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In the last years, several asymptotic expansion algorithms have appeared, which have
the property that they can deal with very general types of singularities, such as singu-
larities arising in the study of algebraic differential equations. However, attention has
been restricted so far to functions with �strongly monotonic� asymptotic behaviour:
formally speaking, the functions lie in a common Hardy field, or, alternatively, they
are determined by transseries.

In this article, we make a first step towards the treatment of functions involving
oscillatory behaviour. More precisely, let � be an algebraic function defined on [¡1;1]q,
let F1(x); : : : ; Fq(x) be exp-log functions at infinity in x, and let

 (x)= �(sin (F1(x)); : : : ; sin (Fq(x))):

We give a method to compute limsupx!1 (x). Moreover, the techniques we use are
stronger than this result might suggest, and we outline further applications.
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1. Introduction

In the last years, several asymptotic expansion algorithms have appeared [Sha90, Sha91,
GG92, RSSH96, Hoe96a]. These algorithms are have the property that they can deal with
very general types of singularities, such as singularities arising in the study of certain
algebraic differential equations. However, attention has been restricted so far to functions
with �strongly monotonic� asymptotic behaviour. This means that the functions lie in a
common Hardy field, or, alternatively, that they are determined by transseries. In this
article, we make a first step to the treatment of functions involving oscillatory behaviour.
We also notice that Grigoriev obtained some very interesting related results in [Gri94,
Gri95] although his more probabilistic point of view is different (even complementary) from
ours.

The structure of this paper is as follows: in section 2, we recall a classical density
theorem for linear curves on the n-dimensional torus (see for example [Kok36, KN74]). In
section 3, this theorem is generalized to more general classes of curves on the torus.

In section 4, we study exp-log functions at infinity: an exp-log function is a function
which is built up from the rationals Q and x, using the field operations, exponentiation
and logarithm. An exp-log function at infinity is an exp-log function which is defined in a
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neighbourhood of infinity. We present a more compact version of an expansion algorithm
of exp-log functions at infinity, originally due to Shackell [Sha91] (see also [RSSH96]).
For this, we assume the existence of an oracle for deciding whether an exp-log function is
zero in a neighbourhood of infinity. This problem has been reduced to the corresponding
problem for exp-log constants in [Hoe96b, Hoe96a]. A solution to the constant problem
was given by Richardson in [Ric94], modulo Schanuel's conjecture:

Conjecture 1. (Schanuel) If �1; : : : ; �n are Q-linearly independent complex numbers,
then the transcendence degree of Q[�1; : : : ; �n; e�1; : : : ; e�n] over Q is at least n.

In section 5, we are given an algebraic function � defined on [¡1; 1]q, and exp-log
functions at infinity F1(x); : : : ; Fq(x) in x. We show how to compute

limsup
x!1

�(sin (F1(x)); : : : ; sin (Fq(x))):

In section 5, we will assume the existence of an oracle for checking the Q-linear dependence
of exp-log constants. Actually, Richardson's algorithm can easily be adapted to yield an
algorithm for doing this modulo Schanuel's conjecture.

2. A density theorem on the n-dimensional torus

Let �1; : : : ; �n be Q-linearly independent numbers: we will use vector notation, and denote
the vector (�1; : : : ; �n) by �. In this section, we prove that the image of x 7!�x, from R
in the n-dimensional torus T n=Rn/Zn is dense. Notice that we use the same notation
for � x and its class modulo Zn. Moreover, we show that the �density� of the image is
uniform is a sense that will be made precise. The following theorem is classical:

Theorem 2. (Kronecker) Let �1; : : : ; �n be Q-linearly independent real numbers.
Let e1; : : : ; en be the canonical base of Rn. Then �1 e1Z+ � � �+�n enZ+R (e1+ � � �+ en)
is dense in Rn.

