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Abstract

In the last years, several asymptotic expansion algorithms have appeared, which

have the property that they can deal with very general types of singularities, such

as singularities arising in the study of algebraic di�erential equations. However,

attention has been restricted so far to functions with \strongly monotonic" asymp-

totic behaviour: formally speaking, the functions lie in a common Hardy �eld, or,

alternatively, they are determined by transseries.

In this article, we make a �rst step towards the treatment of functions involv-

ing oscillatory behaviour. More precisely, let ' be an algebraic function de�ned on

[�1; 1]

q

, let F

1

(x); � � � ; F

q

(x) be exp-log functions at in�nity in x, and let  (x) =

'(sin(F

1

(x)); � � � ; sin(F

q

(x))). We give a method to compute lim sup

x!1

 (x).

Moreover, the techniques we use are stronger than this result might suggest, and we

outline further applications.

Key words: Asymptotic expansion, exp-log function, oscillating function, Dio-

phantine approximation, algorithm.
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1 Introduction

In the last years, several asymptotic expansion algorithms have appeared (see [Sh 90],

[Sh 91], [GoGr 92], [RSSV 96], [VdH 96b], etc.). These algorithms are have the prop-

erty that they can deal with very general types of singularities, such as singularities

arising in the study of certain algebraic di�erential equations. However, attention

has been restricted so far to functions with \strongly monotonic" asymptotic be-

haviour. This means that the functions lie in a common Hardy �eld, or, alternatively,

that they are determined by transseries. In this article, we make a �rst step towards

the treatment of functions involving oscillatory behaviour.

The structure of this paper is as follows: in section 2, we recall a classical density

theorem for linear curves on the n-dimensional torus (see for example [Kok 37] or

[KN 74]). In section 3, this theorem is generalized to more general classes of curves

on the torus.

In section 4, we study exp-log functions at in�nity: an exp-log function is a

function which is built up from the rationals Q and x, using the �eld operations,

exponentiation and logarithm. An exp-log function at in�nity is an exp-log function

which is de�ned in a neighbourhood of in�nity. We present a more compact version of

an expansion algorithm of exp-log functions at in�nity, originally due to Shackell (see

[Sh 91]). For this, we assume the existence of an oracle for deciding whether an exp-

log function is zero in a neighbourhood of in�nity. This problem has been reduced

to the corresponding problem for exp-log constants in [VdH 96a] resp. [VdH 96b]

A solution to the constant problem was given by Richardson in [Rich 94], modulo

Schanuel's conjecture:

Conjecture 1. (Schanuel) If �

1

; � � � ; �

n

are Q -linearly independent complex

numbers, then the transcendence degree of Q [�

1

; � � � ; �

n

; e

�

1

; � � � ; e

�

n

] over Q is at

least n.

In section 5, we are given an algebraic function ' de�ned on [�1; 1]

q

, and
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exp-log functions at in�nity F

1

(x); � � � ; F

q

(x) in x. We show how to compute

lim sup

x!1

'(sin(F

1

(x)); � � � ; sin(F

q

(x))). In section 5, we will assume the existence

of an oracle for checking the Q -linear dependence of exp-log constants. Actually,

Richardson's algorithm can easily be adapted to yield an algorithm for doing this

modulo Schanuel's conjecture.

2 A density theorem on the n-dimensional torus

Let �

1

; � � � ; �

n

be Q -linearly independent numbers: we will use vector notation, and

denote the vector (�

1

; � � � ; �

n

) by �. In this section, we prove that the image of

x 7! �x, from R in the n-dimensional torus T

n

= R

n

=Z

n

is dense. Notice that we

use the same notation for �x and its class modulo Z

n

. Moreover, we show that the

"density" of the image is uniform is a sense that will be made precise. The following

theorem is classical:

Theorem 1. (Kronecker) Let �

1

; � � � ; �

n

be Q -linearly independent real numbers.

Let e

1

; � � � ; e

n

be the canonical base of R

n

. Then �

1

e

1

Z+� � �+�

n

e

n

Z+R(e

1

+� � �+e

n

)

is dense in R

n

.

