
Lazy multiplication of formal power series

Joris van der Hoeven

Abstract

For most fast algorithms to manipulate formal power

series, a fast multiplication algorithm is essential. If one

desires to compute all coe�cients of a product of two

power series up to a given order, then several e�cient

algorithms are available, such as fast Fourier multiplic-

ation. However, one often needs a lazy multiplication

algorithm, for instance when the product computation

is part of the computation of the coe�cients of an im-

plicitly de�ned power series. In this paper, we describe

two lazy multiplication algorithms, which are faster than

the naive method. In particular, we give an algorithm

of time complexity O(n log

2

n).

Key words: power series, multiplication, algorithm.

1 Introduction

In this paper, we are concerned with fast e�ective com-

putations with power series in z over an e�ective �eld of

constants C. The time (and space) complexities we con-

sider will be measured in terms of operations on the con-

stants (and the number of constants we need to store).

Most known algorithms for fast manipulations of for-

mal power series are based on a fast multiplication al-

gorithm. Since power series are in�nite objects, we will

be interested in computing the �rst (but an arbitrary

large number of) coe�cients of them. Now we distin-

guish two types of multiplication algorithms.

First, we have static multiplication algorithms: let f

and g be the power series we want to multiply. Then a

static multiplication algorithm takes a natural number

n and the �rst n coe�cients f

0

; � � � ; f

n�1

; g

0

; � � � ; g

n�1

of f and g on input, and returns the �rst n coe�cients

(fg)

0

; � � � ; (fg)

n�1

of the product fg. Classical static

multiplication algorithms are naive multiplication, Kar-

atsuba's algorithm, and FFT multiplication, of respect-

ive complexities O(n

2

); O(n

log 3= log 2

) and O(n logn).

We refer to [3] for more details.

On the other hand, one often needs lazy multiplica-

tion algorithms. In this case, the successive coe�cients

of f and g are only given one by one, and the lazy mul-

tiplication algorithm should output the coe�cient of z

i

in fg, as soon as f

0

; � � � ; f

i

; g

0

; � � � ; g

i

are known.

The advantage of lazy multiplication is that the coef-

�cients of z

i

in f and g may be de�ned in terms of the

�rst i coe�cients of fg. For this reason, lazy multiplic-

ation can be used as a subalgorithm, when we want to

compute the coe�cients of an implicitly de�ned power

series. An easy example is the exponentiation of a power

series h with h

0

= 0, which can be computed lazily us-

ing the formula

e

h

=

Z

h

0

e

h

:

Although the complexity of static multiplication has

been studied extensively, the best known bound for lazy

multiplication is the naive bound O(n

2

). In section 2, we

show that Karatsuba's algorithm can actually be made

lazy, which leads to the following:

Theorem 1. There exists a lazy multiplication al-

gorithm for formal power series, of time complexity

O(n

log 3= log 2

) and space complexity O(n logn).

Let M (n) = n

�

log

�

n log




logn be a complexity

bound for the multiplication of two polynomials of de-

gree n� 1 and coe�cients in C. In section 3, we prove

the main result of this paper:

Theorem 2. There exists a lazy multiplication al-

gorithm for formal power series, of time complexity

O(M (n) logn) and space complexity O(n).

In particular, if C supports FFT multiplication (i.e.

the fast Fourier transform), then we may take M (n) =



n logn and we obtain a lazy multiplication algorithm

of complexity O(n log

2

n). In general, one may take

M (N ) = n logn log logn (see [5]).

In section 4 we apply theorem 2 to the resolution of

implicit equations, and, in this context, we compare the

performances of our and more classical algorithms.

2 Karatsuba's multiplication algorithm is lazy

Karatsuba's algorithm for polynomials. Let us �rst recall

Karatsuba's method for multiplying two polynomials P

and Q in z of degrees n� 1 > 1. We write

P = P

lo

+ P

hi

z

bn=2c

Q = Q

lo

+ Q

hi

z

bn=2c

;

where the lower parts P

lo

and Q

lo

of P resp. Q have

degrees 6 bn=2c � 1. Then we have

PQ = P

lo

Q

lo

+ ((P

lo

+P

hi

)(Q

lo

+Q

hi

)�P

lo

Q

lo

�P

hi

Q

hi

)z

bn=2c

+ P

hi

Q

hi

z

2bn=2c

:

Karatsuba's algorithm consists of recursively applying

the above formula in order to compute the product PQ.

Since the multiplication of two polynomials of degree

n� 1 involves only three multiplications of polynomials

of degrees 6 bn=2c, the asymptotic time complexity of

the method is O(n

log 3= log 2

).

