
On the complexity of symbolic computation
Joris van der Hoeven

CNRS, École polytechnique, Institut Polytechnique de Paris
Laboratoire d'informatique de l'École polytechnique (LIX, UMR 7161)

Bâtiment Alan Turing, CS35003
1, rue Honoré d'Estienne d'Orves

91120 Palaiseau, France
vdhoeven@lix.polytechnique.fr

ABSTRACT
In this paper, we survey various basic and higher level tasks in
computer algebra from the complexity perspective. Particular
attention is paid to problems that are fundamental from this point
of view and interconnections between other problems.

1 Introduction
Which problems in symbolic computation can be solved reasonably
fast? Given a problem, would it be possible to predict how much
time is needed to solve it? The area of computational complexity
was designed to provide answers to such questions. However,
symbolic computation has a few particularities that call for extra
or separate techniques.

One particularity is that the most prominent algorithms typi-
cally get implemented, so we can check theory against practice. A
satisfactory complexity theory in our area should at least be able
to explain or model running times that are observed in practice.

However, such a theory should be more than an ennobled tool
for benchmarking. We also wish to gain insight into the intrinsic
complexity of problems, understand how the complexities of dif-
ferent problems are related , and identify the most central compu-
tational tasks in a given area (these tasks typically require highly
optimized implementations).

Traditionally, a distinction is made between the analysis of algo-
rithms (how to analyze the complexity of a given algorithm) and
complexity theory (fitting problems into complexity classes and
proving lower bounds). This paper partially falls in the second
category, since we will be interested in classes of algorithms and
problems. Such a broader perspective is particularly useful if you
want to implement a new computer algebra system, like Math-
emagix in my case [77], or a library for such a system.

However, traditional complexity theory is not very adequate
for computer algebra, due to the disproportionate focus on lower
bounds and coarse complexity classes. Fortunately, as will be
argued in Section 3, we already have many ingredients for devel-
oping a more meaningful complexity theory for our area. I found
it non-trivial to organize these ingredients into a “grand theory”.
In this survey, I will therefore focus on concrete examples that
reflect the general spirit.

The first series of examples in Section 4 concerns basic opera-
tions like multiplication, division, gcds, etc. for various algebras.
We will see how various basic complexities are related and how
some of them can be derived using general techniques.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
(Please declare conferenceinfo, CopyrightYear, and crdata in your preamble, following ACM guidelines:
http://www.acm.org/sigs/publications/proceedings-templates),
Copyright 20XX ACM XXX-X-XXXX-XXXX-X/XX/XX ...$15.00.

In Section 5, we will turn to the higher level problem of poly-
nomial system solving. My interest in this problem is more recent
and driven by complexity considerations. I will survey advantages
and limitations of the main existing approaches and highlight a few
recent results.

2 Two extremist views on complexity theory
2.1 Traditional complexity theory
Standard theoretical computer science courses on computability
and complexity theory [101] promise insight into two questions:

Q1. What can we compute?

Q2. What can we compute efficiently?

Whereas there is broad consensus about the definition of com-
putability (Church' thesis), it is harder to give a precise definition of
“efficiency”. For this, traditional complexity theory heavily relies
on complexity classes (such as P, NP, etc.) in order to describe the
difficulty of problems. In principle, this provides some flexibility,
although many courses single out P as “the” class of problems that
can be solved “efficiently”.

Now the question Q2 is actually too hard for virtually all
interesting problems, since it involves proving notoriously dif-
ficult lower bounds. Our introductory course goes on with the
definition of reductions to relate the difficulties of different prob-
lems: if problem A reduces in polynomial time to an NP-complete
problem B, then A is NP-complete as well. This allows us to use
NP-completeness as a surrogate for “lower bound”.

A big part of complexity theory is then devoted to proving such
hardness results: the emphasis is on what cannot be computed fast;
understanding which problems can be solved efficiently (and why
and how) is less of a concern (this is typically delegated to other
areas, such as algorithms).

There are numerous reasons why this state of the art is unsat-
isfactory for symbolic computation. At best, negative hardness
results may be useful in the sense that they may prevent us from
losing our time on searching for efficient solutions. Although:

“You prove that problems are hard and I write computer pro-
grams that solve them.” (Richard Jenks [81])

For instance, deciding whether a system of polynomial equations
over 𝔽2 has a solution is a typical NP-complete problem, since it
is equivalent to SAT [24]. At the same time, the computer algebra
community has a long and successful history of solving polyno-
mial systems [16, 29], at least for specific instances. From a theoret-
ical point of view, it was also proved recently that all solutions
of a generic dense system of polynomial equations over ℤ can be
computed in expected quasi-optimal time in terms of the expected
output size; see [75] and Section 5.5 below.

In the past decade, there has been a lot of work to understand
such paradoxes and counter some of the underlying criticism.
For instance, the specific nature of certain input instances is
better taken into account via, e.g., parametric or instance com-
plexity [108]. Complexity classes with more practical relevance
than P have also received wider attention [117].

http://www.acm.org/sigs/publications/proceedings-templates
http://www.acm.org/sigs/publications/proceedings-templates

But even such upgraded complexity theories continue to miss
important points. First of all, lower bound proofs are rarely
good for applications: for the above polynomial time reduction
of problem A to the NP-complete problem B, any polynomial time
reduction will do. If we are lucky to hit an easy instance of A,
such a reduction typically produces an intractable instance of B.
In other words: negative reductions do not need to be efficient.

Secondly, the desire to capture practical complexity via asymp-
totic complexity classes [81, Cook's (amended) thesis] is unrealistic:
even a constant time algorithm (like any algorithm on a finite
computer which terminates) is not necessarily “practical” if the
constant gets large; constants are essential in practice, but hidden
through asymptotics.

A more subtle blind spot concerns the framework of complexity
classes itself, which has modeled the way how several genera-
tions have been thinking about computational complexity. Is it
really most appropriate to put problems into pigeonholes P, NP,
EXP, L, etc.? Sorting and matrix multiplication are both in P;
does this mean that these problems are related? In computer
algebra we have efficient ways to reduce division and gcds to
multiplication [35, 15]; the complexities of interpolation, multi-
point evaluation, factorization, and root finding are also tightly
related (see Section 5); a good complexity theory should reflect
such interconnections.

2.2 Take your stopwatch
Implementors tend to have a more pragmatic point of view on
complexity:

“Do you want to know whether your algorithm is faster? Take
your stopwatch and run it.” (Mark van Hoeij)

It is true that a complexity-oriented approach to the development
of algorithms (as advocated by the author of these lines) may be
overkill. For instance, there has been a tendency in computer
algebra to redevelop a lot of linear algebra algorithms to obtain
complexities that are good in terms of the exponent ω < 2.3729
of matrix multiplication [34]. But ω stays desperately close to 3,
in practice.

Yet, there are obvious pitfalls when throwing all complexity
considerations overboard: your stopwatch will not predict whether
you should take a cup of coffee while your algorithm runs, or
whether you should rather go to bed.

What one osten needs is a rough educated idea about expected
running times. Such a relaxed attitude towards complexity is
omnipresent in neighboring areas such as numerical analysis.
The popular textbook [104] is full with assertions like “the LU-
decomposition [. . .] requires about /1 3N

3 executions [. . .]” (end
of Section 2.3.1), “the total operation count for both eigenvalues
and eigenvectors is ∼25 n3” (Section 11.7), etc.

Another obvious problem with benchmarks is that experiments
on computers from fifty years ago may be hard to reproduce today;
and they probably lost a lot of their significance with time.

But there are also less obvious and more serious problems when
your stopwatch is all you got. I hit one such problem during the
development of relaxed power series arithmetic [52, 54]. Polya
showed [103] that the generating series of the number of stereoiso-
mers with molecular formula CnH2n+1OH satisfies the equation

s(z) = 1+ 1
3 z (s(z)3 + s(z3)).

Many terms of this series can be computed using relaxed arith-
metic. However, when doing so for rational coefficients, timings
were much slower than expected. The reason was that GMP [39]
used a naive algorithm for large gcd computations at that time.
This came as a big surprise to me: if I had just tried the new algo-
rithms with a stopwatch in my hand, then I probably would have
concluded that they were no good!