Now let X be a measurable subset of T

n

, and let I be some interval of R. De-

noting the Lebesgue measure by �, we de�ne

�(I;X) =

�(fx 2 Ij�x 2 Xg)

�(I)

: (1)

Let us also denote by d the Euclidean distance on T

n

. Let S

d

, resp. S

d

de-

note the shift operator on R, resp. R

n

or T

n

: S

d

(x) = x + d and S

d

(x) =

S

(d

1

;��� ;d

n

)

(x

1

; � � � ; x

n

) = (x

1

+d

1

; � � � ; x

n

+d

n

) = x+d. The following are immediate

consequences of the de�nition of �:

Proposition 1. We have

(a) �(I;X) 6 �(X).

(b) �(I;X) =

P

i2N

�(I;X

i

), if X =

`

i2N

X

i

.

(c) j�(I;X)� �(S

d

I;X)j 6 jdj=�(I), for all d.

(d) �(I;X) = �(S

�d

I; S

���d

X), for all d.

�

It will be convenient to adopt some conventions for intervals I = [a; b] (resp.

I = [a; b[; I =]a; b] or I =]a; b[) whose lengths b � a tend to in�nity: we say that

a property P holds uniformly in I, if the property holds uniformly in a: 9l

0

8a

8l > l

0

P ([a; a+ l]). We say that P holds for all I su�ciently close to in�nity, if P

holds for all su�ciently large a.

The next theorem is also classical, but for convenience of the reader we present

a proof, since similar techniques will be used in the next section:
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Theorem 2. (Bohr, Sierpi�nski, Weyl) Let �

1

; � � � ; �

n

be Q -linearly independent

real numbers and let � be given by (1). Then

lim

�(I)!1

�(I;X) = �(X);

uniformly in I.

Proof. Because of proposition 1(a) and (b), it su�ces to prove the theorem for

�xed p = (p

1

; � � � ; p

n

) 2 (N

�

)

n

and for all

X = X

k

=

�

k

1

p

1

;

k

1

+ 1

p

1

�

� � � � �

�

k

n

p

n

;

k

n

+ 1

p

n

�

;

with 0 6 k

1

< p

1

; � � � ; 0 6 k

n

< p

n

. We remark that [0; 1[

n

=

`

k

X

k

, so that

P

k

�(I;X

k

) = 1. Now let " > 0. For each k, we can �nd x

k

, with d(�x;k) < "=n,

by theorem 1. Consequently, we have �(S

����x

k

X

k

4 X

0

) < ", where A 4 B denotes

the symmetric di�erence of A and B. Hence, �(X

l

4 S

���(x

l

�x

k

)

X

k

) < 2", for each l

with l

1

< p

1

; � � � ; l

n

< p

n

. Using proposition 1, we can now estimate

j�(I;X

l

)� �(I;X

k

)j 6 j�(I; S

���(x

l

�x

k

)

)� �(I;X

k

)j+

�(X

l

4 S

���(x

l

�x

k

)

X

k

)

6 j�(S

x

k

�x

l

I;X

k

)� �(I;X

k

)j+ 2"

6

jx

k

� x

l

j

�(I)

+ 2":

Taking �(I) > jx

k

� x

l

j=", for any k and l, we get

�

�

�

�

�(I;X

k

)�

1

p

1

� � � p

n

�

�

�

�

6

1

p

1

� � � p

n

X

k

j�(I;X

k

)� �(I;X

l

)j < 3":

Hence j�(I;X

k

) � �(X

k

)j < 3", for su�ciently large �(I), uniformly in I. This

completes our proof. �

3 A more general density theorem

In this section we will obtain a more general uniform density theorem on the torus,

when the application x 7! �x from section 2 is replaced by a non linear mapping,

which satis�es suitable regularity conditions. Before coming to this generalization,

we will need some de�nitions and lemmas. We say that a function f de�ned in a

neighbourhood of in�nity is steadily dominated by x, if f has a continuous second

derivative, f tends to in�nity, f

0

decreases strictly towards zero, and f

00

=f

0

tends to
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zero. We remark that such functions admit functional inverses in a neighbourhood

of in�nity.