Now let X be a measurable subset of T n, and let I be some interval of R. Denoting
the Lebesgue measure by �, we define

�(I ;X)= �(fx2 I j�x2Xg)
�(I)

: (1)

Let us also denote by d the Euclidean distance on T n. Let Sd, resp. Sd denote the shift oper-
ator on R (resp. Rn or T n): Sd(x)=x+d and Sd(x)=S(d1; : : : ;dn) (x1; :: : ; xn)= (x1+d1;: :: ;
xn+ dn)=x+d. The following are immediate consequences of the definition of �:

Proposition 3. We have

a) �(I ;X)=
P

i2N�(I ;Xi), if X =
`
i2NXi.

b) j�(I ;X)¡ �(Sd I ;X)j6 jdj/�(I), for all d.

c) �(I ;X)= �(S¡d I ; S�dX), for all d. �

2 On the computation of limsups



It will be convenient to adopt some conventions for intervals I = [a; b] (resp. I = [a; b[;
I = ]a; b] or I= ]a; b[) whose lengths b¡ a tend to infinity: we say that a property P holds
uniformly in I , if the property holds uniformly in a:

9l0; 8a;8l > l0; P ([a; a+ l]):

We say that P holds for all I sufficiently close to infinity, if P holds for all sufficiently
large a.

The next theorem is also classical, but for convenience of the reader we present a proof,
since similar techniques will be used in the next section:

Theorem 4. (Bohr, Sierpi«ski, Weyl) Let �1; : : : ; �n be Q-linearly independent real
numbers and let � be given by (1). Let

X = [a1; b1[� � � � � [an; bn[�T n

be an n-dimensional block, with 06 ai6 bi6 1 for all i. Then

lim
�(I)!1

�(I ;X)= �(X);

uniformly in I.

Proof. The theorem trivially holds if ai=0 and bi=1 for all but one 16 i6n. Hence, it
suffices to prove the theorem when the ai's and the bi's are rational numbers. Indeed, let
a1
0 ; b1

0 ; : : : ; an
0 ; bn

0 be rational numbers with ja10 ¡a1j+ jb10 ¡ b1j+ �� �+ jan0 ¡anj+ jbn0 ¡ bnj6 �,
and denote X 0=[a10 ; b10 [� �� � � [an0 ; bn0 [. Then j�(I ;X 0)¡ �(I ;X)j62 � for �(I) sufficiently
large, uniformly in I .

Because of Proposition 3(a) and (b), it suffices to prove the theorem for fixed p=(p1;:::;
pn)2 (N�)n and for all

X =Xk=
�
k1
p1
;
k1+1
p1

�
� � � � �

�
kn
pn
;
kn+1
pn

�
;

with 06 k1< p1; : : : ;06 kn< pn. We remark that [0;1[n=
`

k
Xk, so that

P
k
�(I ;Xk)=1.

Now let ">0. For each k, we can find xk, with d(�x;k)<"/n, by Proposition 2. Con-
sequently, we have �(S¡�xk

Xk4X0)<", where A4B denotes the symmetric difference
of A and B. Hence, �(Xl4S�(xl¡xk)Xk)< 2 ", for each l with l1< p1; : : : ; ln< pn. Using
Proposition 3, we can now estimate

j�(I ;Xl)¡ �(I ;Xk)j 6 j�(I ; S�(xl¡xk))¡ �(I ;Xk)j+ �(Xl4S�(xl¡xk)Xk)

6 j�(Sxk¡xl
I ;Xk)¡ �(I ;Xk)j+2 "6 jxk¡xlj

�(I)
+ 2 ":

Taking �(I)> jxk¡xlj/", for any k and l, we get���������(I ;Xk)¡
1

p1 � � � pn

��������6 1
p1 � � � pn

X
k

j�(I ;Xk)¡ �(I ;Xl)j< 3 ":

Hence j�(I ;Xk)¡ �(Xk)j< 3 ", for sufficiently large �(I), uniformly in I . This completes
our proof. �
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3. A more general density theorem

In this section we will obtain a more general uniform density theorem on the torus, when
the application x 7!�x from section 2 is replaced by a non linear mapping, which satisfies
suitable regularity conditions. Before coming to this generalization, we will need some
definitions and lemmas. We say that a function f defined in a neighbourhood of infinity
is steadily dominated by x, if f has a continuous second derivative, f tends to infinity, f 0

decreases strictly towards zero, and f 00/f 0 tends to zero. We remark that such functions
admit functional inverses in a neighbourhood of infinity.