Study 1997 2004 2012 2017 2021
None 53% 47% 27% 28% 37%
Benchmarks 17% 30% 22% 24% 24%
Complexity analysis 22% 9% 27% 39% 29%
Both 8% 14% 24% 9% 10%

Table 1. Statistics for the number of papers in ISSAC proceedings that con-
tain benchmarks, a complexity analysis, nothing of this kind, or both.

This was really a serious problem. Around the same period,
at every computer algebra meeting, there would be an asternoon
on fast linear algebra without divisions (variants of Bareiss' algo-
rithm). This research direction became pointless when GMP even-
tually integrated a better algorithm to compute gcds.

When implementing your own algorithm in a modern computer
algebra system, you typically rely on a lot of other algorithms,
some of which may even be secret in proprietary systems. You also
rely on very complex hardware with multi-core SIMD processors
and many levels of cache memory. One of the aims of complexity
theory as opposed to the analysis and benchmarking of a single
algorithm should be to get a grip on the broad picture.

A better global understanding might guide future developments.
For instance, working in algebraic extensions has bad press in
computer algebra for being slow; “rational” algorithms have been
developed to counter this problem. But is this really warranted
from a complexity point of view? Could it be that algebraic exten-
sions simply are not implemented that well?

In symbolic computation, it is also natural to privilege sym-
bolic and algebraic methods over numeric or analytic ones, both
because many of us simply like them better and because we have
more efficient support for them in existing systems. But maybe
some algebraic problems could be solved more efficiently using
numerical methods. What about relying more heavily on homo-
topy methods for polynomial system solving? What about numer-
ical differential Galois theory [23]?

3 Symbolic computation

3.1 Complexity at ISSAC
How does the ISSAC community deal with complexity issues? In
Table 1, I compiled some statistics for actual papers in the pro-
ceedings, while limiting myself to the years 1997, 2004, 2012, 2017,
and 2021. I checked whether the papers contained benchmarks,
a complexity analysis, both, or nothing at all.

It is clear from Table 1 that the ISSAC community cares about
complexity issues. Many papers contain a detailed complexity
analysis. For high-level algorithms with irregular complexities,
authors often provide benchmarks instead. Besides providing inter-
esting insights, one may also note that “objective” benchmarks
and complexity results are frequently used to promote a new algo-
rithm, especially when there are several existing methods to solve
the same problem.

Only a few papers mention traditional complexity classes and
lower bounds are rarely examined through the lens of computa-
tional hardness. Instead, it is typically more relevant to determine
the cost and the size of the output for generic instances. For
instance, instead of proving that “polynomial system solving is
hard”, one would investigate the complexity of solving a generic
system in terms of the Bézout bound (which is reached for such
a system).

Most theoretical complexity results are stated in the form of
upper bounds. Both algebraic and bit-complexity models are very
popular; occasionally, bounds are stated differently, e.g. in terms
of heights, condition numbers, probability of success, etc.

2 Joris van der Hoeven

One interesting characteristic of algorithms in symbolic com-
putation is that their complexities can osten be expressed in terms
of the basic complexities of multiplying n-bit integers, degree d
polynomials, and r × r matrices. Several papers even use special
notations I(n), M(d), and rω for these complexities. In a similar
manner, number theorists introduced

Ln[α , c]≔e(c+o(1))(logn)α (loglogn)1−α

in order to express the complexities of fast algorithms for integer
factorization and discrete logarithms. We will return to these
observations in Section 3.2 below.

In the past decade, there have been many developments “beyond
the worst-case” analysis of algorithms [108]. To which extent
are these developments relevant to the ISSAC community? For
instance, a hard problem may become easier for particular input
distributions that are meaningful in practice. It is important to
describe and understand such distributions more precisely. Sur-
prisingly, very few papers in our area pursue this point of view.
On the other hand, there are many lists of “interesting” problems
for benchmarking. Conversely, only the last page 660 of [108]
contains a table with experimental timings.

In my personal research, I also encountered various interesting
algorithms that scream for yet other non-traditional analyses:
amortized complexity (fast algorithms modulo precomputa-
tions [73]), conjectured complexity (dependence on plausible but
unproven conjectures [49]), heuristic complexity [69], irregular
complexity (various operations over finite fields 𝔽pκ can be done
faster if κ is composite or smooth [67, 76]).

3.2 Fundamental complexities
Hardy already noted that many natural orders of growth can be
expressed using exp-log functions [43]; this in particular holds
for the asymptotic complexities of many algorithms. Instead
of searching for “absolute” complexity bounds, it has become
common to express complexities in terms of other, more “funda-
mental” complexities such as I(n), M(d), rω, and Ln[α ,c] that were
introduced above.

In a similar way as traditional complexity theory is organized
through complexity classes P, NP, EXP, L, etc., I think that fun-
damental complexities can play a similar role for symbolic compu-
tation and beyond.

Whereas complexity classes give a rough idea about how fast
certain problems can be solved, fundamental complexities provide
more detailed information such as “the problem essentially reduces
to linear algebra”.

In fact, the language of complexity bounds (especially when
enriched with notations such as I(n), M(d), and rω) is more expres-
sive and precise than the language of complexity classes: whereas

PRIMES∈P

vaguely states that primality can be checked “fast”,

GCD(d) = O(M(d) log d) (1)

states that computing gcds essentially reduces to multiplication,
plausibly using a dichotomic algorithm.

Another advantage of (re-)organizing complexity theory in
this direction is that fundamental complexities are hardware-
oblivious: the bound (1) holds on Turing machines, for algebraic
complexity models, on quantum computers, as well as on many
parallel machines. Deciding whether integer factorization can be
done in polynomial time may lead to different outcomes on Turing
machines and quantum computers.

With the help of fundamental complexities, even constant fac-
tors can be made more precise. For instance, [35, Exercise 11.6]
indicates how to prove that

GCD(d)⩽(10
log 2

+ o(1))M(d) log d .

This osten makes it possible to predict running times very accu-
rately, provided we know the performance of a few basic algo-
rithms. Implementors can then optimize these basic algorithms.

Fundamental algorithms may also be implemented in hard-
ware. For instance, Apple's new M1 processor contains a matrix
coprocessor. With suitable hardware, it might very well be pos-
sible to “achieve” ω=2 for many real world applications.

The question remains which complexities are worthy to be
dubbed “fundamental”. This question is actually a productive
common thread whenever you want to understand complexity
issues in some area. It asks you to identify the most fundamental
algorithmic building blocks. Sometimes, this requires the intro-
duction of a new fundamental complexity (such as modular com-
position or multi-point evaluation for polynomial system solving;
see Section 5 below). Sometimes, you may find out that your
area reduces to another one from an algorithmic point of view.
For instance, computations with the most common Ore operators
essentially reduce to polynomial linear algebra.

3.3 Back to our stopwatch
Asymptotic complexity bounds can be treacherous from a practical
point of view. The most notorious example is matrix multipli-
cation: it has been proved that ω < 2.3729 [34], but I am not
aware of any implementation that performs better than Strassen's
algorithm [115] for which ω= log2 7 ≈ 2.807. A more interesting
example is Kedlaya–Umans' recent algorithm for modular com-
position [84]. We were unable to make it work fast in practice [70,
Conclusion], but it is unclear whether variants of the algorithm
might allow for efficient implementations.

Whereas hardness results dissuade implementors from search-
ing overly efficient solutions for certain problems, the main prac-
tical interest of the above complexity bounds is to dissuade com-
plexity theorists from trying to prove overly pessimistic lower
bounds.

One useful indicator for practical differences in performance is
the crossover point: if A is asymptotically faster than B, for which
size nA,B of the input does A actually become faster? Curiously,
crossover points are osten mentioned en passant when discussing
benchmarks, but they have not really been the subject of sys-
tematic studies: does anyone know what is the crossover point
between naive matrix multiplication and any of the asymptoti-
cally fast algorithms with ω⩽2.5?

It is illuminating to study the complexities of A and B near
the crossover point. For instance, for Strassen's algorithm versus
naive matrix multiplication, assume that the crossover point is
nA,B ≈1000. Then this means that we need a matrix of size 32000×
32000 in order to gain a factor two with Strassen's method: for
ω= log7 2, we have (25)3/(25)ω=25(3−ω) ≈1.95.