More generally, we say that if f and g are functions in a neighbourhood of in�nity,

such that g is invertible, then f is steadily dominated by g, if f � g

inv

is steadily

dominated by x. In this case, we write f��

s

g. It is easily veri�ed that if f��

s

x and

g��

s

x, then f � g��

s

x, so that ��

s

is transitive. We also remark that if f��

s

g and if

h is a function, which has a continuous second derivative and tends to in�nity, then

f � h��

s

g � h. We �nally have the following property of steady domination:

Lemma 1. Let h be steadily dominated by x and let l > 0 and " > 0 be given.

Then for all su�ciently large x we have jh

0

(x + d)� h

0

(x)j < "h

0

(x), for all d with

jdj < l.

Proof. Let x

0

be such that jh

00

(x)=h

0

(x)j < "h

0

(x), for all x > x

0

� l. We have

jh

0

(x+d)�h

0

(x)j 6 jdh

00

(�)j < "h

0

(�), for some � between x and x+d. If d is positive,

then h

0

(�) 6 h

0

(x), and we are done. In the other case, we have jh

0

(x+d)�h

0

(x)j 6

"h

0

(x)� "jh

0

(x+ d)� h

0

(x)j, whence jh

0

(x + d)� h

0

(x)j < ("=(1� "))h

0

(x). �

Now let X be a measurable subset of R. For each interval I, we de�ne:

�(I;X) =

�(I \X)

�(I)

:

We say that X admits an asymptotic density �(X) if

lim

�(I)!1

�(I;X) = �(X);

uniformly in I, for I su�ciently close to in�nity.

Lemma 2. Let X be a measurable subset of R and let h be steadily dominated by

x. If �(X) exists, then so does �(h(X)) and we have �(h(X)) = �(X).

Proof. Let " > 0. Let l 2 R be such that j�(I;X) � �j < ", whenever �(I) > l.

Taking I = [�; �[, we subdivide h

inv

(I) in q = b(h

inv

(�)� h

inv

(�))=lc parts of equal

length l

0

> l

[(h

inv

(�); h

inv

(�))[= [a

1

; b

1

[q � � � q [a

q

; b

q

[;

with b

i

= a

i+1

for 1 6 i < q. Then we have

(�� ")

q

X

i=1

Z

b

i

a

i

h

0

(b

i

)dx 6

q

X

i=1

Z

b

i

a

i

�

X

(x)h

0

(b

i

)dx 6

�(h

inv

(X) \ I) 6

q

X

i=1

Z

b

i

a

i

�

X

(x)h

0

(a

i

)dx 6 (�+ ")

q

X

i=1

Z

b

i

a

i

h

0

(a

i

)dx:
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By lemma 1, for all su�ciently large x, we have jh

0

(x + d)� h

0

(x)j 6 "h

0

(x), for all

d with jdj 6 l

0

. Hence,

�

�

�

�

�

q

X

i=1

Z

b

i

a

i

h

0

(x)dx�

q

X

i=1

Z

b

i

a

i

h

0

(b

i

)dx

�

�

�

�

�

6

q

X

i=1

Z

b

i

a

i

jh

0

(x)� h

0

(b

i

)jdx 6

"

q

X

i=1

Z

b

i

a

i

h

0

(x)dx = "�(I);

and we have a similar estimation, when replacing b

i

by a

i

. Consequently,

(�� ")(1� ")�(I) 6 �(h(X) \ I) 6 (�+ ")(1 + ")�(I):

This completes our proof. �

Let f

1

��

s

� � ���

s

f

p

be continuous functions de�ned in a neighbourhood of in�nity,

which strictly increase towards in�nity. Let �

i;j

> 0 (1 6 j 6 n

i

) be such that

�

i;1

; � � � ; �

i;n

i

are Q -linearly independent for each i. Now consider the curve

g(x) = (f

1

(�

1;1

x); � � � ; f

1

(�

1;n

1

x); � � � ; f

p

(�

p;1

x); � � � ; f

p

(�

p;n

p

x))

on T

n

(n = n

1

+ � � �+ n

p

), which is de�ned for su�ciently large x. By analogy with

the preceding section, we de�ne

�

f;g

(I;X) =

�(fx 2 Ijg(f

inv

1

(x)) 2 Xg)

�(I)

; (2)

for intervals I su�ciently close to in�nity, and measurable subsets X of T

n

.

