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Abstract

Let © = Cle™™,...,e7%*][01,...,0,] and S = C[z1,...,x,][[eC® T +Co]] where
C is an effective field and z} .. zNeC®1++C%n and S are given a suitable asymp-
totic ordering <. Consider the mapping L : S — S f — (Lif,...,Lif), where
Li,...,L; € ©. For g = (g1,...,9)) € St =imL, it is natural to ask how to solve
the system Lf = g. In this paper, we will effectively characterize SlL and show how
to compute a so called distinguished right inverse L~ : S}J — § of L. We will also
characterize the solution space of the homogeneous equation Lh = 0.

1 Introduction

A well-known theorem (Fabry, 1885) states that any linear differential equa-
tion over C][z]] admits a basis of formal solutions of the form

(Jo(¥/2) + -+ fal/2) log! 2)e"4/ V),

with fo,..., fa € C[[z]], « € C, P € C[X] and p,d € N~. This theorem nat-
urally generalizes to the case when C is replaced by an effective algebraically
closed field of coefficients C. If we also replace the coefficients by polynomials
in C[z], then several algorithms exist for the computation of a basis of solutions
(Malgrange, 1979; Della Dora et al., 1982; van Hoeij, 1997).
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There are several directions in which the above theorem may be generalized.
In (van der Hoeven, 1997, 2001, 2006), it is shown how to deal with so called
transseries coefficients (a transseries is an object which is constructed from R
or C and an infinitely large variable x using exponentiation, logarithm and
infinite summation). In collaboration with M. Aschenbrenner and L. van den
Dries, we are currently working on a generalization to arbitrary asymptotic
fields (an asymptotic field is a differential field with a total asymptotic ordering
which is “naturally compatible” with the derivation).

In this paper, we will be concerned with the generalization to the case of
linear partial differential equations. The asymptotic resolution of systems of
such equations can be decomposed into two subproblems: the computation
of analogues of the exponential parts e’/ ¥2) and the computation of the
corresponding coefficients. We intend to deal with the first subproblem in a
forthcoming paper and focus on the second subproblem in what follows.

In the case of holonomic systems of linear differential equations, algorithms
are known for the computation of formal and convergent generalized series
solutions (Saito et al., 2000, Chapter 2) in what the authors call “Nilsson
rings” (Nilsson, 1965). On the other extreme, there exists a method (Aroca
and Cano, 2001) to find “fractional power series solutions” to a single p.d.e.
with coeflicients in C[[z1, ..., #,]]- In this paper, we will search for formal se-
ries solutions to consistent systems of linear differential equations in variants
of Nilsson rings of the form C[log z1, - . ., log z,|[[2 - - - 2€]]. One of the major
difficulties is to cope with the integrability constraints which arise when con-
sidering more than one equation.

In fact, in the continuation of our previous work on transseries, we will rather

work with infinitely large variables zi,...,z, and series in e ™ ... e %",
In this equivalent setting, our linear differential operators belong to © =
Cle=™,...,e ][0y, ...,0,] and we consider series in

Cla][[€]] = Clay, ..., za][[€]
where @ = et@1+ €2 More precisely, we assume a total asymptotic order-
ing < on € and consider so called grid-based series (van der Hoeven, 1997,
2006) with monomials in € and coefficients in Clzy, ..., z,].

In sections 2 and 3 we first recall classical algorithms for the computation of
“standard bases”, which are used to reduce a system of equations like Lf = ¢
with L € © and g € C[z][[€]] to suitable normal forms. The first algorithm is
a variant of the skew version (Castro, 1984, 1987; Galligo, 1985; Takayama,
1991) of Buchberger’s algorithm (Buchberger, 1965, 1985), although we rather
compute coherent autoreduced sets in the sense of differential algebra (Rosen-
feld, 1959). We also recall Mora’s standard cone algorithm (Mora, 1983; Mora



et al., 1992). However, we will systematically present them in the setting of
p.d.e.s with second members, so the reader might at least want to take a
look at the notations. Also, corollaries 2 and 4 characterize when a system of
equations with second members satisfies the necessary integrability constraints
which ensure the existence of a solution.

In section 4, we will start with the study of linear p.d.e.s with constant coeffi-
cients in C. It is classical that the resolution of such equations in € is equivalent
to finding the roots of a set of polynomial equations in C[¢] = C[&1, ..., &,]. In
particular, solution sets in € correspond to radical ideals in C[£]. More gener-
ally, we will show that there exists a correspondence between the solution sets
in § = @.ce Clz]e and arbitrary ideals in C[£].

An important technique that we will use is the computation of so called “dis-
tinguished solutions” to systems of equations with second members. More
precisely, given L = (Ly,...,L;) € C[d,...,0,]', we may consider L as an
operator L : & — S f — (Lif,...,Lif). Denoting St = im L, we will ef-
fectively construct a right-inverse L™' : 8¢ — & of L. This right-inverse is
unique with the property that the coefficient of any h € §z in any f € im L~}
vanishes, where §);, denotes the set of dominant monomials of solutions A to
Lh = 0. Having constructed L~!, we will also show how the space of solutions
H;, to Lh = 0 can be obtained from $);.

In the last section 5, we will study the case of linear p.d.e.s with coefficients in
Cle ™,...,e ] (for effective purposes) and C[[€]] (for theoretical purposes).
We will first show how to reduce systems of such equations to suitable asymp-
totic normal forms. Given a system in normal form, we will next show how
to compute a distinguished right inverse in a coefficientwise manner. We will
also characterize the set §;, in this context and give an explicit “strong basis”
for Hy.

Remark 1 Section 5.2 in particular contains a skew version of Mora's tan-
gent cone algorithm. One of the referees pointed us to another such algorithm,
which appeared recently (Granger et al., 2005). Besides the fact this alterna-
tive algorithm is applied to another problem (ideal membership and the com-
putation of sygyzies), it is also a bit different in spirit: whereas our algorithm
uses a twisted version of reduction (which enforces good properties for the
ecart), the algorithm in (Granger et al., 2005) is based on homogenization.



2 Standard bases for admissible monomial orderings

2.1 Monomial orderings

Consider the “monomial monoid” X = z¥¥ - -zX, whose elements are of the

form z® = 2" ---2%, with & € N™. A total ordering < on X is called a
monomial ordering, if it is compatible with the multiplication, i.e. 2 < z? A

1 g 2P = xote g 2P+F Tt is classical (Robbiano, 1985) that any such an

ordering is non uniquely determined by a finite sequence of vectors A{,..., \; €
R™\ {0} and

@ > 1 (1)

=3 a-f) A== Aa=0A(@a—F-N>0. (2

Here - denotes the scalar product. Clearly, the relation (1) allows to extend <
to 22" and even z®". Moreover, this extension is unique so as to preserve the
compatibility with the multiplication.

