gonshor constructed an exponential and a logarithm on No
and No~, respectively. We defined hyperexponential and hyperlogarithmic functions
of all strengths on No~~ in [6]. In fact, we showed [6, Theorem 1.1] how to construct
a composition law o: L xNo~> — No with the following properties:

Cl. For feL, geL”” and aeNo>>, we have goa € No>> and

fo(goa) = (fog)oa.
C2. ForaeNo~”, the function L — No; f +— f oa is a strongly linear field morphism.
C3. For feL,aeNo~” and é € No with § <a, we have

*
fo(a+d) = Zf 25k,

k!
keN

C4. For y€On and a,beNo~”~ with a <b, we have ¢, ca<{,0b.
C5. For v €On and a €No~'”, there is b€ No”” witha={, ob.
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Note that the composition law on L also satisfies C1 to C4 (but not C5), with each occur-
rence of No being replaced by L.

3.3. Hyperlogarithms

For v € On, we write L., for the function No™” — No~”;a— {, o a, called the hyperlog-
arithm of strength vy. By C4 and C5, this is a strictly increasing bijection. We sometimes
write L, a:=L,(a) foraeNo>”>. We write E, for the functional inverse of L., called the
hyperexponential of strength <y.

For 7, p with p <1, the relation £, , ,={,0 {, in L., combined with C3, yields

VaeNo>”, Ly,pa = L,Lya, (3.1)
For 7€ On, the relation ¢, s+10{,1={_ ;+1—11in L, combined with C3, yields
vaENO>’>, Lwr/+1(Lw’7<ﬂ>) = Lwr/+1(ﬂ) —1, (32)

and we call this relation the functional equation for L_+.

Leta € No~ and write r,:=a,, for the coefficient in 9, in the Hahn series representation
of a. There is a unique infinitesimal number ¢, with a =7,9, (1 +¢,). We write logr for
the natural logarithm on R~ C No. The function defined by

1k
loga := L1(9;) +1logr 7.+ Z <k-:)1 ekt (3.3)
kEN

is called the logarithm on No~. This is a strictly increasing morphism (No~, +) — (No, +)
which extends L. It also coincides with the logarithm on No~ that was defined by Gon-
shor.

3.4. Atomicity

Given p < On, we write Mo, for the class of numbers a € No>> with L, a € Mo~ for all
¥ <w!. Those numbers are said to be L. »-atomic and they play an important role in this
paper. Note that Mo; =Mo” and

L, Mo+l = Mo+t

for all # € On, in view of (3.1). There is a unique L.on-atomic number [6, Proposi-
tion 6.20], which is the simplest positive infinite number w.

Each hyperlogarithmic function L, with 17> 0 is essentially determined by its
restriction to Mo,,s, through a generalization of (3.3). More precisely, for a € No””,
there exist ¥ < w” and a € Mo,,» with ¢:=L,(a) — L,(a) < L,(a). Moreover, the family
(((627,;) ® Ly(a)) 55 ren> is well-based, and the hyperlogarithm L,(a) is given by

€T7 (k)oL
Lyi(a) = Lgn(a)+ Z Mék'

keN>

(3.4)

3.5. Hyperexponentiation

DEFINITION 3.1. [7, Definition 6.10] We say that ¢ € No~ is 1-truncated if supp ¢ >1, i.e.
if ¢ is positive and purely large. For 0 <y &€ On, we say that ¢ € No~” is w'-truncated if

Ty -1
fwiy om .

Vmesupp ¢<, Vy<w!, ¢ <
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IfE () is defined, then ¢ is w'-truncated if and only if supp ¢ > (g_ygy), for all y <.

Given = w" with 7€ On, we write No. s for the class of B-truncated numbers. Note
that No, 1 = No, NNo”~. We will sometimes write Eg(¢) =: E[(;P when ¢ € No. . For
a€No~”, there is a unique <-maximal truncation #5(a) of a which is -truncated. By [7,
Proposition 7.17], the classes

{pea+No=<:b=av (Iy<B, b< ola—b"1)} (3.5)

with 2 € No™~ form a partition of No~~ into convex subclasses. Moreover, the series
#5(a) is both the unique B-truncated element and the <-minimum of the convex class
containing a. We have

N0>,Ig = L[; MO,B

by [6, Proposition 7.6]. This allows us to define a map 95:No™~ — Mog by d4(b) := Egﬁ@ﬁb).
In other words,

EfF® = op(Eg(a)),

for all ae No~~ (see also [7, Corollary 7.23]).

The formulas (3.3) and (3.4) admlt hyperexponential analogues. For all 2 € No~~,
#p(a)

there is a y <p with e:=a—#5(a) < —-o Eﬁ . For any such 7, there is a family (t, ()ren €
L4 with to= ¢, such that ((t,ko Egﬂ(a)) e¥), c is well-based and
#p(a)
tykoE
Eﬁa = E’Y Z %Sk . (3.6)
keN )

See [7, Section 7.1] for more details on (¢, x)ren. The number L, E gﬁ @ is a monomial with

L Egﬁ(a) > (ty1 °E§ﬂ(a>) €> (t%2°Egﬂ(a>) e?> -, 50

L,EF™ < LyEga. (3.7)

4. SURREAL SUBSTRUCTURES

In [5], we introduced the notion of surreal substructure. A surreal substructure is a sub-
class S of No such that (No,<,C) and (S, <, C) are isomorphic. The isomorphism No— S
is unique and denoted by Es. For the study of No as a hyperserial field, many important
subclasses of No turn out to be surreal substructures. In particular, given « = w" € On,
it is known that the following classes are surreal substructures:

e The classes No~, No~~ and No~ of positive, positive infinite and infinitesimal
numbers.

e The classes Mo and Mo~ of monomials and infinite monomials.
e The classes Nos. and NoZ< of purely infinite and positive purely infinite numbers.
e The class Mo, of L ,~atomic numbers.

e The class No, , of a-truncated numbers.
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We will prove in Section 6 that certain classes of nested numbers also form surreal sub-
structures.

4.1. Cuts

Given a subclass X of No and a € X, we define
af = (beX:b<aAbCa} ap = aN®
a1§ = {beX:b>anbCa) aR := a}?"
aX = afuaf ac = ap®

If X is a subclass of No and L, R are subsets of X with L < S, then the class
(LIR)x := {aeX:(VIeL,I<a) AN (VreR,a<r)}

is called a cut in X. If (L | R)x contains a unique simplest element, then we denote this
element by {L | R}x and say that (L, R) is a cut representation (of {L | R}x) in X. These
notations naturally extend to the case when L and R are subclasses of X with L <R.

A surreal substructure S may be characterized as a subclass of No such that for all
cut representations (L,R) in S, the cut (L | R)s has a unique simplest element [5, Propo-
sition 4.7].

Let S be a surreal substructure. Note that we have a={a? | a}} foralla€S. LetaeS
and let (L, R) be a cut representation of a in S. Then (L, R) is cofinal with respect to (af,aﬁ)
in the sense that L has no strict upper bound in a7 and R has no strict lower bound in
ag [5, Proposition 4.11(b)].

4.2. Cut equations

Let XC No be a subclass, let T be a surreal substructure and F: X — T be a function. Let
A, p be functions defined for cut representations in X such that A(L,R), p(L,R) are subsets
of T whenever (L,R) is a cut representation in X. We say that (A, p) is a cut equation for F
if for all a €X, we have

Aalad) < p@faf), F@ = {Aafaf) | p@f,ad))r.

Elements in A(af,a¥) (resp. p(af,ax)) are called left (resp. right) options of this cut equa-
tion at 2. We say that the cut equation is uniform if

AMLR) < p(L,R), F{LIR}) = {ALR)IpLR)}T

for all cut representations (L,R) in X. For instance, given r € R, consider the translation
T;:No— No;a+—a+r on No. By [26, Theorem 3.2], we have the following uniform cut
equation for T, on No:

YaeNo, a+r = {ap+r,a+rp|a+rgag+r}. (4.1)

Let v€On with v>0 and set a:= w". We have the following uniform cut equations for L,
on Mo, and E, on Nos. , [6, Section 8.1]:

YaEMo,, Lya = {Leal ™| Lyay™, Loy aiNo, . (4.2)

= {LyLya™| Ly Ly a¥o L, a). (4.3)

Noy Noy
¥pENo,., EJ = {Exdu(@),E{" " |EF ) (4.4)

Noy o Noy o
{Ecup ol B} (45)
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where
X - {0} if v is a limit
7 | {w'n:neN}  if v=u+1isasuccessor.

4.3. Function groups

A function group (; on a surreal substructure S is a set-sized group of strictly increasing
bijections S — S under functional composition. We see elements f, g of ( as actionson S
and sometimes write fg and fa for a € S rather than f o g and f(a). We also write f™" for
the functional inverse of f €.

Given such a function group (, the collection of classes

Gla] == {b€S:3f,g€(, fa<b<ga}

with 2 €S forms a partition of S into convex subclasses. For subclasses XC S, we write
g[X] =, ex g[a]. An element a € S is said to be grsimple if it is the simplest element
inside g[a]. We write Smpg for the class of g-simple elements. Givena €S, we also define
7((a) to be the unique §-simple element of ([a]. The function 77 is a non-decreasing
projection of (S, <) onto ( Smpg, g). The main purpose of function groups is to define

surreal substructures:

PROPOSITION 4.1. [5, Theorem 6.7 and Proposition 6.8] The class Smpg is a surreal sub-
structure. We have the uniform cut equation

Vze&eNo, EsmPgZ = {QESmpgzL | gESmpng}S' (46)
Note that fora,be Smpg, we have a <b if and only if ga < gb. We have the following
criterion to identify the (-simple elements inside S.

PROPOSITION 4.2. [5, Lemma 6.5] An element a of S is (-simple if and only if there is a cut
representation (L,R) of a in S with GL<a<(R. Equivalently, the number a €S is G-simple if
and only if gaf <a< gaﬁ.

Given X, Y be sets of strictly increasing bijections S — S, we define

def

X £ Y & VaeS,VfeX,IgeY, fa < ga
def

X4$Ye=XZY and Y £ X
def

X<KY =, VaeS,VfeX,VgeY, fa < ga

def
X <Y & VaeS,VfeX,VeeY, fa < ga.

If X £Y, then we say that Y is pointwise cofinal with respect to X. For f,g €S, we also write
f<YorX<ginstead of {f} <Y and X <{g}.

Given a function group (; on S, we define a partial order < on by f<g e {f} <{g}.
We will frequently rely on the elementary fact that this ordering is compatible with the
group structure in the sense that

Vf,g,he(, g > ids = fgh > fh

Given a set X of strictly increasing bijections S — S, we define (X) to be the smallest
function group on S that is generated by X, i.e. (X):={fjo---0 fy:n €N, f1,..., fe€XU Xnvy,
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4.4. Remarkable function groups

The examples of surreal substructures from the beginning of this section can all be
obtained as classes Smpy, of (j-simplest elements for suitable function groups ( that act
on No, No”, or No>”>, as we will describe now. Given c€ R and r € R, we first define

T, = a—a+c acting on No or No~~
H. := a—ra acting on No~ or No™"~
P, := a—a’ acting on No~ or No~"”.

For o« = w” € On, we then have the following function groups

J = {T.:ceR}
H = {H,:reR”}
P = {P,:reR”}
Ex == (EyH,Lyy<a,reR”)
Ly == Ly ELE,.

Now the action of J on No yields the surreal substructure Nos := Smpy as class
of I -simplest elements. All examples from the beginning of this section can be obtained
in a similar way:

e The action of J on No (resp. No>>) yields Nos (resp. No3).
e The action of H on No” (resp. No>”) yields Mo (resp. Mo”).
e The action of 2 on No>> yields Mo <Mo = EM®”.
e The action of &, on No~~ yields Mo,.
e The action of £, on No~~ yields Noy .
We have
TlSmp,, = [
TSmp,, = Ha-

Let Ecu={E,:y<a}and L,={L,:y<a}. We will need a few inequalities from [6]. The
first one is immediate by definition and the fact that { < E,. The others are [6, Lemma 6.9,
Lemma 6.11, and Proposition 6.17], in that order:

Erw < Eu (4.7)
E<0¢ < szHZsz (48)
(Ey:y<a) § &, if visa limit (4.9)
Vy<p<aVrs>1, E,H/ L, < E H;L,. (4.10)
From (4.10), we also deduce that
{EyH,L,:y<a,reR} £ &, (4.11)

5. WELL-NESTEDNESS

In this section, we prove Theorem 1.1, i.e. that each number is well-nested. In Section 5.1
we start with the definition and study of hyperserial expansions. We pursue with the
study of paths and well-nestedness in Section 5.2.
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The general idea behind our proof of Theorem 1.1 is as follows. Assume for contra-
diction that there exists a number a that is not well-nested and choose a simplest (i.e.
C-minimal) such number. By definition, a contains a so-called “bad path”. For the ill-
nested number a from (1.6), that would be the sequence

loglogw+e-’ e +logloglogw

logw+e +loglogw _ \floglogw+e-""+logloglogw _ .=
e e e

From this sequence, we next construct a “simpler” number like

loglogw+e-" e +logloglogw

a = JO+e logw+e

that still contains a bad path

e Togw+eVioslosewte loglogloge e,/loglogw+e<'“"+logloglogw e
7 7

IRV

thereby contradicting the minimality assumption on 4. In order to make this idea work,
we first need a series of “deconstruction lemmas” that allow us to affirm thata’ is indeed
simpler than a; these lemmas will be listed in Section 5.3. We will also need a gener-
alization < of the relation € that was used by Berarducci and Mantova to prove the
well-nestedness of No as a field of transseries; this will be the subject of Section 5.4. We
prove Theorem 1.1 in Section 5.5. Unfortunately, the relation < does not have all the nice
properties of €. For this reason, Sections 5.4 and 5.5 are quite technical.

5.1. Hyperserial expansions

Recall that any number can be written as a well-based series. In order to represent num-
bers as hyperseries, it therefore suffices to devise a means to represent the infinitely large
monomials m in Mo”. We do this by taking a hyperlogarithm L, m of the monomial and
then recursively applying the same procedure for the monomials in this new series. This
procedure stops when we encounter a monomial in Loy w.

