
Relaxed Multiplication Using the Middle Product

Joris van der Hoeven
Département de Mathématiques (bât. 425)

Université Paris-Sud
91405 Orsay Cedex

France

joris@texmacs.org

ABSTRACT
In previous work, we have introduced the technique of re-
laxed power series computations. With this technique, it
is possible to solve implicit equations almost as quickly as
doing the operations which occur in the implicit equation.
In this paper, we present a new relaxed multiplication algo-
rithm for the resolution of linear equations. The algorithm
has the same asymptotic time complexity as our previous al-
gorithms, but we improve the space overhead in the divide
and conquer model and the constant factor in the F.F.T.
model.

Categories and Subject Descriptors
G. Mathematics of Computing [G.1. Numerical Analy-
sis]: G.1.0. General—Multiple Precision Arithmetic

General Terms
Algorithms

Keywords
power series, relaxed multiplication, middle product

1. INTRODUCTION
Let R be an effective ring and consider two power series

f = f0 + f1z + · · · and g = g0 + g1z + · · · in R[[z]]. In this
paper we will be concerned with the efficient computation of
the first n coefficients of the product h = fg = h0+h1z+· · · .

If the first n coefficients of f and g are known beforehand,
then we may use any fast multiplication for polynomials
in order to achieve this goal, such as divide and conquer
multiplication [6, 7], which has a time complexity K(n) =

O(nlog 3/ log 2), or F.F.T. multiplication [2, 9, 1, 11], which
has a time complexity M(n) = O(n log n log log n).

For simplicity, “time complexity” stands for the required
number of operations in R. Similarly, “space complexity”
will stand for the number of elements of R which need to

This paper is in the public domain. Permission is granted to reproduce it on
all media, either in its entirety or in any derived form.
ISSAC’03, August 3–6, 2003, Philadelphia, Pennsylvania, USA.
.

be stored. The required number of multiplications K×(n)
in the divide and conquer algorithm satisfies the following
recurrence relations:

K×(1) = 1

K×(n) = 2K×(�n/2�) + K×(�n/2�)
When performing computing only the product truncated at
order n, then the number of multiplications K∗

× needed by
the divide and conquer algorithm becomes

K∗
×(1) = 1

K∗
×(n) = K×(�n/2�) + 2K∗

×(�n/2�)
For certain computations, and most importantly the resolu-
tion of implicit equations, it is interesting to have so called
“relaxed algorithms” which output the first i coefficients of
h as soon as the first i coefficients of f and g are known for
each i � n. This allows for instance the computation of the
exponential g = exp f of a series f with f0 = 0 using the
formula

g =

�
f ′g. (1)

In [10, 11], we proved the following two theorems:

Theorem 1. There exists a relaxed multiplication algo-
rithm of time complexity K(n) and space complexity
O(log n), and which uses K×(n) multiplications.

Theorem 2. There exists a relaxed multiplication algo-
rithm of time complexity O(M(n) log n) and space complex-
ity O(n).

Although these theorems are satisfactory from a theoret-
ical point of view, they can be improved in two directions:
by removing the logarithmic space overhead in the divide
and conquer model and by improving the constant factor in
the F.F.T. model.

In this paper, we will present such an improved algorithm
in the case of relaxed multiplication with a fixed series. More
precisely, let f and g be power series, such that g is known
up to order n. Then our algorithm will compute the product
h = fg up to order n and output (fg)i as soon as f0, . . . , fi

are known, for all i < n. We will prove the following:

Theorem 3. There exists a relaxed multiplication algo-
rithm with fixed series of time complexity O(K(n)), of space
complexity O(n), and which uses K∗

×(n) multiplications.



�

�

Figure 1: Illustration of the middle product.

We also obtain a better constant factor in the asymptotic
complexity in the F.F.T. model, but this result is harder to
state in a precise theorem.