We say that < is admissible if 1 < x; for all 7. In that case, < extends the
(partial) divisibility ordering | on X. In particular, from Dickson’s lemma,
it follows that < is well-ordered. Given a subset G C X, we will denote by
S = {r € X : dy € G,y|r} the final segment of X generated by & for the
divisibility relation. We recall that each final segment is finitely generated.

Let C be a constant field of characteristic zero. Given a monomial ordering
on X, a non-zero polynomial f € Clz] = C[z1,...,x,] and a monomial ¢ € X,
we denote by f; the coefficient of r in f. We also denote by 0; the highest
monomial for < occurring in f and by c; the corresponding coefficient. We
call 9 the dominant monomial of f, cs its dominant coefficient and 7¢ = c;0;
its dominant term. The relation < naturally extends to C[z] by f < g <
F=0V(f#0ANg#0A0d; <0,). We denote by < the equivalence relation
associated to <, so that f < g & f < g < f. Similarly, we write f ~ g if
Tf = T4, which is equivalent to f —g < f.

2.2 Differential polynomials

Let IC be a differential field with derivations 01, ..., 0, and field of constants
C. Given formal variables Fi,..., Fy, we denote by K{Fi,..., F;} the dif-
ferential algebra of differential polynomials in Fi,..., Fj over K. Any P €
IC{Fy,..., F;} admits a unique decomposition



P=Py+---+ P,

where each P; is homogeneous of degree i. We denote by IC{F'}; the space of
homogeneous polynomials of degree ¢ and K{F}¢; = K{F};®---® K{F},.

Given P € K{Fi,...,F,}? and a tuple Q € K{Fi,...,F;}9, the substi-
tution of @Q; for F; (i = 1,...,q) in P yields a new tuple of differential
polynomials in K{F7,..., Fy}?, called the composition of P and @, and de-
noted by Po Q. If P € K{Fy,...,Fg}%; and Q € K{Fy,...,F;}%;, then
Po@ € K{F,...,Fp}¢;- In particular, K{F}¢; is an algebra for o and
R{F} @ S is a subalgebra of {F'}<; whenever R and S are subalgebras
of K with S D R. If P € K{Fy,...,Fi}1, we will denote by P!,..., P*¥ the
unique elements of K{F},, such that P = P! o F} +--- + P*F.

Example 1 If

P:6182F1 + 361F1 + 262F2
Q1=0,F + o F
QQ :3723%1'7

then

Po (Q1,Q2) =010:Q1 + 30:Q1 + 20:Q-

Example 2 If K, L € K[0,, ..., 0,] are differential operators, then

(KF)o (LF) = (KL)(F).

In other words, IC{F'}; is isomorphic to [0y, ..., 0y]-

In the remainder of this paper, we will only study differential polynomials with
second members P € R{F'}, ®S with R and S as above (and often R =S =
K). Formally speaking, the monomial monoid ¥ = {0*F = 07" ---0%"F : o €
IN"} for o is isomorphic to X. Consequently, the sets K[z] and K{F}; = K[%]
are isomorphic as vector spaces (but not necessarily as algebras, except when
K = C). This isomorphism induces natural definitions of dp, cp and 7p for
P € K{F}; and of %, <, ~ and | on K{F};. These definitions naturally
extend to IK{F}¢; = K[TU{1x}], by taking 1x < t for all t € . For instance,
06%F+262F+3 == a%F, if 81 - 82 > 1.

In our context of linear differential polynomials with second members, a differ-
ential ideal of K{F'}<; is a K-subvector space which is stable under 0y,...,0,



(i.e. left composition with O F, ..., 0, F). Moreover, if I N K # {0}, then we
require that I = KC{F}<i. Any tuple P = (Py,...,P,) € K{F}%, naturally
generates a differential ideal [P]. If [P] N KC = {0}, then [P] = {AoP: A€
K{F,...,F,}1}. When seeing P as a system of equations P(f) = --- =
P,(f) = 0, where f belongs to any differential K-algebra S, then these equa-
tions are equivalent to VA € [P], A(f) = 0. In particular, we say that a second
system @ = (Q1,...,Q,) € K{F}%, is equivalent to P, if [P] = [Q)].

In the sequel, it will be convenient to extend notation for sets to tuples. For
instance,

(P17"';PP)U(Q1:"'7QIJ) = (Plﬂ"'7Pp7Q17"':Qq)

and

(Pl,,Pp)\(Q) = (Pl,...,Pi_l,f).H_l...,Pp)

if 4 is smallest with P; = () and

(P,...,P)\(Q) := (P, ..., P)

if no such 7 exists.
2.8  Ritt reduction for linear equations with second members

Assume that we fixed an admissible monomial ordering < on X and denote
L =K{F}.Let P,Q € L\ K with 9g[0p, so that 9p = 0p 0 D¢ for some
09.p € T. The partial reduction Red(P, Q) of P w.r.t. @ is defined by

Red(P, Q) := cgP — cpdpgoQ < P (3)

Given a system Q = (Q1, ..., Q) € (L\ K)?, let g = F(og, ,.00,}- A nOTMal
form for P € £ modulo @ is an R € £, with R € K or 0z € §¢, and such
that

HoP=AoQ+R,

for certain H € K”F (where K7 = {c€ K : ¢ #0}) and A € K{Fy,...,F,}h
with Ao @; < P for all 4. In that case, we write P — ¢ R. We say that @
is autoreduced if QQ; —\(g,) @: for all 7. By using partial reductions of P

w.r.t. members of () as long as possible, one obtains a normal form with
Hecy ey It



Algorithm NF (P, Q)
Input: P € L and Q € (L\ K)?
Output: a normal form of P modulo @
while P ¢ K A 3i,0¢,[0p do

P :=Red(P,Q;)
return P

Given P,Q € L\ K, let a, 3 be such that 0p = 9*F and dg = 0°F. Setting
v = sup (o, B) = (max(a, Br), - - ., max(ay, By)), 0pg = 07 PF and dgp =
J""*F, the A-polynomial of P and @ is defined by

Apg = cQdpo P —cpdpgoQ. (4)

By construction, be have Apg < 9gpo P < 0pg o Q. We also notice that
Apg = Red(P,Q), whenever dg|0p. We say that a system Q = (Q1,...,Q)
is coherent if Ag, g, —q@ 0 forall 1 <7 < j < g. A coherent and autoreduced
system @ = (Q1,...,Q,) will also be called a standard basis. Given an arbi-
trary system @@ € L9, the following classical algorithm computes a standard
basis which is equivalent to Q).