Technically speaking, instead of directly applying a hyperlogarithm L, to the mono-
mial, it turns out to be necessary to first decompose m as a product m=e?n and write n
as a hyperexponential (or more generally as the hyperlogarithm of a hyperexponential).
This naturally leads to the introduction of hyperserial expansions of monomials m € Mo?!,
as we will detail now.

DEFINITION 5.1. We say that a purely infinite number ¢ € Nos is tail-atomic if ¢ =9+ ta, for
certain p € Noy., te{—1,1}, and a € Moy,

DEFINITION 5.2. Let m € Mo?!. Assume that there are € Nos, 1€ {—1,1}, x € {0} U won
B €On and u e No such that

m = e’ (LgEY), (5.1)
with supp ¢ >Lg 41 E4. Then we say that (5.1) is a hyperserial expansion of type I if
o Bw<uw;
e E/eMo,\ LyMoyy,

o w=1= (p=0and u is not tail-atomic).
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We say that (5.1) is a hyperserial expansion of type Il if « =0 and u= w, so that Ej = w and
m = el/; (L’g a))‘. (52)

Formally speaking, hyperserial expansions can be represented by tuples (¢, 1, «, 8, u).
By convention, we also consider

1 = e%(LoEg0)°,

to be a hyperserial expansion of the monomial m =1; this expansion is represented by the
tuple (0,0,0,0,0).

Example 5.3. We will give a hyperserial expansion for the monomial
m = expQE,w— Jw+ Ly w),
and show how it can be expressed as a hyperseries. Note that
u = logm = 2E,w—Jw+Lys1w

is tail-atomic since L,, w is log-atomic. Now L, w =L, w is a hyperserial expansion of
type II and we have L1 w<E, w, V. Hence m = e2Few=v@ ([ w) is a hyperserial
expansion.

Let ¢:=2E, w— Jw, so m= e¥ (L, w). We may further expand each monomial in
supp §. We clearly have E, weMo,,.. We claim that E,,weMo, 2\ L,2Mo,s. Indeed, if
we could write E, w=L,, Ly, a for some a EMo,;; and n,m € N~, then w=L,,(Ly Ly a) =
Lym+1ya—nand Ly m+1) @ would both be monomials, which cannot be. Note that E,, w=
E (L2 Epw)= Ei“ﬁzwrl, soE,w= EZ‘EWH is a hyperserial expansion of type I. We also

1
have Jw=exp (%log w) where %log wis tail expanded. Thus Jw = Eflogw is a hyperserial
expansion. Note finally that log w=L; w is a hyperserial expansion. We thus have the
following “recursive” expansion of m:

L, 2w+1
2EY

E%Llw
m=e 1 (Lyw). (5.3)

LEMMA 5.4. Any m & Mo has a hyperserial expansion.

Proof. We first prove the result for m € Mo, by induction with respect to the simplicity
relation C. The C-minimal element of Mo, is w, which satisfies (5.2) for y=pf=0and :=1.
Consider m € Moy, \ {w} such that the result holds on mg[o“’. By [6, Proposition 6.20],
the monomial m is not L.gp-atomic. So there is a maximal A € w°™ with m € Mo,, and
we have A > w by our hypothesis.

If there is no ordinal ¥ <A such that E}' € Mo,., then we have m € Mo, \ L.y Mo, .
So setting « =A, =0 and u =L, m, we are done. Otherwise, let y <A be such that a:=
EY € Mo, . We cannot have 7y =0 by definition of A. So there is a unique ordinal # and
a unique natural number 1 € N such that y =7+ w’n and 7' » w". Note that A > """,
We must have A = w"*!: otherwise, L rmim= L7,+wq+1(a) +n where L+ mand L7,+wq+1 a
are monomials. We deduce that ' =0 and y = w’n. Note that Ly a=L,m, A <A w, and
aeMo,, 50 a=0,,(m). We deduce that a C m. The induction hypothesis yields a hyper-
serial expansion a=e" (Lg Ey)'. Since a is log-atomic, we must have ¢=0 and (=1. If
a=Lgw, then B=>A,,= w', since ae Moy, Thusm=L,a= Lg4 w is a hyperexponential
expansion of type II. If a=Lg Ej, then likewise > w" and thus m =Lg,., E; is a hyperex-
ponential expansion of type I. This completes the inductive proof.
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Now let meMo” \ Moy, and set ¢:=logm. If ¢ is tail-atomic, then there are ¥ € No,,
te{-1,1} and ae Mo, with ¢ =9+ 1a. Applying the previous arguments to a, we obtain
elements & > w, B, u with a=Lg E; and pw <, or an ordinal g with a=Lg w. Then m=
e’ (Lg EHtorm= e’ (Lg w)'is a hyperserial expansion. If ¢ is not tail-atomic, then we have
m=E{ is a hyperserial expansion of type I. O

LEMMA 5.5. Consider a hyperserial expansion a=Lg E;. Let >0 and define y_:=p—11if pis
a successor ordinal and yp_:= p if p is a limit ordinal. Let

B = B'+B" where
B' = Bywr = W and
B = Bewn- < W
a) Then ais L. m-atomic if and only if B" =0 and either a > w" or a =0.
b) If a>w", then v m(a) =Ly Ef.

Proof. We first prove a). Assume that a is L. »-atomic. Assume for contradiction that
B'' #0 and let w"m denote the least non-zero term in the Cantor normal form of 8’. Since
B'' <w", we have WMl < w" so L+ ais a monomial. But L a=Lgr , EY —m where
Lﬁ;'wv E} is a monomial: a contradiction. So 8" =0. If « =0 then we are done. Otherwise
E} & Mog, so we must have a w > w”, whence a > w!. Conversely, assume that a > w”
or «=0, and that 8" =0. If # #0, then then for all y < w", we have L, a=Lg,, Ef where
B’ +v<a,so L, a is a monomial, whence a € Mo« If #=0, then for all < w", we have
Lya=Lg o w€&Mo, whence a€Mo,n This proves a).

Now assume that a > w". So Lg' Ef is L,n-atomic by a). If B” =0 then we conclude
that a=Lg Ei=0,n(a). If B #0, then let w”m denote the least non-zero term in its Cantor
normal form. We have w’*! < w" and Lywia=L i Lg Ef—m=L 4+ Lg Ey, 50 Lg Eg =
0 m(a). 0O

COROLLARY 5.6. Let u€0On”, a:=w!, y<a, and b € Moy, If L, beMo, \ Moy, then p is
a successor ordinal and «y =, ,n for some n € N,

Proof. Since L, b € Mo, \ Mo,., we must have 7y #0. By Lemma 5.4, we have a hyper-
serial expansion b=e" (Lg Ep)". Since b is log-atomic, we have log b=+ 1L.1 E; € Mo,
whence =0 and t=1. So b=Lg E;. We have b € Mo, so by Lemma 5.5(a), we have
p=ua. It follows that L, b=Lg,, E; is a hyperserial expansion. But then Lg,, E; € Mo,
and Lemma 5.5(a) imply thaty = w"". The condition thaty <a now gives y_ < i, whence
p is a successor and y = w"~n for a certain n € N7, as claimed. O

LEMMA 5.7. Any m € Mo has a unique hyperserial expansion (that we will call the hyperserial
expansion, henceforth).

Proof. Consider a monomial m # 1 with
m = e¥ (Lga)’,

where y €No.., 1e{-1,1}, B,a € wO" ae Moy, ,8w<oc and supp ¢ > Lg,1 a. Assume for
contradiction that we can write m =e?’ (Lg' Eyr VW asa hyperserial expansion of type I
with a’ <. Note in particular that > 1, so Lg1 a is log-atomic. We have

logm = $4ilgi1a = l/J,+L/L51+1EE;.
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If a' =1, then B’ —O ¢'=0,/=1, and u’ is not tail-atomic. But ¢4 tLg,1 a=1u', where
L[;+1 ae Mow, so u' is tail-atomic: a contradiction. Hence a’ > 1. Note that tLg,1 a and
1" Lgr11 Er are both the least term of log m. It follows that ¢ =1', 1=1", and

Lﬂa = L[;/E,JL:/. (5.4)
Since B’ w<a’, we have
EY = 0y(Ly EX) = 0p(Lga).

Now E;j,’ & Moy, 50 0y(Lga) #aand thus fw> a'. In particular B> B’. Taking hyperex-
ponentials on both sides of (5.4), we may assume without loss of generality that 8’ =0 or
that the least exponents 77 and 7" in the Cantor normal forms of S resp. B differ. If B’ =0,
then we decompose b=+ w"n where n€ N~ and y > w". Since Lga= E;‘,’ €Mo, \ Mo/,
applying Lemma 5.5(«) twice (for wh'=a"and w"=a'w) gives w24’ and W' Fa’ W,
whence a' =", But then E% =L, b, where b:= L, a€Mo, w by Lemma 5.5(a). So
E) €Ly Mo, : a Contradlctlon Assume now that ﬁ #0. Lemma 5.5(a) yields both
LgaeMo, 41\ Mo, +2 and Lg: Ey = Mow,y a\ Mow,y +2, which contradicts (5.4).

Taking a=cw&No and a:=max (¢’ w, Bw?), this proves that no two hyperserial expan-
sions of distinct types I and II can be equal. Taking a=Ej with a >4/, this proves that no
two hyperserial expansions e’ (Lg ELY, e¥’ (Lﬁf Eu'f/')" of type I with a #£a’ can be equal.

The two remaining cases are hyperserial expansions of type Il and hyperserial expan-
sions e’ (Lg E{)" and ¥ (Lg' E 4 of type I with a =4, Consider a monomial m € Mo*
with the hyperserlal expansions m= e’ (Lyw)'= —e¥’ (L 1 w)‘ of type II. As above we have
p=¢',1=1,and L, w=L,  w. We deduce that y =", so the expansions coincide.

Finally, Consider a monomial m# 1 with two hyperserial expansions of type I

m = eV (LEY' = e (Ly EX)". (5.5)

Ifa=1,thenwehave p=¢'=0and f=B"=0and 1=1"=1, whence u=u’, so we are done.
Assume now that a > 1. Taking logarithms in (5.5), we see that y=1', 1=/, and

LgEY = Ly EY. (5.6)

We may assume without loss of generality that f > ’. Assume for contradiction that
B> p’. Taking hyperexponentials on both sides of (5.6), we may assume without loss
of generality that 8’ =0 or that the least exponents 7 and 7’ in the Cantor normal forms
of B resp. B’ differ. On the one hand, Lemma 5.5() yields Lg E{ € Mo, +1\ Mo, ;+2. Note
in particular that Lg E; &Mo,, since Bw <. On the other hand, if 8 #0, then Lemma 5.5(a)
yields Lg E,i" S Mow,,/ \ Mowvf+1; if 3" =0, then Lg E,ﬁfr € Mo,. Thus (5.6) is absurd: a con-
tradiction. We conclude that =" Finally E; = EY yields u=u’, so the expansions are
identical. O

LEMMA 5.8. If m=e? (Lg Ex)" is a hyperserial expansion of type I, then we have
supp ¢ Nsuppu = .

Proof. Assume for contradiction that n € supp ¢ Nsupp u. In particular n>Lg,1 Ey. Since
u>0, thereisr€R” with u>rn, so Lgiq EY >n: a contradiction. O
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5.2. Paths and subpaths

Let A be an ordinal with 0 <A< w and note that i<1+ A= (i<A<wVi<w=A) for
allie N. Consider a sequence

P = (P(i)i<y = (Tp)icy = (rpimpilicy in  (R*¥Mo)™.

We say that Pis a path if there exist sequences (uUp,i)i<14A, (Pp,i)i<14A, (LP,i)i<As (AP,i)icA,s
and (Bp,i)i<14+1 With

e upg=T1poand Ppo=0;

Tp,;Eterm ¢p; or Tp;Etermup; for all i <A;

1p,ERTU{w}=A=i+1foralli<);

For i <A, the hyperserial expansion of mp ; is

— P,i+1 UP,i+1y1p,i
mpi = efrir (Lgp, Eap,ipr )

We call A the length of P and we write |P|:=A. We say that P is infinite if |P| = w and finite
otherwise. We set ap o:=a. For 0 <i<|P|, we define

o | (=Lypy) if mp;Esupp ¢p,

(Spisp) = { (Lup;) if mp;Esupp up,;.

By Lemma 5.8, those cases are mutually exclusive so (sp ;,ap ;) is well-defined. Fora € No,
we say that P is a path in g if P(0) € terma.

For k<|P|, we let P x denote the path of length |P| —k in ap x with
Vi < |P|=k,Tp,,i = Tpkti-

Example 5.9. Let us find all the paths in the monomial m of Example 5.3. We have a
representation (5.3) of m as a hyperseries

1

sLiw

L 2w+1
w 2
2E 9T _E?

m=e€e ¢ (wa)

which by Lemma 5.7 is unique. There are nine paths in m, namely

one path (m) of length 1;

1
three paths (m,ZEZ“ész), <m,—E15LM), and (m,w) of length 2;

1
three paths (m,ZECLU‘%WH,sz w), (m,ZEi)“z’WH, 1) and (m, —EliLW,%Ll w) of length 3;

lL1w 1

e two paths (m,ZECL;‘z’WH,sz w,w) and (m,—Ef 5L w,w) of length 4.
Note that the paths which cannot be extended into strictly longer paths are those whose

last value is a real number or w.

Infinite paths occur in so-called nested numbers that will be studied in more detail
in Section 6.

DEFINITION 5.10. Let a € No and let P be a path in a. We say that an index i <|P| is bad
for (P,a) if one of the following conditions is satisfied
1. wp;is not the <-minimum of supp up,;

2. mp;=minsupp up; and Bp;#0;
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3. mp;=minsupp up;and Bp;=0and rp; & {—1,1};
4. mp;=minsupp up,;and Bp;=0and rp;E{—1,1} and mp ; Esupp ¢p,;.

The index i is good for (P,a) if it is not bad for (P,a).

If P is infinite, then we say that it is good if (P, Tp,) is good for all but a finite number of
indices. In the opposite case, we say that P is a bad path. An element a € No is said to be well-
nested every path in a is good.

Remark 5.11. The above definition extends the former definitions of paths in [30, 38, 10].
More precisely, a path P with with ap ;=1 (whence ¢p ;=0) for all i <|P|, corresponds to
a path for these former definitions. The validity of the axiom T4 for No means that those
paths are good. With Theorem 1.1, we will extend this result to all paths.