More generally, we say that if f and g are functions in a neighbourhood of infinity,
such that g is invertible, then f is steadily dominated by g, if f � ginv is steadily dominated
by x. In this case, we write f ��s g. It is easily verified that if f ��s x and g��s x, then
f � g��sx, so that ��s is transitive. We also remark that if f ��s g and if h is a function,
which has a continuous second derivative and tends to infinity, then f � h��s g � h. We
finally have the following property of steady domination:

Lemma 5. Let h be steadily dominated by x and let l > 0 and "> 0 be given. Then for all
sufficiently large x we have jh0(x+ d)¡h0(x)j<"h0(x), for all d with jdj<l.

Proof. Let x0 be such that jh 00(x) /h0(x)j < " h0(x), for all x > x0 ¡ l. We have
jh0(x + d) ¡ h0(x)j 6 jd h00(�)j < " h0(�), for some � between x and x + d. If d is pos-
itive, then h0(�)6h0(x), and we are done. In the other case, we have jh0(x+ d)¡h0(x)j6
" h0(x)¡ " jh0(x+ d)¡h0(x)j, whence jh0(x+ d)¡h0(x)j< ("/(1¡ "))h0(x). �

Now let X be a measurable subset of R. For each interval I , we define:

�(I ;X)= �(I \X)
�(I)

:

We say that X admits an asymptotic density �(X) if

lim
�(I)!1

�(I ;X)= �(X);

uniformly in I, for I sufficiently close to infinity. More generally, if h is steadily dominated
by x, then we say that X admits h-asymptotic density �h(X) if

lim
�(hinv(I))!1

�(I ;X)= �(X);

uniformly in I , for I sufficiently close to infinity.

Lemma 6. Let X be a measurable subset of R and let h be steadily dominated by x. If
�(X) exists, then so does �h(h(X)) and we have �h(h(X))= �(X).

Proof. Let ">0. Let l2R be such that j�(I ;X)¡ �j<", whenever �(I)>l. Let I=[�; �[
with �(hinv(I))> l and subdivide hinv(I) in q= b(hinv(�)¡hinv(�))/lc> 1 parts of equal
length l 0> l:

[(hinv(�); hinv(�))[ = [a1; b1[q � � � q [aq; bq[;

4 On the computation of limsups



with bi= ai+1 for 16 i < q. Then we have

(�¡ ")
X
i=1

q Z
ai

bi

h0(bi) dx 6
X
i=1

q Z
ai

bi

�X(x)h0(bi) dx

6 �(hinv(X)\ I)

6
X
i=1

q Z
ai

bi

�X(x)h0(ai) dx 6 (�+ ")
X
i=1

q Z
ai

bi

h0(ai) dx:

By Lemma 5, for all sufficiently large x, we have jh0(x+ d)¡ h0(x)j6 " h0(x), for all d
with jdj6 l0. Hence,����������X

i=1

q Z
ai

bi

h0(x) dx¡
X
i=1

q Z
ai

bi

h0(bi) dx

���������� 6 X
i=1

q Z
ai

bi

jh0(x)¡h0(bi)j dx

6 "
X
i=1

q Z
ai

bi

h0(x) dx = " �(I);

and we have a similar estimation, when replacing bi by ai. Consequently,

(�¡ ") (1¡ ") �(I)6 �(h(X)\ I)6 (�+ ") (1+ ") �(I):

This completes our proof. �

Let f1��s � � � ��s fp be continuous functions defined in a neighbourhood of infinity,
which strictly increase towards infinity. Let �i;j>0 (16 j6ni) be such that �i;1; : : : ; �i;ni
are Q-linearly independent for each i. Now consider the curve

g(x)= (f1(�1;1x); : : : ; f1(�1;n1x); : : : ; fp(�p;1x); : : : ; fp(�p;np x))

on T n (n= n1+ � � � + np), which is defined for sufficiently large x. By analogy with the
preceding section, we define

�f ;g(I ;X)=
�(fx2 I j g(f1inv(x))2Xg)

�(I)
; (2)

for intervals I sufficiently close to infinity, and measurable subsets X of T n.