The algorithm is useful for the relaxed resolution of linear
differential or difference equations. For instance, the expo-
nential of a series can be computed using � K∗

×(n) multipli-
cations in R. Moreover, the new algorithm is very simple to
implement, so it is likely to require less overhead than the
algorithm from theorem 1.

Our algorithm is based on the recent middle product al-
gorithm [3, 4], which is recalled in section 2. In section 3
we present our new algorithm and in section 5 we give some
applications.

In our algorithms we will use the following notations: the
data type TPS(n) stands for truncated power series of order
n, like f = f0 + · · · + fn−1z

n−1. Given f ∈ TPS(n) and
0 � i < j � n, we will denote fi...j = fi + · · ·+fj−1z

j−i−1 ∈
TPS(j − i). Given f ∈ TPS(m) and g ∈ TPS(n), we also
denote f � g = f + gzm ∈ TPS(m + n). We will denote
by Ref(TPS(n)) the type, whose elements are references to
elements of type TPS(n). If f ∈ TPS(n) and 0 � i < j � n,
then we assume that fi...j ∈ Ref(TPS(n)).

2. THE MIDDLE PRODUCT
Let f = f0 + · · ·+fn−1z

n−1 and g = g0 + · · ·+g2n−2z
2n−2

be two truncated power series at orders n resp. 2n− 1. The
middle product f and g is defined to be the truncated power
series h = f ∗ g = h0 + · · ·+ hn−1z

n−1 of order n, such that
hi =

�n−1
j=0 fjgn−1+i−j for all i ∈ {0, . . . , n − 1}. In figure

1, h corresponds to the colored region.
The middle product of f = f0+f1z and g = g0+g1z+g2z

2

can be computed using only three multiplications, using the
following trick:

α = f1(g0 + g1)

β = (f1 − f0)g1

γ = f0(g1 + g2)

h0 = α − β

h1 = γ + β

This trick may be applied recursively in order to yield an
algorithm which needs exactly the same number of multi-
plications K×(n) as the divide and conquer algorithm for
the computation of the product of two polynomials of de-

�

�

Figure 2: The subdivision used for the new relaxed
multiplication algorithm.

gree n−1. More precisely, the following recursive algorithm
comes from [3, 4].

Algorithm f ∗ g
Input: f ∈ TPS(n) and g ∈ TPS(2n − 1)
Output: their middle product f ∗ g ∈ TPS(n)

if n = 1 then return f0g0

k := �n/2�, l := �n/2�
α := fk...n ∗ (g0...2l−1 + gl...3l−1)
if n is even

then β := (fl...n − f0...k) ∗ gl...3l−1

else β := [fk � (fl...n − f0...k)] ∗ gl...3l−1

γ := f0...k ∗ (gl...l+2k−1 + g2l...2n−1)
return (α − β) � (γ + β0...k)

In [4] it is also shown that, in the F.F.T. model, the middle
product can still be computed in essentially the same time
as the product of two polynomials.

3. RELAXED MULTIPLICATION WITH A
FIXED SERIES

Let f and g be power series, such that g is known up
to order n. In this section, we present an algorithm which
computes the product h = fg up to order n. For each i < n,
the algorithm outputs (fg)i as soon as f0, . . . , fi are known.

The idea of our algorithm is similar to the idea behind fast
relaxed multiplication in [10, 11] and based on a subdivision
of the triangular area which corresponds to the computation
of the truncated power series product. This subdivision is
shown in figures 2 and 3, where each parallelogram corre-
sponds to the computation of a middle product.

More precisely, let l = �n/2� and assume that f0, . . . , fl−1

are known. Then the contribution of f0...l ∗ gn+1−2l...n to
fg may be computed using the middle product algorithm
from the previous section. The relaxed truncated products
f0...kg0...k and fl...ng0...k may be computed recursively.

