
Effective real numbers in Mmxlib

Joris van der Hoeven
Mathématiques, CNRS (bât. 425)

Université Paris-Sud
91405 Orsay Cedex

France

joris@texmacs.org

ABSTRACT
Until now, the area of symbolic computation has mainly fo-
cused on the manipulation of algebraic expressions. Based
on earlier, theoretical work, the author has started to de-
velop a systematic C++ library Mmxlib for mathemati-
cally correct computations with more analytic objects, like
complex numbers and analytic functions. While implement-
ing the library, we found that several of our theoretical ideas
had to be further improved or adapted. In this paper, we re-
port on the current implementation, we present several new
results and suggest directions for future improvements.

Categories and Subject Descriptors
F.2.1 [Theory of Computation]: Analysis of algorithms
and problem complexity—Numerical algorithms and prob-
lems

General Terms
Algorithms

1. INTRODUCTION
Although the field of symbolic computation has given rise

to several softwares for mathematically correct computa-
tions with algebraic expressions, similar tools for analytic
computations are still somewhat inexistent.

Of course, a large amount of software for numerical analy-
sis does exist, but the user generally has to make several er-
ror estimates by hand in order to guarantee the applicability
of the method being used. There are also several systems for
interval arithmetic, but the vast majority of them works only
for fixed precisions. Finally, several systems have been de-
veloped for certified arbitrary precision computations with
polynomial systems. However, such systems cannot cope
with transcendental functions or differential equations.

The central concept of a systematic theory for certified
computational analysis is the notion of an effective real num-
ber [17, 22, 4]. Such a number x ∈ � is given by an approx-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to distribute to lists, requires no prior specific
permission and/or a fee.
ISSAC’06, July 9–12, 2006, Genova, Italy.
Copyright 2006 ACM 1-59593-276-3/06/0004 ...$5.00.

imation algorithm which takes ε ∈ � = �2� with ε > 0 on
input and which produces an ε-approximation x̃ ∈ � for x
with |x̃ − x| < ε. One defines effective complex numbers in
a similar way.

Effective real and complex numbers are a bit tricky to
manipulate: although they can easily be added, multiplied,
etc., there exists no test for deciding whether an effective real
number is identically zero. Some interesting questions from
a complexity point of view are also raised: if we want to com-
pute an ε-approximation of y = x1 + x2, how to determine
δ1 + δ2 = ε so that the computation of δi-approximations of
the xi is most efficient?

Concrete approaches and implementations for computa-
tions with effective real numbers have been proposed, often
independently, by several authors [12, 3, 2, 13, 11, 14, 20].
A first step in these approaches is often to implement some
interval arithmetic [1, 16, 7, 15, 18]. As an optional second
step, one may then provide a class real for which a real
number x is given by an interval approximation algorithm
which, given ε ∈ �>, computes a closed interval � � x with
endpoints in �, of radius < ε.

In this paper, we report on the implementation of a C++
class for effective real numbers in the Mmxlib library [21].
This implementation is based on [20], but it also contains
some new ideas.

In section 2, we start by quickly reviewing interval arith-
metic and the computationally more efficient variant of “ball
arithmetic” (see also [1, 16, 2]). We also try to establish
a more precise semantics for this kind of arithmetic in the
multi-precision context and discuss the use of interval classes
as parameters of template classes such as complex numbers,
matrices or polynomials. Our implementation relies on the
Gmp and Mpfr libraries [6, 8].

In section 3, we mainly review previous work: equivalent
definitions of effective real numbers, representation by dags
and the different techniques for a priori and a posteriori
error estimations. We also state improved versions of the
“global approximation problem”, which serve as a base for
the complexity analysis of our library. We finally correct an
error which slipped into [20].

In section 4, we describe the current implementation, which
is based on the sole use of a posteriori error estimates.

In section 5, we prove that our implementation is optimal
up to a linear overhead in the input size (4) and a logarithmic
overhead in the time complexity (3). It is interesting to
compare these results with previous theoretical work on the
complexity of interval arithmetic [5, 9].

In the last section, we indicate how to use a priori error

estimates in a more efficient way than in [20]. In a forthcom-
ing paper, we hope to work out the details and remove the
linear overhead (4) in the input size, at least under certain
additional assumptions.

2. INTERVAL ARITHMETIC
Since real numbers cannot be stored in finite memory, a

first approach to certified computations with real numbers is
to compute with intervals instead of numbers. For instance,
when using interval arithmetic, a real number like x = π
would be approximated by an interval like � = [�,�] =
[3.141592, 3.141593]. Evaluation of a real function f at a
point x ∈ � = [�,�] then corresponds to finding an interval
� = [�,�] with f(x) ∈ � for all x ∈ �. When all functions
under consideration are Lipschitz continuous and when all
computations are performed using a sufficiently high pre-
cision, this technique provides arbitrarily good approxima-
tions for the real numbers we want to compute.

2.1 Representation issues
Our current interval library is based on MPFR [8], which

implements a generalization of the IEEE 754 standard. More
precisely, let W ∈ {32, 64, 128} be the word precision of the
computer under consideration. Given a bit precision l < 2W

and a maximal exponent m < 2W−1 fixed by the user, the
MPFR library implements arithmetic on l-bit floating point
numbers and exponents in the range [−m, . . . , m−1, m] with
exact rounding. We recall that the IEEE 754 norm (and thus
MPFR) includes special numbers ±0, ±∞ and NaN (not a
number). Assuming that m has been fixed once and for
all, we will denote by �l the set of l-bit numbers. Several
representations are possible for the computation with l-bit
intervals:

Endpoint representation. In this representation, an l-bit
interval � = [�,�] is determined by its end-points � �

� ∈ �l \ {NaN}. We also allow for the exceptional value
� = NaIn = [NaN, NaN]. Since the MPFR library provides
exact rounding, it is particularly simple to base an inter-
val library on it, when using this representation: whenever
a function f is monotonic on a certain range, it suffices to
consider the values at the end-points with opposite round-
ing modes. However, every high precision evaluation of an
interval function requires two high precision evaluations of
floating point numbers.