Algorithm SB(Q)
Input: Q € L
Output: a standard basis which is equivalent to )
Q=)
while @ # Q'
Q:=Q
if 3i,Q; € K7 then return (1)

Q=Q\(Q)
if 3i,35,i < j A R:=NF(Ag, ,,@Q) # 0 then
Q=QU(R)
return ()

Remark 2 If £ = C, then under the natural isomorphism of C{F'}; with C[z],
the notions of partial reduction and A-polynomials correspond to reduction
and S-polynomials in Buchberger’s algorithm (up to details: Buchberger rather
takes Spg = cél(cQDQP — ¢p0p@). Also, he not only reduces the dominant
term of P in NF, but all terms). Consequently, Buchberger’s algorithm for
computing a Grobner basis (Buchberger, 1965, 1985) corresponds to the above
algorithm for computing a coherent autoreduced set. Coherent autoreduced
sets were first introduced by Rosenfeld (Rosenfeld, 1959) and they are similar



(although more effective) to the characteristic sets introduced by Ritt (Ritt,
1950). We opted for Hironaka’s name standard bases here (Hironaka, 1964) in
view of the generalization in the next section.

2.4 Theoretical properties of standard bases

Consider a standard basis (Q1, ..., Q,) € (L\K)?. Then the reduction of each
A-polynomial Ag, o, with i < j to zero yields a relation

AinQj = cQjanin e} QZ — CQiaQi,Qj e} Q] = Al o Ql 4+ -4 Ao Qqa

with A¥oQ;, < 09,,0:°Qi X 0g, g, 0Q; for all k. This relation may be rewritten
as

RqijoQ=0 (5)

with Rg,; € K{F1,...,F;}1. We call (5) the critical relation for the pair
(Qi, Qj)- Notice that we may regard the set of all critical relations as a tuple

Rg € K{F\,... F V2,

Lemma 1 Let Q = (Q1,...,Q,) € (L \ K)? be a standard basis. Then the
Rg.i; generate the space of all A € K{F,...,F;}; with AoQ = 0. In
other words, given A € K{Fy,...,F;}1 with Ao @ = 0, there ezrists a ¥ €
K{Fy,..., Fq(qfl)/Q}l with A =Y o Ry.

Proof Assume for contradiction that there exists a relation Ao = 0 which is
not generated by the R ; ;. We may choose A such that t = max {0400, : A" #
0} is minimal, as well as the number of ¢ with t = 0 4i.¢,. Since (A0 Q) =0,
there must be at least two indices 7 and j with t = D4i0g;, = D4icg,- Using
the fact that 0g, g, 0 0g, divides t, let u € T be such that t=uo 0Q,,Q: © iy
A = ca,/Cuo( (Ro. ;) and A=A-)uo Rg i ;. By construction, At < A and
47' < Al so AoQ; < tand A10Q; < t For all k ¢ {i, 7}, we also have
Ak ~ Ak s0 AF 0 Qp ~ AF o Q. Tt follows that the relation A o Q is smaller
than the orlglnal relation Ao( in the sense of the minimality hypothesis. This
contradiction completes the proof. O

Consider asystem L = (Ly,. .., L;) of linear differential polynomialsin C{ F'};.
Given a tuple g = (g1,...,9;) € K!, we say that g is compatible with L, if for
every relation Ao L = 0 with A € K{F},...,F}1, we have Ao g = 0. The set
of such tuples forms a subvector space of X', which we denote by K.



Corollary 1 The system L —g = (L1 — ¢1,..., L — g) with L; € K{F}}
and g; € K s a standard basis if and only if L is a standard basis and g is
compatible with L.

Proof Assume that L — g is a standard basis. Consider P,Q, R € K{F}y &K
with P, # 0 and @1 # 0. Then Red(P,Q); = Red(P,Q,) if 9g|op and
(Apg)1 = Ap, g, It follows that L is a standard basis with critical relation
Rp;;= Rp_g,; foralli < j. Given a relation Ao L = 0, lemma 1 now implies
A=3%oR,=YXoR 4 foracertain ¥ € KL{F,..., Fl}ll(l_l)/Q. We conclude
that Ao (L — g) =0, whence Ao g =0.

Assume now that L is a standard basis and that g is compatible with L.
Then L — g is autoreduced, since 0y, 4, = 0p, 1 0, = 0r, -y, for all 7 # j.
Furthermore, for all 7 # j, the relation Rz ;; o L = 0 implies Rz ;; 0 g = 0.
But the relation Ry ; ;o (L — g) = 0 precisely proves that Ay, g, 1., reduces
to zero modulo L — g. Hence L — g is coherent. O

Corollary 2 Given a standard basis L € K{F}, and g € K!, we have g € K}
if and only if R(g) = 0.

2.5 Canonical forms

Let P € L and @ € (L\ K)9. A canonical form for P modulo Q) is an R € L
with

HoP=A0Q+R,

for certain H € K7 F and A € K{Fy,..., F,}; with A®o Q; < P for all 4, and
such that t € §¢ for each term ct € KT occurring in R. It is easy to modify
NF so that it computes a canonical form R of P modulo Q with R < P:

Algorithm CF(P, Q)
Input: P € L and Q € (£L\ K)?
Output: a canonical form of P modulo @)
while P ¢ K AJi, 3t € T, P # 0A 0, |t do
Choose t highest for <
P :=cq,(P — Pt) + Red(Pt, ;)
return P

Lemma 2 Let Q = (Q1,...,Q,) € (L \ K)? be a standard basis. Then we
have



ook = [0gl,

where dgx = {00 : @ € [Q] \ K} and dg := (0g,,...,0q,)-

Proof Assume for contradiction that P € [@Q] is such that 0p & [0¢]. Re-
placing P by CF(P, @), we may assume without loss of generality that P is
a canonical form w.r.t. Q. Now choose A € K{Fy,..., F,}; with P = Ao Q
such that t = max {04i0g, : A" # 0} is minimal, in the same sense as in the
proof of lemma 1. Since t € [0g], we have P = 0, so there must be at least
two indices ¢ and j with t = D4icg; = Vaseq,- Setting A=A- ) uo Ry,
with the notations from the proof of lemma 1, P = A o Q then yields a more
minimal representation for P. This contradiction proves that 9p € [0¢] for all

PelQ)\K. 0

3 Standard bases for tangent cone orderings

In classical polynomial elimination theory, the use of non-admissible monomial
orderings allows for the computation in localized rings and completions, such
as rings of power series. However, additional care is needed in order to ensure
termination. For instance, the naive reduction of x modulo z — 22 would yield
an infinite sequence x,x?,z°,.... The tangent cone algorithm (Mora, 1983;
Mora et al., 1992) allows for the computation of standard bases in the case of
localizations of polynomial rings.