In order to implement this idea, we will use an in-place
algorithm, which adds the result of h = fg to a reference ϕ
to an element of TPS(n). Denote by ϕinit the initial value of
ϕ. Then the in-place algorithm should be called successively
for i = 1, . . . , n. After the last call, we have ϕ = ϕinit + h.
Taking ϕinit = 0, the algorithm computes h.



Algorithm relaxed-muladd(f, g, ϕ, i)
Input: f, g ∈ TPS(n), ϕ ∈ Ref(TPS(n)), i � n.
Action: we have ϕ0...i = ϕinit + f0...ig0...i on exit.

if i = n = 1 then ϕ0 += f0g0 and return
k := �n/2�, l := �n/2�
if i � k then relaxed-muladd(f0...k, g0...k, ϕ0...k, i)
if i = k + 1 then ϕk...n += f0...l ∗ gn+1−2l...n

if i > l then relaxed-muladd(fl...n, g0...k, ϕl...n, i − l)

The number of multiplications R×(n) used by relaxed-
muladd is determined by the relations

R×(1) = 1 ;

R×(n) = K×(�n/2�) + 2R×(�n/2�).
By induction, it follows that R×(n) = K∗

×(n). The overall
time complexity satisfies

R(n) � K(�n/2�) + 2R(�n/2�) + O(n),

so R(n) = O(K(n)). The algorithm being in-place, its space
complexity is clearly O(n). This proves theorem 3.

In it is also interesting to use the above algorithm in the
F.F.T. model. We then have the estimation

R(n) �M(�n/2�) + 2R(�n/2�) + O(n)

for the asymptotic complexity R(n). If

M(n) ∼ cn log n log log n,

this yields

R(n) ∼ 1

2
M(n) log2 n.

This should be compared with the complexity

R(n) ∼ M(n) log2 n

of the previously best algorithm and with the complexity
L(n) ∼ 2M(n) log2 n of the standard fast relaxed multipli-
cation algorithm.

Notice that we rarely obtain the complexity

M(n) ∼ cn log n log log n

in practice. In the range where M(n) ∼ cnα, we obtain

R(n) ∼ 1

2α − 2
M(n).

4. A WORKED EXAMPLE
Let us consider the computation of f = ez/(1−z) up till

order 7 = n + 1 using our algorithm and the formula

f =

�
fg,

with f0 = 1 and g = 1+2z +3z2 + · · · . We start with ϕ = 0
in relaxed-muladd and perform the following computations
at successive calls for i = 1, . . . , 6:

1. We set ϕ0 += f0g0 = 1, so that

ϕ := 1

and f1 = 1.

2. We recursively apply relaxed-muladd to f0...3, g0...3,
ϕ1...3 and i = 2. This requires the computation of

�

�

Figure 3: Illustration of an order 6 relaxed multipli-
cation.

f0...2 ∗ g0...3 = (1 + z) ∗ (1 + 2z + 3z2) = 3 + 5z. We
thus increase ϕ1...3 += 3 + 5z, so that

ϕ := 1 + 3z + 5z2

and f2 = 3
2
.

3. The two nested recursive calls to relaxed-muladd now
lead to the increase of ϕ2 by f2g0 = 3

2
, so that

ϕ := 1 + 3z +
13

2
z2

and f3 = 13
6

.

4. We now both have i = k + 1 = 4 and i > l = 3. So we
first compute f0...3 ∗ g1...6 = 10 + 27

2
z + 17z2 and set

ϕ3...6 += 10 + 27
2

z + 17z2. We next recursively apply
relaxed-muladd to f3...6, g0...3, ϕ3...6 and i = 1, which
leads to an increase of ϕ3 by f3g0 = 13

6
. Alltogether,

we obtain

ϕ := 1 + 3z +
13

2
z2 +

73

6
z3 +

27

2
z4 + 17z5

and f4 = 73
24

.