Theorem 3. Let f

1

; � � � ; f

p

; g and �

f;g

be given as above and let X be a mesurable

subset of T

n

. Then

lim

�(I)!1

�

f;g

(I;X) = �(X);

uniformly, for intervals su�ciently close to in�nity.

Proof. We proceed by induction over p. If p = 0, we have nothing to prove. As

before, it su�ces to prove the theorem for multidimensional blocks X = X

1

�

~

X,

with X

1

� T

n

1

and

~

X � T

~n

, where ~n = n

2

+ � � � + n

p

. We denote by g

1

(x) resp.

~g(x) the projections of g(x) on T

n

1

resp. T

~n

, when considering T

n

as the product

of T

n

1

and T

~n

. Without loss of generality, we may assume that f

1

= x.
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Given a subset A of R or T

n

and its frontier @A, we denote for any " > 0




"

A = fx 2 Ajd(x; @A) > "g:

Let " > 0. If g

1

(x) 2 


"

X

1

, then g

1

(x + d) 2 X

1

for all d with jdj < l, where

l = max(1=�

1;1

; � � � ; 1=�

1;n

1

)". Hence, for I su�ciently close to in�nity,

I \ g

inv

1

(


"

X

1

) � (I \ 


l

g

inv

1

(X

1

))+]� l; l[ � I \ g

inv

1

(X

1

):

Therefore, theorem 2 implies that for I su�ciently close to in�nity

�

�

�

�

�(I \ g

inv

1

(X

1

))

�(I)

� �(X

1

)

�

�

�

�

< " (3)

and (using that �(


"

X

1

4 X

1

) < 2n

1

)

�

�

�

�

�((I \ 


l

g

inv

1

(X

1

))+]� l; l[)

�(I)

�

�(I \ g

inv

1

(X

1

))

�(I)

�

�

�

�

6 (2n

1

+ 1)": (4)

Now (I \ 


l

g

inv

1

(X

1

))+]� l; l[ is a �nite union of intervals, say

I \ 


l

g

inv

1

(X

1

)\]� l; l[= I

0

q � � � q I

q+1

;

where I

1

; � � � ; I

q

have length at least 2l, and where I

0

and I

q+1

have length at most

2l.

By the induction hypothesis, we have

lim

�(J)!1

�(J \ f

2

(~g

inv

(

~

X)))

�(J)

= �(

~

X);

uniformly, for J su�ciently close to in�nity. Using lemma 2, this gives us

lim

�(f

2

(J))!1

�(J \ ~g

inv

(

~

X))

�(J)

= �(

~

X);

uniformly, for J su�ciently close to in�nity. In particular, we have

�

�

�

�

�

�(J \ ~g

inv

(

~

X))

�(J)

� �(

~

X)

�

�

�

�

�

< ";

for all J su�ciently close to in�nity, with �(J) > l. Thus, choosing I su�ciently

close to in�nity, we have

�

�

�

�

�

�(I

i

\ ~g

inv

(

~

X))

�(I

i

)

� �(

~

X)

�

�

�

�

�

< ";

for all 1 6 i 6 q.
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Taking �(I) > 2l=", and using (3) and (4), this gives us

j�

f;g

(I;X)� �(X)j 6

�

�

�

�

�

�(

`

q+1

i=0

I

i

\ ~g

inv

(

~

X))

�(I)

� �(X)

�

�

�

�

�

+

�

�

�

�

�

�(I \ g

inv

(X))

�(I)

�

�(

`

q+1

i=0

I

i

\ ~g

inv

(

~

X))

�(I)

�

�

�

�

�

6

�

�

�

�

�

q+1

X

i=0

�(I

i

\ ~g

inv

(

~

X))� �(

~

X)�(I

i

)

�(I)

�

�

�

�

�

+

�

�

�

�

�

�(

~

X)�(

`

q+1

i=0

I

i

)

�(I)

� �(X)

�

�

�

�

�

+ (2n

1

+ 1)"

6

q

X

i=1

�(I

i

)"

�(I)

+ (4n

1

+ 5)" 6 (4n

1

+ 6)":

This completes the proof. �

4 Expansions of exp-log functions at in�nity

Let T denote the �eld of germs at in�nity of exp-log functions and C the sub�eld

of exp-log constants. Elements of T can be represented by exp-log expressions |

i.e. �nite trees whose internal nodes are labeled by +;�; �; =; exp or log, and whose

leaves are labeled by x or rational numbers. The set of exp-log expressions which

can be evaluated in a neighbourhood of in�nity is denoted by T

expr

. We have a

natural projection f 7! f from T

expr

onto T. We make the assumption that we have

at our disposal an oracle which can decide whether a given exp-log expression in

T

expr

is zero in a neighbourhood of in�nity. In view of [VdH 96a] resp. [VdH 96b]

it actually su�ces to assume the existence of an oracle to decide whether a given

exp-log constant is zero.