In this section, we will present the tangent cone algorithm in the differential
setting. In all what follows, K is a differential field with constant field C.
Geometrically speaking, elements of C[[0]] = C[[01, ..., 0,]] or localizations of
C[0] can still be thought of as operators. For instance, C[[0]] naturally operates
on Clz].

3.1 Definition and properties of the ecart

Let £ = C{F}1®K and let < be a monomial ordering on X. Given P, Q € L\K,
we define 9p g, 0g p and Apg as in (4). As a special case, Red(P,Q) = Apg
is given by (3) if 9g[op. Now let <* be the opposite ordering of <. Given
P e K{F}él, we denote the dominant monomial of P for <* by 9} for and
we define cp, 75, Red™(P, @), Ap o, etc. in a similar way. We will also write
twp = z* for the element of X with 0}, = 0*F. If <X is admissible, f € C[z] and
0; = 0/0x; for all ¢, then we notice that P(f) < f/wp (ie. P(f) < 0s/w0p

10



for the natural extension of the ordering < to 2% - - - z). Moreover, if wp|dy,
then P(f) = f/top.

In the sequel, we will assume that the vectors Ay, ..., \; which determine <
using (1) are all in Z". In that case < is called a tangent cone ordering. Notice
that it is possible to consider more general tangent cone orderings (Mora et al.,
1992), but we have chosen to keep the exposition as simple as possible. Given
Ni,...,Nn, € 7, let

Ty = {0F : A -a=n1 A--- AN X - = ng}.

Given P € £\ K with 0p € T, . n,, We denote

Notice that 7p,g = P, and 7py11 = 7p (for a dummy A;44). Now let nj and

* *
n; be such that 9,,, , € %y, ny_in, and 07, € Ty, n_,nz. Then we

have n, > n; and we define the k-th ecart of P by Ep., == n, — nj. We call
Ep := (Ep.,...,Epy) € N the ecart of P and recall that N' is well-ordered by
the lexicographical ordering. The definition extends to the case when P € IC
by taking Ep,, = —oo for all k.

Given P, € L\ K, some easy properties of the ecart are

Eqop = Ep (2 € CX)

Ep_,, < Ep

Moreover, if 0p = 0, then

Epig < EpV Eg = (max(Ep,1, Eg.1), - .., max(Ep,, Eg,)),

where the inequality is strict whenever 7p 4+ 79 = 0. It follows that

Enpg < EpV Eq. (7)

In particular, if 99|0p, then

Erea(r) < EpV Eq. (8)

The following lemma will guarantee the termination of the tangent cone algo-
rithm.

11



Lemma 3 Let p > 0 and Py, Ps,... € L\ K be such that for all i > p, we
have

a) Piy1 = Red(P;, P.(y) for some r(i) < .

b) Whenever op,|0p, for some q < i, then Ereqp;,p,) = Ep,,, -

Then the sequence Py, Ps, ... is finite.

Proof Assume for contradiction that there exist infinitely many 7 > p with
Ep, < Ep,,,. By Dickson’s lemma, we may find two such indices ¢ < 7 with
qu|bpi and qu;l < Epi;l, . .,qu;l < EP@';I- But then

ERed(Pi,Pq) < EPq Vv EPi = EPi < EP¢+17

which contradicts our assumption (b). It follows that Ep, is strictly decreasing
for sufficiently large i. We conclude by the fact that N is well-ordered. a

3.2 The tangent cone algorithm

Given P,Q € L\ K, a normal form for P modulo @ is an R € £, with R € K
or 0r & §¢, and such that

HoP=AoQ+R,

for certain H € C{F}, and A € C{F},...,F,;}; withoy = F and A'0Q; < P
for all 7. Notice that this notion extends the previous notion of normal forms,
since 0y = F = H € C7F if < is admissible. In our new context, we may use
the following algorithm to compute a normal form:

Algorithm NF(P, Q)

Input: P € L and Q € (£L\ K)¢

Output: a normal form of P modulo @

while P ¢ IC A 3i,0¢,[0p do
Take i with 0,|0p such that Ereq(p,g,) is minimal
Q:=QuU{r}
P :=Red(P,Q;)

return P

Indeed, the sequence P, > P, > --- of successive values of P during the
algorithm fulfills the conditions of lemma 3, so this sequence is finite. Moreover,

12



using induction, it is easily checked that there exist A; € C{F1,..., Fy;}1 and
B; € C{F}; and with P, = A;0Q + B; o P and 05, = F for all i. So the last
term of the sequence is indeed a normal form for P modulo Q).

Defining the notions of autoreduced systems, coherent systems and standard
bases as in section 2.3, the same algorithm SB may be used to compute an
equivalent standard basis for a given system. Given a standard basis Q € £
and 1 <7 < j < ¢, we have a relation

HolAg,q,=Ho (CQjDQjaQi) oQ;—Ho (CQiDQian) °Qj
=A'oQi+ -+ AT0Q,,

with 9 = F and A* 0 Q; < 0g,,q, © Qi < g, o, © Q; for all k. As before, we
may rewrite this relation as a critical relation of the form Ry ; ;0 @ = 0.

In order to generalize lemma 1, let C{F'}; = C[[0]](F) 2 C{F'}; be the set of
series QQ = Y g @it with well-ordered support supp Q = {t € T : Q # 0}. If
< is admissible, then C{F'}; coincides with C{F'};. If <* is admissible then
elements of C{F'}, are power series in 0y, ..., 0, applied to F. The set C{F'}; is
naturally stable under composition. We denote C{F1, ..., F,}1 = C[[0]](F1) @
@ ClA)(F,).

Lemma 4 Let Q = (Q1,...,Q,) € (L\ K)? be a standard basis. Then the
Rq,i;j generate the space of all A € C{F,...,F,}1 with AoQ =0.

Proof We have to construct ¥ € C{F;,}; with A = ¥ o Ry, where Fj;
corresponds to the critical relation Rg; ;. For each 1 <7 < 7 < g, let 5;; =
00,;,0:°0q; = 0Q,,Q,; ©0¢q;- Writing X =3, > iex Ti’jat,%, let us construct T
by transfinite induction over t. Given an ordinal «, the induction hypothesis
is as follows:

e Y has been constructed for all t in a final segment §,, of T for <.