Ball representation. In this representation, an l-bit inter-
val � �= NaIn is represented by a ball � = B(c�, r�) with

center c� ∈ �l \ {NaN} and radius r� ∈ �
�
W . If l > W

and � �= NaIn, then we also require that the ball B(c�, r�)
is normal in the sense that r� � 2W−l|c�|. The underlying
idea is that the endpoints of a high precision interval are
usually identical apart from a few bits at the end, whence
it is more efficient to only store the common part and the
difference. As a consequence, one high precision operation
on balls reduces to one high precision operation on float-
ing point numbers and several operations on low precision
numbers.

However, the ball representation has essentially less ex-
pressive power. For instance, it is impossible to represent
the interval [+0, +∞]. Also, positivity is not naturally pre-
served by addition if l = W . This may be problematic in

the case we want to compute quantities like hypot(�, �) =�
�2 + �2.

Remark 1 The normality condition admits several vari-
ants. For instance, given x ∈ �l \ {±0,±∞, NaN}, we
define the step σx as the exponent of x minus l. A ball
� = B(c�, r�) may then be called normal if σr� � σc�

instead of r� < 2W−l|c�|. Alternatively, one may require
r� ∈ {0, . . . , 2W − 1}2σc� .

Hybrid representation. In Mmxlib, we currently use the
endpoint representation for low precision numbers l � W
and the ball representation for high precision numbers l >
W . Modulo some additional overhead, this combines the ad-
vantages of both representations while removing their draw-
backs.

2.2 Precision changes and semantics
Let �=l denote the set of l-bit intervals for the hybrid

representation. If l > W , then it should be noticed that the
set �=l is not stable under the usual arithmetic operations,
due to the phenomenon of precision loss. Indeed, the sum
� = � + � of �,� ∈ �l is typically computed using c� =
c� +�l c� and r� = r� +�W r� +�w ε, where ε is a small
bound for the rounding error. However, if � ≈ −�, then �

is not necessarily normal.
Nevertheless, the set �l =

�
W�k�l �=l is stable under all

usual arithmetic operations. Indeed, any ball or interval
� may be normalized by replacing c� by a lower bit ap-
proximation. More precisely, consider an abnormal interval
[�,�] with c� ∈ �l and r� ∈ �W . Given k ∈ �, let �k =
2k�2−k�� and �k = 2k�2−k�	, so that c�k , r�k ∈ 2k−1

�.
Let k ∈ � be minimal such that c�k ∈ �l′ , r�k ∈ �W

and r�k � 2W−l′ |c�k | for some l′ ∈ {W + 1, . . . , l}. Then
�k = norm(�) is called the normalization of �. If no such
k exists, then norm(�) is defined to be the smallest interval
with endpoints in �W , which contains �. It can be shown
that k ≈ σr� and rnorm(�) � (1 + 23−W)r�.

Remark 2 The normalization procedure is not very canon-
ical and it admits several variants (in particular, it has to
be adapted whenever we change the definition of normal-
ity). Nevertheless, all good normalization procedures share
the property that rnorm(�) � (1 + B2−W)r� for some small
fixed constant B ∈ �.

Dually, it may occur that the result of an operation can be
given with more precision than the argument. For instance,
if � = B(1, 0.5)2100, then arc tan� can be computed with
a precision of about 100 binary digits. Similarly, log� can
be computed with a precision of about 7 binary digits. We
call this the phenomenon of precision gain. The point here
is that it is not necessarily desirable to compute the results
of arc tan� and log� with the maximal possible precision.

Taking into account the phenomena of precision loss and
gain, we propose the following “ideal” semantics for oper-
ations on intervals. First of all, a default precision l for
computations is fixed by the user. Now assume that we
wish to evaluate an n-ary function f : �̂n → �̂ at intervals
�1, . . . ,�n ∈ �l, where �̂ = � ∪ {±∞, NaN}. Then there
exists a smallest interval � with �,� ∈ �l, which satisfies
either

• f(x1, . . . , xn) ∈ � for all x1 ∈ �1, . . . , xn ∈ �n.

• � = NaIn and f(x1, . . . , xn) = NaN for some x1 ∈
�1, . . . , xn ∈ �n.

Whenever {NaN,±0,±∞}∩� �= �, then � = �(�1, . . . ,�n)
is taken to be the smallest interval of �W which contains �.
Otherwise, we take � = norm(�).

Remark 3 For some purposes one may use the alterna-
tive convention for exceptions that � is the smallest interval
which contains all non exceptional values.

Since the normalization procedure is somewhat arbitrary
(see remark 2), the ideal semantics may be loosened a little
bit for implementation purposes. Instead of requiring the
optimal return value � = B(c�, r�), we rather propose to
content oneself with a return value �̃ = B(c�̃, r�̃) with |c�̃ −
c�| � (1 + B2−l)|c�| and |r�̃ − r�| � (1 + B2−l)|c�|, for
some fixed small constant B ∈ �, in the case when � has
precision l > W . This remark also applies to the underlying
MPFR layer: exact rounding is not really necessary for our
purpose. It would be sufficient to have a “looser” rounding
mode, guaranteeing results up to B times the last bit.