Now there are many recent bounds in the recent computer
algebra literature of the form T (n) = Õ(naω+b). Here the sost-O
notation Õ(f) stands for O(f (log f)O(1)) and serves to “discard”
all logarithmic factors. Although I think that it is a good practice
to state complexity bounds in terms of ω (for instance, ω might
be lower for sparse or structured matrices), I suspect that the dis-
carded logarithmic factors are osten far more significant.

On the complexity of symbolic computation 3

Algebra Complexity Reference, validity
ℤ O(n log n) [48], bit complexity
𝕂[x] O(d log d log log d) [113, 111, 19], algebraic

O (d log d 4log∗d) [47], char𝕂>0
O(d log d) [49], char𝕂>0, conjectured

𝕂r×r O(rω), ω<2.3729 [34], algebraic

Table 2. Best known complexity bounds for multiplying integers, polyno-
mials, and matrices.

In this paper, I focus on sequential bit-complexity [101] and
algebraic complexity [17]. Of course, modern computers come with
complex cache hierarchies and they are highly parallel (distrib-
uted over networks, multi-core, and with wide SIMD instructions).
A model for measuring the cost of cache misses was proposed
in [33]. For a past ISSAC tutorial on parallel programming tech-
niques in computer algebra, I refer to [94]. The Spiral project [106]
is also noteworthy for using computer algebra to generate par-
allel code for low level transforms such as FFTs.

4 Basic arithmetic
Computer algebra systems are usually developed in layers, as are
mathematical theories. The bottom layer concerns numbers. The
next layers contain basic data structures such as univariate poly-
nomials, dense matrices, symbolic expressions, and so on. Gröbner
bases, symbolic integration, etc. can be found in the top layers.

My mental picture of a complexity theory for computer algebra
roughly follows the same structure. The aim is to understand the
complexity issues layer by layer, starting with the lowest ones.

4.1 Multiplication
In order to figure out the cost of basic arithmetic operations, multi-
plication is the central operation to analyze first. We have already
encountered the fundamental complexities I(n), M(d), and rω, for
which the best known bounds are summarized in Table 2.

Multiplication is fundamental in two ways. On the one hand,
many other operations can efficiently be reduced to multiplication.
On the other hand, the techniques that allow for fast multipli-
cation are typically important for other operations as well. In
Table 3, I summarized the complexity of multiplication for a few
other important algebras.

Other noteworthy bounds in the same spirit concern truncated
multiplication [96, 42, 46], middle products [41, 15], multivariate
power series [88], symmetric polynomials [66], rectangular matrix
multiplication [79, 86], and sparse differential operators [36].

Technically speaking, many algorithms for fast multiplication
rely on evaluation-interpolation (or, more generally, they rewrite
the problem into a simpler multiplication problem for another
algebra). The complexity of such algorithms can be expressed in
terms of the number of evaluation points and the cost of conver-
sions.

Algebra Complexity Notes

ℤp I(n)eO(loglogn�) [59], relaxed

𝕂[[z]] M(d)eO(loglogd�) [59], relaxed

𝕂r×r[x] O(r2 M(d)+ rωd) [12]

𝕂[x, ∂x] O(r M(d) log d + rω−1 d) [6], d ⩾ r =deg∂
O(d M(r) log r + dω−1 r) [6], r ⩾d

𝕃 |𝕂
tower M(d)eO(logd�) [68], d = [𝕃 :𝕂]
𝕂[x] O(M(s)) [69, 64], sparse, heuristic

Table 3. Best known complexity bounds for multiplication in various alge-
bras. In the last bound, s stands for the total size of the supports of the input
and output.

Operation Complexity References
Quotient+remainder ∼2 I(n) [57]
Reciprocal ∼ /13

9 I(n) [45]

Square root ∼ /4 3 I(n) [45]
Base conversion
Amortized CRT O(I(n)

log n
log log n) [61]

Gcd, lcm O(I(n) log n) [110, 93]
CRT O(I(n) log n) [32, 92]
Exponential
Logarithm O(I(n) log n) [13]

Evaluation of
holonomic functions O(I(n) log2 n) [22, 53, 91]

Table 4. Complexity bounds for various basic operations on n-bit integers
and/or floating point numbers. The first four bounds assume the FFT-model.

For instance, given an evaluation-interpolation scheme for
degree d polynomials, let N(d) and E(d) denote the number of eval-
uation points and the cost of evaluation/interpolation. Then the
complexity of multiplying two matrices of degree d in 𝕂[x]r×r

becomes
N(d) rω+3 E(d) r2.

The evaluation-interpolation scheme should carefully be selected
as a function of d and r , with a trade-off between the efficiency
of the conversions and the compactness of the evaluated polyno-
mials.

There exist numerous important schemes: fast Fourier trans-
forms [25], Karatsuba and Toom-Cook transforms [83, 116], Chi-
nese remaindering [26, 61], Nussbaumer (or Schönhage–Strassen)
polynomial transforms [113, 99], truncated Fourier transforms [55],
Chudnovsky2 evaluations and interpolations [21], and so on.

4.2 Basic operations
For other basic arithmetic operations like division, square roots,
gcds, matrix decompositions, exp, log, etc., one may proceed in
two stages: we first seek an efficient reduction to multiplication
and then further optimize the method for particular multiplication
schemes.

For instance, operations such as division and square root, but
also exponentials of formal power series, can be reduced efficiently
to multiplication using Newton's method [14]. When using such
an algorithm in combination with FFT-multiplication, some of the
FFTs are typically redundant. Constant factors can then be reduced
by removing such redundancies [7, 8]. Note that Shoup's NTL
library is an early example of a library that makes systematic use
of specific optimizations for the FFT-model [114].

One may go one step further and modify the algorithms such
that even more FFTs are saved, at the cost of making the compu-
tations in the FFT-model a bit more expensive. This technique of
FFT trading leads to even better asymptotic constant factors or
complexities [57, 45, 44, 61].

Table 4 contains a summary of the best known asymptotic com-
plexity bounds for various basic operations on integers and/or
floating point numbers. Similar bounds hold for polynomials and
truncated power series. The first three bounds were actually
proved for polynomials and/or series, while assuming the FFT-
model: one degree d multiplication is equivalent to six DFTs of
length d .

CRT stands for the Chinese remainder theorem; conversions
in either direction have the same sostly linear complexity. This
was originally proved for polynomials, but also holds for integer
moduli [15, Section 2.7]. For amortized CRTs, the moduli are fixed,
so quantities that only depend on the moduli can be precomputed.
A holonomic function is a function that satisfies a linear differen-
tial equation over ℚ̄[x], where ℚ̄ is the field of algebraic numbers.
Many special functions are of this type.

4 Joris van der Hoeven

Some bounds for transcendental operations are better for power
series than for numbers. For instance, exponentials can be com-
puted in time ∼ /13

6 M(d) modulo O(zd). Using relaxed or online
arithmetic, when coefficients are fed one by one, solving power
series equations is as efficient as evaluating them [54, 63]. For
instance, in the Karatsuba model g = exp f can be computed in
time ∼M(d) using g = ∫ f ′ g. In the FFT-model, one has to pay a
small, non-constant price for relaxed multiplication (see Table 3).

The numerical evaluation of analytic functions reduces into
power series computations and the computation of effective error
bounds. This can be used to solve many problems from numerical
analysis with high precision. For instance, the reliable integra-
tion of an algebraic dynamical system between two fixed times
and with a variable precision of n bits takes O(I(n2)) bit opera-
tions [58]. See [80, 90] for other sostware packages for reliable
numerical computations with high precision.

Similar tables as Table 4 can be compiled for other algebras. For
instance, the inverse of an r ×r matrix with entries in a field 𝕂 can
be computed in time O(rω) [115]. If SM(d , r) stands for the com-
plexity of multiplying two operators in 𝕂[x, ∂] of degree ⩽d in x
and order ⩽r in ∂, then exact right division of two such operators
can be done in time O(SM(d , r) log d) [62].

4.3 Sparse interpolation
One big enemy of symbolic computation is intermediate expression
swell. This phenomenon ruins the complexity of many algorithms.
For instance, let M be an r × r matrix with formal entries ai, j and
consider the computation of ((M−1)⊤)−1. For n ⩾ 20, the inter-
mediate expression for M−1 is prohibitively large, when fully
expanded as a rational function in the parameters ai, j. But the
end-result M⊤is fairly small. The technique of sparse interpola-
tion proposes a remedy to this problem.