® 8.8 G By forall 8 < a. N
e Denoting ¥.p = Yicj Yiez, T, and Ay = A — Xy 0 Ry, we have
A?a o@; < tforalliandteF,.

If @ = 0 or « is a limit ordinal, then we may take §., = Up<o ;5. f =3 +1
and A, = 0, then we are done. So assume that « = 84+ 1 and A # 0. Let
t= maX{DA?BOQi : Alg # 0} & §,5 and let 4 be minimal such that (Alz0Q;) # 0.
Let Ty = Y,; AjFij, with

(A%5 0 Q;)¢
(Dei; 0 R © QJ')"’

J
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let §5 = {u € T :u =t} and take T, = 0 for all u > t with u ¢ §,3. By
construction,

Al oQj=(As—ToRg) 0Q; = (Al — A\jdys,, o R, )0 Qy < t

for all j > 4. Since (4,4 0 Q)¢ = 0, it follows that A?, o Q; < t as well. This
proves the last induction hypothesis. By transfinite induction, we conclude
that there exists an o with A,, =0, whence A =3, o Ry,. O

Consider a system L = (Ly, ..., L;) of linear differential polynomials in C{F'};.
Assume also that C{F'}; naturally operates on a subring R of IC (for instance,
we may take R = C[z]). Given a tuple g = (g1,...,9;) € R!, we say that g is
compatible with L, if for every relation Ao L = 0 with A € C{F1,..., F;}, we
have A o g = 0. The set of such tuples forms a (strong) subvector space R}
of R!. The following consequences of the above lemma is proved in a similar
way as corollaries 1 and 2.

Corollary 3 The system L — g = (L1 — g1,...,L; — g) with L; € C{F}Z’é
and g; € R is a standard basis if and only if L is a standard basis and g is
compatible with L. O

Corollary 4 Given a standard basis L € C{F}! and g € R!, we have g € R},
if and only if R(g) = 0. a

Let Pe C{F}; ® R and Q € (L \ K)?. A canonical form for P modulo @ is
an R € C{F}; &R with

HoP=A0Q+R

for certain H € C{F}, and A € C{F\,...,F,;} withdg = F and A0 Q; < P
for all 4, and such that t € §¢ for each term ct € C¥ occurring in R. Although
we have no algorithm to compute canonical forms, like in section 2.5, the
existence of canonical forms can be proved using a similar transfinite induction
as in the proof of lemma 4. Using another transfinite induction, lemma 2 also
generalizes to the current setting:

Lemma 5 Let Q = (Q1,...,Qq) € (L\K)? be a standard basis. Then djg\x =
[0q]- O

4 Linear differential equations with constant coefficients

In this section, we consider systems L = (Ly,...,L;) of linear partial differ-
ential equations in one unknown F' with coefficients in a field of constants C
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of characteristic zero. We will consider the resolution of such systems in the
algebras

R= @ Cet?;
fecn

S= 69 C[x]es'w,
gecn

where 0;z; = 6;; (Kronecker symbol). We will first consider homogeneous
linear differential equations, but we will also study linear differential equations
with second members. In the latter case, we will allow the second members to
belong to R or S. Throughout this section < stands for an admissible tangent
cone ordering on X.

4.1 Solving L(f) =0 in R

In this section, we will only consider linear p.d.e.s without second members.
Let L € C{F}; be a homogeneous linear differential polynomial. We may
represent L as

L= PL(ala"'aan)(F)7
where Py, is a polynomial in C[¢] = C[&1, ..., &,]. Inversely, each polynomial
P € C[£] gives rise to a homogeneous linear differential polynomial Lp =
P(84,...,0,)(F) € C{F},. Denoting ¢ = €', we have

L(eg) = Pr(§)ee

for all £ € C™ and in particular

L(Bg) =0 PL(§) =0.

Let Hy, denote the set of all e € € = e“®1 T T¢%n with L(e) = 0. We have

L(f) =0<«= f € Vec(H,)

for all f € R, where Vec(#) denotes the C-vector space generated by Hr.
Given ¢ = et® € €, we will denote £, = €.

More generally, given a set D of homogeneous linear differential polynomials,
a subset ‘H of €, a subset Z of C[&,...,&,] and a subset V of C™, we denote
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Ip={Pp € C[¢]|L € D};
Dr={Lp € C{F}1|P € T};
Vu={& € CMe € H};

Hy ={ec € €€ € V}

and

Iy ={P e CEJIVE € V: P(§) = 0};
Vi={£€C'VP €T : P() =0}
Dy ={L € C{F},|Ve € H : L(e) = 0};
Hp={e€ E|VL € D: L(e) = 0}.

Because of the natural isomorphisms

VHgH;’Hng,

all algebraic geometry properties of the correspondences Z — Vr and V — 7y,
induce analogue properties for the correspondences D — Hp and H +— Dy.
In particular, Hilbert’s Nullstellensatz implies

Theorem 1 Let L = (Ly,...,L;) be a coherent and autoreduced system with
Li,...,L € C{F}1\CF. If C is algebraically closed, then L admits a solution
e € €.

4.2 Solving L(f) =0 in C[z]

Recall that < stands for an admissible tangent cone ordering on X. Consider
a standard basis L = (Li,...,L;) € C{F}! for <*. We may regard L as an
operator from C[z] into C[z]!, whose image is in C[z]}. We denote by $ the
set of monomials 2, such that v, { z* for all . The aim of this section is to
construct a right inverse L™! : C[z]}, — C[z] of L, which is “distinguished” in
the sense that fy =0 for all f € imL~! and b € §.

The relation < on C[z] induces a relation <, on C[z]' by

(91590 S (Pa, . )
— max{lebgl, .. leDgl} max{lebhl, ce, leDhl}-

Whenever f, f € C[z]” are such that d; ¢ $;, and 05 ¢ 91, it follows that
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F=fe= L) = L)
Indeed, if 0 & §y, then L;(f) < f/toy, for at least one ¢ with oy, |z°.

Proposition 1 Given a standard basis L = (L, ..., L;) for <* and g € C[x],,
let i be such that ¥ = 4,0y, is mazimal for <. Then T = (cg,/cryy))t does not
depend on the choice of i and g — L(T) <1, g.