Important observation. If we apply the above algorithm

symbolically to compute a formula for (PQ)

i

, then we

notice that this only depends on the coe�cientsP

0

;� � �;P

i

and Q

0

; � � � ; Q

i

. Actually, this observation implies at

once the existence of a lazy version of Karatsuba's al-

gorithm, when applied to power series. We will now

show how to implement such an algorithm.

Truncated lazy multiplication. We �rst consider the case

when we want to multiply two power series f and g lazily

up to the order O(z

n

) only, where n = 2

p

is a power of

two (with n > 2). We de�ne

P = f

0

+ f

1

z + � � �+ f

n�1

z

n�1

;

Q = g

0

+ g

1

z + � � �+ g

n�1

z

n�1

;

and we want to use the above formulas to compute PQ.

Hence, we are interested in multiplying P and Q, where

the coe�cients of P and Q are given one by one, and

we require the �rst i coe�cients of PQ to be output as

soon as the �rst i coe�cients of P and Q are known.

The truncated lazy multiplication of P and Q corres-

ponds to the instance of a new type of hybrid lazy/static

data structure H: as long as P and Q are only partially

known, the status of the data structure is \lazy", and

the data structure contains extra information (see be-

low) to continue the lazy multiplication. If P and Q

are completely known, then this extra information is

handled back to the memory manager and the status of

the data structure becomes \complete"; only the result

of the multiplication PQ is kept into memory.

Now our algorithm consists simply of using the hy-

brid data structure H recursively for the computation of

the products P

lo

Q

lo

; (P

lo

+P

hi

)(Q

lo

+Q

hi

) and P

hi

Q

hi

.

More precisely, if the status of the computation is \lazy",

then the extra information mentioned above consists of

three pointers to objects of type H; these three objects

correspond precisely to the lazy computations of the

products P

lo

Q

lo

; (P

lo

+P

hi

)(Q

lo

+Q

hi

) and P

hi

Q

hi

. Of

course, the case when n = 2 is treated apart, since in

this case P

lo

; P

hi

; Q

lo

and Q

hi

are just constants, and

the multiplication algorithm in C is used.

Complexity analysis. It is clear that the time complex-

ity of our algorithm is the same (up to a constant factor)

as Karatsuba's static algorithm. As to the memory stor-

age S(n) needed by the algorithm, we observe that

S(n) 6 2S(n=2) +O(n): (1)

Indeed, as long as less than n=2 coe�cients of P and

Q are known, P

hi

and Q

hi

are not needed at all. As

soon as n=2 coe�cients are known, P

lo

and Q

lo

are

entirely determined, whence the computation of P

lo

Q

lo

is completed, and the result takes O(n) memory stor-

age. Furthermore, P

lo

+ P

hi

and Q

lo

+ Q

hi

require

another O(n) memory storage, while the computations

of (P

lo

+ P

hi

)(Q

lo

+ Q

hi

) and P

hi

Q

hi

require 2S(n=2)

memory storage, by induction. From (1), we deduce

that

S(n) = O(n logn):

The general case. Let us �nally treat the original case,

when we want to compute fg up to any order, and not

merely up to order O(z

n

). In this case, we use the al-

gorithm from above between successive powers of two.

Each time we have computed the �rst n = 2

p

coe�-

cients of fg, we multiply n by two, and let the old P

and Q play the rôles of P

lo

and Q

lo

for the new P and

Q. Clearly, the time and space complexities of this al-

gorithmare O(n

log 3= log 2

) andO(n logn) as above. This

proves theorem 1.

3 A fast lazy multiplication algorithm

Premature computations. The algorithm of the previ-

ous section has the important property that we com-

pute more than we actually need at each stage. For

instance, f

1

g

1

is computed as soon as f

1

and g

1

are



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

g

7

7 8 9 10 11 12 13 14 � � �

g

6

6 7 8 9 10 11 12 13 � � �

g

5

5 6 7 8 9 10 11 12 � � �

g

4

4 5 6 7 8 9 10 11 � � �

g

3

3 4 5 6 7 8 9 10 � � �

g

2

2 3 4 5 6 7 8 9 � � �

g

1

1 2 3 4 5 6 7 8 � � �

g

0

0 1 2 3 4 5 6 7 � � �

� f

0

f

1

f

2

f

3

f

4

f

5

f

6

f

7

� � �

Figure 1: Lazy multiplication by the naive algorithm

known. Although f

1

g

1

does not contribute to the coef-

�cient (fg)

1

= f

0

g

1

+ f

1

g

0

, its premature computation

accelerates the computation of (fg)

2

at the next stage.