LEMMA 5.12. For me€ (Lo w)*! and for any path P in m, we have |P|<2. For a€ L o w and for
any path P in a, we have |P| < 3.

Proof. Let [€ £\ {—1} and let P be a path in [o w. If there is an ordinal y with [={,, then
the hyperserial expansion of [owis L, w, so |P|=1if y=0 and |P| =2 otherwise. If there
is an ordinal y with [= ¢;7, then the hyperserial expansion of [ow is (L, w) ™! and |P|=2.

Assume now that [ & €;—5111. If log [ o w is not tail-atomic, then hyperserial expansion
of low is [ow=e%" If log [ow is tail-atomic, then the hyperserial expansion of [o w
is low=e¥"“ (aow)' for a certain log-atomic a € L. In both cases, P » is a path in some
monomial in Lop w, whence |P .| <2 and |P| <3, by the previous argument. O

DEFINITION 5.13. Let P, Q be paths. We say that Q is a subpath of P, or equivalently that P
extends Q, if there exists a k <|P| with Q=P ». For a&No, we say that Q is a subpath in a if
there is a path P in a such that Q is a subpath of P. We say that P shares a subpath with a if
there is a subpath of P which is a subpath in a.

Let P be a finite path and let Q be a path with Q(0) €supp up,pUsupp ¥p,p. Then we
define P % Q to be the path (P(0),...,P(|P]),Q(0),...) of length |P| + Q.

LEMMA 5.14. Let A € w°™ and meMo,. Let P bea path in mwith |P|>1. Then P »1 is a subpath
in L/\ m.

Proof. By Lemma 5.12, we have m ¢ (Lon w)*!. If m has a hyperserial expansion of the
form m=e¥ (Ly w)', then P ,; must be a path in ¢. So ¥ is non-zero and thus A =1. It
follows that P, is a path in log m =19 4 (L, w)'. Otherwise, let m = e (Lg E)" be the
hyperserial expansion of m. If P, is a path in 1, then it is a path in log m as above.
Otherwise, it is a path in u. Assume that A =1. If # =1, then we have )=0and logm=1u
so P,1is a pathinlogm. If a>1, then log m =1 4 tLg,1 Ef where L1 E; is a hyperserial
expansion, so P is a path in log m. Assume now that A>1,s0 =0, =1, and a > w.
We must have B>, so there are ' €On and n €N with 8’ > A, and f=B"+ A 1.
We have Ly m=Lg 4\ Ef —n where Lg,) E; is a hyperserial expansion, so P, is a path
in Ly m. O

LEMMA 5.15. Let aeNo”>, a € w®™ and ke N, If P is a path in #,(a) with |P|>2, then P »
is a subpath in O, ,.

Proof. We prove this by induction on a k, for any number a € No”~. We consider
a€No~”, and a fixed path P in #,(a) with [P|>1.
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Assume that a =k=1. We have #1(a) =a. and Oexpa = e”. Assume thatay =1+ ta for
certain  €Nos., 1€ {—-1,1}, and aEMo,,. Let a=L, E} be the hyperserial expansion of a.
If A= w, then =0 and the hyperserial expansion of e®is e* = E/;"!. Therefore P . is a sub-
path in deyp, = e? (ET1)". If A > w, then the hyperserial expansion of e” is e® = L, .1 EJ.
Therefore P 1 is a subpath in deyp, = e (L, 41 EY)". Finally, if e is not tail-atomic, then P »;
is a subpath in dexps = (E{*")€, where € € {—1,1} is the sign of a..

Now assume that « =1, k> 1, and that the result holds strictly below k. We have
Exa=Ex_1(exp a) where P, is a subpath in dexp, by the previous argument. We have
1 Vexpa A #1(exp a) for a certain r € R7%, so Q:= (7 Vexpa) * P »1 is a path in #1(exp a). The
induction hypothesis on k —1 implies that Q ,; = P »1 is a subpath in dg,,.

Assume now that a > w and that the result holds strictly below a. Write v:= #,(a).
By (3.7), there exist 7€ On, n < w, and é € No with f:=w’ <« and

Eya = Eﬁn(Lﬁn EZ-H- ).

Assume for contradiction that there is a v € On with Ef =L, w. We must have y>u«/,,,
so there are a number n €N and an ordinal 4’ > a with y =" +a,,n. We have v=
Ly 14 w—n. By Lemma 5.12, this contradicts the fact that |[P| >2. So by Lemma 5.4, there
exist e w®" and 7 € On with Bza, yw<p,Eg=L, Eﬁ, and Eg €Mog \ LgMog,,. Since
EJ € Mo,, we must have y >u/,, so there are a number n € N and an ordinal ' > a with
v=7"+a,,n (note that n=0 whenever a,,=a). Thus v+n="LyLy/4q,n E§+n =Lyi4a Ef;‘
is a monomial with hyperserial expansion v+n =L, Eg. There is no path in n of length
>1,s0 P mustbe a pathin L,',, Eg. We deduce that P » is a path in u. Consequently, Q=
(L, EE) + P »1 is a path in E; with |Q|=|P|>1. Applying n times Lemma 5.14, we deduce
that Q » =P isasubpathin Lg, EY hence in #5(Lgn Eqxa). Consider a path Rin #5(Lg, Eqxa)
with P ;=R ; for a certain i > 0. Applying the induction hypothesis for Lg, E,a and fn
in the roles of a and ak, the path R »; is a subpath in O, (LgnEqa) = O, a- Therefore P -1
is a subpath in 9g,,. We deduce as in the case « =1 that P is a subpath in dg . O

LEMMA 5.16. Let  €Nos., and m& Mo? with supp ¢ >logm. Let P be a path in m with |P| > 1.
Then P, is a subpath in ¥ m.

Proof. Let m=e? (Lg E;)' be a hyperserial expansion. The condition supp 1 >>1log m implies
9+ 19 =9+ 1, whence e’ m=e?*? (Lg Ef)' is also a hyperserial expansion. In partic-
ular P, is a subpath in e¥m. O

COROLLARY 5.17. Let a = w"” € On, € On with B<w, and ¢ € Nos. 4. If P is an infinite path,
then P shares a subpath with ¢ if and only if it shares a subpath with LgEY.

Proof. Write B=w"mj+ --- + w™my in Cantor normal form, with 7, > - -+ >, and
my,...,my€ N~ and let

a; = Lw’71m1+~~-+w'7f—1mi,1 EZ)
foralli=1,...,k.

Assume that P shares a subpath with ¢. In other words, there is a path R in ¢ which
has a common subpath with P. The path R must be infinite, so by Lemma 5.15, it shares
a subpath with EY = a;. Let us prove by induction on i=1,...,k that R shares a subpath
with E Z) = a;. Assuming that this holds for i <k, we note that a; is L _,1-1,-atomic, hence
L. mn-atomic. So P shares a subpath with a;;1 by Lemma 5.14 and the induction hypoth-
esis. We conclude by induction that P shares a subpath with ay=Lg E?.
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Suppose conversely that P shares a subpath with Lg Ef = a;. By induction on
i=k-1,...,1, it follows from Lemma 5.15 that P shares a subpath with a;. Applying
Lemma 5.14 to a; = EZ) , we conclude that P shares a subpath with ¢. O

5.3. Deconstruction lemmas

In this subsection, we list several results on the interaction between the simplicity rela-
tion C and various operations in (No, +, %, (Ly)xc0n)-

LEMMA 5.18. [26, Theorem 3.3] For a,b € No, we have

aCb e —alC —b

LEMMA 5.19. [26, Theorem 5.12(a)] For m € Mo and r € R¥, we have

sign(r)m C rm.

LEMMA 5.20. [5, Proposition 4.20] Let ¢ € No. For 6, ¢ with 6,e < supp ¢, we have
PH#OC ¢o4e = 0 LC e

LEMMA 5.21. [10, Corollary 4.21] For m,n &€ Mo, we have

mMCne m ! Cnl

LEMMA 5.22. [10, Proposition 4.23] Given ¢,a,b in Noy. with a,b < supp ¢, we have

e’ C eb N e(p+a C e(p-ﬂ-b.

LEMMA 5.23. [10, Proposition 4.24] Given m,n € Mo” with log m <n, we have
mCn= e™ LC e

LEMMA 5.24. Let ¢ € Nos and r € R?, let m,n € Mo™ N No™*"PP? with m € £,,[n], and let
d0€Noy with §<suppn. Then

mC n = eftsignm — op#rndsd

Proof. The condition m € £,[n] yields logm <n. We have e"Ce" by Lemma 5.23. The
identity eMo” Smp, implies that e™ C ", whence eSisn(Nm e g by Lemma 5.21. Con-
sequently, e?*SiE"MC e#*™ by T emma 5.22. Since e =1C e’ € No”, we may apply
Lemma 5.22 to ¢ 4 rn and @ 4 71+ 4 to obtain e’ ™ Ce?* "+’ We conclude using the
transitivity of C. O

LEMMA 5.25. Let a € wO™ with a>1. For ¢, ENos , with L, E<, ¢ <1, we have
9Ty = E’C E.
Proof. By (4.5), we have

Noy Noy
E.p = {E@go,&foL ’@Eﬁf’z }
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. N N N NI
Since p C ¢, we have ¢, 7 C; > and ¢ > Cipp ~*, whence

No. o Nos. o
ELEDY < Enp < ELEIR.

Furthermore, we have Ly E<, ¢ <1, 50 E<, ¢ <E ;f’ . We conclude that E/CE ;f . O

5.4. Nested truncation

In [10, Section 8], the authors prove the well-nestedness axiom T4 for No by relying
on a well-founded partial order ¥gy that is defined by induction. This relation has the
additional property that

Va,beNo*, a gy b = a C b.

In this subsection, we define a similar relation < on No that will be instrumental in
deriving results on the structure of (No, (L,),¢.0n). However, this relation does not
satisfy a Sb=aLC b for all a,b € No.

Given a,b e No, we define

def
a1 <b e dneN,a <, b,

where (<,)nen is a sequence of relations that are defined by induction on #, as follows.
For n=0, we seta <ob, if b or if there exist decompositions

a = @+sign(r)m
b = @Hrm+54,

with r€ R* and m € Mo. Assuming that <, has been defined, we set a <,,41b if we are in
one of the two following configurations:

Configuration I. We may decompose a and b as

a = q)-H-sign(r)e’/’(E,i’)‘ (5.7)
b= g+re’ (LgED'+, (5.8)

where r € R7, peNoy, e won, Bw<wa,1€{-1,1}, u,vENOy 4,
supp ¢ > log Ex, Lg+1Es,
and u <, v. If a =1, then we also require that y=0.
Configuration II. We may decompose 2 and b as

a = (p—H—sign(r)ew (5.9)
b= g+re? a+35, (5.10)

where r€R?, ¢, ¢’ €Nos, 1€{—1,1}, aEMoy, s ENo, supp ¢’ >loga,and ¥ S, 9.

Warning 5.26. Taking a =1 in the first configuration, we see that < extends €gy. How-
ever, the relation < is neither transitive nor anti-symmetric. Furthermore, as we already
noted above, we do not have Va,b&eNo, a<b=aLCb.

LEMMA 5.27. Let a € wO™. Let a,b € No>> be numbers of the form

a=¢@+rm
b= @4sn4d
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where 9,6 €No, 1,5 € R7 with sign(r) =sign(s), and m,neMo~. If ml< E, n1 for suffi-
ciently large p <, then

b e N0>,a = a & N0>,“.

Proof. Let v€On and & := w”. Assume for contradlctlon that b€ No.. , and a & Nos ,.
Assume first that a <{b, so b=a+ 6. Then supp b > —— » E 7. Let k€ N~ be such that
a4 kd;=b. Since supp (a + kds) Csupp b, we deduce that supp (a+kos) > m,
whence a + k9; € Nos. ,. Modulo replacing b by a + k5, it follow that we may assume
without loss of generality that  =kp for some k€ N~ and some monomial p.

On the one hand, a is not a-truncated, so there are q € (supp ¢)< and y with O <y<a
and a<L!”7(q7!). We may choose y = w"n for certain < v and n €N, soa <LT“’ ”(p'l)
On the other hand, a + kp is a-truncated, so we have

a+kp > LIOOHND =1y 5 pleng=ly 5 g

We deduce that kp > L;“’1l(”+N>) (p~hH— L;“’V”(p_l). If v is a successor, then choosing 7=v_,
we obtain kp>LI“"(p~1) + N> —L1“""(p=1), so kp > 1: a contradiction. Otherwise, kp >
€[ 141 4 © p -1 by [ (2. )], where e[w1/+1’a> = 1—[ &y- Thus k_lp_l < f[wuﬂ/a) o p_l,
whence k< f[ W) a contradiction.

We now treat the general case. By a similar argument as above, we may assume
without loss of generality that b= @ 4 sn. Assume that b <a. Since a is not a-truncated,
there exists a y <a withm < (L, E, )1 (L, E, b)~!, whencem™!'> L, E,b. Butbis a-trun-
cated, son™' < L., E,b. In particular n™' < L, E, b, so our hypothesis m ™' < L, n~!implies
that m~!< L,L,Eyb<XL,E,b: acontradiction.

Assume now that b>a. As in the first part of the proof, there are 17 <vandn<n'<w
with ¢ +sn> L1 =1y and LI¢' ”(m‘l) > @+ rm. Recall that m™' <E, n™! for suffi-
ciently large p <a. Take 7<v and n’ < w such that

L (7Y > LD
L if vis a limit. (5.11)

W< y<a

Lyrm™ < n~

Then b—a> L;“’W(”H)(m‘l) - Llwvn(m'l). If v is a successor, then choosing 7 =v_ yields
b —a>1, which contradicts the fact that m and n are infinitesimal. So v is a limit.
Writing ¢ :=max (m,n), we have b —a=¢q. As in the first part of the proof, we obtain
q7 g[_a}’“'l,a) om™!, s0q71g b+ om~l<m™L. Inview of (5.11), we also obtain g~ ' <n~},

SO a|'1 <max (m,n)'lz a contradiction. 0O
LEMMA 5.28. Let a, 0’ € w®™ with a' > . For u,v € No>>, we have
Lou < Eyv = Ly Eyu < EyEyv.
Proof. ‘Assume that L, u<&,v. Let he &, and let h'™ be its functional inverse in &,. We
have i <E, H, L, by (4.10,4.11), whence h > E,' Hy, L,». Furthermore, u <E, £, v, so
E,u < E,E &0 (5.12)

We want to prove that E, u < (E, hE,) v. By (5.12), it is enough to prove that there is
a g € &, such that the inequality E, E, § < E, hE, holds on No”"”.