In general, we start with a blackbox function f , such as the
above function that associates ((M−1)⊤)−1 to (ai, j)1⩽i, j⩽r . The
function f is usually given by a DAG that computes one or more
polynomials or rational functions that involve many parameters.
The DAG should be of reasonable size, so that it can be evaluated
fast. In our example, the DAG might use Gaussian elimination
to compute the inverses. Then sparse interpolation allows for
the efficient symbolic reconstruction of the actual polynomials or
rational functions computed by f , whenever these are reasonably
small. This is an old topic [105, 5, 18] with a lot of recent pro-
gress; see [107] for a nice survey.

Let us focus on the case when f computes a polynomial with
rational coefficients. From a complexity perspective, the most
important parameters are the size L of f as a DAG, the size s of
its support as a polynomial, and the bit size b of the coefficients
(the degree and dimension are typically small with respect to s +b,
so we will ignore them for simplicity). Sparse interpolation goes
in two stages: we first determine the support of f , typically using
a probabilistic algorithm of Monte Carlo type. We next determine
the coefficients.

Now the first stage can be done modulo a sufficiently large prime
p=Ω(log s), so the complexity hardly depends on b. Using Prony's
algorithm [105], this stage first involves 2 s evaluations of f of
cost O(L s I(log p)); using Cantor–Zassenhaus for polynomial root
finding [20], we next need O(M𝔽p(s) log2 s) =O(s log3 s I(log p))
operations to recover the support. Finally, the coefficients can be
computed using transposed polynomial interpolation [18, 11], in
time O(I(sb) log s).

The dominant term in the resulting complexity O(s (L +
log3 s) I(log p) + I(s b) log s) depends on the asymptotic region we
are in. The logarithmic terms are significant. For instance, if f =

det M for the above matrix M , then s = r!, log s =Θ(r log r), L=
rω, and b =O(1), whence the Cantor–Zassenhaus step dominates
the cost. In [40, 78], it was shown how to save a factor Ω(log s)
by using the tangent Graeffe method; aster that, the evaluation
step dominates the cost.

For basic arithmetic operations on sparse polynomials or low
dimensional linear algebra with sparse polynomial coefficients,
the evaluation cost L can be amortized using multi-point eval-
uation; this essentially achieves L=Θ(log s). In such situations,
both Prony's algorithm and the tangent Graeffe algorithm become
suboptimal. It then becomes better to evaluate directly at suit-
able roots of unity using FFTs, which allows for another Θ(log s)
speed-up, also for the computation of the coefficients. In partic-
ular, sparse polynomial multiplication becomes almost as fast as
dense multiplication. However, the technical details are subtle and
can be found in [69, 64].

5 Polynomial system solving
One central problem in symbolic computation is polynomial
system solving. Now the mere decision problem whether there
exists one solution is a notorious NP-hard problem. However, most
algorithms in computer algebra concern the computation of all
solutions, for various representations of solutions. The number
of solutions may be huge, but the cost of finding them is osten
reasonable with respect to the size of the output.

In this section, we focus on the complete resolution of a generic
affine system of n polynomial equations of degrees d1, . . . ,dn. For
definiteness, we assume that the coefficients are in ℤ, ℂ, or 𝔽p.
For simplicity, we also assume that d1 = ⋅ ⋅ ⋅ = dn = d . For such
a generic system, all solutions are isolated and simple and the
number of solutions reaches the Bézout bound D= d1 ⋅ ⋅ ⋅ dn = dn.

There exist several approaches for polynomial system solving:

• Gröbner bases.

• Numeric homotopies.

• Geometric resolution.

• Triangular systems.

We will restrict our exposition to the first three approaches. But
we start with a survey of the related problem of multi-point eval-
uation, followed by an investigation of the univariate case, which
calls for separate techniques.

5.1 Multi-point evaluation
Let 𝕂 be a field and 𝔸 an algebra over 𝕂. The problem of multi-
point evaluation takes P ∈ 𝕂[x] = 𝕂[x1, . . . , xn] and x1, . . . , xN ∈
(𝔸n)N as input and should produce P (x1),...,P (xN) as output. This
problem is closely related to polynomial system solving: given
a tentative solution of such a system, we may check whether it
is an actual solution using multi-point evaluation. For complex or
p-adic solutions, we may also double the precision of an approx-
imate solution through a combination of Newton's method and
multi-point evaluation.

Using the technique of remainder trees [35, Chapter 10], it is
classical that the univariate case with 𝔸=𝕂 can be solved in softly
optimal time O(M(d)N /d) if N ⩾d and O(M(N)d /N) if d ⩾N .

The special case when n=N =1 and 𝔸 is an algebraic extension
of 𝕂 (typically of degree d) is called the problem of modular com-
position. This problem can be solved in time O(nϖ + n√ M𝕂(n))
using Stockmeyer and Paterson's baby-step-giant-step technique;
see [102] and [82, p. 185]. The constant ϖ > 1.5 is such that
a n√ × n√ matrix over 𝕂 may be multiplied with another n√ × n
rectangular matrix in time O(nϖ). One may take ϖ<1.629 [86, 73].
The same technique can be applied for other multi-point/modular
evaluation problems [68, Section 3].

On the complexity of symbolic computation 5

A breakthrough was made in 2008 by Kedlaya and Umans [84],
who showed that modular composition and multi-point evalua-
tion with 𝔸=𝕂 are related and that they can both be performed
with quasi-optimal complexity. For instance, the complexity of
modular composition is d eO(logd loglogd�). Unfortunately, their algo-
rithms do not seem to be efficient in practice [70, Conclusion];
being non-algebraic, their approach is also not generally applic-
able in characteristic zero.

In the past decade, Grégoire Lecerf and I have investigated sev-
eral more practical alternatives for Kedlaya-Umans' algorithms.
Over the integers and rationals, modular composition can be done
in softly optimal time for large precisions [71]. Over finite fields 𝔽q
with q = pλ and p prime, it helps when λ is composite [67]; if λ
is smooth, then composition modulo a fixed irreducible polyno-
mial of degree λ can even be done in sostly optimal time.

There has also been progress on the problem of amortized multi-
point evaluation, when the evaluation points are fixed [74, 97, 72].
This has culminated in a sostly optimal algorithm for any fixed
dimension [73]. It would be interesting to know whether gen-
eral multi-point evaluation can be reduced to the amortized case.

5.2 Univariate polynomials
Consider the problem of computing the complex roots z1, . . . , zd
of a square-free polynomial P ∈ ℂ[z]. Obviously, this problem is
equivalent to the problem to factor P over ℂ.

If we have good approximations of the roots, then we may use
Newton's method to double the precision of these approximations.
Provided that our bit-precision b is sufficiently large, this can be
done for all roots together using multi-point evaluation, in sostly
optimal time O(I(b d) log d). Our problem thus contains two main
difficulties: how to find good initial approximations and what to
do for small bit-precisions?

Based on earlier work by Schönhage [112], the root finding
problem for large precisions was solved in a sostly optimal way by
Pan [100]. Assuming that |zi|⩽1 for all i, he essentially showed that
P can be factored with b bits of precision in timeO(d log2d (log2d +
log b) I(b)) = Õ(d (d + b)). In particular, the sost optimality occurs
as soon as b =Θ(d).

The remaining case when b = o(d) was solved recently by
Moroz [95]. He shows how to isolate the roots of P in time
Õ(d (b + log κ)), where κ is a suitable condition number. A cru-
cial ingredient of his algorithm is fast multi-point evaluation for
small b. Moroz shows that this can be done in time Õ(d b), by
improving drastically on ideas from [56, Section 3.2]. A refined
analysis shows that his algorithm can be made to run in time
O(I(d b) log d) when b > log d .

For polynomials P ∈ ℚ[x], one may also ask for an algorithm
to factor P over ℚ instead of approximating its roots in ℂ. The
famous LLL-algorithm provided the first polynomial-time algo-
rithm for this task [89]. A practically more efficient method was
proposed in [50]. For subsequent improvements on the complexity
of lattice reduction and its application to factoring, see [51, 98].