Theorem 7. Let f1; : : : ; fp; g and � be given as above and let

X = [a1; b1[� � � � � [an; bn[�T n

be an n-dimensional block. Then

lim
�(I)!1

�f ;g(I ;X)= �(X);

uniformly, for intervals sufficiently close to infinity.
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Proof. We proceed by induction over p. If p=0, we have nothing to prove. As before,
it suffices to prove the theorem for multidimensional blocks X =X1�X~ , with X1� T n1
and X~ � T n~, where n~= n2+ � � � + np. We denote by g1(x) resp. g~(x) the projections of
g(x) on T n1 resp. T n~, when considering T n as the product of T n1 and T n~. Without loss
of generality, we may assume that f1=x.

Given a subset A of R or T n and its frontier @A, we denote for any "> 0


"A= fx2A jd(x; @A)>"g:

Let ">0. If g1(x)2
"X1, then g1(x+d)2X1 for all d with jdj<l, where l=max(1/�1;1;:::;
1/�1;n1) ". Hence, for I sufficiently close to infinity,

I \ g1inv (
"X1) � (I \
l g1inv(X1))+ ]¡l; l[ � I \ g1inv(X1):

Therefore, Theorem 4 implies that for I sufficiently close to infinity���������(I \ g1inv(X1))
�(I)

¡ �(X1)
��������<" (3)

and (using that �(
"X14X1)< 2n1)���������((I \
l g1inv(X1))+ ]¡l; l[)
�(I)

¡ �(I \ g1inv(X1))
�(I)

��������6 (2n1+1) ": (4)

Now (I \
l g1inv(X1))+ ]¡l; l[ is a finite union of intervals, say

I \
l g1inv(X1)\ ]¡l; l[ = I0q � � � q Iq+1;

where I1; : : : ; Iq have length at least 2 l, and where I0 and Iq+1 have length at most 2 l.
By the induction hypothesis, we have

lim
�(J)!1

�(J \ f2(g~inv(X~)))
�(J)

= �(X~);

uniformly, for J sufficiently close to infinity. Using Lemma 6 for h= f2
inv, this gives us

lim
�(f2(J))!1

�(J \ g~inv(X~))
�(J)

= �(X~);

uniformly, for J sufficiently close to infinity. In particular, we have�����������(J \ g~inv(X~))�(J)
¡ �(X~)

����������<";
for all J sufficiently close to infinity, with �(J)> l. Thus, choosing I sufficiently close to
infinity, we have �����������(Ii\ g~inv(X~))�(Ii)

¡ �(X~)

����������<";
for all 16 i6 q.

6 On the computation of limsups



Taking �(I)> 2 l/", and using (3) and (4), this gives us

j�f ;g(I ;X)¡ �(X)j 6
�����������(

`
i=0
q+1 Ii\ g~inv(X~))

�(I)
¡ �(X)

����������+�����������(I \ ginv(X))�(I)
¡
�(

`
i=0
q+1 Ii\ g~inv(X~))

�(I)

����������
6

����������X
i=0

q+1
�(Ii\ g~inv(X~))¡ �(X~) �(Ii)

�(I)

����������+�����������(X~) �(
`
i=0
q+1 Ii)

�(I)
¡ �(X)

����������+(2n1+1) "

6
X
i=1

q
�(Ii) "
�(I)

+ (4n1+5) "6 (4n1+6) ":