4.1 Grid-based series

Let us �rst recall some basic concepts. An e�ective asymptotic basis is an ordered

�nite set fb

1

; � � � ; b

n

g of positive in�nitesimal exp-log expressions in T

expr

, such that

log b

i

�� log b

i+1

(i.e. log b

i

= o(log b

i+1

)) for 1 6 i 6 n � 1. For instance, the set

B = flog

�1

x; x

�1

; e

�x

2

g is an e�ective asymptotic basis. An e�ective asymptotic

basis B generates an e�ective asymptotic scale, namely the set S

B

of all products

b

�

1

1

� � � b

�

n

n

of powers of the b

i

's, with the �

i

's in C. Elements of S

B

are also called

monomials.
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Given an e�ective asymptotic basis B, let G

expr

B

denote the set of expressions

which are built up from C; S

B

;+;�; �; = and the operations " 7! exp ", resp. " 7!

log(1 + "), for in�nitesimal ". We observe that f can be expanded as a series in

b

n

with coe�cients in G

expr

fb

1

;��� ;b

n�1

g

. Moreover, these coe�cients can recursively be

expanded in b

n�1

; � � � ; b

1

:

f =

X

�

n

2C

f

�

n

b

�

n

n

.

.

.

f

�

n

;��� ;�

2

=

X

�

1

2C

f

�

n

;��� ;�

1

b

�

1

1

:

The exp-log expressions of the form f

�

n

;��� ;�

i

are called iterated coe�cients of f . In

particular, the iterated coe�cients of the form f

�

n

;��� ;�

1

are exp-log constants.

The above expansions of f have an important property (see [VdH 96b]): the

support of f as a series in b

n

is included in a set of the form �

1

N + � � �+ �

p

N + �,

where the �

i

's and � are constants in C| we say that f is a grid-based series. From

this property, it follows that the support of f is well-ordered.

Another important property of the expansion of f in b

n

and the expansions of its

iterated coe�cients is that they can be computed automatically. By this we mean

that for each integer i, we can compute the �rst i terms of the expansion of f and

so can we for its iterated coe�cients. In particular, we can compute the sign of f ,

test whether f is in�nitesimal, etc.

For the computation of the expansions of f in b

n

, we use the usual Taylor series

formulas. In the case of division 1=f , we compute the �rst term f

�

b

�

n

of f and

then use the formula 1=f = (1=f

�

)b

��

n

(1=(1+ ")), where " = (f=f

�

b

�

n

)� 1. The only

problem when applying these formulas is that we have to avoid inde�nite cancelation:

note that inde�nite cancelation only occurs if after having computed the �rst i terms

of the expansion, f is actually equal to the sum of these terms. But this can be

tested using the oracle, and we stop the expansion in this case.

4.2 Automatic expansions of exp-log expressions

The asymptotic expansion algorithm takes an exp-log expression f 2 T

expr

on input,

computes a suitable e�ective asymptotic basis B and rewrites f into an element of

G

expr

B

. The main idea of the algorithm lies in imposing some suitable conditions on

B: we say that a linearly ordered set B = fb

1

; � � � ; b

n

g is an e�ective normal basis

if

NB1. B is an e�ective asymptotic basis.

NB2. log b

i

2 G

expr

fb

1

;��� ;b

i

�
g

for all i > 1, where log log b

�1

i

� log b

i

�

.

NB+. b

1

= log

�1

l

x for some l 2 N , where log

l

x

def

= log

l times

� � � log x.