2.3 Complex numbers and other template types
A tempting way to implement the complex analogue of

interval arithmetic in C++ is to use the complex template
class from the standard library. Unfortunately, this ap-
proach leads to a lot of overestimation for the bounding
rectangles. In order to see this, consider the complex rect-
angle x = B1,ε +B1,εi and the sequence a0 = x, an+1 = xan.
Because multiplication with 1+i “turns” the bounding rect-
angle, the error ε is roughly multiplied by

√
2 at each step.

In other words, we loose one bit of precision every two steps.
The above phenomenon can be reduced in two ways. First

of all, one may use a better algorithm for computing an, like
repeated squaring. In the case of complex numbers though,
the best solution is to systematically use complex ball rep-
resentations. However, standardization of the operations
requires more effort. Indeed, given an operation f on balls
�1, . . . ,�n of precision W , it can be non-trivial to design
an algorithm which computes a ball � ⊇ f(�1, . . . ,�n) of
almost minimal radius (up to 1 + B2−W).

The precision loss phenomenon is encountered more gen-
erally when combining interval arithmetic with template
types. The best remedy is again to modify the algorithms
and/or data types in a way that the errors in the data are
all of a similar order of magnitude. For instance, when com-
puting a monodromy matrix M as a product M = ∆1 · · ·∆k

of connection matrices, it is best to compute this product
by dichotomy M = (∆1 · · ·∆�k/2�)(∆�k/2�+1 · · ·∆k). Simi-
larly, when computing the product f(z)g(z) of two truncated
power series, it is good to first perform a change of variables
z → z/ρ which makes the errors in the coefficients of f and
g of the same order of magnitude [19, Section 6.2]

3. EFFECTIVE REAL NUMBERS
For users of computer algebra systems, it would be con-

venient to provide a data type for real numbers which can
be used in a similar way as the types of rational numbers,
polynomials, etc. Since interval arithmetic already provides
a way to perform certified computations with “approximate
real numbers”, this additional level of abstraction should

mainly be thought of as a convenient interface. However,
due to the fact that real numbers can only be represented
by infinite structures like Cauchy sequences, their manipu-
lation needs more care. Also, the actual implementation of
a library of functions on effective real numbers raises several
interesting computational complexity issues. In this section,
we review some previous work on this matter.

3.1 Definitions and theoretical properties
Let � = �2� denote the set of dyadic numbers. Given

x ∈ � and ε ∈ �
>, we recall from the introduction that

an ε-approximation of x is a dyadic number x̃ ∈ � with
|x̃ − x| < ε. We say that x is effective, if it admits an
approximation algorithm, which takes ε ∈ �> on input and
which returns an ε-approximation for x. The asymptotic
time complexity of such an approximation algorithm is the
time it takes to compute a 2−n-approximation for x, when
n → ∞. We denote by �eff the set of effective real numbers.

The above definition admits numerous variants [22, sec-
tion 4.1]. For instance, instead of require an approximation
algorithm, one may require the existence of an algorithm
which associates a closed interval �n = [�n,�n] with end-
points in � to each n ∈ �, such that �0 ⊇ �1 ⊇ · · · and
limn→∞ r�n = 0 (an interval � � x with end-points in� will
also be called an ε-bounding interval for x). Similarly, one
may require the existence of an effective and rapidly con-
verging Cauchy sequence � → �; n �→ xn for which there
exists a number M ∈ �> with |xn − x| � M2−n for all n.

All these definitions have in common that an effective
real number x is determined by an algorithm which pro-
vides more and more precise approximations of x on de-
mand. In an object oriented language like C++, this can be
implemented by providing an abstract representation class
real rep with a purely virtual method approximate which
corresponds to this approximation algorithm. The class
real is implemented as a pointer to real rep.

Since effective real numbers should be thought of as algo-
rithms, the zero-test problem in �eff can be reduced to the
halting problem for Turing machines. Consequently, there
exist no algorithms for the basic relations =, �=, <, >, �
and � on �eff .

Given an open domain Ω of (�eff)n, a real function f :
Ω → �

eff is said to be effective if there exists an algorithm
f̌ which takes an approximation algorithm x̌ = (x̌1, . . . , x̌n)
for x = (x1, . . . , xn) ∈ Ω on input and which produces an
approximation algorithm y̌ for y = f(x1, . . . , xn). Here we
understand that y̌′ = f̌(x̌′) approximates the same number
y, if x̌′ is another approximation algorithm for x.

Most common operations, like +, −, ×, /, exp, log, min,
max, etc., can easily shown to be effective. On the other
hand, without any of the operations for comparison, it seems
more difficult to implement functions like x �→ �x�. In fact,
it turns out that effective real functions are necessarily con-
tinuous [22, theorem 1.3.4].