This completes the proof. �

4. Expansions of exp-log functions at infinity

Let T denote the field of germs at infinity of exp-log functions and C the subfield of exp-
log constants. Elements of T can be represented by exp-log expressions � i.e. finite trees
whose internal nodes are labeled by +;¡; �; /; exp or log, and whose leaves are labeled
by x or rational numbers. The set of exp-log expressions which can be evaluated in a
neighbourhood of infinity is denoted by Texpr. We have a natural projection f 7! f� from
Texpr onto T. We make the assumption that we have at our disposal an oracle which can
decide whether a given exp-log expression in Texpr is zero in a neighbourhood of infinity.
In view of [Hoe96b, Hoe96a] it actually suffices to assume the existence of an oracle to
decide whether a given exp-log constant is zero.

4.1. Grid-based series
Let us first recall some basic concepts. An effective asymptotic basis is an ordered finite set
fb1; : : : ; bng of positive infinitesimal exp-log expressions in Texpr, such that log bi�� log bi+1
(i.e. log bi= o(log bi+1)) for 16 i6 n¡ 1. For instance, the set B = flog¡1 x; x¡1; e¡x2g
is an effective asymptotic basis. An effective asymptotic basis B generates an effective
asymptotic scale, namely the set SB of all products b1

�1 � � � bn
�n of powers of the bi's, with

the �i's in C. Elements of SB are also called monomials.
Given an effective asymptotic basis B, let GB

expr denote the set of expressions which
are built up from C; SB ;+;¡; �; / and the operations " 7! exp ", resp. " 7! log (1 + "), for
infinitesimal ". We observe that f can be expanded as a series in bn with coefficients in
Gfb1; : : : ;bn¡1g
expr . Moreover, these coefficients can recursively be expanded in bn¡1; : : : ; b1:

f =
X
�n2C

f�n bn
�n

���
f�n; : : : ;�2 =

X
�12C

f�n; : : : ;�1 b1
�1:

The exp-log expressions of the form f�n; : : : ;�i are called iterated coefficients of f . In par-
ticular, the iterated coefficients of the form f�n; : : : ;�1 are exp-log constants.

Joris van der Hoeven 7



The above expansions of f have an important property [Hoe96a]: the support of f as
a series in bn is included in a set of the form �1N+ � � � + �pN+ �, where the �i's and �
are constants in C � we say that f is a grid-based series. From this property, it follows
that the support of f is well-ordered.

Another important property of the expansion of f in bn and the expansions of its
iterated coefficients is that they can be computed automatically. By this we mean that
for each integer i, we can compute the first i terms of the expansion of f and so can we
for its iterated coefficients. In particular, we can compute the sign of f , test whether f is
infinitesimal, etc.

For the computation of the expansions of f in bn, we use the usual Taylor series
formulas. In the case of division 1/f , we compute the first term f� bn

� of f and then use
the formula 1/f =(1/f�) bn

¡� (1/(1+")), where "=(f /f� bn
�)¡1. The only problem when

applying these formulas is that we have to avoid indefinite cancelation: note that indefinite
cancelation only occurs if after having computed the first i terms of the expansion, f is
actually equal to the sum of these terms. But this can be tested using the oracle, and we
stop the expansion in this case.

4.2. Automatic expansions of exp-log expressions
The asymptotic expansion algorithm takes an exp-log expression f 2Texpr on input, com-
putes a suitable effective asymptotic basis B and rewrites f into an element of GB

expr. The
main idea of the algorithm lies in imposing some suitable conditions on B: we say that a
linearly ordered set B= fb1; : : : ; bng is an effective normal basis if

NB1. B is an effective asymptotic basis.

NB2. log bi2Gfb1; : : : ;bi�g
expr for all i > 1, where log log bi

¡1� log bi�.

NB+. b1= log l
¡1x for some l2N, where log lx =

def
log : : :l times log.