Such a basis is constructed gradually during the algorithm | i.e. B is a global
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variable in which we insert new elements during the execution of the algorithm,

while maintaining the property that B is an e�ective normal basis. We also say that

B is a dynamic e�ective normal basis. Let us now explicitly give the algorithm,

using a PASCAL-like notation:

Algorithm expand(f). The algorithm takes an exp-log expression f 2 T

expr

on

input and rewrites it into a grid-based series in G

expr

B

, where the global variable B

contains an e�ective normal basis which is initialized by B := fx

�1

g.

case f 2 Q : return f

case f = x: return (x

�1

)

�1

case f = g>h; >2f+;�; �; =g:

if > = = and h = 0 then error \division by zero"

return expand(g)>expand(h)

case f = log g:

g := expand(g)

� Denote B = fb

1

= log

�1

l

x; b

2

; � � � ; b

n

g.

if g 6 0 then error \invalid logarithm"

� Rewrite g = cb

�

1

1

� � � b

�

n

n

(1 + "), with in�nitesimal " in G

expr

B

and c 2 C.

if �

1

6= 0 then B := B [ flog

�1

l+1

xg

return log c+ �

1

log b

1

+ � � �+ �

n

log b

n

+ log(1 + ")

case f = e

g

:

g := expand(g)

� Denote B = fb

1

; � � � ; b

n

g.

if g = O(1) then return e

c

e

g�c

, where c := g

0;

n times

��� ;0

if 91<i6n g � log b

i

then

� := limg= log b

i

return b

�

i

expand(e

g�� log b

i

)

� Let i

�

be such that log jgj � log b

i

�

.

g

+

:= g

0;

n�i

�

times

��� ;0

g

�

:= g � g

+

B := B [ fe

�jg

+

j

g

return (e

�jg

+

j

)

�sign g

+

e

g

�

Let us comment the algorithm. The �rst three cases do not need explanation.

In the case f = log g, the fact that B is an e�ective normal basis is used at the

end: �

1

log b

1

+ � � � + �

n

log b

n

is indeed an expression in G

expr

B

. The expansion of

the exponential of a bounded series g is done by a straightforward Taylor series

expansion. If g is unbounded, then we test whether g is asymptotic to the logarithm

of an element in B | i.e. we test whether � := limg= log b

i

is a non zero �nite

number for some i. If this is so, then f = b

�

i

e

g�� log b

i

and e

g�� log b

i

is expanded
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recursively. We remark that no in�nite loop can arise from this, because successive

values of g in such a loop would be asymptotic to the logarithms of smaller and

smaller elements of B, while B remains unchanged. Finally, if g is not asymptotic

to the logarithm of an element in B, then B has to be extended with an element of

the order of growth of f . The decomposition g = g

+

+ g

�

is computed in order to

ensure that B remains an e�ective normal basis.

5 On the automatic computation of limsups

In this section we show how theorem 3 can be applied to compute limsups (or liminfs)

of certain bounded functions, involving trigonometric functions. The idea is based

on the following consequence of theorem 3.

Theorem 4. Let 1��f

1

�� � � ���f

p

be exp-log functions at in�nity. Let �

i;j

> 0

(1 6 j 6 n

i

) be such that �

i;1

; � � � ; �

i;n

i

are Q -linearly independent for each i. Denote

U = fx +

p

�1 y 2 C jx

2

+ y

2

= 1g and n = n

1

+ � � � + n

p

. Let ' be a continuous

function from U

n

into R and let

 (x) = '(e

p

�1 �

1;1

f

1

(x)

; � � � ; e

p

�1 �

p;n

p

f

p

(x)

):

Then

lim sup

x!1

 (x) = sup

x2U

n

'(x):

Proof. We �rst notice that we will be able to apply theorem 3 on our input data:

by a well known theorem, which goes back to Hardy (see [Har 11]), the germs at

in�nity of f

1

; � � � ; f

p

lie in a common Hardy �eld. Consequently, f

1

��

s

� � ���

s

f

p

, and

f

1

; � � � ; f

p

are strictly increasing in a suitable neighbourhood of in�nity.