3.2 Dag models
A concrete library for computations with effective real

numbers consists of a finite number of functions like 0, 1, +,
−, ×, exp, etc. Given inputs x1, . . . , xn of type real, such an
operation should produce a new instance y = f(x1, . . . , xn)
of real. Usually, the representation class for y in particular
contains members for x1, . . . , xn, which can then be used
in the method which implements the approximation algo-

+

× −

1 3

sin cos

cos

Figure 1: Example of a dag with 2 roots. The dag has
size 8 (i.e. the total number of nodes) and depth 3 (i.e. the
longest path from a root to a leaf). The weight of the dag
corresponds to the sum of the sizes of the trees obtained by
“copying” each of the roots. In our example, the weight is
13. Finally, the ancestrality of the dag is defined to be the
maximum number of ancestors of a leaf. In our example,
the ancestrality is 5.

rithm for y. For instance, a very simple implementation of
addition might look as follows:

class add_real_rep: public real_rep {
real x, y;

public:
add_real_rep (const real& x2, const real& y2):
x (x2), y (y2) {}

dyadic approximate (const dyadic& err) {
return x->approximate (err/2) + y->approximate (err/2);

}
};

When implementing a library of effective real functions
f1, f2, . . . in this way, we notice in particular that any ef-
fective real number computed by the library reproduces the
expression by which it was computed in memory. Such ef-
fective real numbers may therefore be modeled faithfully by
rooted dags (directed acyclic graphs) G, whose nodes are
labeled by f1, f2, More generally, finite sets of effective
real numbers can be modeled by general dags of this type.
Figure 1 shows an example of such a dag, together with some
parameters for measuring its complexity.

Since storing entire computations in memory may require
a lot of space, the bulk of computations should not be done
on the effective real numbers themselves, but rather in their
approximation methods. In particular, real should not be
thought of as some kind of improved double type, which
can be plugged into existing numerical algorithms: the real

class rather provides a user-friendly high-level interface, for
which new algorithms need to be developed.

3.3 The global approximation problems
Let f1, f2, . . . be a library of effective real functions as

in the previous section, based on a corresponding library
�1,�2, . . . of functions on intervals. In order to study the
efficiency of our library, it is important to have a good model
for the computational complexity. In this section, we will
describe a static and a dynamic version of the global approx-
imation problem, which are two attempts to capture the
computational complexity issues in a precise manner.

In its static version, the input of the global approximation
problem consists of

• A dag G, whose nodes are labeled by f1, f2, . . .

• A challenge εα ∈ �> ∪ {+∞} for each node α ∈ �.

Denoting by fα the function associated to the node α and by
α1, . . . , α|α| its children, we may recursively associate a real
value xα = fα(xα1 , . . . , xα|α|) to α. On output, we require
for each node α ∈ G an interval �α with endpoints in �,
such that

• xα ∈ �α and r�α < εα.

• For certain �′
α1 ⊇ �α1 , . . . ,�′

α|α| ⊇ �α|α| , we have

�α = �α(�′
α1 , . . . ,�′

α|α|).

Notice that the second condition implies in particular that
�α ⊇ �α(�α1 , . . . ,�α|α|).

The dynamic version of the global approximation problem
consists of a sequence of static global approximation prob-
lems for a fixed labeled dag G, when we incrementally add
challenges εα for nodes α. More precisely, we are given

• A dag G, whose nodes are labeled by f1, f2, . . .

• A finite sequence (α1, ε1), . . . , (αk, εk) of pairs (αi, εi) ∈
G × (�> ∪ {∞}).

On output, we require for each i ∈ {1, . . . , k} a solution to
the i-th static global approximation problem, which consists
of the labeled dag G with challenges εβ = min{εj : j �
i, αi = β}. Here we understand that a solution at the stage
i + 1 may be presented as the set of changes w.r.t. the
solution at stage i.

Let us explain why we think that the dynamic global ap-
proximation problem models the complexity of the library
in an adequate way. For this, consider a computation by
the library. The set of all effective real numbers constructed
during the computation forms a labeled dag G. The succes-
sive calls of the approximation methods of these numbers
naturally correspond to the sequence (α1, ε1), . . . , (αk, εk).

It is reasonable to assume that the library itself does not
construct any real numbers, i.e. all nodes of G correspond
to explicit creations of real numbers by the user. Indeed,
if new numbers are created from inside an approximation
method, then all computations which are done with these
numbers can be seen as parts of the approximation method,
so they should not be taken into account during the com-
plexity analysis. Similarly, if the constructor of a number
f(x1, . . . , xn) induces the construction of other real num-
bers, then f(x1, . . . , xn) may be expressed in terms of more
basic real functions, so we may consider f as a function
outside our library.

Now assume that another, possibly better library were
used for the same computation. It is reasonable to as-
sume that the corresponding dag G′ and challenges (a′

1, ε
′
1),

. . ., (a′
k′ , ε′k′) coincide with the previous ones. Indeed, even

though it might happen that the first and second library
return different bounding intervals �α and �′

α for a given
challenge (α, ε), the libraries cannot know what the user
wants to do with the result. Hence, for a fair comparison
between the first and second library, we should assume that
the user does not take advantage out of possible differences
between �α and �′

α. This reduces to assuming that G′ = G,
k′ = k and (a′

i, ε
′
i) = (ai, εi) for all i.

Finally, it is reasonable to assume that all actual approxi-
mations �α of the xα are done using a fixed interval library
�1,�2, This means for instance that the second library
has no better algorithms for multiplication, exponentiation,
etc. than the first one. When putting all our “reasonable

assumptions” together, the time of the computation which
was spent in the library now corresponds to the time which
was required to solve the corresponding dynamic global ap-
proximation problem.

3.4 A priori error estimates
Let us now consider the problem of obtaining an ε-approx-

imation for the result of an operation y = f(x1, . . . , xn).
For simplicity, we will focus on the case of addition y =
x1+x2. In this and the next section, we briefly recall several
strategies, which are discussed in more detail in [20].