When P has coefficients in the finite field 𝔽q with q = pλ and
p prime, the best current general purpose factorization algorithm
is (Las-Vegas) probabilistic and due to Cantor–Zassenhaus [20];
it has (expected) complexity O(Mq(d) log q log d), where Mq(d)
stands for the cost of multiplying two polynomials of degree d
over 𝔽q (assuming a plausible number-theoretic conjecture, we
have Mq(d)=O (d logq log(d logq))). Note that the bit-complexity
of the Cantor–Zassenhaus algorithm is quadratic in log q. If P
splits over 𝔽q, then the Tangent-Graeffe algorithm is osten more
efficient [40, 78]. In particular, if q− 1 is smooth, then the com-
plexity drops to O(Mq(d) log d).

If λ is large, then factorization over 𝔽q can be reduced effi-
ciently to modular composition [82]. This yields the bound
d1.5+o(1) log1+o(1) q + Õ(d log2 q) when using Kedlaya–Umans'
algorithm for modular composition. If λ is composite, then [67]
describes faster algorithms for modular composition. If λ is smooth
and d is bounded, then factorization can even be done in sostly
optimal time Õ(d logq) [76].

5.3 Gröbner bases
Macaulay matrices are a classical tool to reduce the resolution of
generic polynomial systems to linear algebra. For n affine equa-

tions of degree d , the complexity of this method is O(nδ (n +δ
δ)ω),

where δ=nd +1−n [10, Théorème 26.15]. For a fixed dimension n,
this bound becomesO((dn)ω+O(1/n)). Many modern Gröbner basis
implementations essentially use this method, while avoiding the
computation of rows (or columns) that can be predicted to vanish.
In particular, Faugère's F5 algorithm [30] can be formulated in this

way [2] and runs in time (dn)3+o(1), uniformly in d and n. For
a generic system of n equations of degree d , it follows that we can
compute a Gröbner basis with quasi-cubic complexity in terms of
the number dn of solutions.

Practical Gröbner basis computations are most efficient with
respect to graded monomial orderings. But solutions of the system
are more convenient to read from Gröbner bases with respect to
lexicographical orderings. Changes of orderings for zero-dimen-
sional systems can be performed efficiently using the FGLM algo-
rithm [28]. For a generic system, the complexity of a recent
optimization of this method is Õ(Dω), where D is the number of
solutions [31].

But is the computation of a Gröbner basis intrinsically a linear
algebra problem? Aster all, gcds of univariate polynomials can be
computed in softly optimal time. It turns out that better algorithms
also exist in the bivariate case. One subtlety is that the standard
representation of a Gröbner basis for a generic system with d1 =
d2=d already requiresO(d3) space with respect to a graded mono-
mial ordering. In [65], it was shown that generic bivariate Gröbner
bases can be computed in sostly optimal time Õ(d2) when using
a suitable, more compact representation.

Some softly optimal techniques also exist also for higher dimen-
sions, such as fast relaxed reduction [60] and heterogeneous
Gröbner bases [73]. It is unclear whether these techniques can
be used to break the linear algebra barrier.

Remark. Let I = (f1, f2) be the ideal generated by two generic
bivariate polynomials of degree d . The fast algorithm from [65] for
computing a Gröbner basis of I also allows the resultant of f1 and
f2 to be computed faster. Until recently, complexity bounds for this
task were sostly cubic Õ(d3). Over fields with finite characteristic,
the complexity drops to d1+o(1), using fast bivariate multi-point
evaluation [84]. For general coefficient fields,Villard [118] recently
gave an algebraic algorithm for a slightly different problem that

runs in time d3−1/ω+o(1).

5.4 Numeric homotopies
When 𝕂 ⊆ ℂ, another popular method to solve polynomial sys-
tems is to use numeric homotopies [3]. Given n generic equations
f1, . . . , fn of degree d , the idea is to find equations g1, . . . , gn of
the same degrees that can be solved easily and then to contin-
uously deform the easy equations in the target equations while
following the solutions. For instance, one may take gk = zk

d − ck
and hk,t = (1− t) fk +gk for random constants c1, . . . , cn and follow
the solutions of h1,t(z)= ⋅⋅ ⋅ = hn,t(z) from t =1 until t =0.

6 Joris van der Hoeven

The theoretical complexity of such methods has extensively
been studied in the BSS model [9], in which arithmetic operations
on real numbers with arbitrary precision can be done with unit
cost. This model is suitable for well conditioned problems from
classical numerical analysis, when all computations can be done
using machine precision. This holds in particular for random poly-
nomial systems. It has been shown in [4] that one solution path
can then be followed in expected average time O(d3/2nN), where
N ⩽n (n +d

d) is the number of coefficients of f1,..., fn for the dense
encoding. This bound has been lowered to O(d3/2 nN 1/2) in [1].
A theoretical deterministic algorithm that runs in average poly-
nomial time was given in [85].

In practice, the observed number of homotopy steps seems to
grow fairly slowly with n and d for random systems (a few hun-
dred steps typically suffice), so the above bounds are pessimistic.
However, we are interested in the computation of all D solu-
tions. When assuming that the average number of steps remains

bounded, this gives rise to a complexity O(n (n +d
d)dn). If we also

take into account the required bit precision b, then the bit com-

plexity becomes O(n (n +d
d) dn I(b)). Fortunately, the bulk of the

computation can usually be done with fixed precision and we may
directly use Newton's method to repeatedly double the precision
at the end t = 0. If we were able to develop a sostly optimal algo-
rithm for numeric multivariate multi-point evaluation, then the

complexity would be Õ(((n +d
d)+ I(b))dn).

Numeric homotopies perform particularly well for random sys-
tems, which behave essentially like generic ones. However, the
existing sostware is less robust than algebraic solvers for degen-
erate systems, especially in presence of solutions with high multi-
plicities. It remains a practical challenge to develop more robust
homotopy solvers for general systems and a theoretical challenge
to understand the complexity of this problem.

5.5 Geometric resolution
The technique of geometric resolution was developed in [38, 37] and
further perfected in [87, 27]. It works over arbitrary fields 𝕂 and
polynomials that are given by a DAG of size L. For simplicity, we
assume that our system is generic. Aster a random linear change
of variables, the idea is to successively solve the systems

f1(z1,0, . . . ,0)=0
f1(z1,z2,0, . . . ,0)= f2(z1,z2,0, . . . ,0)=0
⋅⋅⋅

in the form zk = ak(u)/q′(u), where u is a formal parameter that
satisfies q(u) = 0 for q∈ 𝕂[u]. This representation of solutions is
called the Kronecker representation. It is also a rational univariate
representation [109] with a special type of denominator.

Let us focus on the last step which dominates the cost. The
solutions zk = ak(u)/q′(u) of the system

f1(z1, . . . ,zn−1,0)= ⋅⋅ ⋅ = fn−1(z1, . . . ,zn−1,0)=0

are first listed into solutions zk = ak,t(u)/qt′(u) of the system

f1(z1, . . . ,zn−1, t)= ⋅⋅ ⋅ = fn−1(z1, . . . ,zn−1, t)=0.

We next intersect with the hypersurface fn(z1, . . . , zn−1, t) = 0.
It turns out that it suffices to work with power series in t
modulo O(tD+1). Then the intersection step gives rise to the com-
putation of a large resultant, which can be done in time Õ(D2/d).
Altogether it is shown in [87] that the algorithm requires LÕ(D2)
expected operations in 𝕂.

Now L=n (n +d
n) for a dense system of n equations of degree d .

For large n and fixed d , we observe that L Õ(D2) = Õ(D2). How-
ever, for fixed n and large d , the bound L Õ(D2) = Õ(D3) is only
sostly cubic. Using variants of Kedlaya–Umans' algorithms for fast
multi-point evaluation, the cost of the polynomial evaluations can
be amortized, which leads to a quasi-quadratic boundD2+o(1) over
finite fields [75]. When working over rational numbers, the bit
precision generically grows with D as well and the output is of
size O(D2); in this case, the complexity bound actually becomes
quasi-optimal [75, Theorem 6.11].

5.6 Conclusion
Can a complexity-driven approach help us to solve polynomial
systems faster? In the above sections, we have seen that such an
approach naturally leads to other questions:

• What is the complexity of multivariate multi-point evaluation?

• How can we take advantage of fast polynomial arithmetic?

• How does bit complexity rhyme with numerical conditioning
and clusters of solutions?