Proof We will first show that ¢, /cr; ) = ¢4;/cL;(x) Whenever j # i is another
index with ¢ = 0g;t;;. Let ; € CT and € € CT be such that A}, ;=
Q0L; —§; 0 L; and consider the associated critical relation

QjOLZ’—QiOLJ’:K10L1+"'+KIOLZ,
with wgrtor, > g, tor, = g, w7, for all k. Since ¢ is compatible with L, it
follows that

Q;(9:) — Qilg;) = K'g1) +--- + K'(g)-

For each k, we have

0 0,107, 0y,
9 29 ki PO gy
Wge L Wge | g,

J

Kk(gk) <

It follows that

[€2(gi) — Qu(9j)]u = ca;(9:) — Cayg;) = 0- (9)

Hence

€Q;(0g,)Cgi = C(0g;)Cy;

€ (01, CLi(r) = €01, () CL; (¥)
It follows that
Cgi  CQi(dg) _ Cqi  “uldg)

CLi(r) €Q;(0L,))  CLi(®) €01, ()

Now 0y, /0L,() = Dy, /0L;(x) TmPlieS Ca;(a,)/ C5(01,0)) = Cu(0y,)/ Culo1, ) SO WE
conclude that cg; /cr ) = ¢g,/CLi(r)-

It remains to be proved that g — L(7) <L g, i.e. g; — Lj(7) < r/roy, for all
j. If vy, {x, then 97 (1) = 0 and for all 2 € supp L; with < 07, we have
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o, Q) X (g, /tg)T < t. By strong linearity, it follows that wy L;(7) < .
Furthermore to;; { r implies 9,10, < ¥, whence g; — L;(7) < z/rog,;. If
tor|r, then the relation (9) remains valid. Moreover, if Z € ¥ is such that
ozt oy, = w=tug tog, =1, then

[(E0Q)(g9:) — (E0Q:)(g)]1 =0

and

[(E o Qi)(gj)]l € C;é (gj)mamni = C?é(gj)zi/ij
[( © Qj)(gi)]l € C# (gi)mamnj = C#(gi)x/mLi

Since (gi)y/w,, # 0, it follows that (gj);/ij # 0, whence ¢ = 9,,tv;,. By
construction, we therefore have g; — L;(7) < r/toz,. O

(1]

Given g € C[z]%, let 7, = T be the term as in proposition 1. Now consider
the sequence defined by go = ¢ and ¢;41 = ¢; — L(7,,). This sequence is
finite, since 7y, > 74, > .-+ and < is a well-ordering on X. Consequently,
[ =17y +Tg +-+- €C[z] is a solution to L(f) = g with fy =0 for all h € H.
We set f = L7%(g) and call L™! the distinguished right inverse of L.

Let h € $. Since L;(h) < bh/wy, for all 4, it follows that L~ (L(h)) < b.
Consequently h = by = h — L (L()) is a solution to L(h) = 0 with 9, = b.
Inversely, Lh = 0 implies 0, € $)1, since otherwise toy,[0), for some i and
Li(h) < h/wy, # 0. We claim that the b, form a basis for the solution space
Hy of L(h) = 0 in Clz|. Indeed, given an arbitrary solution h, consider the
sequence defined by hg = h and h;y1 = h; — cp,by, as long as h; # 0. This
sequence is necessarily finite, since 9, > 05, > .. and X is well-ordered.
Hence, h = cuoby, + chibo,, + -+ We call (by)yeg, the distinguished basis of
Hr.

We notice that C[z] = Hp & Hi, where Hy = {f € C[z] : Vh € 9y, f, = 0},
so that L : C[z] — C[z]}, decomposes into an isomorphism on H; with left
inverse L~! and the zero map on H;. We also notice that the distinguished
right inverse L' is uniquely determined by the fact that L™*(L(g)) = g for
all g € Clz], and L~'(g) € Hi. Indeed, assume that L(f) = g and L(f) = ¢
and fy = fy = 0 for all h € $;. Then L(h) =0 for h = f — f and hy = 0 for
all h € . It follows that h = 0.

Let us now consider an arbitrary system L = (Li,...,L;) € C{F}}. Using
the tangent cone algorithm, L may be rewritten into an equivalent system L
which is a standard basis. Then the sets §; and ’Hf are independent from the

particular choice of L, since 7 is precisely the set of elements which cannot
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occur as dominant monomials of elements in [L], by lemma 5. Consequently,
the construction of the distinguished right-inverse and the distinguished basis
H; do not depend on the choice of L, and we may define $; = 97, L~' = L',
etc.

4.8 Solving L(f) =g inS

Let us now consider a general system L € C{F}! as an operator L : S — S!.
Then L acts “by spectral components” C[z]e®. More precisely, given ¢ =
ef? ¢ ¢ let Ly, be the unique operator such that

Lyo(f) = e ' L(ef)

for all f. Considering L as an operator in C[0]', we obtain L. from L by
substituting 0; — &; for each 0;. Given

f= Zfeea

ecC

with f, € C[z], it follows that

L(f) = ZLxe(fe)e'

ecC

Hence, denoting by . the solution space of Ly.(p) = 0 for ¢ € C[z], the
solution space of L(f) =0 for f € S is given by

HL = @HLMB.
ecC

Denoting by L} the distinguished inverse of Ly, as an operator on C[z], the
mapping

L8 =8
g3 Lie(ge)e

ecC

is a right-inverse of L. Moreover, L™! is unique with the property that

im L™ C H*,

where
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Hf = @ ’foee.

ecC

Remark 3 When extending the total ordering < on X to X€& in any way
which preserves spectral components (i.e. if e < f, then re < pffor allr,n € X),
the space H' coincides with the set of all f € & such that f,, = 0 for all
h € ’Hf; see the next section.

Theorem 2 Let £ be the set of differential ideals of C{F'}, and let F the
set of subsets of S which occur as zero-sets of systems D € C{F},. Then the
correspondences

Del—Hp={heSVLeD:Lh) =0} e
He A —Dy={LeC{Fh|VheH:Lh)=0}eZL

are mutually inverse bijections.

Proof Let D; and D, be two differential ideals with the same set of solutions
Hp, = Hp,. Then the differential ideal D generated by D; and D, still has
the same set of solutions. Assuming for contradiction that D; # D,, the
set D strictly contains D; or D,, say D;. Now consider the differential ideal
D,:D={Le€C{F};: LoD C D}. By theorem 1, there exists an ¢ € €
with (D : D)(e) = 0. Since (D; : D) oD C Dy # 1 and H(p,:p),. # @ (here
H(p,:D)x. stands for Hy, ., where L is any system which generates D; : D), it
follows that $p,, # 9p,)... But then Hp, # H(p,),. and Hp # Hp,. O

e

Remark 4 Whereas Hilbert’s Nullstellensatz establishes a correspondence
between radical ideals and algebraic sets, theorem 2 yields a correspondence
between any differential ideal of C{F'}; (which is necessarily radical and even
prime) and “linear differentially algebraic” zero-sets in S. Via the isomor-
phism C [X] = C{F'}, arbitrary ideals of C[X] are therefore also in a geometric
correspondence with zero-sets of linear differential operators. This provides a
geometrical reason why the existence of Ritt-Rosenfeld-Buchberger-type al-
gorithms for the computation with ideals, and not merely radical ideals, is
important.