Assume that ¥ =a’. Setting ¢:=H1, € &,, we have L, hE,>g, whence E, § <hE,, and
E,E,g<E,hE,.
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Assume that ' >«a. We have E, Hy, > Hj so Ey» Hi,>Ey Hy > E, Ey by (4.8).
Thus Ey h>Ey2 Hiy Ly > E,. Consequently, Ey hE,>E, E,, as claimed. O

If a,b are numbers, then we write [a < b] for the interval [min (a,b), max (a,b)].

PROPOSITION 5.29. For a,b,c € No with a < c and b € [a < c], any infinite path in a shares
a subpath with b.

Proof. We prove this by induction on n with a $;,c. Let P be an infinite path in 2. Assume
that a Soc. If a<dc, then we have a b so P is a path in b. Otherwise, there are ¢, € No,
r€R* and m € Mo with a= ¢ + sign(r)m and c=¢ + rm+ 6. Then b=@ +sn+t for
certain t €No, s€ R* and neMo with sne [sign(r) m & rm]. We must have n=m. If P
is a path in ¢, then it is a path in b. Otherwise, it is a path in sign(r) m, so P »1 is a subpath
in sm, hence in b.

We now assume that a <,,c where n >0 and that the result holds for all a’,b’,c’ € No
and k<n witha' Sxc’ and b’ € [a" & ¢']. Assume first that (a,¢) is in Configuration I, and
write

a = @4 sign(r) eV (Bl

ith <,_ .
qo—H—re‘/’(LﬁE;’)l-H-(S wi Hn-1 0

~

[

Then we can write b = ¢ 4 sm 4t like in the case when n=0. If P is a path in ¢, then it is
a pathin b. So we may assume that P is a path in sign(r) e¥ (E!Y". Note that we have me
[e¥ (' e (Lg Ex)']. Setting n:=(m e "el[Elo Lg E{], we observe that supp log n <
supp 1, whence e¥ n’ is the hyperserial expansion of m. If P, is a path in ¢, then it is a
path in m.

Suppose that P 1 is not a path in . Assume first that e =1, so =0, =0, and P is
a path in (EY)". Then Lemma 5.14 implies that P »; is a subpath in (1, so P -, is a subpath
in u. Otherwise, consider the hyperserial expansion E; =Lg E;’, E,’€Mo, \ L, Moy, of
Ej. Since P » is not a path in ¢, it must be a path in w. The number Lg/ Ey is L ,-atomic, so
we must have a’ >a and B’ >u/,,. Therearen €N and "' >, such that ' =" +a,n.
Therefore u=Lg ;4 Eyr—n. It follows by Corollary 5.17 that P »; shares a subpath with ,
whence so does P.

Let z:=#,(Ly n). Recall that n € [Ef < Lg E;], so Lyn € [u < L, Lg E;]. Now (4.8)
implies that Lg Ey € Ea[ER], 50 Ly L Ey € Ly E4[Eq] = La[v]. The function #4 = 7tsmp,_is
non-decreasing, so z=#4(Lyn) € [u < #,(Ly L E)]=[u+v]. But u<,_19, so the induc-
tion hypothesis yields that P, and thus P, shares a subpath with z. We deduce with
Lemma 5.15 that P shares a subpath with n, hence with b.

Assume now that (g,c) is in Configuration II, and write

a = ¢+ sign(r) e

: with ¢ < 9.
c = @4re’ a+0 Y Sy

Note that we also have ¥ <,_19 + 1log a. We may again assume that P .1 is a path in .
Write b= @45’ q4t', wheres’ €R¥,t'€No,and g€ [e¢<—>elf"’a‘] NMo. Thenlogg€e [y <
" 4 1log a] where ¢ <,_1 9" 4 tlog a. We deduce by induction that P shares a subpath
with log q. By Lemma 5.15, it follows that P shares a subpath with g, hence with b. This
concludes the proof. O
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LEMMA 5.30. Let A, a € wO™ and B € On with Bw< a. Let a € Nos. » be of the form
a = go-H—reZp(ng EDyt 45,

with peNo, re R7, pENoy, beNo; 4, t€{-1,1}, 5€Noand log Lg Efz <supp . Consider
an infinite path P in c € Nos. , with ¢ Sb.

i. If log E; < supp , then P shares a subpath with 1.
ii. If log ES < supp ¢ and e¥ (ES)' £ supp @, then P shares a subpath with ¢.

iii. If log Ey <supp y and e¥ (ES)'< supp ¢ and a’ := ¢ 4 sign(r) eV (ES)'¢ No. ,, then P
shares a subpath with ¢.

Proof. i. If log E; £ supp ¢, then we have 1 #0, so « >1. Let m € supp ¢ with log E; > m.
Since log E; and m are monomials, we have m <log E;, whence e™ < E;. Our assumption
that mesupp ¢ >log Lg E! also implies e™ < Lg EL Hence e™ € [ES o Lg EZ]. Now P shares
a subpath with Ez, by Lemma 5.15. Since Ez S Lg E?, Proposition 5.29 next implies that P
shares a subpath with e™. Using Lemma 5.14, we conclude that P shares a subpath with
m, and hence with .

ii. Let m€supp ¢ with m<e¥ (ES)". It is enough to prove that P shares a subpath
with m. Since m, e? (Lg EYY, and e¥ (ES)* are monomials, we have e? (Lg Ebr<m<ge? (ESA
Let n:= (e ¥m)’, so thatne [Lg E! < ES]. In particular, we have supp ¢ >logn>1. More-
over E5 < Lg E,f, so using Lemma 5.15 and Proposition 5.29, we deduce in the same way
as above that P shares a subpath with n. If n¢& Mo, then m= eV 108" i the hyperserial
expansion of m, so P shares a subpath with m. If n& Mo,,, then the hyperserial expansion
of n must be of the form n=Eg E,, since otherwise log n would have at least two ele-
ments in its support. We deduce that P shares a subpath with u and that the hyperserial
expansion of m is e¥ (Eg' Ey)". Therefore P shares a subpath with m.

iii. We assume thata’ is not A-truncated whereas log E < supp ¢ and e¥ (ES)' < supp ¢.
If A =1, then we must have e¥ (E$)'< 1, which means that p<0orthat p=0and :=-1.
But then e (Lg Efi)‘ X 1: a contradiction.

Assume that A >1. By Lemma 5.27, we may assume without loss of generality that
0=0. The assumption on 4" and the fact that s € No>> imply that ¢ is non-zero. Write

e¥(ES)" and
q = eV (LgED".

Soa=g¢+rqanda’ =g+ sign(r)p. Note that p must be infinitesimal since 2" is not A-trun-
cated. Thus q is also infinitesimal. By Lemma 5.27, we deduce that E_y q~' <p~L. We
have #,(a") <a’, so #1(a") = ¢, since a and ¢ <a are both A-truncated. Since a4’ is not
A-truncated, there is an ordinal y <A with p < (L, E)(f)‘l. If p>a, then q > (Lca EHL
because a is A-truncated. Thus q > (L., E)(f)‘l. If p <a, then ¢ + (L E)qf)'1 e Lalpl <
Lalal D2a= ¢+ rq, because ¢ and a are A-truncated. Now r >0, since ¢ <a. We again
deduce that g > (L) Ef)'l.

In both cases, we have L, EK) € [p_1 o q_l] where p_l < q_l, so P shares a subpath
with L, E{, by Proposition 5.29. It follows by Corollary 5.17 that P shares a subpath
with ¢. i
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5.5. Well-nestedness

We now prove that every number is well-nested. Throughout this subsection, P will
be an infinite path inside a number a € No. At the beginning of Section 5.2 we have
shown how to attach sequences (rp;)i<w, (Mp,)i<w, etc. to this path. In order to alleviate
notations, we will abbreviate r;:=7p;, m;:=mp;, u;:=up;, P;:=Pp;, 1;:=1p; a;:=ap; and
Bi:=Pp, forallie N.

We start with a technical lemma that will be used to show that the existence of a bad
path P in a implies the existence of a bad path in a strictly simpler number than a.

LEMMA 5.31. Let a€ No, let P be an infinite path in a and let i € N such that every index k<iis
good for (P,a). For k<i, let @y:= (Uk) sm;, €k:="Tk and pi:= (Ur) <m,, SO that €, ..., e;_1€{—1,1}
and

U = QJk-H-{-Ikel'[]k+1 (EZ:H)”‘ (k<i)
u; = (PZ'-H-Tiel’[JHl (L‘BiEZH)“’H'pi-

Let x€{0,1} and let c;e Noy. 4,_, be a number with ¢; Su; and
ci = @i+ xsign(ry) e’ p, (5.13)

for a certain p € Mo” with log p < supp i1, pC Ey*" and p € E,[E,*"] whenever ;,1=0.
Fork=i—1,...,0, we define

k= @rtegel (B (5.14)

Assume that P shares a subpath with c;. If P shares no subpath with any of the numbers @o, {1, ...,
®i—1,;, then we have coCa, and P shares a subpath with co.

Proof. Using backward induction on k, let us prove for k=i—1,...,0 that

Ly, ckr1 < Egligsr (5.15)%

log E,f*' < supp k41 (5.16)k

eV (Eg+)% < supp gk (5.17)
Ck S Uk (5.18)«

P shares a subpath with cx41 (5.19)«
Ck+1 € Noy 4, (5.20)x

Ck+1 E Ukt (5.21)

and that (5.19)f and (5.21) also hold for k= —1.

We first treat the case when k=i—1. Note that c; # 0 since it contains a subpath, so
¢i€No~” or xy =1. From our assumption that ¢; = ¢; + x sign(r;) e¥*1p“ and the fact that
pEEGLEL T if i1 =0, we deduce that c;e € [u;]. Hence Ly,  ¢;<&,,  u;jand (5.15);_.
Note that (5.19);_; and (5.20);_1 follow immediately from the other assumptions on c;.
If y=0thenc;=¢@;<u;. If y=1, then pCLg E,*", since Lg E,*' € &, [E, "'l and pEE, ' C
Ex[Eq ™). Hence p"'C (Lg,E,*")" by Lemma 5.21 and sign(r;) eV ipiC el (Lg, Egith)"
by Lemmas 5.19 and 5.22. Finally, ¢;C u; by Lemma 5.20, so (5.21);_; holds in general.
Recall that P is a subpath in ¢;, but that it shares no subpath with ; or ¢;_;. In view of
(5.20);-1, we deduce (5.16);_1 from Lemma 5.30(i) and (5.17);_1 from Lemma 5.30(ii).
Combining (5.16);_1, (5.17);-1 and (5.20);_; with the relation c¢; < u;, we finally obtain
(5.18);_1.
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Let ke{0,...,i—1} and assume that (5.15-5.21), hold for all £ > k. We shall
prove (5.15-5.21)_1 if k>0, as well as (5.19) _1 and (5.21)_;. Recall that

Ck = @p+epel (Egimyt,

(5.15)k—1. Recall that k> 0. If @x# 0 or ¥r+1 # 0, then cx € Pluy] and (5.16-5.17)
imply (5.15)k—1. Assume now that @i =1+1=0. It follows since k>0 that (=1, so
cx_1=E ;’;71 and uy_1=E,, ,uy. Since E ;’:71 is a hyperserial expansion, we must have
UK E MOy, w, SO &k—1 2 ak. The result now follows from (5.15) and Lemma 5.28.

(5.19)k—1. We know by (5.19) that P shares a subpath with c,1. Since cx+1 ENos 4,
we deduce with Corollary 5.17 that P also shares a subpath with E;f*', hence with

(E;i*l)"‘. In view of (5.16) and Lemma 5.16, we see that P shares a subpath with

ek (Ezs)' . Hence (5.17) gives that P shares a subpath with cx.

(5.16)k—1. By (5.18), we have cx Sug. Now P shares a subpath with ¢, by (5.19);, but

it shares no subpath with ;. Lemma 5.30(i) therefore yields the desired result
k

log E;f  <supp .

(5.17)k-1. As above, P shares a subpath with ¢k, but no subpath with ¢;_;. We also
have ¢y Suyand log E;f < supp 9, so (5.17) k-1 follows from Lemma 5.30(ii).

Q-1

(5.18)k—1. We obtain (5.18)x_1 by combining (5.15-5.18); and (5.20).
(5.20)k—1. The path P shares a subpath with c, but no subpath with ¢;. By what

precedes, we also have log E;**' < supp ¢ and e¥* (Exi)* < supp @ Note finally
that uy€Noy 4, ,. Hence cxeNos 4, ,, by applying Lemma 5.30(iii) with ay, ax_1,

Uy, Ug41, and cr,1 in the roles of a, A, a, b, and c.

(5.21) k1. It suffices to prove that Ef"' C E,**", since

Ck+1 Uk+1
El"k E E“k

= (Eg)'* C (EgH* (by Lemma 5.21)
— ell”‘“(E;:“)"f C e¥k (Egrrtyt (by Lemma 5.22)
J— gkewkﬂ (E;I:rl)lk E Ske1/7k+1 (EZ:+1)lk

= @rt e’ (EFE T gt el (Ey) (by Lemma 5.20)
= ¢ C u.

Assume that a; > 1 and recall that

Cx = @+ SkelpkH(E;iH)[k

C
Ck+1 = §0k+1+€k+1e¢k+2(Ea§ﬁ)lk+l-

By Lemma 5.25, it suffices to prove that cx,.1 Euiyq and that E,, ciy1 < E;’:“ for all

v < ak. The first relation holds by (5.21). By (5.15), we have Ly, cky1 < Eg, Ukt1-

Therefore cx1 < Ekk%uk_}_l < Ly Eqp k41 by Lemma 5.25. This yields the result.
Assume now that oy =1. Ford=0,...,i, let

¢4 = Vey—gq
Ug = Oyy—gy
We will prove, by a second descending induction ond =7,...,k—1, that the mono-

mials ¢; and uy satisfy the premises of Lemma 5.24, i.e. ¢g,us > 1, ¢z € E[uy], and
c4Cuy. It will then follow by Lemma 5.24 that e**C e"¥, thus concluding the proof.
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If d =i, then supp c;, supp u; > 1, because a;_; =1. In particular ¢;, u; > 1.
Moreover, ¢; Eu; follows from our assumption that p C E;™*', the fact that E,/*' C
En[Ey 1D Lg Ey*, and Lemmas 5.22 and 5.21. If ;.1 #0, then we have ¢;€ €[]
because supp ;.1 >1ogp,log E;*'. Otherwise, we have ¢;=p e E [Ey ] =E[u;].