Such a basis is constructed gradually during the algorithm � i.e. B is a global variable
in which we insert new elements during the execution of the algorithm, while maintaining
the property that B is an effective normal basis. We also say that B is a dynamic effective
normal basis. Let us now explicitly give the algorithm, using a PASCAL-like notation:

Algorithm expand(f). The algorithm takes an exp-log expression f 2Texpr on input and
rewrites it into a grid-based series inGB

expr, where the global variable B contains an effective
normal basis which is initialized by B := fx¡1g.

case f 2Q: return f

case f =x: return (x¡1)¡1

case f = g>h, where >2f+;¡; �; /g:
if >=/ and h�= 0 then error �division by zero�
return expand(g)> expand(h)

case f = log g:
g := expand(g)
� Denote B= fb1= log l

¡1x; b2; : : : ; bng.
if g6 0 then error �invalid logarithm�
� Rewrite g= c b1

�1 � � � bn
�n (1+ "), with infinitesimal " in GB

expr and c2C.
if �1=/ 0 then B :=B [flog l+1¡1 xg
return log c+�1 log b1+ � � �+�n log bn+ log (1+ ")

8 On the computation of limsups



case f =eg:
g := expand(g)
� Denote B= fb1; : : : ; bng.
if g=O(1) then return ec eg¡c, where c := g

0; � � �
ntimes

;0
if 91<i6n; g� log bi then

� := lim g/log bi
return bi

� expand(eg¡�logbi)
� Let i� be such that log jg j � log bi�.
g+ := g

0; � � �
n¡i�times

;0

g¡ := g¡ g+

B :=B [fe¡jg+jg
return (e¡jg

+j)¡signg
+
eg
¡

Let us comment the algorithm. The first three cases do not need explanation. In the case
f = log g, the fact that B is an effective normal basis is used at the end: �1 log b1+ � � �+
�n log bn is indeed an expression in GB

expr. The expansion of the exponential of a bounded
series g is done by a straightforward Taylor series expansion. If g is unbounded, then we
test whether g is asymptotic to the logarithm of an element in B � i.e. we test whether
� := lim g/ log bi is a non zero finite number for some i. If this is so, then f = bi� eg¡�logbi

and eg¡�logbi is expanded recursively. We remark that no infinite loop can arise from
this, because successive values of g in such a loop would be asymptotic to the logarithms
of smaller and smaller elements of B, while B remains unchanged. Finally, if g is not
asymptotic to the logarithm of an element in B, then B has to be extended with an element
of the order of growth of f . The decomposition g= g++ g¡ is computed in order to ensure
that B remains an effective normal basis.

5. On the automatic computation of limsups

In this section we show how Theorem 7 can be applied to compute limsups (or liminfs)
of certain bounded functions, involving trigonometric functions. The idea is based on the
following consequence of Theorem 7.

Theorem 8. Let 1�� f1������� fp be exp-log functions at infinity. Let �i;j>0 ( 16 j6ni)
be such that �i;1;:::;�i;ni are Q-linearly independent for each i. Denote U=fx+ ¡1

p
y2C j

x2+ y2=1g and n=n1+ � � �+np. Let � be a continuous function from Un into R and let

 (x)= �(e ¡1
p

�1;1f1(x); : : : ; e ¡1
p

�p;npfp(x)):
Then

limsup
x!1

 (x)= sup
x2Un

�(x):

Proof. We first notice that we will be able to apply Theorem 7 on our input data: by a
well known theorem, which goes back to Hardy [Har11], the germs at infinity of f1; : : : ; fp
lie in a common Hardy field. Consequently, f1��s � � � ��s fp, and f1; : : : ; fp are strictly
increasing in a suitable neighbourhood of infinity.