These questions are interesting for their own sake and they have
indeed triggered at least some of the recent progress.

Acknowledgments. I wish to thank Amir Hashemi and Fatima
Abu Salem for their careful reading and suggestions.

BIBLIOGRAPHY
[1] D. Armentano, C. Beltrán, P. Bürgisser, F. Cucker, and M. Shub.

Condition length and complexity for the solution of polynomial sys-
tems. J. FOCM , 16:1401–1422, 2016.

[2] M. Bardet, J.-C. Faugère, and B. Salvy. On the complexity of the F5
Gröbner basis algorithm. JSC, 70:49–70, 2015.

[3] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler.
Numerically Solving Polynomial Systems with Bertini. SIAM, 2013.

[4] C. Beltrán and L. M. Pardo. Fast linear homotopy to find approximate
zeros of polynomial systems. Found. Comput. Math., 11:95–129,
2011.

[5] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse mul-
tivariate polynomial interpolation. In Proc. ACM STOC '88 , pages
301–309. New York, NY, USA, 1988.

[6] A. Benoit, A. Bostan, and J. van der Hoeven. Quasi-optimal multi-
plication of linear differential operators. In Proc. FOCS '12 , pages
524–530. New Brunswick, October 2012. IEEE.

[7] D. J. Bernstein. Removing redundancy in high precision
Newton iteration. Available from http://cr.yp.to/
fastnewton.html, 2000.

[8] D. J. Bernstein. Fast multiplication and its applications, pages
325–384. Mathematical Sciences Research Institute Publications.
Cambridge University Press, United Kingdom, 2008.

[9] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real com-
putation. Springer-Verlag, 1998.

[10] A. Bostan, F. Chyzak, M. Giusti, G. Lecerf, B. Salvy, and É. Schost.
Algorithmes efficaces en calcul formel . Auto-édition, 2017.

[11] A. Bostan, G. Lecerf, and É. Schost. Tellegen's principle into prac-
tice. In Proc. ISSAC '03, pages 37–44. Philadelphia, USA, August
2003.

[12] A. Bostan and É. Schost. Polynomial evaluation and interpolation
on special sets of points. J. of Complexity, 21(4):420–446, August
2005. Festschrist for the 70th Birthday of Arnold Schönhage.

[13] R. P. Brent. Fast multiple-precision evaluation of elementary func-
tions. Journal of the ACM , 23(2):242–251, 1976.

[14] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal
power series. Journal of the ACM , 25:581–595, 1978.

[15] R. P. Brent and P. Zimmermann. Modern Computer Arithmetic. Cam-
bridge University Press, 2010.

[16] B. Buchberger. Ein Algorithmus zum auffinden der Basiselemente des
Restklassenringes nach einem null-dimensionalen Polynomideal . PhD
thesis, University of Innsbruck, 1965.

[17] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic com-
plexity theory. Springer-Verlag, Berlin, 1997.

[18] J. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-
linear polynomial equations faster. In Proc. ISSAC '89 , pages
121–128. Portland, Oregon, July 1989.

On the complexity of symbolic computation 7

http://cr.yp.to/fastnewton.html
http://cr.yp.to/fastnewton.html
http://cr.yp.to/fastnewton.html
http://cr.yp.to/fastnewton.html
http://cr.yp.to/fastnewton.html

[19] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials
over arbitrary algebras. Acta Informatica, 28:693–701, 1991.

[20] D. G. Cantor and H. Zassenhaus. A new algorithm for factoring
polynomials over finite fields. Math. Comp., 36(154):587–592, 1981.

[21] D. V. Chudnovsky and G. V. Chudnovsky. Algebraic complexities
and algebraic curves over finite fields. J. of Complexity, 4:285–316,
1988.

[22] D. V. Chudnovsky and G. V. Chudnovsky. Computer algebra in the
service of mathematical physics and number theory (Computers in
mathematics, Stanford, CA, 1986). In Lect. Notes in Pure and Applied
Math., volume 125, pages 109–232. New-York, 1990.

[23] F. Chyzak, A. Goyer, and M. Mezzarobba. Symbolic-numeric fac-
torization of differential operators. Technical Report https://
hal.inria.fr/hal-03580658v1, HAL, 2022.

[24] S. A. Cook. The complexity of theorem-proving procedures. In Proc.
ACM STOC '71, pages 151–158. 1971.

[25] J. W. Cooley and J. W. Tukey. An algorithm for the machine cal-
culation of complex Fourier series. Math. Computat., 19:297–301,
1965.

[26] J. Doliskani, P. Giorgi, R. Lebreton, and É. Schost. Simultaneous
conversions with the Residue Number System using linear algebra.
Transactions on Mathematical Sostware, 44(3), 2018. Article 27.

[27] C. Durvye. Algorithmes pour la décomposition primaire des idéaux
polynomiaux de dimension nulle donnés en évaluation. PhD thesis,
Univ. de Versailles (France), 2008.

[28] J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computa-
tion of zero-dimensional Gröbner bases by change of ordering. JSC,
16(4):329–344, 1993.

[29] J.-C. Faugère. A new efficient algorithm for computing Gröbner
bases (F4). Journal of Pure and Applied Algebra, 139(1–3):61–88,
1999.

[30] J.-C. Faugère. A new efficient algorithm for computing Gröbner
bases without reduction to zero (F5). In T. Mora, editor, Proc.
ISSAC '02 , pages 75–83. Lille, France, July 2002.

[31] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Sub-cubic change
of ordering for Gröbner basis: a probabilistic approach. In Proc.
ISSAC '14, pages 170–177. Kobe, Japan, July 2014.

[32] C. M. Fiduccia. Polynomial evaluation via the division algorithm:
the fast Fourier transform revisited. In A. L. Rosenberg, editor, Proc.
ACM STOC '72 , pages 88–93. 1972.

[33] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In Proc. FOCM '99 , pages 285–297. 1999.

[34] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proc.
ISSAC 2014, pages 296–303. Kobe, Japan, July 2014.

[35] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cam-
bridge University Press, New York, NY, USA, 3rd edition, 2013.

[36] M. Giesbrecht, Q.-L. Huang, and É Schost. Sparse multiplication of
multivariate linear differential operators. In Proc. ISSAC '21, pages
155–162. New York, USA, 2021.

[37] M. Giusti, K. Hägele, J. Heintz, J. E. Morais, J. L. Montaña, and
L. M. Pardo. Lower bounds for diophantine approximation. Journal
of Pure and Applied Algebra, 117–118:277–317, 1997.

[38] M. Giusti, J. Heintz, J. E. Morais, and L. M. Pardo. When polynomial
equation systems can be “solved” fast? In G. Cohen, M. Giusti, and
T. Mora, editors, Proc. AAECC'11, volume 948 of Lecture Notes in
Computer Science. Springer Verlag, 1995.

[39] T. Granlund et al. GMP, the GNU multiple precision arithmetic
library. http://www.swox.com/gmp, 1991.

[40] B. Grenet, J. van der Hoeven, and G. Lecerf. Randomized root
finding over finite fields using tangent Graeffe transforms. In Proc.
ISSAC '15 , pages 197–204. New York, NY, USA, 2015. ACM.

[41] G. Hanrot, M. Quercia, and P. Zimmermann. The middle product
algorithm I. speeding up the division and square root of power
series. AAECC, 14:415–438, 2004.

[42] G. Hanrot and P. Zimmermann. A long note on Mulders' short pro-
duct. JSC, 37(3):391–401, 2004.

[43] G. H. Hardy. Orders of infinity. Cambridge Univ. Press, 1910.
[44] D. Harvey. Faster exponentials of power series. 2009. http://

arxiv.org/abs/0911.3110.
[45] D. Harvey. Faster algorithms for the square root and reciprocal of

power series. Math. Comp., 80:387–394, 2011.
[46] D. Harvey. Faster truncated integer multiplication. https://

arxiv.org/abs/1703.00640, 2017.
[47] D. Harvey and J. van der Hoeven. Faster polynomial multiplication

over finite fields using cyclotomic coefficient rings. J. of Complexity,
54, 2019. Article ID 101404, 18 pages.

[48] D. Harvey and J. van der Hoeven. Integer multiplication in time
O(n log n). Annals of Mathematics, 193(2):563–617, 2021.