5. We recursively apply relaxed-muladd to f3...6, g0...3,
ϕ3...6 and i = 2. This leads to the increase ϕ4...6 +=
f3...5 ∗ g0...3 = 59

8
+ 151

12
z, so that

ϕ := 1 + 3z +
13

2
z2 +

73

6
z3 +

167

8
z4 +

355

12
z5

and f5 = 167
40

.

6. The two nested recursive calls lead to the increase
ϕ5 += f5g0 = 167

40
, so that

ϕ := 1 + 3z +
13

2
z2 +

73

6
z3 +

167

8
z4 +

4051

120
z5

and f6 = 4051
720

.

The entire computation is represented schematically in fig-
ure 3.



5. APPLICATIONS
First of all, let us consider the problem of relaxed division

by a fixed power series. In other words, we are given two
power series f and g, where g is known up to order n and
g0 = 1. We want an algorithm for the computation of h =
f/g up to order n, such that hi is computed as soon as
f0, . . . , fi are known for each i < n. Now we have

h = f − z(ϕh),

where ϕ = (g − 1)/z ∈ R[[z]]. We may thus compute h in a
relaxed way using the algorithm from the previous section.
Computing h up till n terms will then necessitate � K×(n)
multiplications in R.

Let us next consider a linear differential equation

Lrf
(r) + · · · + L0f = 0, (2)

with L0, . . . , Lr ∈ R[[z]] and Lr(0) = 1. Given initial condi-
tions for f0, . . . , fr−1, there exists a unique solution to this
equation. We may compute this solution using the relaxed
algorithm from the previous section, the above algorithm for
relaxed division, and the formula

f = L−1
r

�
r×. . .
�

(Lrf
(r) + · · · + L0f).

In order to compute n coefficients, we need to perform (r +
1)K×(n) multiplications in R and O(n) multiplications and
divisions by integers. If Lr = 1, then we only need rK×(n)
multiplications.

For instance, the exponential g of a series f with f0 = 0
satisfies the equation

g′ − f ′g = 0,

so g can be computed using K×(n) multiplications, using
the formula (1).

More generally, consider the solution to (2) with the pre-
scribed initial conditions, and let g be another series with
g0 = 0. Then the composition h = f ◦ g again satisfies a
linear differential equation. Indeed, we have the relations

f ◦ g = h

f ′ ◦ g =
h

g′

f ′′ ◦ g =
h′′

g′2 − h′g′′

g′3

...

Postcomposing (2) with g and using these relations, we ob-
tain a linear differential equation for h.

In fact, our algorithm may be used to solve far more gen-
eral linear equations, such as linear partial differential equa-
tions, or linear differential-difference equations. In the case
of difference equations, we notice that the relaxed multipli-
cations in the algorithms from [11] for relaxed right compo-
sition with a fixed series all have one fixed argument. So we
may indeed apply the algorithm from section 3.

We finally notice that our algorithm can even be used in
a non-linear context. Indeed, after computing �n/2� coef-
ficients of a truncated relaxed product, the computation of
the remaining products reduces to the computation of two
truncated relaxed products with one fixed argument. Actu-
ally, this corresponds to an implicit application of Newton’s
method.

�

�

Figure 4: Using Mulders’ trick in combination with
the middle product.

6. CONCLUSION AND OPEN QUESTIONS
We have presented a new algorithm for relaxed multipli-

cation. Although the new algorithm does not yield a signif-
icant improvement from the asymptotic complexity point of
view, we do expect it to be very useful for practical appli-
cations, such as the exponentiation of power series.

First of all, the algorithm is easy to implement. Secondly,
it only needs a linear amount of memory in the range where
divide and conquer multiplication is appropriate. In com-
bination with F.F.T. multiplication, the algorithm yields a
better constant factor in the asymptotic complexity.

When implementing a library for power series computa-
tions, it is interesting to incorporate a mechanism to auto-
matically detect relaxed and fixed multiplicands in a com-
plex computation. This is possible by examining the depen-
dency graph. With such a mechanism, one may use the new
algorithm whenever possible.