The mapping  is defined in a neighbourhood V of infinity, and can be factored

V !!!!!!!!!! R=V !!!!!!!!!!!!!!!!!! 1 T n!!!!!!!!!!!!!!!!!! 2 R, with

 1(x)=
�
�1;1 f1(x)

2 p
; : : : ;

�p;np fp(x)
2 p

�
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and
 2(x1; : : : ; xn)= �(e2p ¡1

p
x1; : : : ; e2p ¡1

p
xn);

where  1 and  2 are both continuous. Since T n is compact, there exists a point x in
which  2 attains its maximum. Let ">0. There exists a neighbourhood V of x, such that
j 2(y)¡  2(x)j<", for any y in V . By Theorem 7, there exist x, with  1(x)2V as close
to infinity as we wish. For such x, we have j (x)¡ supx2Un�(x)j<". �

We now turn to the computation of this limit.

Theorem 9. Let F1; : : : ; Fq be exp-log functions at infinity. Let �:U q!R a real algebraic
function, where we consider U q as a real algebraic variety. Assume that we have an oracle
to test the Q-linear dependence of exp-log constants. Then there exists an algorithm to
compute the limsup of  (x)= �(e ¡1

p
F1(x); : : : ; e ¡1

p
Fq(x)).

Proof. Using the identity e¡x=1/ex, we may always assume without loss of generality,
that the Fi's are all positive. Now the algorithm consists of the following steps:

Step 1. Compute a common effective normal basis for F1;:::;Fp, using the algorithm from
section 4. Order the Fi's w.r.t. ��; that is, Fi�Fj or Fi��Fj, whenever i< j.

Step 2. Simultaneously modify the Fi's and the algebraic function � in the e ¡1
p

Fi's, until
we either have Fi��Fj, or Fi=�Fj, for some �, whenever i< j. As long as this is not the
case, we take j maximal, such that the above does not hold, and do the following:

First compute the limit � of Fi/Fj. Next insert Fi0 :=Fi¡�Fj and Fj0 :=�Fj into the

set of Fi's and remove Fi. The new expression for � is obtained by replacing each e ¡1
p

Fi

by e ¡1
p

Fi
0
e ¡1
p

Fj
0
.

Step 3. Compute exp-log functions f1�� � � � �� fp, and constants �i;j (16 j 6 ni), such
that each Fl can be written as Fl=�i;j fi, for some i and j. Replacing e ¡1

p
Fi by its limit

for each bounded Fi, we reduce the general case to the case when 1�� f1.

Step 4. This step consists in making the �i;j's Q-linearly independent for each fixed i.
Whenever there exists a non trivial Q-linear relation between the �i;j's (for fixed i), we
may assume without loss of generality that this relation is given by

ani�i;ni= a1�i;1+ � � �+ ani¡1�i;ni¡1;

for a1; : : : ; ani in Z and ani>0. As long as we can find such a relation, we do the following:
For all j < ni, replace �i;j by �i;j0 := �i;j/ani and e ¡1

p
�i;jfi by (e ¡1

p
�i;j
0 fi)ani in the

expression for �. Next, replace e ¡1
p

�i;nifi by (e ¡1
p

�i;1
0
)a1 ���(e ¡1

p
�i;ni¡1
0

)ani¡1 in the expres-
sion for i.

Step 5. By Theorem 8, the limsup of  is the maximum of � on Un, where n=n1+ ���+np.
To compute this maximum, we determine the set of zeros of the gradient of � on Un.
Then � is constant on each connected component and the maximum of these constant
values yields maxUn �. To compute the zero set of the gradient of � and its connected
components, one may for instance use cylindrical decomposition (see [Col75]). Of course,
other algorithms from effective real algebraic geometry can be used instead.