In the case of a priori error estimates, the tolerance ε is
distributed a priori over x1 and x2. In other words, we first
determine ε1 and ε2 with ε1 + ε2 � ε, next compute εi-
approximations for the xi, and finally add the results. The
systematic choice of ε1 = ε2 = ε/2 can be very inefficient: in
the case of badly balanced trees like in figure 2 (this occurs in
practice when evaluating polynomials using Horner’s rule),
this requires the approximation of ad with a much lower
tolerance than a1 (ε/2d−1 versus ε/2).

This problem can be removed by balancing the error ac-
cording to the weights w1 and w2 of x1 and x2 (i.e., by
taking εi = εwi/(w1 + w2)). For “non degenerate” cases of
the global approximation problem for a dag of weight w and
size s, it can be shown this technique requires tolerances
which are never worse than log w times the optimal ones.

Unfortunately, while implementing the algorithms from [20],
it turned out that log w is often of the same order as s and
therefore far from good enough. This is for instance the case
when the expressions are obtained via some iterative process
or as the coefficient of a lazy power series. For this reason,
we have currently abandoned the use of a priori error es-
timates in our implementation. However, this situation is
quite unsatisfactory, since this technique is still most effi-
cient in many cases. We will come back to this problem in
section 6.

+

a1 +

� +

ad−1 ad

Figure 2: A badly balanced tree.

3.5 A posteriori error estimates
A second strategy consists of computing error estimates

a posteriori : if we want to compute an ε-approximation for
y = x1 + x2, we start with the computation of a bounding
interval for y at precision W . As long as the obtained result
is not sufficiently precise, we keep doubling the precision and
repeating the same computation.

As explained in [20], this strategy can be optimized in two
ways. First of all, the strategy may be carried out locally, by
storing a “best available approximation” (together with the
corresponding precision) for each instance of real. Indeed,
when increasing the precision for the computation of y, suf-
ficiently precise approximations for x1 and x2 might already
be known, in which case their recomputation is unnecessary.

Secondly, instead of doubling the precision at each step,
it is better to double the expected computation time. For

instance, consider the computation of y = f(x), where f has
time complexity ∼ λnα (i.e. y admits an ∼ λnα + T (n +
O(1)) approximation algorithm, whenever x admits a T (n)
approximation algorithm). Evaluate y = f(x) at successive

precisions 1, 21/α, 22/α, . . . , 2k/α, where k = �α log2 n	 and
n is the smallest precision at which the evaluation yields a
sufficiently precise result. Then the total computation time
∼ λ + 2λ + · · · + 2kλ � 2k+1λ never exceeds λnα > 2k−1λ
by a factor more than 4 (see also [10]).

Unfortunately, an error slipped into [20], because the suc-
cessive recursive approximations of x may not be sufficiently
precise in order to allow for evaluations of y = f(x) at suc-

cessive precisions 1, 21/α, 22/α, . . . , 2k/α. For instance, if x
is given by an algorithm of exponential time complexity 2n,
then successive approximations of x will only yield one more
bit at every step. This error can be repaired up to a logarith-
mic factor in two ways. First of all, we notice that the error
only concerns the cumulative cost of the successive reevalu-
ation of y = f(x). In section 5, we will prove that the total
cost of reevaluating all nodes of the dag remains good.

Secondly, it is possible to adapt the technique of relaxed
formal power series to real numbers. Roughly speaking, this
approach relies on the recursive decomposition of a “relaxed
mantissa” x of length l into a fixed part x1 of length 2p

� l/2
and a relaxed remainder x2 (so that x = x1 +x2). Given an
operation y = f(x), we then compute f(x1) and f ′(x1) at
precision 2p+1 and obtain a formula for the relaxed decom-
position y = y1 + y2, since y1 is a truncation of f(x1) and
y2 = f(x1) − y1 + f ′(x1)x2. As soon as the precision of x2

exceeds l/2, we take a new value for x1 and recompute f(x1)
and f ′(x1) at a doubled precision. Working out the details
of this construction shows that most common real functions
can be evaluated in a relaxed way with the same complexity
as usual, multiplied by an O(log l) overhead.

However, the relaxed strategy accounts for a lot of addi-
tional implementation work and no noticeable improvement
with respect to the global bound (3) which will be proved
in section 5. Therefore, it is mainly interesting from a the-
oretical point of view.

4. EFFECTIVE NUMBERS IN MMXLIB

4.1 The classes real and real rep
Inside Mmxlib, dyadic numbers in � are represented us-

ing generalized floating point numbers in �l, where l is
bounded by a precision of the order of 232 or 2W .

Effective real numbers (of type real) are implemented as
pointers to an abstract representation class real rep with a
virtual method for the computation of ε-bounding intervals.
Usually, such a number is of the form y = f(x1, . . . , xn),
where f is an effective real function and x1, . . . , xn are other
effective real numbers. The number y is concretely repre-
sented by an instance of a class f real rep which derives
from real rep and with fields corresponding to x1, . . . , xn.

The current implementation is based on the technique of
a posteriori error bounds from section 3.5 with the two opti-
mizations mentioned there: remembering the best currently
available approximations for each real number and doubling
computations times instead of precisions. These strategies
are reflected as follows in the real rep data type:

class real_rep {
protected:

double cost;

interval best;
real_rep (): cost (1.0) { compute (); }
virtual int as_precision (double cost);
virtual interval compute ();

public:
interval improve (double new_cost);
interval approximate (const dyadic& err);

};

The field best corresponds to the best currently available
bounding interval for y. The value of best is recomputed
several times by the purely virtual method compute at in-
creasing intended costs, the last one of which is stored in
cost. More precisely, best is recomputed as a function of
approximations �1, . . . ,�n of x1, . . . , xn at the same costs.
When these approximations are sufficiently precise, then the
cost of the computation of best will be more or less equal
to cost. Otherwise, the actual computation may take less
time (see the discussion at the end of section 3.5).