The mapping  is de�ned in a neighbourhood V of in�nity, and can be factored

V

 

! R = V

 

1

! T

n

 

2

! R, with

 

1

(x) =

�

�

1;1

f

1

(x)

2�

; � � � ;

�

p;n

p

f

p

(x)

2�

�

and

 

2

(x

1

; � � � ; x

n

) = '(e

2�

p

�1 x

1

; � � � ; e

2�

p

�1 x

n

);

where  

1

and  

2

are both continuous. Since T

n

is compact, there exists a point x in

which  

2

attains its maximum. Let " > 0. There exists a neighbourhood V of x, such

that j 

2

(y)� 

2

(x)j < ", for any y in V . By theorem 3, there exist x, with  

1

(x) 2 V

as close to in�nity as we wish. For such x, we have j (x)� sup

x2U

n

'(x)j < ". �

We now turn to the computation of this limit.
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Theorem 5. Let F

1

; � � � ; F

q

be exp-log functions at in�nity. Let ' : U

q

! R a real

algebraic function, where we consider U

q

as a real algebraic variety. Assume that

we have an oracle to test the Q -linear dependence of exp-log constants. Then there

exists an algorithm to compute the limsup of  (x) = '(e

p

�1 F

1

(x)

; � � � ; e

p

�1 F

q

(x)

).

Proof. Using the identity e

�x

= 1=e

x

, we may always assume without loss of

generality, that the F

i

's are all positive. Now the algorithm consists of the following

steps:

Step 1. Compute a common e�ective normal basis for F

1

; � � � ; F

p

, using the algo-

rithm from section 4. Order the F

i

's w.r.t. ��; that is, F

i

� F

j

or F

i

��F

j

, whenever

i < j.

Step 2. Simultaneously modify the F

i

's and the algebraic function ' in the e

p

�1 F

i

's,

until we either have F

i

��F

j

, or F

i

= �F

j

, for some �, whenever i < j. As long as

this is not the case, we take j maximal, such that the above does not hold, and do

the following:

First compute the limit � of F

i

=F

j

. Next insert F

0

i

:= F

i

� �F

j

and F

0

j

:= �F

j

into the set of F

i

's and remove F

i

. The new expression for ' is obtained by replacing

each e

p

�1 F

i

by e

p

�1 F

0

i

e

p

�1 F

0

j

.

Step 3. Compute exp-log functions f

1

�� � � ���f

p

, and constants �

i;j

(1 6 j 6 n

i

),

such that each F

l

can be written as F

l

= �

i;j

f

i

, for some i and j. Replacing e

p

�1 F

i

by its limit for each bounded F

i

, we reduce the general case to the case when 1��f

1

.

Step 4. This step consists in making the �

i;j

's Q -linearly independent for each

�xed i. Whenever there exists a non trivial Q -linear relation between the �

i;j

's (for

�xed i), we may assume without loss of generality that this relation is given by

a

n

i

�

i;n

i

= a

1

�

i;1

+ � � �+ a

n

i

�1

�

i;n

i

�1

;

for a

1

; � � � ; a

n

i

in Z and a

n

i

> 0. As long as we can �nd such a relation, we do the

following:

For all j < n

i

, replace �

i;j

by �

0

i;j

:= �

i;j

=a

n

i

and e

p

�1 �

i;j

f

i

by (e

p

�1 �

0

i;j

f

i

)

a

n

i

in

the expression for '. Next, replace e

p

�1 �

i;n

i

f

i

by (e

p

�1 �

0

i;1

f

i

)

a

1

� � � (e

p

�1 �

0

i;n

i

�1

f

i

)

a

n

i

�1

in the expression for '.

Step 5. By theorem 4, the limsup of  is the maximum of ' on U

n

, where n =

n

1

+� � �+n

p

. To compute this maximum, we determine the set of zeros of the gradient

of ' on U

n

. Then ' is constant on each connected component and the maximum of

these constant values yields max

U

n

'. To compute the zero set of the gradient of '

and its connected components, one may for instance use cylindrical decomposition

(see [Col 75]). Of course, other algorithms from e�ective real algebraic geometry

can be used instead.
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The correctness of our algorithm is clear. The termination of the loop in step

2 follows from the fact that the new F

0

i

is asymptotically smaller then F

j

, so that

either the �-class of F

j

strictly decreases, or the number of i's with F

i

� F

j

, but not

F

i

= �F

j

for some �. The number of �-classes which can be attained is bounded

by the initial value of q. �

Corollary. Let F

1

; � � � ; F

q

be exp-log functions at in�nity and ' be an algebraic

function in q variables, de�ned on [�1; 1]

q

. Assume that we have an oracle to test

the Q -linear dependence of exp-log constants. Then there exists an algorithm to

compute the limsup of  (x) = '(sin(F

1

(x)); � � � ; sin(F

q

(x))). �

Example 1. Consider the function

 (x) =

2 sinx

2

� sin(x

3

=(x� 1))