The correctness of our algorithm is clear. The termination of the loop in step 2 follows
from the fact that the new Fi

0 is asymptotically smaller then Fj, so that either the �-class
of Fj strictly decreases, or the number of i's with Fi�Fj, but not Fi= �Fj for some �.
The number of �-classes which can be attained is bounded by the initial value of q. �
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Corollary 10. Let F1;:::;Fq be exp-log functions at infinity and � be an algebraic function
in q variables, defined on [¡1; 1]q. Assume that we have an oracle to test the Q-linear
dependence of exp-log constants. Then there exists an algorithm to compute the limsup of
 (x)= �(sin (F1(x)); : : : ; sin (Fq(x))). �
Example 11. Consider the function

 (x)= 2 sinx2¡ sin (x3/(x¡ 1))
3+ sin ex2¡ sin (ex2+1)

:

The first step consists in expanding x2=x2, x3/(x¡1)=x2+x+ ���, ex2=ex2 and ex2+
1= e x2+1. All these functions have the same �-class, but they are not all homothetic.
Therefore, some rewriting needs to be done. First, x3/(x¡ 1)= x2+ x2/(x¡ 1), and we
rewrite

e ¡1
p

x3/(x¡1)=e ¡1
p

x2 e ¡1
p

x2/(x¡1);

which corresponds to the rewriting

sin x3

x¡ 1 = sinx2 cos x2

x¡ 1 + sin x2

x¡ 1 cosx
2;

if we consider real and imaginary parts. Similarly, we rewrite

e ¡1
p

(ex2+1)=e ¡1
p

ex2 e ¡1
p

;

which corresponds to the rewriting

sin (ex2+1)= sin ex2 cos 1+ sin 1 cos ex2:

In step 4, noQ-linear relations are found, so that we have to determine the maximal value of

�(a; b; c; â; b̂ ; ĉ)= 2 a¡ a ĉ¡ c â
3+ b¡ b cos 1¡ b̂ sin 1

(5)

on U3. Here we have abbreviated a= sin x2; b= sin e x2; c= sin (x2 (x¡ 1)); â= cos x2; b=
cosex2; c=cos (x2 (x¡1)) (hence U3 is the set of points with a2+ â2=b2+ b̂2=c2+ ĉ2=1).
The maximum of � is attained for a=1; b=¡1/2; c=0; â=0; b̂= 3

p
/2; ĉ=¡1. We deduce

that
limsup
x!1

 (x)= 6
5+ cos 1¡ 3

p
sin 1

= l:

Similarly, exploiting the symmetry of (5), we have

liminf
x!1

 (x)= ¡6
5+ cos 1¡ 3

p
sin 1

=¡l:

Figure 1. Plot of the function  from Example 11.
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6. Conclusion

We have shown how to compute limsups of certain functions involving trigonometric func-
tions, exponentiation and logarithm. Actually, the techniques we have used are far more
general than Theorem 9 might suggest. Let us now briefly mention some generalizations.
For more details, we refer to [Hoe96a].

In Theorem 9, the crucial property of the functions F1; : : : ; Fq is that they are strongly
monotonic and that we have an asymptotic expansion algorithm for them. Consequently,
more general functions than exp-log functions can be taken instead, like Liouvillian func-
tions, functions which are determined by systems of real exp-log equations in several
variables, etc.

The crucial property of the function � is that it belongs to a class for which a cylindrical
decomposition algorithm exists. Again, more general classes of functions can be considered.
In particular, modulo suitable oracles, one can consider the class of solutions to real exp-
log systems in several variables.

Our techniques can also be used to compute automatic asymptotic expansions of sin-
exp-log functions at infinity of trigonometric depth one (i.e. without nested sines). How-
ever, some difficult number theoretical phenomena may occur in this case, as the following
example illustrates:

2¡ sinx¡ sin ex>1
1

¡ (x+2)
:

This asymptotic inequality follows from the number theoretical properties of e. In general,
such inequalities are very hard to obtain (if decidable at all!): a systematic way to obtain
them would in particular yield solutions to deep unsolved problems in the field of Diophan-
tine approximation (for a nice survey, see [Lan71]).

Nevertheless, we notice that the above example is �degenerate� in the sense that 2 is
precisely equal to the limsup of sinx+ sinx2. In the generic case, a complete asymptotic
expansion for sin-exp-log functions at infinity of trigonometric depth one does exist. In
the degenerate case, we need assume the existence of a suitable oracle for Diophantine
questions.
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