[49] D. Harvey and J. van der Hoeven. Polynomial multiplication over
finite fields in time O(n log n). JACM , 69(2), 2022. Article 12.

[50] M. van Hoeij. Factoring polynomials and the knapsack problem.
Journal of Number theory, 95(2):167–189, 2002.

[51] M. van Hoeij and A. Novocin. Gradual sub-lattice reduction and a
new complexity for factoring polynomials. In A. López-Ortiz, editor,
LATIN 2010: Theoretical Informatics, pages 539–553. Berlin, Heidel-
berg, 2010. Springer Berlin Heidelberg.

[52] J. van der Hoeven. Lazy multiplication of formal power series. In
W. W. Küchlin, editor, Proc. ISSAC '97 , pages 17–20. Maui, Hawaii,
July 1997.

[53] J. van der Hoeven. Fast evaluation of holonomic functions. TCS ,
210:199–215, 1999.

[54] J. van der Hoeven. Relax, but don't be too lazy. JSC, 34:479–542,
2002.

[55] J. van der Hoeven. The truncated Fourier transform and appli-
cations. In Proc. ISSAC 2004, pages 290–296. Univ. of Cantabria,
Santander, Spain, July 2004.

[56] J. van der Hoeven. Fast composition of numeric power series. Tech-
nical Report 2008-09, Université Paris-Sud, Orsay, France, 2008.

[57] J. van der Hoeven. Newton's method and FFT trading. JSC ,
45(8):857–878, 2010.

[58] J. van der Hoeven. Journées Nationales de Calcul Formel
(2011), volume 2 of Les cours du CIRM , chapter Calcul
analytique. CEDRAM, 2011. Exp. No. 4, 85 pages,
http://ccirm.cedram.org/ccirm-bin/fitem?
id=CCIRM_2011__2_1_A4_0.

[59] J. van der Hoeven. Faster relaxed multiplication. In Proc. ISSAC '14,
pages 405–412. Kobe, Japan, July 2014.

[60] J. van der Hoeven. On the complexity of polynomial reduction. In
Proc. Applications of Computer Algebra 2015 , volume 198 of Springer
Proceedings in Mathematics and Statistics, pages 447–458. Cham,
2015. Springer.

[61] J. van der Hoeven. Faster Chinese remaindering. Technical Report,
HAL, 2016. https://hal.archives-ouvertes.fr/hal-
01403810.

[62] J. van der Hoeven. On the complexity of skew arithmetic. AAECC,
27(2):105–122, 2016.

[63] J. van der Hoeven. From implicit to recursive equations. AAECC,
30(3):243–262, 2018.

[64] J. van der Hoeven. Probably faster multiplication of sparse polyno-
mials. Technical Report, HAL, 2020. https://hal.archives-
ouvertes.fr/hal-02473830.

[65] J. van der Hoeven and R. Larrieu. Fast Gröbner basis computa-
tion and polynomial reduction for generic bivariate ideals. AAECC,
30(6):509–539, 2019.

[66] J. van der Hoeven, R. Lebreton, and É. Schost. Structured FFT and
TFT: symmetric and lattice polynomials. In Proc. ISSAC '13, pages
355–362. Boston, USA, June 2013.

[67] J. van der Hoeven and G. Lecerf. Modular composition via factor-
ization. J. of Complexity, 48:36–68, 2018.

[68] J. van der Hoeven and G. Lecerf. Accelerated tower arithmetic. J. of
Complexity, 55, 2019. Article ID 101402, 26 pages.

[69] J. van der Hoeven and G. Lecerf. Sparse polynomial interpola-
tion. Exploring fast heuristic algorithms over finite fields. Technical
Report, HAL, 2019. https://hal.archives-ouvertes.fr/
hal-02382117.

[70] J. van der Hoeven and G. Lecerf. Fast multivariate multi-point eval-
uation revisited. J. of Complexity, 56, 2020. Article ID 101405, 38
pages.

[71] J. van der Hoeven and G. Lecerf. Ultimate complexity for numerical
algorithms. ACM Commun. Comput. Algebra, 54(1):1–13, 2020.

[72] J. van der Hoeven and G. Lecerf. Amortized bivariate multi-point
evaluation. In Proc. ISSAC '21, pages 179–185. New York, NY, USA,
2021. ACM.

[73] J. van der Hoeven and G. Lecerf. Amortized multi-point evalu-
ation of multivariate polynomials. Technical Report, HAL, 2021.
https://hal.archives-ouvertes.fr/hal-03503021.

[74] J. van der Hoeven and G. Lecerf. Fast amortized multi-point evalu-
ation. J. of Complexity, 67, 2021. Article ID 101574, 15 pages.

[75] J. van der Hoeven and G. Lecerf. On the complexity exponent of
polynomial system solving. Found. of Comp. Math., 21:1–57, 2021.

[76] J. van der Hoeven and G. Lecerf. Univariate polynomial factoriza-
tion over large finite fields. AAECC, 2022. https://doi.org/
10.1007/s00200-021-00536-1.

[77] J. van der Hoeven, G. Lecerf, B. Mourrain et al. Mathemagix. 2002.
http://www.mathemagix.org.

8 Joris van der Hoeven

https://hal.inria.fr/hal-03580658v1
https://hal.inria.fr/hal-03580658v1
https://hal.inria.fr/hal-03580658v1
https://hal.inria.fr/hal-03580658v1
https://hal.inria.fr/hal-03580658v1
https://hal.inria.fr/hal-03580658v1
https://hal.inria.fr/hal-03580658v1
http://www.swox.com/gmp
http://www.swox.com/gmp
http://www.swox.com/gmp
http://www.swox.com/gmp
http://www.swox.com/gmp
http://arxiv.org/abs/0911.3110
http://arxiv.org/abs/0911.3110
http://arxiv.org/abs/0911.3110
http://arxiv.org/abs/0911.3110
http://arxiv.org/abs/0911.3110
http://arxiv.org/abs/0911.3110
http://arxiv.org/abs/0911.3110
https://arxiv.org/abs/1703.00640
https://arxiv.org/abs/1703.00640
https://arxiv.org/abs/1703.00640
https://arxiv.org/abs/1703.00640
https://arxiv.org/abs/1703.00640
https://arxiv.org/abs/1703.00640
https://arxiv.org/abs/1703.00640
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
https://hal.archives-ouvertes.fr/hal-01403810
https://hal.archives-ouvertes.fr/hal-01403810
https://hal.archives-ouvertes.fr/hal-01403810
https://hal.archives-ouvertes.fr/hal-01403810
https://hal.archives-ouvertes.fr/hal-01403810
https://hal.archives-ouvertes.fr/hal-01403810
https://hal.archives-ouvertes.fr/hal-01403810
https://hal.archives-ouvertes.fr/hal-01403810
https://hal.archives-ouvertes.fr/hal-01403810
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02382117
https://hal.archives-ouvertes.fr/hal-02382117
https://hal.archives-ouvertes.fr/hal-02382117
https://hal.archives-ouvertes.fr/hal-02382117
https://hal.archives-ouvertes.fr/hal-02382117
https://hal.archives-ouvertes.fr/hal-02382117
https://hal.archives-ouvertes.fr/hal-02382117
https://hal.archives-ouvertes.fr/hal-02382117
https://hal.archives-ouvertes.fr/hal-02382117
https://hal.archives-ouvertes.fr/hal-03503021
https://hal.archives-ouvertes.fr/hal-03503021
https://hal.archives-ouvertes.fr/hal-03503021
https://hal.archives-ouvertes.fr/hal-03503021
https://hal.archives-ouvertes.fr/hal-03503021
https://hal.archives-ouvertes.fr/hal-03503021
https://hal.archives-ouvertes.fr/hal-03503021
https://hal.archives-ouvertes.fr/hal-03503021
https://hal.archives-ouvertes.fr/hal-03503021
https://doi.org/10.1007/s00200-021-00536-1
https://doi.org/10.1007/s00200-021-00536-1
https://doi.org/10.1007/s00200-021-00536-1
https://doi.org/10.1007/s00200-021-00536-1
https://doi.org/10.1007/s00200-021-00536-1
https://doi.org/10.1007/s00200-021-00536-1
https://doi.org/10.1007/s00200-021-00536-1
https://doi.org/10.1007/s00200-021-00536-1
https://doi.org/10.1007/s00200-021-00536-1
https://doi.org/10.1007/s00200-021-00536-1
https://doi.org/10.1007/s00200-021-00536-1
https://doi.org/10.1007/s00200-021-00536-1
https://doi.org/10.1007/s00200-021-00536-1
http://www.mathemagix.org
http://www.mathemagix.org
http://www.mathemagix.org

[78] J. van der Hoeven and M. Monagan. Computing one billion roots
using the tangent Graeffe method. ACM SIGSAM Commun. Comput.
Algebra, 54(3):65–85, 2021.