Now assume that d <i, that the result holds for d + 1, and that a;=1. Again
ag =1 implies that ¢441,u541>1. The relation ¢;41C 1441 and Lemmas 5.18, 5.19,
and 5.20 imply that ¢z41Cugi1. If a42#0, then ¢z € Eplug1] by (5.16)441. Oth-
erwise, we have 17,1=1, because c;ENos 1. Since y=1, the number ;1= @441+
€41 E;’;:f is not tail-atomic, so we must have a1 =1. This entails that ¢;,1 =e“+2
and uy;1=e"*2 By the induction hypothesis at d + 1, we have ¢z2€ E,[ug42]. We
deduce that cj. o€ & [Ug42], SO

ca+1 € exp Eluarn] = Eule™?] = Eulugel.
It follows by induction that (5.21)4_1 is valid.

This concludes our inductive proof. The lemma follows from (5.21)_; and (5.19)_;. O
We are now in a position to prove our first main theorem.

Proof of Theorem 1.1. Assume for contradiction that the theorem is false. Let a be a C-
minimal ill-nested number and let P be a bad path in a. Let i€ N be the smallest bad
index in (P,a). As in Lemma 5.31, we define ¢y := (k) <my k= (Uk) >m;, and ex:=71y for all
k<i. We may assume that i >0, otherwise the number cy:= @o 4 sign(ro) e (E;‘(})‘U is ill-
nested and satisfies coC a: a contradiction.

Assume for contradiction that there is a j <i such that ¢; or ;1 is ill-nested. Set x:=0
if ¢; is ill-nested and ) :=1 otherwise. If y =1, then P cannot share a subpath with ¢;, so
supp ¢; >e?*! by Lemma 5.30, and @; + ¢;e¥*! is ill-nested. In general, it follows that
cji= @ -H-)(Sjewf“ is ill-nested. Let Q be a bad path in ¢; and set P’:=(P(0),...,P(j—1))*Q.
Then we may apply Lemma 5.31 to j, ¢j, and P in the roles of i, c;, and P. Since ¢;# u, this
yields an ill-nested number ¢y C a: a contradiction.

Therefore the numbers ¢q, ¥4, ..., pi_1,9; are well-nested. Since i is bad for (P,a), one
of the four cases listed in Definition 5.10 must occur. We set

g e @i sign(r;) e if Definition 5.10(4) occurs

Y i sign(r;) ¥+ (Eght otherwise.

By construction, we have d; Su;. Furthermore P shares a subpath with d;, so there exists a
bad path Q ind;. We haved, e No. 4, by Lemma 5.27. If Definition 5.10(4) occurs, then
we must have ;1 +# 0 so d; is written as in (5.13) with d; in the role of ¢;and p=) =1.
Otherwise, d; is as in (5.13) for p= E;‘f“. Setting P':= (P(0),...,P(i—1)) * Q, it follows that
we may apply Lemma 5.31 to d; and P’ in the roles of ¢; and P. We conclude that there
exists an ill-nested number dyC a: a contradiction. O

6. SURREAL SUBSTRUCTURES OF NESTED NUMBERS

In the previous section, we have examined the nature of infinite paths in surreal num-
bers and shown that they are ultimately “well-behaved”. In this section, we work in the
opposite direction and show how to construct surreal numbers that contain infinite paths
of a specified kind. We follow the same method as in [5, Section 8].
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Let us briefly outline the main ideas. Our aim is to construct “nested numbers” that
correspond to nested expressions like

10gw_e loglongre‘/logloglogw—e'

a = Jw+e (6.1)

Nested expressions of this kind will be presented through so-called coding sequences .
Once we have fixed such a coding sequence X, numbers a of the form (6.1) need to satisfy
a sequence of natural inequalities: for any c€ R with ¢ >1, we require that

Vo <a < cyw
-1
Jo+e V89 < g oy 4 efVIoBwW
w+e‘/@_ec,/loglogw

—1_vlogloglogw
_ aloglogw+c levicgloglos _ ,loglogw+ce
‘/—+e,/10gw e <a< ‘/—+e,/logw e

<a< \/w+e‘/@_ec_l‘/w

logloglogw
gloglog

Numbers that satisfy these constraints are said to be admissible. Under suitable condi-

tions, the class Ad of admissible numbers forms a convex surreal substructure. This will

be detailed in Sections 6.1 and 6.2, where we will also introduce suitable coordinates
Mowio— [logToge +V10BI0BToBw —¢

0y = Jwo+eVloswe =a

7

aq = ‘/@_e,lloglogawe
log logw_i_e,/logloglogw—e"

log (a;0— V@)

log (Vlog w—a;1)

a5

7

for working with numbers in Ad.

The notation (6.1) also suggests that each of the numbers a,0— V@, Jlogw —a, ...
should be a monomial. An admissible number a € Ad is said to be nested if this is indeed
the case. The main result of this section is Theorem 1.2, i.e. that the class Ne of nested
numbers forms a surreal substructure. In other words, the notation (6.1) is ambiguous,
but can be disambiguated using a single surreal parameter.

6.1. Coding sequences
DEFINITION 6.1. Let ¥.:= (¢, &;, i, 1j, ) ien € (Nox {=1,1} x No x {—1,1} x a)O“)N. We say
that ¥ is a coding sequence if for all i € N, we have

a) ;eNoy,;

b) ¢i+1ENoOs 4, U{0};

¢) (ai=1)= (¥i=0A (Pi1=0=a;11=1));

d) (pir1=¢iy1=0)= (x;Za;p1ANeip1=1i11=1);

e) 3j>i,(pj#0V;#0).

Taking a;=1 for all i€ N, we obtain a reformulation of the notion of coding sequences
in [5, Section 8.1]. If X = (¢;, &5, i, 1i,&i)icn is a coding sequence and k € N, then we write

Lok = (Phetis Etis Yhetis tetis Kk+i)ieN,
which is also a coding sequence.
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LEMMA 6.2. Let P be an infinite path in a number a € No without any bad index for a. Let

. . H > — ; :
P0:=Apmp, aNd @i:=(ap,i) smp,; for all i€ N7, Then Zp:= (¢;,7p,i, Pp,i+1,tp,i, &p,i)ieN IS 4 coding
sequence.

Proof. Let i€ N. We have rp,; € {—1,1} because i is a good index for (P,a). We have
Ypi+1 €Noy and ap ;11 € Noy. 4, by the definition of hyperserial expansions. If i >0 and
¢:#0, then we have ¢;ENo~~ because ap ;& No~” by the definition of paths. Lemma 5.27
also yields ¢;€Nos 4. This proves the conditions 2) and b) for coding sequences. Assume
that #;=1. Then by the definition of hyperserial expansions, we have ¥p,,1 =0 and
Upi+1=4ap,+1 is not tail-atomic. Assume that ¢p ;2 =0. Then supp up,y1>15s0 ipit2=1.
Wehave up;i1=¢;114rpir10a where a:= EZI’;I’:f and up ;1 is not tail-atomic. This implies
that a is not log-atomic, so ap ;41 =1. Thus c) is valid.

Assume that ¢;.1=p;12=0. Recall thatap; 1=7p ;1 (Eg;’f:f)“’/"“ =up;+1 EN0””, s0
rpi+1=1pi+1=1.Since EZ;:“ ¢&Mo,, ., Wwe have up ;1 & Moy, ., whence ap i1 <ap,. This
proves d).

Assume now for contradiction that there is an ip € N with ¢p j=1p ;1 =0 for all j>i,.
By d), we have rp;=1p ;=1 for all j>ip, and the sequence (ap);>;, is non-increasing,
hence eventually constant. Let i1 > i with ap; =ap ;forall j>i;. Forke N, we haveap ;=
Ewp,flk ap,i+k 80 ap,i, € (ien E”‘P,ilk Moy, = Moy, «- Therefore EZI'ZZ“ is L<,,(P,i1+1w-atomic:
a contradiction. We deduce that ¢) holds as well. m]

We next fix some notations. For alli,j€ N with i< j, we define partial functions ®;, ;.
and ®;;; on No by

D;(a) := q)i+€ie‘/”"1 (E,Xi_lﬂ)li_l,
®D;i(a) = (Djo---0D;_q)(a),
Dj; = Dy

The domains of these functions are assumed to be largest for which these expressions
make sense. We also write
o = 0 = [ |en

0}-/.1- = 0'1-;]- = H Ek Lk

i<k<j

We note that on their respective domains, the functions ®;, ®;, and ®;; are strictly
increasing if ¢;4;=1, 0;,=1, and 0},; =1, respectively, and strictly decreasing in the con-
trary cases. We will write ®,; and ®;;; for the partial inverses of ®; and ®;,;. We will
also use the abbreviations

.= Dj(a) aji = Dji(a)

a, = CID;i(a) al‘;]' = q)i;]‘(ﬂ)

a;.

Forall ie N, we set

L' = (¢i—0iR”supp ¢i); R" = (¢i+ 0, R”supp ¢0);
L o (g erehs®smnyy R i= (g4 ciebrrocbswpyy
1) if ;11=0 1) if 9i41=0
L = orgsep=—1 R = Or 0i1€i+1=1
(La; @it1)is1, otherwise (La; @it1)i+1, otherwise
L == LMuLPyLP R; = RIMURPIUR
L:= (] L R:= | R

ieN ieN
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Note that

pi =0 = LM =RM =9 and

The following lemma generalizes [5, Lemma 8.1].
LEMMA 6.3. Ifa€ (L|R), then a.; is well defined for all i € N.

Proof. Let us prove the lemma by induction on i. The result clearly holds for i =0.
Assuming that a; is well defined, let j >i be minimal such that ¢;# 0 or ¥; #0. Note
that we have a; > a;,12 - 2 aj, 50 Ey 0 By 00 - oEaj:E7 where y=a;+a; 11+ +a;.
Applying ®;; to the inequality

L]- < a < R,
we obtain
(L), < oa, < 0;(R));:
Now if ¢;#0, then
(L) 2 pi+eie’ (Ey(pj— ;R supp g))"
(Rp)ii 2 @i+eie? (Ey(@;+0,;R”supp ¢)))",
whence

a;i— Qi

1

o;ie? (E(¢j—0;jR”supp ¢))" < 03 < o;e¥ (Ey(g;+0;jR”supp ¢)))".

Both in the cases when ¢; =1 and when ¢;; = —1, it follows that ((a,;; — ¢;) Jeie¥h s
bounded from below by the hyperexponential E,, of a number. Thus a;;=L,(((a;;—¢:) /
(e;e¥))") is well defined and so is each ax fori<k<j. If ;=0, then we have ¢; # 0 and

pitee? (E7(e¢/—€ﬂf;/ﬁ>5upp¢j) ),
pitee? (E7(e¢/+€ﬂf;/ﬁ>5upp¢j) ).

(Lj);i 2
(Rj);i 2
Hence

Sielpi(Ey(el/’f_gﬂf;fR%upplpj))ti < a;—g; < giel/ﬁ(Ey(e¢f+€ﬂf;fR>SUPpl/ff))tf

Both in the cases when ¢;=1 and when ¢;=—1, it follows that ((a,;— ¢;) /e;e¥)is bounded
from below by the hyperexponential E., of a number, so 4;; is well defined and so is each
ay fori<k<j. O

6.2. Admissible sequences

DEFINITION 6.4. Let ¥:= (¢j, &;, i, Li, ;) ieN be a coding sequence and let a € No. We say that
a is X-admissible if a.; is well defined for all i€ N and

a; = giteel (Eyais)",
supp ¢; > logE,,a.i+1, and
Qiv1 < #a,@i01)  if @iy #F 0.



34 SURREAL NUMBERS AS HYPERSERIES

We say that ¥ is admissible if there exists a Y.-admissible number.

Note that we do not ask that e¥ (E,, a,,;1)" be a hyperserial expansion, nor even
that E,, a.;+1 be a monomial. For the rest of the section, we fix a coding sequence X =
(@i, €i, Pi, i, i) ien. We write Ad for the class of X-admissible numbers. If a € Ad, then
the definition of Ad implicitly assumes that a;; is well defined for all i€ N. Note that
if X is admissible, then so is X - for k€ N. We denote by Ad -« the corresponding class
of X ,-admissible numbers.

The main result of this subsection is the following generalization of [5, Proposi-
tion 8.2]:

PROPOSITION 6.5. We have Ad = (L | R).

Proof. Letae AdU (L |R) and letie N. We have a;eNo~”. If 0;;=1, then ®;, is strictly
increasing so we have

LY <a<RY = L), <a; < (R,
= ¢;i—R7supp¢; < a; < ¢;+R”supp ¢;
= a;;— @i < supp ¢;

= @; Q aj.
If 0,;=—1, then ®;, is strictly decreasing and likewise we obtain L;, <a<R;, <= ¢;da,;.
We have t;logEy a.i41=1; <log ) If 0;=1, then ®;. is strictly increasing so we

have

L <4 < R = gi+¢ eVi—eiR7suppys < a; < @i+e; e¥iteiR7suppy;

4’

= —R7suppy; < log < R”supp ¢;

= supp ¢ > log ™ fl
gie

= logE,a;i41 < supp ¢;.

Likewise, we have Ll[z] <a< Rl-[z] <= logE, a.i41<supp ¢;if 0;=—1.
Assume that ¢;1#0and c;;41=1. If &;,1 =1, then we have a.;11> ¢;;1. Hence

3] /

L ULZ[ 1< a< R[ URZ[ = Ly i1 < @iy A @i 9 a1
= @iy1 < #a,i41) N @iv1 9 a1
= @ir1 <] #4,(a;i11)-

If £;41=—1, then we have a.;41 > @;+1, whence
3 1 3 1

L} ]UL1[+]1 <a <R ]URz'[+]1 = a,i41 < Lo @iv1 N @iz1 9 a1
= #,@i11) < @iv1 A Qiy1 S a0
= @iy1 < B4,(a;i11).