The lazy computation process of fg by Karatsuba's

algorithm is represented schematically in �gure 2. Each

box corresponds to the contribution of f

i

g

j

to the sum

(fg)

i+j

=

P

i+j

k=0

f

k

g

i+j�k

. The number s

i;j

in the box

corresponds to the round when the contribution of f

i

g

j

is

computed, i.e. when (fg)

s

i;j

is output. For comparison,

we have represented the computation process of fg by

the naive algorithm (i.e. (fg)

n

is computed by (fg)

n

=

P

n

k=0

f

k

g

n�k

) in �gure 1.

Let us now show how the idea of premature compu-

tations can be exploited even more. Observe �rst, that

if the �rst 2

p+1

coe�cients of f and g are known, then

the multiplication

�

2

p

;2

p

= (f

2

p

z

2

p

+ � � �+ f

2

p+1

�1

z

2

p+1

�1

)

(g

2

p

z

2

p

+ � � �+ g

2

p+1

�1

z

2

p+1

�1

)

can be performed prematurely by any fast static mul-

tiplication algorithm. More generally, if the �rst n =

(k + 1)2

p

coe�cients of f and g are known, with k 2

f2; 3; � � �g and p > 1, then the multiplications

�

2

p

;k2

p

= (f

2

p

z

2

p

+ � � �+ f

2

p+1

�1

z

2

p+1

�1

)

(g

k2

p

z

k2

p

+ � � �+ g

(k+1)2

p

�1

z

(k+1)2

p

�1

)

and

�

k2

p

;2

p

= (f

k2

p

z

k2

p

+ � � �+ f

(k+1)2

p

�1

z

(k+1)2

p

�1

)

(g

2

p

z

2

p

+ � � �+ g

2

p+1

�1

z

2

p+1

�1

)

can be performed prematurely.

Fast lazy multiplication. Let us now detail how the

above observations can be transformed into a lazy multi-

plication algorithm. The coe�cients (fg)

0

; (fg)

1

; � � � of

the result are stored in an array A, which is resized auto-

matically, each time when necessary; the default value of

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

g

7

7 7 7 7 7 7 7 7 � � �

g

6

6 7 6 7 6 7 6 7 � � �

g

5

5 5 7 7 5 5 7 7 � � �

g

4

4 5 6 7 4 5 6 7 � � �

g

3

3 3 3 3 7 7 7 7 � � �

g

2

2 3 2 3 6 7 6 7 � � �

g

1

1 1 3 3 5 5 7 7 � � �

g

0

0 1 2 3 4 5 6 7 � � �

� f

0

f

1

f

2

f

3

f

4

f

5

f

6

f

7

� � �

Figure 2: Lazy multiplication by Karatsuba's algorithm

new array elements is zero. Now we undertake the fol-

lowing action to compute A[n] (where we assume that

f

0

; � � � ; f

n

; g

0

; � � � ; g

n

are known and A[0]; � � � ; A[n� 1]

have already been computed):

Step 1. [Border] If n = 0, then set A[0] := f

0

g

0

.

Otherwise, set A[n] := A[n] + f

0

g

n

+ f

n

g

0

.

Step 2. [Diagonal] If n = 2

p+1

for some p > 0, then

compute �

2

p

;2

p

and set A[i] := A[i] + �

2

p

;2

p

;i

for all

2

p+1

6 i 6 2

p+2

� 2.

Step 3. [Main] For each k > 2 and p > 0 such that

n = (k + 1)2

p

, do the following:

� Compute �

2

p

;k2

p

and set A[i] := A[i] + �

2

p

;k2

p

;i

for all (k + 1)2

p

6 i 6 (k + 3)2

p

� 2.

� Compute �

k2

p

;2

p

and set A[i] := A[i] + �

k2

p

;2

p

;i

for all (k + 1)2

p

6 i 6 (k + 3)2

p

� 2.

Correctness proof. The computation process is schem-

atically represented in �gure 3. From this �gure, it is

easily seen that the contribution of each f

i

g

j

to (fg)

i+j

is computed exactly once and before the coe�cient

(fg)

i+j

is output. This proves the correctness of our

algorithm.

Complexity analysis. Let us now estimate the asymp-

totic complexity T (n) of the computation of (fg)

n

by

our algorithm. If n = 2

p

, then in order to compute the

contribution of

(f

0

+ � � �+ f

n�1

z

n�1

)(g

0

+ � � �+ g

n�1

z

n�1

); (2)

to fg, we need (2n� 1) + (2n� 3) constant multiplica-

tions, n�3 multiplications of polynomials of degree one,

n=2 � 3 multiplications of polynomials of degree three,

etc. (by looking at �gure 3).