3 + sin ex

2

� sin(ex

2

+ 1)

:

The �rst step consists in expanding x

2

= x

2

, x

3

=(x� 1) = x

2

+ x + � � � , ex

2

= ex

2

and ex

2

+ 1 = ex

2

+ 1. All these functions have the same �-class, but they are not

all homothetic. Therefore, some rewriting needs to be done. First, x

3

=(x � 1) =

x

2

+ x

2

=(x� 1), and we rewrite

e

p

�1 x

3

=(x�1)

= e

p

�1 x

2

e

p

�1 x

2

=(x�1)

;

which corresponds to the rewriting

sin

x

3

x� 1

= sinx

2

cos

x

2

x� 1

+ sin

x

2

x� 1

cos x

2

;

if we consider real and imaginary parts. Similarly, we rewrite

e

p

�1 (ex

2

+1)

= e

p

�1 ex

2

e

p

�1

;

which corresponds to the rewriting

sin(ex

2

+ 1) = sin ex

2

cos 1 + sin 1 cos ex

2

:

In step 4, no Q -linear relations are found, so that we have to determine the maximal

value of

'(a; â; b;

^

b; c; ĉ) =

2a� aĉ� câ

3 + b� b cos 1�

^

b sin 1

(5)

on U

3

. Here we have abbreviated a = sin x

2

; â = cos x

2

; b = sin ex

2

;

^

b = cos ex

2

; c =

cos(x

2

(x � 1)); ĉ = sin(x

2

(x � 1)) (hence U

3

is the set of points with a

2

+ â

2

=
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50

x

 (x)

l

0

�l

Figure 1: Plot of the function  from example 1.

b

2

+

^

b

2

= c

2

+ ĉ

2

= 1). The maximum of ' is attained for a = 1; â = 0; b = �1=2;

^

b =

p

3=2; c = 0; ĉ = �1. We deduce that

lim sup

x!1

 (x) =

6

5 + cos 1�

p

3 sin 1

= l:

Similarly, exploiting the symmetry of (5), we have

lim inf

x!1

 (x) =

�6

5 + cos 1�

p

3 sin 1

= �l:

6 Conclusion

We have shown how to compute limsups of certain functions involving trigonometric

functions, exponentiation and logarithm. Actually, the techniques we have used are

far more general than theorem 5 might suggest. Let us now briey mention some

generalizations. For more details, we refer to [VdH 96b].

In theorem 5, the crucial property of the functions F

1

; � � � ; F

q

is that they are

strongly monotonic and that we have an asymptotic expansion algorithm for them.

Consequently, more general functions than exp-log functions can be taken instead,

like Liouvillian functions, functions which are determined by systems of real exp-log

equations in several variables, etc.

The crucial property of the function ' is that it belongs to a class for which a

cylindrical decomposition algorithm exists. Again, more general classes of functions

can be considered. In particular, modulo suitable oracles, one can consider the class

of solutions to real exp-log systems in several variables.

Our techniques can also be used to compute automatic asymptotic expansions

of sin-exp-log functions at in�nity of trigonometric depth one (i.e. without nested
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sines). However, some di�cult number theoretical phenomena may occur in this

case, as the following example illustrates:

2� sinx� sin ex >

1

1

�(x+ 2)

:

This asymptotic inequality follows from the number theoretical properties of e. In

general, such inequalities are very hard to obtain (if decidable at all!): a systematic

way to obtain them would in particular yield solutions to deep unsolved problems

in the �eld of Diophantine approximation (for a nice survey, see [Lang 71]).

Nevertheless, we notice that the above example is \degenerate" in the sense that

2 is precisely equal to the limsup of sinx + sinx

2

. In the generic case, a complete

asymptotic expansion for sin-exp-log functions at in�nity of trigonometric depth one

does exist. In the degenerate case, we need assume the existence of a suitable oracle

for Diophantine questions.
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