Symmetric arguments apply when ¢;,1#0 and ;41 =—1.
We deduce by definition of Ad that Ad=[");. (Li | R;) = (L | R). O

As a consequence of this last proposition and [5, Proposition 4.29(a) |, the class Ad is
a surreal substructure if and only if X is admissible.
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Example 6.6. Consider the coding sequence L= (¢, €, i, i, &;)icn Where for alliEN,
we have

@i = Lypiw+Lyipw+Lypigw+---,

g =1,

P; = Lpiviw+Lyziviyw+Livizw+ -,
;; = =1 and

0 = WL

We use the notations from Section 6.1. We claim that X is admissible. Indeed forie N,
set

" PiN 1 -1
a; = g00+e¢° (EZ),He "(EST) ) .
Given j€N and i > j, we have L;<a; and a; <R;. We deduce that L <R, whence % is
admissible.

LEMMA 6.7. Let a € Ad and b No be such that a — g and b— ¢y have the same sign and the
same dominant monomial. Then b€ Ad.

Proof. For x,y € No?, we write x =y if x <y and x and y have the same sign. Let us prove
by induction on i € N that b,; is defined and that a;; — ¢;=b,; — ¢;. Since this implies that
¢; b, that log bg’;/f "< supp ¢y, and that ¢; < #,_,(b,) if i>0, this will yield b€ Ad.

The result follows from our hypothesis if i=0. Assume now thata,;—¢;=b,;—¢; and
let us prove that a.;,1—@iy1=b,i11— @it1. Let

_ (bi—gi
@ ( Eiel/]i )

i— @i\ 4 . .

We have ¢; = (a’ f ) =E, a1 EN0”7, s0 b,jy1 =L,,(c;) is defined. Moreover c; €
g;e¥i ’ ’ i

EnlEg; a;i11] 80 biip1 € Ly[a;i41]. Since @iy1 < #4,(a;i11) = #a,(bi41), we deduce that

b.it1— @it1~a.i+1— @i+1, Whence in particular b,;41 — @i11=4,i+1 — @i+1. This concludes

the proof. O

COROLLARY 6.8. We have Ad »1 = L,,[Ad 1]

Proof. For be Ad »1, and c € L, [b], we have @1 < #,,(b) = #4,(c) so c—@1~b— 1. We
conclude with the previous lemma. O

LEMMA 6.9. Fora,b€ Ad and i€ N, we have Ly, ,a,;<E4y,_, ..

Proof. Let j>ibe minimal with ¢;#0 or ¢;#0. We thus have a;;,b,;€ P[¢; + eje‘/’f] SO
loga,;<b;.. We have a;;= E,,tiJr...Jra].f1 a;jand b;;= E,xl.+...+aj71 b;jwherea;>--->a;21. We
deduce by induction using Lemma 5.28 that L,, ,a,;<&,, ,b.:. m]

6.3. Nested sequences

In this subsection, we assume that X is admissible. For k€ N we say thata X ,-admissible
number a is ¥ -nested if we have E,,,, ari+1 € Moy, \ L<y,,, Moy, for all ie N. We
write Ne . for the class of ¥ ,-nested numbers. For k=0 we simply say that a is X-nested
and we write Ne:=Ne ».

DEFINITION 6.10. We say that %. is nested if for all k€ N, we have
Ad i = rtere? (B Ad i)™
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Note that the inclusion Ad x C ¢k + €k e¥r (Ea, Ad sr41)"* always holds. In [5, Sec-
tion 8.4], we gave examples of nested and admissible non-nested sequences in the case of
transseries, i.e. with a;=1 for all i€ N. We next give an example in the hyperserial case.

Example 6.11. We claim that the sequence X, from Example 6.6 is nested. Indeed, let
k€N and a€ Ad -, 1. We have a= @y, 1 4 eV (E_2x+3b) 7! for a certain b€ No™> with b=
L2+ w. Let us check that the conditions of Definition 6.4 are satisfied for c:= ¢y +
eV (E )L

First let m € supp ¢r. We want to prove that m >log E 2+14. We have m =L2+1, w
for a certain n € N”. Now a <2 L2+ w, s0 log E 2+14 < Eﬁjﬁiﬁ‘z" =L 2(w+2) <m.

Secondly, let n € supp ¢r. We want to prove that n > e% (E x:1a)~!. We have n=
L2y w for a certain n€ N>. Then e%* (E 2+1a) ' < e?¥* by the previous paragraph. Now
295+ N <3L e w s0 €2 < 19 < .

Finally, we claim that ¢y 1 <\#.2¢+1(a). This is immediate since the dominant term 7 of
e¥1(E w2k+3 b)~lis positive infinite, s0 @i+1 < @Pr+14 T4 20+1(a). Therefore X is nested.

A crucial feature of nested sequences is that they are sufficient to describe nested
expansions. This is the content of Theorem 6.15 below.

LEMMA 6.12. Let be Ad »1. If ap>1, or ag=1 and by is not tail-atomic, then the hyperserial
expansion of Ey, #,,(b) is

Epy#ag(b) = Efoo®

If ap=1, by =1+ 1b is tail-atomic, and e® = Lg Ey is a hyperserial expansion, then 1 € Ad »
and the hyperserial expansion of exp bs. is

expbs = e¥ (Lg Ex)".

Proof. Recall that #(b) =b,.. By Corollary 6.8, we have #,,(b) € Ad »1,. So we may assume
without loss of generality that b= #,,(b).

We claim that EZ, € Moy, \ Lz, M0y, Assume for contradiction that ES, € L 5, M0y,
and write EJ = L, a accordingly. Then Corollary 5.6 implies that -y =0, in which case we
define 1:=0, or ag= w"*! for some ordinal u and y = (ag) /1 for some n € N”. Therefore
E,ff;r "€ Moy, S0 b+ 1 E Moy, This implies that

b= (b+n)+ (—n).

Recall that @1 <1b. Assume that n=0, so ¢1=0. Since b is log-atomic, we also have ¢ =0.
Let j>1 be minimal with ¢; #0 or ;#0. We have a1 >--->a; 1 and by;;= L,,¢1+...+,xj71 be
Mo, - In particular, the number by;; is log-atomic. If ¢;#0, this contradicts the fact that
@j<1by;. If ;#0, then supp ;> log ((bll.je_ll’f)‘f) implies

logby;; = ¢+ log ((bl;je_l/’f)‘/).

But then log by;; is not a monomial: a contradiction. Assume now that 7>0. So ¢1=b+n
and b= @1+ (—n). But then b, is not defined: a contradiction. We conclude that E,fﬁo ¢
L <py MOy

If a9>1, or if xp=1 and b is not tail-atomic, then our claim yields the result.
Assume now that ap=1 and that b =19 + 1 b is tail-atomic where : € {—1,1}, € Nos,
and e”=Lg E; €Mo,, is a hyperserial expansion. Then the hyperserial expansion of exp b
isexpb= e’ (LgEg)".
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We next show that y € Ad 1. If b e (Es; Ad )", then @1 < ¢, and we conclude
with Lemma 6.7 that € Ad »;. Assume for contradiction that b & el (Eqa; Ad »2)". Since
b is log-atomic, we must have 1; =0. By the definition of coding sequences, this implies
that ;=1 and a1 =1. So b= @1+ e1exp(bi2), whence p=¢1, 1=¢1, and b=exp(b;,2). In
particular the number by, is log-atomic, hence tail-atomic. Since by, € Ad -, the claim
in the second paragraph of the proof, applied to X ,1, gives Ei’l"z & Mo,,. But then also
b & Mo,,: a contradiction. O

We pursue with two auxiliary results that will be used order to construct a infinite
path required in the proof of Theorem 6.15 below.

LEMMA 6.13. For a€ Ad, there is a finite path P in a with up p € Ad »1 — N or ¢pp p € Ad »1 — N.

Proof. By Lemma 5.16, it is enough to find such a path in E, a,1. Write ap=: w”. Assume
first that 4 =0, so ap=1 and ¢y =0. If (2,1) is not tail-atomic, then the hyperserial expan-
sion of exp (a,1)x is exp (a1)s = E{*"> and r E{*"> is the dominant term of exp a, for
some r € R”. Then the path P with |[P|=1and 7p:= r E{*V> satisfies uppy=(a.1)> € Ad »1.
If (a,1)s is tail-atomic, then there exist € Ad -1, t€ {—1,1} and a € Mo,, such that the
hyperserial expansion of exp (a,1)» is exp (a,1)» =e” a'. Let re¥ a' be a term in exp a.; with
r€R?. Then the path P with |[P|=1 and P(0) :=re" a' satisfies p p =1 € Ad » — N.

Assume now that > 0. In view of (3.6), we recall that there are an ordinal A <« and
a number § with

Enot1 = Ep(Ly Ef00D 4.6).

If 4 is a limit ordinal, then by Lemma 6.12, we have a hyperserial expansion m:= L Ef20@.
Let Teterm #,,(a,1) and set Q(0) =mand Q(1) := 7, so that Q is a path in m. By Lemma 5.15,
there is a subpath in E,, 4,1, hence also a path P in E,, a.;, with Tp;p_1=m. So up,p =
Bao(2,1) € Ad 1. If p is a successor ordinal, then we may choose A = w1 for a certain n e
N. By Lemma 6.12, we have a hyperserial expansion m:= Ef20@) =" Asg in the previous
case, there is a path P in E,,a,; with 7ppj=m, whence up p=4#,,(a.1) —n€Ad,—N. O

COROLLARY 6.14. For a€ Ad and k€ N, there is a finite path P in a with |P| >k and upp €
Ad_, x—Nor¢ppeAd,r—N.

Proof. This is immediate if k=0. Assume that the result holds at k and pick a corre-
sponding path P with up pj€ Ad ., — N (resp. ¥p,pj€ Ad ,r— N). Note that the dominant
term T of up jp— @i (resp. ¥p p — @x) lies in exe?* (Ey, Ad ,1)"* by Lemma 6.7. Moreover
T is a term of up p; (resp. ¥p,p). By the previous lemma, there is a path Q in 7 with
1,0 €Ad k11— N or g 0 € Ad k11— N, so (P(0),...,P(IP|-1),Q(0)) * Q satisfies the
conditions. i

THEOREM 6.15. There is a k€ N such that L. - is nested.

Proof. Assume for contradiction that this is not the case. This means that the set A of
indices d € N such that we do not have Ad ;= ¢, + ¢4 e¥ (E, . Ad 441)" is infinite. We
write A={d;:ie N} wheredy<di<---. Fixa€ Ad and letd:=d;EA. Let u€ Ad »4,1 such
that

pa+eqe? (Eu) & Ad g, (6.2)
let n€ N and let P be any finite path with

upp) = @a+eqe? (Egu)—n.
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We claim that we can extend P to a path Q with |Q|>|P|, ug,o € Ad »4,,,— N and such
that |P| is a bad index in Q. Indeed, in view of Definition 6.4 for Ad ,; the relation (6.2)
translates into the following three possibilities:

e Thereis an nesupp ¢y with nlog E,, u. We then havelog E,, 4,41 <n<logE,, u.
By Lemma 6.7 and the convexity of Ad 4.1, we deduce that ¢; (), n lies in the
class 1ylog E,, Ad 5441, SO e = (Es; Ad »411)". By Corollary 6.14 for the admis-
sible sequence starting with (0,1,0, 15, 44) and followed by X ,;.1, there is a finite
path Rp in e with [Ro| >d;3—d>2 and URy,Ro| € Ad ,4,,,— N. Taking the log-
arithm and using Lemma 5.14, we obtain a finite path R; in (1), n, hence in
with [Ry|>2 and ug, g, = UR,, Ry E Ad »4,,,— N. Write (Ey, a,4+1)" =rm 4 p where
r€R* and meMo?. Then logm=E,,a,4.1<supp 4, so the hyperserial expansion
of e¥’m has one of the following forms

e¥im = e’/’d”(Lﬁ EHY or
eVim = (E$d+5)z

where (Lg Ef)" is a hyperserial expansion and ¢ is purely large. In both cases, the
path R= (egre?"m) = Ry is a finite path R in egel? (Eny0,041)" with ug g =ug, g, €
Ad g, ,— N. Since R(0) is a term in up p, we may consider the path Q:=P*R.
Moreover, since Tg,p| is a term in ¢z =g p}, the index |P| is bad for Q.

e We have log E,, u < supp ¢, but there is an m € supp ¢ with m < e¥ (E,, u)". We
then have e (Eay1441)" < mm< e¥d (Eq,u)". By Lemma 6.7 and the convexity of
Ad .1, we deduce that (@), m lies in et (Ex;Ad »411)" So Lad((e_l/’d (Pd)mm)')
lies in Ad ,4.1. But then also v:=#,,(Ly,( (e~ ¥ (Pa)mm)*)) lies in Ad 4.1 by Corol-
lary 6.8. By Corollary 6.14, there is a finite path Rg in v with |[Ro|>2 and ug,r, €
Ad ;.. — N. Applying Lemma 5.15 to this path Rg in v, we obtain is a finite path
Ryin (e” ¥ (@d)mm)'® with ug, g, € Ad 4., — N. Since (¢s)mmE el (Eoy Ad »541)",
we have supp ¢4 >e” " (9s)mm. So Lemma 5.16 implies that there is a finite path
Rin (¢4)mm, hence in ¢, with ug g € Ad 4, ,— N. We have R(0) Eterm ¢\ R C
term up p, so Q:=Px*Ris a path. Write T for the dominant term of ¢4 el (Eq u’)H.
The index |P|is a bad in Q because 7 p and 7 both lie in termag p, and 7o p; > 7.

e We have log E,, u < supp 4 and supp @4 > e¥ (E,, u)", but @ii1 = #a,(Par1+
g1V (E, 201 W', By the definition of a4-truncated numbers, there is a <
wg with

eli+ (Elld+] w)l+ < < e+ (Eﬂédu a;d+2)ld+1_

LgEJ™

Using the convexity of Ad 4,5, it follows that Lg EZ;"“ ge Yirt (Engo Ad jgip) 740
By similar arguments as above (using Corollary 6.14 and Lemmas 5.15 and 5.14),
we deduce that there is a finite path R in @441 with ug g € Ad »4,,,— N. As in the
previous case Q:=P xR is a path and |P| is a bad index in Q.