[79] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and
applications. J. of Complexity, 14(2):257–299, 1998.

[80] F. Johansson. Arb: a C library for ball arithmetic. ACM Commun.
Comput. Algebra, 47(3/4):166–169, 2014.

[81] E. Kaltofen. Symbolic computation and complexity theory. In Proc.
ASCM '12 , pages 3–7. Beijing, 2012.

[82] E. Kaltofen and V. Shoup. Fast polynomial factorization over high
algebraic extensions of finite fields. In Proc. ISSAC '97 , pages
184–188. New York, NY, USA, 1997. ACM.

[83] A. Karatsuba and J. Ofman. Multiplication of multidigit numbers on
automata. Soviet Physics Doklady, 7:595–596, 1963.

[84] K. S. Kedlaya and C. Umans. Fast polynomial factorization and mod-
ular composition. SIAM J. Comput., 40(6):1767–1802, 2011.

[85] P. Lairez. A deterministic algorithm to compute approximate roots
of polynomial systems in polynomial average time. Found. Comput.
Math., 17:1265–1292, 2017.

[86] F. Le Gall and F. Urrutia. Improved rectangular matrix multiplication
using powers of the Coppersmith–Winograd tensor. In A. Czumaj,
editor, Proc. ACM-SIAM SODA '18 , pages 1029–1046. Philadelphia,
PA, USA, 2018.

[87] G. Lecerf. Une alternative aux méthodes de réécriture pour la réso-
lution des systèmes algébriques. PhD thesis, École polytechnique,
2001.

[88] G. Lecerf and É. Schost. Fast multivariate power series multiplica-
tion in characteristic zero. SADIO Electronic Journal on Informatics
and Operations Research, 5(1):1–10, 2003.

[89] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials
with rational coefficients. Math. Ann., 261:515–534, 1982.

[90] M. Mezzarobba. Rigorous multiple-precision evaluation of D-Finite
functions in SageMath. Technical Report, HAL, 2016. https://
hal.archives-ouvertes.fr/hal-01342769.

[91] M. Mezzarobba. Autour de l'évaluation numérique des fonctions D-
finies. PhD thesis, École polytechnique, Palaiseau, France.

[92] R. T. Moenck and A. Borodin. Fast modular transforms via division.
In Thirteenth annual IEEE symposium on switching and automata
theory, pages 90–96. Univ. Maryland, College Park, Md., 1972.

[93] N. Möller. On Schönhage's algorithm and subquadratic integer gcd
computation. Math. Comp., 77(261):589–607, 2008.

[94] M. Moreno Maza. Design and implementation of multi-threaded
algorithms in polynomial algebra. In Proc. ISSAC '21, pages 15–20.
New York, NY, USA, 2021. ACM.

[95] G. Moroz. New data structure for univariate polynomial approx-
imation and applications to root isolation, numerical multipoint
evaluation, and other problems. In Proc. IEEE FOCS '21. Denver,
United States, 2022.

[96] T. Mulders. On short multiplication and division. AAECC ,
11(1):69–88, 2000.

[97] V. Neiger, J. Rosenkilde, and G. Solomatov. Generic bivariate multi-
point evaluation, interpolation and modular composition with pre-
computation. In Proc. ISSAC '20 , pages 388–395. New York, NY,
USA, 2020. ACM.

[98] A. Novocin, D. Stehlé, and G. Villard. An LLL-Reduction algorithm
with quasi-linear time complexity: extended abstract. In Proc. ACM
STOC '11, pages 403–412. New York, NY, USA, 2011.

[99] H. J. Nussbaumer. Fast Fourier Transforms and Convolution Algo-
rithms. Springer-Verlag, 1981.

[100] V. Y. Pan. Univariate polynomials: nearly optimal algorithms for
numerical factorization and root-finding. JSC, 33(5):701–733, 2002.

[101] C. H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[102] M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar
multiplications necessary to evaluate polynomials. SIAM J. Comput.,
2(1):60–66, 1973.

[103] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen,
Graphen und chemische Verbindungen. Acta Mathematica ,
68:145–254, 1937.

[104] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes, The Art of Scientific Computing. Cambridge Uni-
versity Press, 3rd edition, 2007.

[105] R. Prony. Essai expérimental et analytique sur les lois de la dilata-
bilité des fluides élastiques et sur celles de la force expansive de la
vapeur de l'eau et de la vapeur de l'alkool, à différentes tempéra-
tures. J. de l'École Polytechnique Floréal et Plairial, an III , 1:24–76,
1795. Cahier 22.

[106] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo. SPIRAL: code generation for DSP
transforms. Proceedings of the IEEE, special issue on “Program Gen-
eration, Optimization, and Adaptation” , 93(2):232–275, 2005.

[107] D. S. Roche. What can (and can't) we do with sparse polynomials?
In Proc. ISSAC '18 , pages 25–30. New York, NY, USA, 2018. ACM.

[108] T. Roughgarden. Beyond the Worst-Case Analysis of Algorithms.
Cambridge University Press, 2021.

[109] F. Rouillier. Solving zero-dimensional systems through the rational
univariate representation. AAECC, 9:433–461, 1999.

[110] A. Schönhage. Schnelle Berechnung von Kettenbruchentwick-
lungen. Acta Informatica, 1(2):139–144, 1971.

[111] A. Schönhage. Schnelle Multiplikation von Polynomen über Kör-
pern der Charakteristik 2. Acta Informatica, 7:395–398, 1977.

[112] A. Schönhage. The fundamental theorem of algebra in terms of
computational complexity. Technical Report, Math. Inst. Univ. of
Tübingen, 1982.

[113] A. Schönhage and V. Strassen. Schnelle Multiplikation großer
Zahlen. Computing, 7:281–292, 1971.

[114] V. Shoup. NTL: a library for doing number theory. 1996.
www.shoup.net/ntl.

[115] V. Strassen. Gaussian elimination is not optimal. Numer. Math.,
13:352–356, 1969.

[116] A. L. Toom. The complexity of a scheme of functional ele-
ments realizing the multiplication of integers. Soviet Mathematics,
4(2):714–716, 1963.

[117] V. Vassilevska Williams. On some fine-grained questions in algo-
rithms and complexity. In Proc. Int. Cong. of Math. 2018 , volume 4,
pages 3465–3506. Rio de Janeiro, 2018.

[118] G. Villard. On computing the resultant of generic bivariate polyno-
mials. In Proc. ISSAC '18 , pages 391–398. 2018.

On the complexity of symbolic computation 9

https://hal.archives-ouvertes.fr/hal-01342769
https://hal.archives-ouvertes.fr/hal-01342769
https://hal.archives-ouvertes.fr/hal-01342769
https://hal.archives-ouvertes.fr/hal-01342769
https://hal.archives-ouvertes.fr/hal-01342769
https://hal.archives-ouvertes.fr/hal-01342769
https://hal.archives-ouvertes.fr/hal-01342769
https://hal.archives-ouvertes.fr/hal-01342769
https://hal.archives-ouvertes.fr/hal-01342769

	Abstract
	1 Introduction
	2 Two extremist views on complexity theory
	2.1 Traditional complexity theory
	2.2 Take your stopwatch

	3 Symbolic computation
	3.1 Complexity at ISSAC
	3.2 Fundamental complexities
	3.3 Back to our stopwatch

	4 Basic arithmetic
	4.1 Multiplication
	4.2 Basic operations
	4.3 Sparse interpolation

	5 Polynomial system solving
	5.1 Multi-point evaluation
	5.2 Univariate polynomials
	5.3 Gröbner bases
	5.4 Numeric homotopies
	5.5 Geometric resolution
	5.6 Conclusion

	Bibliography