5 Equations with polynomial coefficients

The study of the linear p.d.e.s with coefficients in C[z] is equivalent to the
study of equations with coefficients in Cle™*] = Cle **,...,e **] modulo the
substitutions z; — €%, 0; = z;0/0z; — 0/0z; and multiplication with a
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suitable e**. Since the ordinary partial derivatives preserve the “valuation”
in Cle™"], it will be more convenient to work with coefficients in C[e™7].

Assume that we have fixed an admissible ordering < on X, determined by
Aty .., A € Z™. Assume also that we have fixed a total ordering on C which
gives C the structure of a totally ordered Q-vector space. Then we also have
a natural ordering < on @ = €1+ FC2n;

e < gfe
—Ti,(a—0) - M=-=(a—p0)- A1 =0A(a—f)- X <0.

A subset & of € is said to be grid-based if there exist g1, ..., gk, h € € with g; <
1,...,9r < land & C g~ ... gNp. Given a ring of coefficients R the set of series
f = Yece fee with grid-based support supp f = {e € € : f, # 0} forms an
R-algebra (van der Hoeven, 1997, 2006). We denote this algebra by R[[€]] and
its elements are called grid-based series. This still goes through for coefficients
in C{F'}, @ C|z], since such operators act by spectral components. In this
section, we will consider systems of linear p.d.e.s in £ = C{F},[[€]] ® C|[x][[€]]
and study their solutions in & = C[z][[€]].

5.1 Skew standard bases

The admissible orderings < on X and < on € may be combined into a total
admissible ordering <* on X& using

re<he 0f <= e<efV(e=fAr=<zn).

Hence, an element f € S can also be regarded as a series f = > cxe fmm With
anti-well-ordered support in X& (the support is not necessarily grid-based,
although we might have required this). Similarly, elements in C{F}[[€]] can
be seen as series with monomials in ¢%. The ordering <! is extended to £ by
understanding that z"¢ < €T for all z7¢ € zN€&. We will use £ in order to
emphasis when a notation should be understood with respect to the relation
<.

Consider a system L € (£\ S)" such that L; < 1 for all 4. Given i < j with

OﬂLi = 0°F and DﬁLj = 0°F, let v = sup(a, B), DﬂLiji = 0" (F), DﬂLi,Lj =
0" #(F) and

Apgy = ¢y, 0%, 1,0 Li — 1,0, 1, 0 Ly,

21



We say that L is a standard basis for <* if for each 7 < j there exists a critical
relation

RL,i,j oL = ALi,Lj —AoL =0, (10)

where A € C{F},..., F;}1[[€]] is such that D’L,c oaik <# DﬂLj,LioLi =3 DLLJ. oL;
for all k.

Given f € S with f < 1 (or L € £ with L < 1), let us denote f = f; (resp.
f == Ll)

Lemma 6 Let L € C{F}[[€]]' be a standard basis and let g € S-. be such
that g < 1. Then L € C{F}, is a standard basis and g € Clz]..

Proof Since Oﬂ— = Dﬂ for all 4, the system L is autoreduced. For all i < 7,
the relation (10) 1mphes

RLzJOL ALL —AOL ALZ,L A L

so L is a standard basis for the relations Ry, . = Ry ; ;. Now consider a relation
BoL = 0. Then we have B = ¥ o Ry for some ¥ € C{F},..., Fjg_1)2}1. Now
Yo Ry oL =0 implies (X o Ry)(g) = 0. We conclude that B(g) = Yo R (7) =
YoRp(g)=0,s07 € Cla]. O

Lemma 7 Let L € L' be a standard basis and ¢ € €. Then L, is again a
standard basis.

Proof Any P,Q € C{F},[[€]]” satisfy the relations

(POQ)[Xe:PlerQ[xe
TPy =TP

(AP,Q)D@ = APxeathe

Hence, any critical relation Ry, ; jo L for L induces a critical relation (Rz,; j)x.©
Ly. =0 for L,,. So we may take R, . = (RL)x.- ]

5.2 Computation of skew standard bases

Given an arbitrary system L € £!, an equivalent standard basis can be “com-
puted” by a variant of Hironaka’s infinite division “algorithm”. If the depen-
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dency of L in e™ ... e~* is only polynomial, then a fully effective method
can be devised, by adapting the algorithms from section 2.3.

In this subsection and in this subsection only, let ¢ = e Nz1——New R —
Cle™®], S =Clz][e ] and L = R{F}, ®S. The set R{F'}; is formally isomor-
phic (as a vector space) to C[D,...,0,](F) by sending each e~ to J; and
0; to On1;. Moreover, the ordering <" on &% corresponds to a tangent cone
ordering on OY - - 9N F. Consequently, the definition of ecart in section 3.2
transposes to elements in £\ S.

Unfortunately, we do not necessarily have Fq.,p = Ep for @ € CEY and
P € L\ S (for instance Ey, pyoe-=1p) > 0). Nevertheless, this relation does
hold if P =< 1. For this reason, we adapt the definition of partial reduction by
setting

Red™ (P, Q) := cﬂQP - cﬁa” L 0Q

P,Q,x0,

for all P,Q € L\ S with 022|D§3. Because of the twist, we again have

ERedD((P,Q) < EP \/ EQ.

We also notice that Red” coincides with the usual partial reduction “up to
lower order terms”, since 0* ~ aﬁm. We obtain the following version

PQ,xd5"!
of NF:

Algorithm NF (P, Q)
Input: P Land Q € (L\ S)?
Output: an “asymptotic normal form” of P modulo @)
while P ¢ S A 3,0}, [0} do
Take 7 with DﬂQi|0§3 such that Egeqx(pg,) is minimal

Q:=QUuU{P}
P = RedK(P, QZ)
return P

The termination of the modified version of NF is proved in the same way as
before. Again, the successive values P, P, ... of P in the algorithm verify
relations

for certain H; € C*F, A; € R{Fy,...,F;}1 and B; € R{F}, with B; < 1 and
Al oQ; x* P for all j.
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Example 3 Let P = e 219,0,F and Q = (e™*' 4+ e™2*1)9,F. Then

=Red"(P,Q) = P — e (0, + 1)Q = —e > 010, F 4+ e >0, F
=Red*(P,, P) = P1 —e P =e MG, F

=Red" (P, Q) = P, — e 2"'Q = —e "1, F

=Red" (P, P») = P3 +e P =0.