Consider a b € Ad 4,1 and the path Py:= (7,—g,) in b. So P is a finite path with up,p, €
Ad ;. Thus there exists a path P; which extends Py with up, ;p, € Ad ,4,, where |Py| is a
bad index in P. Repeating this process iteratively for i=2,3,..., we construct a path P;
that extends P;_; and such that up, p;€ Ad 4,,,, and such that |[P;_1| is a bad index in P;. At
the limit, this yields an infinite path Q in a that extends each of the paths P;. This path Q
has a cofinal set of bad indices, which contradicts Theorem 1.1. We conclude that there
is a k€ N such that X , is nested. m]
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LEMMA 6.16. Assume that X is nested. Then we have Ad = ¢o+ € ef? (Eqol Eny Ad 1]

Proof. Note that &, [E,,Ad 1] =Ey, La,[Ad »1]. The result thus follows from Corollary 6.8
and the assumption that X is nested. a

LEMMA 6.17. Assume that ¥ is nested. Let ke N, a € Ad and c, € No with
Cx = gok-H-Skezpkplk (6.3)

foracertainpe Mo7” with pC Eaja;k+1 and p € E [ Ey, a,541] whenever P =0. If cre Ad i, then
we have

(o, C a.

Proof. The proof is similar to the proof of Lemma 5.31. We have a.x= @i+ erelx (Eqp41)"
and we must have supp ;> log p since cx = @i + € e p*e Ad . If follows from the
deconstruction lemmas in Section 5.3 that cx C a. This proves the result in the case
when k=0.

Now assume that k> 0. Setting cx_p:= ®Pr_x(ck), let us prove by induction on p <k that

Ck_p E N0>rak—p—]
Ck—p £ ak—p.

For p =k, the last relation yields the desired result.

If p=0, then we have c; € Ad -, by assumption and we have shown above that cyCa;.
We have ¢ < #,,_,(cx) and e¥p' is a monomial, so (6.3) yields ck = #4,_,(ck) ENOs 4 ;.
This deals with the case p=0. In addition, we have c; >0 because k>0 and cy€ Ad . Let
us show that

logcr < a. (6.4)
If ¢ #0, then this follows from the facts that ¢y <14 and @i <ck. If =0 and ¢, #0, then
log (ck/ek) ~ P ~log (ax/ex) <ax. If pr=1=0, thena,=E, a1 and cx=p € Eylaxl, so
log ck < a.
Assume now that 0 <p <k and that the induction hypothesis holds for all smaller p.
We have

Chop = Phop(Ckps1) = @r+exe? (B (6.5)
Since X is nested, we immediately obtain ¢y, <#s, , ,(ck—p), Whence cx_p ENOs o, , ,
as above. Since ck—p-1 € Ad,—p-1) and X is nested, we have cx_p € Ad »_p)-

Using (6.5), (6.4), and the decomposition lemmas, we observe that the relation ¢;_, C
a—p is equivalent to

Ei’;:;“ C Eu, Bk—p+1- (6.6)
We have cx_p11Eak—p41, 80 Ck—p1E Ba,_,(@k—p+1). Note that
Ef;ff;p(a;k_er]) = Dak,p(szk,p a;k—p+1) C szk,p Ak—p+1-

So it is enough, in order to derive (6.6), to prove that E,fé’;;%;“ C Eﬁ;‘f;;?(a?k*i’“). Now

szk,pck—p+1 < 811;(,;7 #ak,p(a;k—p+1)
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by Lemma 6.9, whence Ezf=7+'C Eﬁﬁ;n(”""*ﬂ“) by Lemma 5.25. |

ForieN, ge&,, and ae Ad, we have ¢;+ siew"g(Eaia;iH)“’ €Ad by Lemma 6.16. We
may thus consider the strictly increasing bijection

Yig = Ad— Ad;a— (p;i+ eV g(Ey,a;141)").

We will prove Theorem 1.2 by proving that the function group §:={¥;¢:i€N, g€ &}
on Ad generates the class Ne, i.e. that we have Ne = Smpg. We first need the following
inequality:

LEMMA 6.18. Assume that X is nested. Let i,j€ N with i< jand let g € £,. On Ad, we have
Yig<¥im, if ojsvini=1and ¥i o <Y, if ojirivn=-1.

Proof. It is enough to prove the result for j=i+ 1. Assume that 0j;,+1=1. Letae Ad
and seta’:= (¥;41,1,(a))i4+1, so that

— i+1 L
Qi1 = @ip1+eie’” (Eajpr @;i42)"!

! i+1 L
a @iv1+ei1eV (2K, :42) .

Note that
(‘Fi,g(a))i+1; € jjz;ci[a;i+1]-

If 0,11 =1, then ;11 1i41=042/ 011 =1and ¥, is strictly increasing. So we only need
to prove that j;,.[a;iﬂ] <a', which reduces to proving that #,,(a.;11) < #4,(a"). Let T be the
dominant term of E,,,, a,;42. Our assumption that X is nested gives ¢; + g el (Ep,a")ie

Ad ,;, whence ;1 <1#,,(a’). We deduce that ¢; 11 +¢€;41 eV 127yl g #,.(a’). Lemma5.27
implies that @; 1+ €41 e¥+1 (2 7)1 is a;-truncated.

B (@ir1) — @ip1 ~ eipreV T,
#,00") — @iz1 ~ eip1eV(2T)0
and €;41ti+1 =1 implies that
eip1e 1 (2T) i — gy eV Tl
is a strictly positive term. We deduce that #4,(a,i+1) — @i+1 < #4,(a") — @i+1, whence

B,(a.i+1) <#a,(a"). The other cases when 0,1 = —1 or when 07,5.;.1 = —1 are proved sim-
ilarly, using symmetric arguments. O

We are now in a position to prove the following refinement of Theorem 1.2.
THEOREM 6.19. If X is nested, then Ne is a surreal substructure with Ne = Smpg.

Proof. By Proposition 4.1, the class Smpg is a surreal substructure, so it is enough to
prove the equality. We first prove that Smp, C Ne.

Assume for contradiction that there are an a & Smpg, and a ke N, which we choose
minimal, such that a4, cannot be written as a = @i + ex my where m; = e¥x (EZ;"“)’k is a
hyperserial expansion. Set m:=0,,_,, 7:= (4;x)m and 6:= (a;x) >m-
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Our goal is to prove that there is a number m € {k,k + 1} and p € Mo~ with

p e 81)(,”[Eama;m+l]
p E Eacma;m+1 (6.7)
p C Eu, ams1, whenever 6=0and re{-1,1}.

Assume that this is proved and set c;;;:= @, + €, e¥p'n_ The first condition and Lemma 6.16
yield ¢,, € Ad - and the relations log p < supp ¢, and e¥" p"" < supp @, The second
and third condition, together with Lemma 6.17, imply c:= (¢;,)m; Ca. The first condition
also implies that c € g[a]: a contradiction. Proving the existence of m and p is there-
fore sufficient.

If m#minsupp a;x or m=minsupp a;x and r &{—1,1}, then m:=k and p:=0g, 4, , sat-
isfy (6.7). Assume now that m=min supp a,;x and that r&€{—1,1}, whence r=¢y. If a1 &
Nos 4, then m:=k and p := Ef“#+1) satisfy (6.7). Assume therefore that a.;11 € No. 4.
This implies that there exist 7 <&y and a € Moy, with Eg#+!' = L., a. By the definition of
coding sequences, there is a least index j >k with ¢;#0 or ¢;#0, so

EZ};}(H = Eak+~-~+aj,1(¢j+€jelpj (Eg;j+l)lj) & Moy, .

We have a € Moy, and L, a €Moy, \ Moy,«. So by Corollary 5.6, we must have a; = wh*1
for a certain € On and 7y = («x) /1 for a certain n € N~. Note thata,1=L,, a—n. Recall
that @r41<ax41 and Ly, a EMo”, O @r+1 € {Ly, a,0}. The case @1 =L,, a cannot occur
for otherwise

ak+1"¢k+1)w+l__ n'k+

€k+1el/Jk+1 elﬁk+l

Afy2 = (
€k+1

would not lie in No™”. So ¢x+1=0. Let m:=k+1 and

Laka Le+1 0441 \ +1 >
p - e¢k+1 - e¢k+1 - E"‘k+1a?k+2'

Wehave pe&,, [Es,. a:x+2] and pC E,, ., a442, s0 m and p satisfy (6.7). We deduce that
Smp; is a subclass of Ne.

Conversely, consider b €Ne and set c:= nQ[b]. So there are iy, i€ N and (g,h) € 8;,.1 X
8,;1,2 with ¥j, ¢,(b) <c <V, q,(b). Let i:=max (i1 +1,i2+1). By Lemma 6.18, there exist dy,
dz (= {1/2,2} with ‘Fil,gl < ‘Fi/Hdl and ‘Fiz,gz < ‘Fi,HdZ/ whence \IIi’del(b) <c< ‘Fi,Hdz(b)‘ Since CI);Z'
is strictly monotonous, we get c;; — ¢; < b.; — ¢;. The numbers ¢; (c;;— ¢;) and ¢; (b,; — @;)
are monomials, so ¢,;;— @;=b.;— ¢;. Therefore b=ce Smpg . i

In view of Theorem 6.19, Lemma 6.18, and Proposition 4.1, we have the following
parametrization of Ne:

VzeNo, Enez = {L, ¥y i ENezL | YN, jt ENeZr R}
We conclude this section with a few remarkable identities for Zpe.

LEMMA 6.20. If X is nested, then for ie N and a,b& Ne, we have aCb < a.,;Cb.;.

Proof. By [5, Lemma 4.5] and since the function ®;, is strictly monotonous, it is enough
to prove that Va,beNe,aCb«<a,;Cb,. By induction, we may also restrict to the case
when i=1. So assume thata;; Cb,;. Recall that L, a.1 < £y, b;1 by Lemma 6.9. Since a,,b,1 €
Nos. 4, we deduce with Lemma 5.25 that E4! C EY1. Tt follows using the decomposition
lemmas thataCb. |
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PROPOSITION 6.21. If ¥ is nested, then we have Ne = (Ne »1)1,= @0+ € ef? (Ege”)‘o.

Proof. We have Ne C (Ne 1)1, by definition of Ne. So we only need to prove that
(Ne 1)1, C Ne. Consider b € Ne ;. Since X is nested, the number a:= ¢y + ¢ ef? (Eqy b)
is X-admissible, so we need only justify that E, ;b €Moy, \ Ly, M0y Since a is X-admis-
sible, we have ¢1 <1 #,,(b). But b is £ ,-nested, so b= ¢ 4 T for a certain term 7. We
deduce that b=#,,(b) €Nos 4, whence E, b € Moy,.

Assume for contradiction that E,)ZZO € Ly, Moy, and write Efjo =L, a where a € Moy
and 7y <ag. Note that 7y #0: otherwise ¢; and ¢; would be zero for all i > 1, thereby contra-
dicting Definition 6.1(e). By Corollary 5.6, we must have ag=w"*" for a certain ordinal y
and y = w' n for a certain n € N~. Consequently, b=L,,a—n€Mo —n. If ¢1+#0, then the
condition @1 < #,,(b) implies ¢1=>b, which leads to the contradiction that b1,,=0¢& No~"”.
If 91 =0, then Ne »; C &1 Mo, whence n =0: a contradiction. O

COROLLARY 6.22. If X is nested, then for z & No, we have

ENeZ = q00+£0el/’°(E,f;)Nef1‘7?12)‘°.

COROLLARY 6.23. If X is nested and k € N, then

ENe = DroENe, 0 Ho;k-

PROPOSITION 6.24. Assume that X is nested with (@o, €0, Yo, 10) = (0,1,0, 1), assume that
wo € WO and write B = (ag) . Consider the coding sequence X" with (¢{, &}, ¢}, 1, al) =
(@i, €i, Pi, ti, ;) for all i€ N, with the only exception that

p1 = @1—n.
If $1<0, or 1 =0and 11 =—1, then " is nested and we have
ENe’ = LgnoEne,
where Ne' is the class of ©!"-nested numbers.

Proof. Assume that {1 <0, or 1 =0 and 1 = —1. In particular, if a is X-admissible, then
a.1—@1<1,50a1— @1 <supp ¢i. For be No>, it follows that E, (b—n) is Z"-admissible
if and only if E,, b is X-admissible. Let Ad/,; be the class of ¥.,;-admissible numbers, for
eachieN. Wehave Lg, Ad= Ad' by the previous remarks, and ¥’ is admissible. Fori>1,
we have 2, =X ,;, so
Ad; = Ady D ¢f +¢f eV (Ey Adbiy)".
Moreover, Ad’,; =Ad -1 —n, so
Ad' D L,Bn Ad D L,Bn EyAd, 1 = L,Bn Eq, (Ad 1 +n) = Ea([)n] Ad’q

Ad, D gi—n+ere? (B, Ad )" = ¢i+€ie¢{(E“£n] Ad’,z)“’.

So X is nested. We deduce that Lg, Ne =Ne’, that is, we have a strictly increasing bijec-
tion Lg,:Ne — Ne'. Itis enough to prove that for 2,b € Ne with aC b, we have LgnaCLg,b.
Proceeding by induction on 11, we may assume without loss of generality that n=1. By [6,
identity (6.3) ], the function Lg has the following equation on Moy

VaeMo,, Lga = {Lg ay 0

Mo,,c0
Lgag *, a}M%.

So it is enough to prove that Lg b <a. Note that Lg b= E,,If[;)l_l and a = E;) where b, — ¢,
aq—@1<1. Sob,; —a,1<1, whence b,; —1 <a,;. This concludes the proof. O
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6.4. Pre-nested and nested numbers

Let 2 € No be a number. We say that a is pre-nested if there exists an infinite path P in
a without any bad index for 4. In that case, Lemma 6.2 yields a coding sequence Xp
which is admissible due to the fact that 2 € (L | R) with the notations from Section 6. By
Theorem 6.15, we get a smallest k € N such that (Xp) -« is nested. If k=0, then we say that
a is nested. In that case, Theorem 6.19 ensures that the class Ne of ¥ p-nested numbers
forms a surreal substructure, so 2 can uniquely be written as a = Ene(c) for some surreal
parameter c € No.