The costs are normalized (we start with 1.0) and doubled
at each iteration. The purely virtual method as precision

is used to convert an intended cost to the corresponding
intended precision.

The user interface is given by the routines improve and
approximate. The first one computes an approximation of
y at intended cost new cost:

interval real_rep::improve (double new_cost) {
if (new_cost <= cost) return best;
cost= max (new_cost, 2.0 * cost);
set_precision (as_precision (cost));
best= compute ();
restore_precision ();
return best;

}

The method approximate returns an ε-bounding interval �
for y as a function of ε:

interval real_rep::approximate (const dyadic& eps) {
while (radius (best) >= eps)
(void) improve (2.0 * cost);

return best;
}

Remark 4 In practice, the method improve also avoids the
call of compute if the new precision associated to cost is
equal to the old one. This may indeed happen if the cost of
the operation increases more than linearly as a function of
the bit precision.

4.2 Examples of derived classes of real rep
Let us illustrate the mechanism from the previous section

in the case of exponentiation. The exponential y = exp(x)
of a number x is represented by an instance of

class exp_real_rep: public real_rep {
real x;
int as_precision (double cost);
interval compute ();

public:
exp_real_rep (const real& x2): x (x2) {}

};

The computation of n bits of y takes a time proportional
to n2 for small values of n and a more or less linear time
for large values of n. Therefore, a simple implementation of
as precision would be as follows:

int exp_real_rep::as_precision (double cost) {
if (cost <= 256.0) return (int) sqrt (cost);
return min (MAX_PREC, (int) cost/16.0);

}

Of course, this is a very rough approximation of the real time
complexity of exp. For the theoretical bounds in the next
sections, better approximations are required. In practice
however, a simple implementation like the above one is quite
adequate. If necessary, one may implement a more precise
algorithm, based on benchmarks. One may also gradually
increase precisions and use a timer. The actual approxi-
mation of y is done using the overloaded function exp on
intervals:

interval exp_real_rep::compute () {
return exp (x->improve (cost));

}

In the case of functions with arity more than one it is
often possible to avoid unnecessarily precise computations
of one of the arguments, when the approximations of the
other argument are far less precise. For instance, in the case
of addition, compute may be implemented as follows:

interval add_real_rep::compute () {
dyadic eps= pow (2.0, -BITS_IN_WORD)
if (radius (y->best) < eps * radius (x->best)) {
(void) x->improve (cost);
while (y->cost < cost &&

radius (y->best) >= eps * radius (x->best))
(void) y->improve (2.0 * y->cost);

}
else
else return x->improve (cost) + y->improve (cost);

}

4.3 Further notes

Comparisons. Even though there exists no reliable zero-
tests for real numbers, concrete implementations might at
least want to provide a heuristic one. Probably, it is best to
provide an additional template parameter which allows for
the customization of ==, !=, <, etc. Currently, given a real
number x, we systematically store µx = max |�init|, where
�init is the approximation of x at minimal cost 1. Whenever
we want to test whether x = 0, we compute an ε-bounding
interval � � x with ε = µxδ for some fixed δ � 1 like
δ = 2−100, and test whether 0 ∈ �̃. Alternatively, one could
approximate x at a fixed cost. Yet another approach is to
keep a trace of all successful zero-tests and to try proving
them simultaneously by symbolic methods at the end of the
computation. Here we notice that a negative answer to a
heuristic zero-test usually proves that x �= 0, while a positive
answer only indicates that x = 0 might hold.

Overflows. Our current implementation does not yet deal
with overflows. Probably, an exception should be raised in
this case and similarly for expressions like exp(exp(1000)).

Effective complex numbers. In practice, one may fac-
tor code by implementing real and complex as specializa-
tions certify<interval> resp. certify<ball> of a tem-
plate type certify.

5. COMPLEXITY ANALYSIS
Notice that our Mmxlib implementation, as outlined in

the previous section, naturally solves both the static and the
dynamic versions of the global approximation problem: we
first construct the dag G and then either compute an εα-
approximation for each xα, or successive εi-approximations

for each xi (i = 1, . . . , k). In this section, we examine the
efficiency of this approach.

5.1 Total versus final complexity
Since xα is approximated several times during our algo-

rithm, let us first study the difference between the total
computation time and the time taken by the final and most
precise approximations of the xα.

For each node α, let tα,0, . . . , tα,pα be the successive tim-
ings for the approximation of xα. We will also denote by
Tα,0 < · · · < Tα,pα the intended computation times and
precisions. By construction, we have tα,i � Tα,i for all
i and Tα1 = 1, . . . , Tα,pα = 2pα . For each α, let tα =
tα,0 + · · ·+ tα,pα � Tα = Tα,0 + · · ·+ Tα,pα and tfin

α = tα,pα .
We define t =

�
α∈G tα, T =

�
α∈G Tα and tfin =

�
α∈G tfin

α .
We already warned against the possibility that tα,i < Tα,i.