Some interesting questions remain open in the divide and
conquer model: can we apply Mulders’ trick [8, 5] for the
computation of “short products” in our setting while main-
taining the linear space complexity (see figure 4)? In that
case, we might improve the number of multiplications in
theorem 3 to ∼ 0.808 · · ·K(n).

In a similar vein, does there exist a relaxed multiplication
algorithm of time complexity � K(n) and linear space com-
plexity? This would be so, if the middle product algorithm
could be made relaxed in an in-place way (the algorithm is
already “essentially relaxed” in the sense of [10, 11] in the
divide and conquer model).

As it stands now, with the above questions still unan-
swered, the original relaxed multiplication algorithm from
theorem 1 remains best from the time complexity point of
view in the divide and conquer model. Moreover, Mul-
ders’ trick can be applied in this setting, so as to yield
a short relaxed multiplication algorithm of complexity ∼
0.808 · · ·K(n), or even better [5].

This has surprising consequences for the complexities of
several operations like short division and square roots: we
obtain algorithms of time complexities ∼ 0.808 · · ·K(n) and
∼ 1

2
K(n) when using O(n log n) space, while the best known

algorithms which use linear space have time complexities
∼ K(n) and ∼ 3

4
K(n). In order to obtain the complexity

of ∼ 1
2
K(n) in the case of square roots, one should use



a relaxed version of the fast squaring algorithm from [4],
which is based on middle products.

We finally remark that this relaxed version of squaring us-
ing middle products is also interesting in the F.F.T. model.
In this case, the relaxed middle product corresponds to a
full relaxed product with one fixed argument. Such prod-
ucts can be computed in time ∼ 2R(n), so that we obtain
a relaxed squaring algorithm of time complexity ∼ 2R(n).
This is twice as good as general relaxed multiplication. In
the non-relaxed setting, squares can be computed in a time
between 1

2
M(n) and 2

3
M(n), depending on whether most

time is spent on inner multiplications or fast Fourier trans-
forms respectively.

7. REFERENCES
[1] Cantor, D., and Kaltofen, E. On fast

multiplication of polynomials over arbitrary algebras.
Acta Informatica 28 (1991), 693–701.

[2] Cooley, J., and Tukey, J. An algorithm for the
machine calculation of complex Fourier series. Math.
Computat. 19 (1965), 297–301.

[3] Hanrot, G., Quercia, M., and Zimmermann, P.

Speeding up the division and square root of power
series. Research Report 3973, INRIA, July 2000.
Available from
http://www.inria.fr/RRRT/RR-3973.html.

[4] Hanrot, G., Quercia, M., and Zimmermann, P.

The middle product algorithm I. speeding up the
division and square root of power series. Submitted,
2002.

[5] Hanrot, G., and Zimmermann, P. A long note on
mulders’ short product. Research Report 4654,
INRIA, Dec. 2002. Available from
http://www.loria.fr/~hanrot/Papers/mulders.ps.

[6] Karatsuba, A., and Ofman, J. Multiplication of
multidigit numbers on automata. Soviet Physics
Doklady 7 (1963), 595–596.

[7] Knuth, D. The Art of Computer Programming,
3-rd ed., vol. 2: Seminumerical Algorithms.
Addison-Wesley, 1997.

[8] Mulders, T. On short multiplication and division.
AAECC 11, 1 (2000), 69–88.

[9] Schönhage, A., and Strassen, V. Schnelle
Multiplikation grosser Zahlen. Computing 7 7 (1971),
281–292.

[10] van der Hoeven, J. Lazy multiplication of formal
power series. In Proc. ISSAC ’97 (Maui, Hawaii, July
1997), W. W. Küchlin, Ed., pp. 17–20.

[11] van der Hoeven, J. Relax, but don’t be too lazy.
JSC 34 (2002), 479–542.