One may wonder whether it could happen that k> 0. In other words: do there exist
pre-nested numbers that are not nested? For this, let us now describe an example of an
admissible sequence X such that the class Nex - of X *-nested numbers contains a smallest
element b. This number b is pre-nested, but cannot be nested by Theorem 6.19. Note that
our example is “transserial” in the sense that it does not involve any hyperexponentials.

Example 6.25. Let ¥ = (¢;,¢;,0,1,1);en be a nested sequence with e =—1. Let a be the
simplest X-nested number. We define a coding sequence ~* = (¢7,¢7,0,1,1);en by

gy == —1

Po =
(QD?;S;) = (@i, €) for all i >0.

1 anp
e 2"

Note that
a1 = @g1— e? = Q1+ €1 e”?z,

where e”? is an infinite monomial, so b:= ¢§ —e"" is X *-nested. In particular, the sequence
X" is admissible.

Assume for contradiction that there is a X *-nested number ¢ with ¢ <b. Since
ey =¢i =—1, we have ¢ <b,. Recall that c;; and b;, are purely large, so e < el? = ef2,
In particular

c. 1 a.
el = #1717 = $0,
which contradicts the assumption that ¢ is X *-nested. We deduce that b is the minimum
of the class Ney- of X*-nested numbers. In view of Theorem 6.19, the sequence ~* cannot
be nested.

The above examples shows that there exist admissible sequences that are not nested.
Let us now construct an admissible sequence 2? such that the class Ne,; of »%-nested
numbers is actually empty.

Example 6.26. We use the same notations as in Example 6.25. Define (ng, egj ) = (e, 1)
and set (go?, sZ@) i= (¢f_1,€f1) for all i>0. We claim that the coding sequence I
(golng ,e2,0,1,1) ;e is admissible. In order to see this, let ¢:= ,e"". Then

g 5 o .y e b
efiteay _ o potery < ePitete” _ eb‘

Since ¢f + &1 ¢ is (?) ,;-admissible (i.e. Z*-admissible), we deduce that e + esi ey
is Zﬁ-admissible, whence X2 is admissible. Assume for contradiction that Ne; is non-
empty, and let e’ 4+ me Neyy. Then logm is X*-nested, so log m > b, whence m > el a
contradiction.
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7. NUMBERS AS HYPERSERIES

Traditional transseries in x can be regarded as infinite expressions that involve x, real
constants, infinite summation, exponentiation and logarithms. It is convenient to regard
such expressions as infinite labeled trees. In this section, we show that surreal numbers
can be represented similarly as infinite expressions in w that also involve hyperexpo-
nentials and hyperlogarithms. One technical difficulty is that the most straightforward
way to do this leads to ambiguities in the case of nested numbers. These ambiguities can
be resolved by associating a surreal number to every infinite path in the tree. In view of
the results from Section 6, this will enable us to regard any surreal number as a unique
hyperseries in w.

Remark 7.1. In the case of ordinary transseries, our notion of tree expansions below
is slightly different from the notion of tree representations that was used in [30, 38].
Nevertheless, both notions coincide modulo straightforward rewritings.

7.1. Introductory example

Let us consider the monomial m=exp(2E,, w — /& + L+1 w) from Example 5.3. We may
recursively expand m as

1
L ow+l _zliw
2E 4T _E2
m = e« T (Lyw).

In order to formalize the general recursive expansion process, it is more convenient to
work with the unsimplified version of this expression

0.1 111.1\1 1,00 1\1
1 +1-1 eV (L
2~e0~(E Ze 2 ) +(—1)-e0.(E]/ e )

m = e (wa)l'

Introducing g.:x — x° as a notation for the “power” operator, the above expression may
naturally be rewritten as a tree:
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In the next subsection, we will describe a general procedure to expand surreal mono-
mials and numbers as trees.

7.2. Tree expansions

In what follows, a tree T is a set of nodes Nt together with a function that associates to
each node v & Nt an arity ¢, € On and a sequence (v[a])y<y, € Nfiv of children; we write
C,:={v[a]:a<{,} for the set of children of v. Moreover, we assume that N7 contains
a special element pr, called the root of T, such that for any v & Nt there exist a unique h
(called the height of v and also denoted by /,) and unique nodes vy, ..., v, with vo=pr,
vp=v,and v;€C,,_, for i=1,...,h. The height ht of the tree T is the maximum of the
heights of all nodes; we set h1:=w if there exist nodes of arbitrarily large heights.

Given a class X, an X-labeled tree is a tree together with a map A:Nt— X;v+— A, called
the labeling. Our final objective is to express numbers using X-labeled trees, where

L = R¥U{w, Y, %, 9_1,91) ULyonUE on.

Instead of computing such expressions in a top-down manner (from the leaves until the
root), we will compute them in a bottom-up fashion (from the root until the leaves). For
this purpose, it is convenient to introduce a separate formal symbol ?. for every c € On,
together with the extended signature

¥ := LU{?:ceNo}.

We use ?. as a placeholder for a tree expression for ¢ whose determination is postponed
to a later stage.

Consider a Z#-labeled tree T and a map v: N7 — On. We say that v is an evaluation
of T if for each node v € Nt one of the following statements holds:

El. A, e R¥U{w}, £,=0,and v(v) =A,;

E2. A, =}, the family (v(v[a]))s<y, is well based and v(v) = erdv v(v[al);
E3. A,=x%, {,=2,and v(v) =v(v[0]) v(v[1]);

E4. A\y=9, 1e{-1,1}, {,=1, and v(v) =v(v[0])%;

E5. A,=L,» €{,=1,and v(v) =L »v(v[0]);

E6. A,=E_» €,=1,and v(v) =E_»v(v[0]);

E7. A,=7?,, ¢,=0,and v(v) = .

We call v(pr) the value of T via v. We say that a € No is a value of T if there exists an
evaluation of T with a=v(p7).

LEMMA 7.2.
a) If T has finite height, then there exists at most one evaluation of T.
b) Let vand v" be evaluations of T with v(pr) =v'(pr). Then v="0v".

Proof. This is straightforward, by applying the rules E1-E7 recursively (from the leaves
to the root in the case of (1) and the other way around for (b)). ]
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Although evaluations with a given end-value are unique for a fixed tree T, different
trees may produce the same value. Our next aim is to describe a standard way to expand
numbers using trees. Let us first consider the case of a monomial m € Mo. If m=1, then
the standard monomial expansion of m is the Y% labeled tree T with Ny = {or} and A, =1.
Otherwise, we may write m=e" (Lgg)' with ¢ =w or g=E,. Depending on whether g =w
or ¢ =E}, we respectively take

?ll
w |
| E|
7y Lg
T := | | or T := ?zp L,B

Eq |
\\X/ 1\)(/@1

and call T the standard monomial expansion of m. Let us next consider a general number
a€No and let { € On be the ordinal size of its support. Then we may writea=)" <¢CaMy
for a sequence (cy)y< (€ (R*)fand a <-decreasing sequence (m,),</E Mo. Foreacha<?,
let T, be the standard monomial expansion of m,. Then we define the Y% labeled tree

co To oo Tv co 1p

N/ N/ N/

T := X X X

and call it the standard expansion of a. Note that the height of T is at most 6, there exists a
unique evaluation v: Nt— No of T, and v(pr) =a.

Now consider two trees T and T’ with respective labelings A: Nt — E£# and
N:Np —Z# We say that T' refines T if Ny 2 Nt and there exist evaluations v: Ny — No
and v’: N7 — No such that v(v) =0’ (v) for all v&€ N1 and A, = A, whenever A, & ?no.
Now assume that v(po7) =a for some evaluation v: Nt — No. Then we say that T is a
tree expansion of a if for every v€ Ny with A, =}, the subtree T’ of T with root v refines
the standard expansion of v(v). In particular, a tree expansion T of a number a € No
with A, & ?No always refines the standard expansion of a.

LEMMA 7.3. Any a € No has a unique tree expansion with labels in Z.

Proof. Given n € N, we say that an Y #-labeled tree T is n-settled if A, & ?no for all nodes
v € Nt of height <n. Let us show how to construct a sequence (T,),en of Y% labeled tree
expansions of a such that the following statements hold for each n € N:

S1. T, is an n-settled and of finite height;
S2. v,(pt,) =a for some (necessarily unique) evaluation v,: N1, — No of Tj;
S3. If n>0, then T, refines T,,_1;

S4. If T is a tree expansion of a with labels in X, then T refines T),.
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We will write A,;: N7, — L% for the labeling of T;,.

We take Ty such that N7, = {or,} and /\pTo =7?,. Setting vo(pT,) :=4a, the conditions S1, S2,
S3, and S4 are naturally satisfied.

Assume now that T, has been constructed and let us show how to construct T 1.
Let S be the subset of N, of nodes v of level n with v,,(v) €?no. Given v €S, let T, be the
standard expansion of v,(v) and let v, be the unique evaluation of T,. We define T}, to
be the tree that is obtained from T, when replacing each node v € S by the tree T,.

Since each tree T, is of height at most 6, the height of T}, is finite. Since T}, is
clearly (n+ 1)-settled, this proves S1. We define an evaluation v,,1:N7,,, — Ik by set-
ting v,,+1(0) =v,(0) for any 0 € N7, and v,,41(c) =v,(0) for any vE€S and ¢ € N7, (note
that v,,41 is well defined since v, (o1,) = (A4)y=v,(v) forallv€S). We have v,41(p71,,,) =
v,u(oT1,) =4, so S2 holds for v,,1. By construction, Nt,,, 2 N, and the evaluations v,
and v, coincide on Nr,; this proves S3. Finally, let T be a tree expansion of a with
labels in X and let v be the unique evaluation of T with v(p7) =a. Then T refines T,
so v coincides with v, on N7,. Let vES. Since T is a tree expansion of 4, the subtree T'
of T with root v refines T, whence N7t 2 Nt,. Moreover, v(v) =v,41(v), so v coincides
with v, on T,. Altogether, this shows that T refines T}, .

Having completed the construction of our sequence, we next define a Z-labeled tree T,
and a map v.:Nr_— No by taking Nr_=J,c N7, and by setting (A1), = (A,), and
Veo(V) =0,(v) for any n € N and v € Nt, such that (A,), & ?no. By construction, we have
Voo (p1.) =a and T refines T, for every n € N.

We claim that T is a tree expansion of a. Indeed, consider a node v € Nt_ of height n
withA,=). ThenveNTr,,, and (A,41), =), since T41is (n+1)-settled. Consequently,
the subtree of T, with root v refines the standard expansion of v,41(v). Since T
refines T},1, it follows that the subtree of T, with root v also refines the standard expan-
sion of Voo (V) =v,,41(v). This completes the proof of our claim.

It remains to show that T is the unique tree expansion of a with labels in . So let T
be any tree expansion of a with labeling A: Nt — X. For every n €N, it follows from S4
that Nt 2 Nt,. Moreover, since T, is n-settled, A coincides with both A,, and A, on those
nodes in N, that are of height <n. Consequently, N7 2 Nt_ and A coincides with Ao
on Nt_. Since every node in Nt has finite height, we conclude that T'=TL.. i

7.3. Hyperserial descriptions

From now on, we only consider tree expansions with labels in Z, as in Lemma 7.3. Given
a class Ne of nested numbers as in Section 6, it can be verified that every element in Ne
has the same tree expansion. We still need a notational way to distinguish numbers with
the same expansion.

Let a € No be a pre-nested number. By Theorem 6.15, we get a smallest k € N such
that (Xp) - is nested. Hence ap; € Ne for the class Ne of (Xp) ,xr-nested numbers. The-
orem 6.19 implies that there exists a unique number ¢ with ap y = Ene(0kc). We call ¢ the
nested rank of a and write ¢,:=c. By Corollary 6.23, we note that ¢,,,=0.;¢, for all i€ N.
Given an arbitrary infinite path P in a number a4 € No, there exists a k> 0 such that P -
has no bad indices for apx (modulo a further increase of k, we may even assume ap  to be
nested). Let op x:=sign (rpo---7px—1) tp,o--- tp k-1 E{—1,1}. We call {p:=0p 1 {u,, the nested
rank of P, where we note that the value of 0p x ¢, , does not depend on the choice of k.
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Let T be the tree expansion of a number a € No and let v: Nt — No be the evaluation
with a =v(pr). An infinite path in T is a sequence vy, vy, ... of nodes in Nt with vo=pr
and v;41 €C,, for all i€ N. Such a path induces an infinite path P in a: let i1 <ip < --- be
the indices with A,,,.k =), then we take 7p =v(v;+1) for each k€ N. It is easily verified
that this induces a one-to-one correspondence between the infinite paths in T and the
infinite paths in a. We call ¢, :=¢p the nested rank of the infinite path v= (v,,),en in T.
Denoting by I the set of all infinite paths in T, we thus have a map ¢:It— No;v+—¢,.
We call (T, ¢) the hyperserial description of a.

We are now in a position to prove the final theorem of this paper.

Proof of Theorem 1.3. Consider two numbers 4,4’ € No with the same hyperserial
description (T, ¢) and let v,v": Ny — No be the evaluations of T with v(pr) =a and
v'(pr) =a’. We need to prove thata=a’. Assume for contradiction thata#a’. We define
an infinite path v, vy,...in T with v(v,,) # v’ (v;,) for all n by setting vo:=prand v,,,.1:=v,[m],
where m € N is minimal such that v(v,[m]) #v'(v,[m]). (Note that such a number m
indeed exists, since otherwise v(v,) =0’ (v,) using the rules E1-E7.) This infinite path
also induces infinite paths P and P’ in a and a’ with ap, =v(v;,) and ap' , =v'(v;,) for
a certain sequence i1 <i; < --- and all n € N. Let n>0 be such that P,, and P/, have
no bad indices for ap, and ap',. The way we chose v, v1,... ensures that the coding
sequences associated to the paths P, and P, coincide, so they induce the same nested
surreal substructure Ne. It follows that v(v;,) =ap, = ENe(0:n ) =ap = v’(vin), which
contradicts our assumptions. We conclude that 2 and 4’ must be equal. O
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