Nevertheless, we necessarily have tα,i = Tα,i if α is a leaf.
Also, any operation fα of cost Tα,i triggers an operation
of cost Tα,i for one of the children of α. By induction, it
follows that there exists at least one leaf λα,i descending
from α which really spends a time tλα,i,i = Tλα,i,i = Tα,i.
Hence, denoting by a the ancestrality of the dag and by Λ
its subset of leaves, we have

T �
�

α∈G,i

Tλα,i,i � a
�

λ∈Λ,i

Tλ,i = a
�

λ∈Λ,i

tλ,i � at. (1)

We also have T � 2T fin since Tα,1 + · · ·+Tα,pα � 2Tα,pα for
all α. Consequently,

1

a
T fin

� t � 2T fin. (2)

The bound (1) is sharp in the case when the dag has only
one leaf λ and a) the computation of an l digit approxima-
tion of xλ requires exponential time; b) all other operations
can be performed in linear or polynomial time. A similar
situation occurs when cancellations occur during the com-
putation of xλ, in which case the computation of �λ at many
bits precision still produces a W -bit result.

A variant of (2), which is usually better, is obtained as
follows. Since the precision of the result of an operation on
intervals increases with the precision of the arguments, and
similarly for the computation times, we have tα,1 � · · · �
tα,pα . Let λ be a node (which can be assumed to be a leaf
by what precedes) for which p = pλ is maximal. Then

t =
�

α∈G,i

tα,i �
�

α∈G

pαtfin
α � ptfin.

It follows that

tfin
� t � (log2 tfin)tfin, (3)

since p = log2 Tλ = log2 tλ � log2 tfin.

5.2 Final versus optimal complexity
Let us now compare tfin with the computation time topt

for an optimal solution to the global approximation problem.
In fact, it suffices to compare with an optimal solution for
the static version: in the dynamic case, we consider the last
static global approximation problem.

Denote by topt
α the computation time at each node α for a

fixed optimal solution, so that topt =
�

α∈G topt
α . If s is the

size of the dag, then we claim that

topt
� tfin

� 2stopt. (4)

For simplicity, we will assume that pβ � pα whenever β is a
descendant from α. This is no longer the case if we apply the
optimization from the end of section 4.1, but the reasoning
can probably be adapted to that case.

Assume for contradiction that (4) does not hold. Now
consider the moment during the execution at which we first
call improve with a maximal cost 2p for some node α. At
that point, the current cost cβ of each of the descendants β
of α is cβ = 2p−1 = T fin

β /2. When such a β is a leaf, it follows

that cβ = tfin
β /2 � tfin/(2s) > topt

� topt
β . By structural

induction over the descendants β of α, it follows that cβ �

topt
β and the best available (resp. optimal) approximation �β

(resp. �opt
β) for xβ satisfies r�β � r

�
opt
β

< εβ. In particular

r�α < εα. On the other hand, the first call of improve with a
maximal cost 2p was necessarily triggered by approximate,
whence r�α � εα. This contradiction proves our claim.

Up to a constant factor, the bound (4) is sharp. Indeed,
consider the case of a multiplication x1 · · ·xn of n numbers
which are all zero. When gradually increasing the precisions
for the computation of x1, . . . , xn, it can happen that one of
the xi produces bounding intervals �i whose radii quickly
converge to zero, contrary to each of the other xj . In that
case, the time spent on improving each of the xj (j �= i)
is a waste, whence we loose a factor n with respect to the
optimal solution. On the other hand, without additional
knowledge about the functions fi, it is impossible to design
a deterministic procedure for choosing the most efficient in-
dex i. In this sense, our current solution is still optimal.
However, under additional monotonicity hypotheses on the
cost functions, efficient indices i can be found, by taking into
account the “cost per digit”.

6. BACK TO A PRIORI ESTIMATES
Although the approach from the previous section has the

advantage of never being extremely bad and rather easy to
implement on top of an existing layer for interval arithmetic,
there are even simple cases in which the factor s in the bound
(3) is not necessary: in the truncated power series evalua-
tion b = a0 + a1/2 + · · · + as/2

s with |ai| � 1 for all i, the
computation of a 2−n-approximation of b induces the com-
putation of n-bit approximations of each of the ai. If n � s,
this means that we spend a time ≈ ns instead of ≈ n2.

In order to remedy to this problem, we suggest to improve
the balanced a priori estimate technique from [20] and clev-
erly recombine it with the current approach. In this section,
we will briefly sketch how this could be done. The results
are based on joint ideas with V. Kreinovich, which we plan
to work out in a forthcoming paper.

6.1 Rigid dags
Let us start by isolating those situations in which a pri-

ori error estimates should be efficient. Consider a labeled
dag G so that xα admits an initial interval approximation
�α � xα for each α ∈ G. Assume also that for each node
α and each child αi of α, we have an interval �α,i with
(∂xα/∂xαi)(�α1 , . . . ,�α|α|) ⊆ �α,i. If |�α,i| < ∞, then we

say that G (together with the �α) is a Lipschitz dag. If, in
addition, we have �α,i ⊆ B(c�α,i , ε|c�α,i |) for some 0 < ε < 1
and all α, i, then we say that G is ε-rigid .

A typical obstruction to the Lipschitz property occurs in
dags like

√
0. Similarly, a dag like 0×0 is typically Lipschitz,

but not rigid. Given a Lipschitz dag, a variant of automatic

differentiation provides us with bounds for the error in xα in
terms of the errors in the xλ, where λ ranges over the leaves
below α. If G is ε-rigid, and especially when ε < 2−W , then
these bounds actually become very sharp.

For instance, given a rooted Lipschitz dag and a challenge
ε at the root ω, one may compute a sufficient precision l for
obtaining an ε-approximation of xω as follows. Let �λ be the
error in xλ at each leaf λ, when computing with precision l.
We have �λ= rλ2−l for some rλ which depends on λ. Then
we recursively estimate the error �α at each node α by

�α= |�|α,1 �α1 + · · · + |�|α,|α| �α|α| .