Let M (d) = d

�

log

�

d log




log d be a complexity

bound for the multiplication of two polynomials of de-

gree d� 1, as in the introduction. In view of what pre-

cedes, the time

~

T (n) needed to compute the contribution



.

.

. 8

.

.

.

.

.

.

.

.

.

g

7

7 8

g

6

6 7 8

g

5

5 6

g

4

4 5 6 8 � � �

g

3

3 4

g

2

2 3 4 6 8 � � �

g

1

1 2 3 4 5 6 7 8 � � �

g

0

0 1 2 3 4 5 6 7 8

� f

0

f

1

f

2

f

3

f

4

f

5

f

6

f

7

� � �

Figure 3: Fast lazy multiplication

of (2) to fg is bounded by

2

p�1

X

k=0

n

2

k

M (2

k

) +O(n) = O(M (n) logn): (3)

For general n > 2, this yields T (n) = O(M (n) logn),

since

~

T (2

blog

2

nc

) 6 T (n) 6

~

T (2

blog

2

nc+1

):

The space needed for the computation of (fg)

n

is clearly

bounded by O(n). This completes the proof of the-

orem 2.

Remark. Sometimes, we need a lazy multiplication

algorithm for power series, which computes only the

�rst n coe�cients of the product (i.e. for the expansion

of implicit functions). In this case, it is not hard to

modify the above algorithm, so that no \unnecessary

premature computations" are done, which anticipate the

computations of (fg)

n

; (fg)

n+1

; � � � .

4 Conclusion

Let us discuss some of the consequences of theorem 2.

An important application of lazy multiplication is the

resolution of algebraic di�erential equations

X

i

0

;��� ;i

r

P

i

0

;��� ;i

r

f

i

0

� � � (f

(r)

)

i

r

= 0 (4)

with power series coe�cients and suitable initial condi-

tions. Although Brent and Kung have given an asymp-

totically better algorithm to solve such equations in [1],

the constant involved in their asymptotic estimate

O(n logn) of the time complexity depends badly on r,

whereas the constant involved in our algorithm only de-

pends on the size of (4) as an expression. Therefore,

we expect our algorithm to be often faster for not all to

large n.

Similarly, both our algorithm and Brent and Kung's

algorithm require O(n) memory space, but the constant

factor involved in this bound is usually much smaller

for our algorithm. Here we notice that for many applic-

ations the available memory space is the main bottle-

neck. Another advantage of our algorithm is that it is

easy to implement and that it can easily be applied to

solve systems of ordinary di�erential equations as well.

Our lazy multiplication algorithm can also be used

to solve more general functional equations, such as

s(z) = 1 + z

s(z)

3

+ 2s(z

3

)

3

; (5)

which occurs in the study of the number of stereoi-

someres of alcohols of the form C

n

H

2n+1

OH (see [4]).

Then theorem 2 implies that the asymptotic complexity

to compute the �rst n coe�cients of s(z) is O(n log

2

n),

which is much better than the previously best known

bound O(n

2

). Many other di�erential di�erence equa-

tions arising in combinatorics and the analysis of al-

gorithms are similar to (5) (see also [2]). This is in

particular so for binary splitting algorithms, such as the

algorithms presented in this paper themselves!

Let us �nally remark that for the fast expansion of

power series which satisfy more complicated di�erential

di�erence equations, it would be nice to extend the ideas

of this paper in order to obtain lazy versions of Brent

and Kung's fast algorithms for functional composition

and inversion (see [1]).

Acknowledgment. The author thanks the referees for

their detailed comments, and for having pointed out

some mistakes in the original version of this paper.

References

[1] Brent, R., and Kung, H. Fast algorithms for

manipulating formal power series. Journal of the

Association for Computing Machinery 25, 4 (1978),

581{595.

[2] Flajolet, P., and Sedgewick, R. An introduc-

tion to the analysis of algorithms. Addison Wesley,

Reading, Massachusetts, 1996.

[3] Knuth, D. The art of computer programming,

vol. 2: seminumerical algorithms. Addison Wesley,

Reading, Massachusetts, 1981.

[4] P

�

olya, G. Kombinatorische Anzahlbestimmungen

f�ur Gruppen, Graphen und chemische Verbindungen.

Acta Mathematica 68 (1937), 145{254.

[5] Sch

�

onhage, A. Schnelle Multiplikation �uber

K�orpern der Charakteristik 2. Acta Inform. 7

(1977), 395{398.