This provides us with a bound of the form �ω= rω2−l for
the error at the root ω. We may thus take l = �log2 rω/ε	.
The approach can be further improved using similar ideas
as in the implementation of addition in section 4.2.

6.2 Backward error bounds
Instead of working with a fixed precision l, a better idea is

to compute the contribution �λ = ∂ �ω /∂ �λ of the error
�λ at each leaf to the error �ω at ω. This problem is dual to
the problem of automatic differentiation, since it requires us
to look at the opposite dag G� of G, which is obtained by
inverting the direction of the edges. Indeed, if α1, . . . , α[α]

denote all parents of a node α, and if α is the iα,j-th child
of αj for each j, then we take

�α = |�|α1,iα,1�α1 + · · · + |�|α[α],i[α],1�α[α] .

Together with the initial condition �ω = 1, this allows us to
compute �λ for all leafs λ. In order to compute xω with er-
ror �ω< ε, we may now balance ε over the leaves λ according
to the �α. More precisely, we compute an ελ = ε/(p�λ)-
approximation of each xλ, where p is the number of leaves,
and recompute all other nodes using interval arithmetic. As
an additional optimization, one may try to balance accord-
ing to the computational complexities of the �α.

The above strategy is a bit trickier to implement in an
incremental way. Indeed, in the dynamic global approxima-
tion problem, we ask for ε-approximations at different nodes
ω and, since good previous approximations may already be
present, it is not always necessary to compute the complete
dag below ω. A solution to this problem is to keep track
of the “creation date” of each node α and to compute the
�α from the top down to the leaves, while first consider-
ing nodes with the latest creation date (i.e. by means of
a heap). Whenever the computed �α is so small that the
current error �α= r�α at α contributes only marginally to
the error �ω< ε at the top (i.e. �α �α< ε2−W), then it is
not necessary to consider the descendants of α.

Acknowledgment. We would like to thank two of the refer-
ees for their detailed and interesting comments, suggestions
and references. Unfortunately, due to space limitations, we
could not anwer all questions in the revised version.

7. REFERENCES
[1] G. Alefeld and J. Herzberger. Introduction to interval

analysis. Academic Press, 1983.

[2] J. Blanck. General purpose exact real arithmetic.
Technical Report CSR 21-200, Lule̊a University of
Technology, Sweden, 2002.
http://www.sm.luth.se/~jens/.

[3] J. Blanck, V. Brattka, and P. Hertling, editors.
Computability and complexity in analysis, volume 2064
of Lect. Notes in Comp. Sc. Springer, 2001.

[4] A. Edalat and P. Sünderhauf. A domain-theoretic
approach to real number computation. TCS,
210:73–98, 1998.

[5] A. Gaganov. Computational complexity of the range
of the polynomial in several variables. Cybernetics,
pages 418–425, 1985.

[6] T. Granlund et al. GMP, the GNU multiple precision
arithmetic library. http://www.swox.com/gmp,
1991–2006.

[7] M. Grimmer, K. Petras, and N. Revol. Multiple
precision interval packages: Comparing different
approaches. Technical Report RR 2003-32, LIP, École
Normale Supérieure de Lyon, 2003.

[8] G. Hanrot, V. Lefèvre, K. Ryde, and P. Zimmermann.
MPFR, a C library for multiple-precision
floating-point computations with exact rounding.
http://www.mpfr.org, 2000–2006.

[9] V. Kreinovich. For interval computations, if absolute
accuracy is NP-hard, then so is relative
accuracy+optimization. Technical Report
UTEP-CS-99-45, UTEP-CS, 1999.

[10] V. Kreinovich and S. Rump. Towards optimal use of
multi-precision arithmetic: a remark. Technical
Report UTEP-CS-06-01, UTEP-CS, 2006.

[11] B. Lambov. The RealLib project.
http://www.brics.dk/~barnie/RealLib, 2001–2006.

[12] V. Ménissier-Morain. Arbitrary precision real
arithmetic: design and algorithms. Unpublished.

[13] N. Müller. iRRAM, exact arithmetic in C++.
http://www.informatik.uni-trier.de/iRRAM/,
2000–2006.

[14] R. O’Connor. A monadic, functional implementation
of real numbers. Technical report, Institute for
Computing and Information Science, Radboud
University Nijmegen, 2005.

[15] N. Revol. MPFI, a multiple precision interval
arithmetic library.
http://perso.ens-lyon.fr/nathalie.revol/software.html,
2001–2006.

[16] S. Rump. Fast and parallel inteval arithmetic. BIT,
39(3):534–554, 1999.

[17] A. Turing. On computable numbers, with an
application to the Entscheidungsproblem. Proc.
London Maths. Soc., 2(42):230–265, 1936.

[18] J. van der Hoeven. GMPX, a C-extension library for
gmp. http://www.math.u-psud.fr/~vdhoeven/, 1999.
No longer maintained.

[19] J. van der Hoeven. Relax, but don’t be too lazy. JSC,
34:479–542, 2002.

[20] J. van der Hoeven. Computations with effective real
numbers. TCS, 351:52–60, 2006.

[21] J. van der Hoeven et al. Mmxlib: the standard library
for Mathemagix, 2002–2006.
http://www.mathemagix.org/mml.html.

[22] K. Weihrauch. Computable analysis. Springer-Verlag,
Berlin/Heidelberg, 2000.