Hence @ divides P, from the asymptotic point of view.

In a similar way, we may define the twisted A-polynomial of P,Q € L\ S by

X il i
— lo) (@]
ALi;LJ‘ CLJ aLJ,L“[xa—l Li - v.aLz,L],[xD_l Lj.

Given a system @ € (£\ §)?, the corresponding algorithm SB now computes
an equivalent system Q € (£ \ S8)¢, such that for all 7 < j we have a relation

X
(H—l—B)oAQ“Q]—i-AoQ 0,
where H € C*F, A € R{Fy,...,F;}; and B € R{F}; are such that B < 1
and AF o Q) 4 0% 0 o0, for all k. But H + B admits (H + B) ™' =
1&g
H'-H?20B+H30Bo B + -+ as inverse in C{F},[[€]], which leads to

the relation

AX . +(H+B)'oAdoQ=0. (11)
Qi Q;

Moreover, each Q; induces an element
Qi i= 03 0 Qy € C{F Y [[er++7mm]] @ Cla %+,
with Q; =< 1. When rewriting (11) in terms of Q; and Qj, we obtain a critical

relation for Q; and Qj in the sense of section 5.1. Modulo this normalization
of the result, SB therefore computes a skew standard basis.

5.3 Theoretical properties of standard bases

Let again ¢ = efmttCen £ = (C{F}, & C[z])[[€]] and S = Clz][[€]].
Let A € C{F\,..., Fy}1[[€]]P. Using the isomorphism C{Fi,..., Fp}[[€]]P =
C{Fi,...,F.}{[[€]], we observe that 04, supp A, etc. are well-defined. Given

24



B € C{Fi,...,E}1[[€]]? it is also convenient to extend the notation < by
setting A < B if and only if 94 < 05.

Lemma 8 Let L € L' and A € C{F\, ..., F}1[[€]] be such that L is a standard
basis for x* and A 5 1. Then there exists a ¥ € C{F}, ..., Fyu_1)/2}[[€]] with
Y<1land A—XY o R, < Ao L. In particular, if Ao L =0, then there ezists
aY with A=Y oR;.

Proof Let & =¢gN--.gN C € with g; < 1,...,gx < 1 be such that supp L U
supp Ry, Usupp A C &. Then Lg := {P € L : supp P C &} is stable under
composition. For each ¢ € & with ¢ > Ao L, let us show how to construct
Se € C{F,..., Fyg_1))2}}, such that A7® = A— (., f5f) o Ry, satisfies A7 <
¢. We use weak induction over &.

So let ¢ € & and assume that Y has been constructed for all § >~ e. Let
A7 = A — (X5 %) o R. Since A™* < f for all f € & with § > e, and
supp A™¢ C &, we have A™* < e. Setting B = ¢ ' A™*, we have Bo L = 0, so
B =ToRy for some T € C{F},...,F_1)}}. Taking ¥, = T, it follows that
A7* = A" —¢To Ry = A™* —¢(A™%). + o(e) < e.

By induction, we conclude that 3 = 75 4. f¥ is well-defined and we have
A—YoR,=A7+o(e) <eforalle> AoL,so A—XoR;, < AoL. O

Corollary 5 Given a standard basis L € C{F},[[€]]' and g € S, we have
g € 8t if and only if Rr(g) = 0.

Proof Similar to the proofs of corollaries 1 and 2. O

Corollary 6 Assume that L € C{F}[[€]]" is a standard basis for <* and let
K € [L] be non-zero. Then cx € [L].

Proof Let A be such that K = A o L. Modulo division of A by 04, we may
assume without loss of generality that A < 1. Let X be as in the above lemma,
sothat A=A —-YoR, < Ao L. In fact, A < Ao L, since L < 1 implies
AoL=AoL < A We conclude that cx = cz,;, =cz0L € [L]. O

5.4 Solving L(f) =g in S

Consider a standard basis L € C{F}[[€]]' for <*. Given ¢ € &, we may regard
Ly. as an operator on C[z]'. We denote
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Hr={be:e€ &bheHr};
Hr={be:e€ QE,f)EHfTe},

and write L, = for the distinguished right inverse of L,,.

Proposition 2 Let L € C{F}[[€]]' be a standard basis for <*. Then L :
S' — 8. admits a unique right inverse L' such that L™'(g) € Hi for all
geS.

Proof Let & =gi¥---gN C € with g; < 1,...,g;r < 1 and h = d, be such
that supp L C & and supp g C &h. For any f € S with supp f C &b, it follows
that supp L(f) C &b. Let us show by well-ordered induction over ¢ € &b how
to construct f, € /HfTe such that L(f) = g for f = Y .cqp fee-

Given e € 6h, we assume that f; has been constructed for all § € &h with
f = e. Denoting f.. = >, fif, we also assume that g — L(f..) < f for all
f € Bh with f > e. By construction, we first observe that supp L(f..) C &b,
whence g — L(f..) < ¢. Now we take f, := Txe_l((g — L(f<¢)).), which is
well-defined by lemmas 7 and 6. Setting f.. = fo. + fee = X5 fff, it follows
that L(fye)e = L(fie)e + Le(fe) = ge. For all § € &b with f > e, we also
have g — L(fs.) = g — L(f.e) + O(e) < §. We infer that g — L(f..) < e.
By induction, we obtain a series f € H{ with supp f C &h and g — L(f) =
g—L(fy.)+o(e) < eforall e € &h. We conclude that L(f) = g. The uniqueness
is proved as usual. O

Proposition 3 Let L € C{F},[[€]] be a standard basis for <*. For each
b€ Hy, let by = b — L' (L(b)). Then

h= 3 hyby

heHL

for all solutions h € S to L(h) = 0.

Proof Setting

= Z h’f)b7

heHr

we have
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Now ﬁf, = hy for all h € Hy, by the distinguished property of gfl and the fact
that by = b + o(h). Consequently, supph — h C Hj and L(h — h) = 0. But
this is only possible if h = h. O

Let us now consider an arbitrary system K € C{F}[[€]]* and let L €
C{F}[[€]]' be an equivalent standard basis. By corollary 6, we notice that
the differential ideal [L] does not depend on the particular choice of L, and
similarly for the twisted differential ideals [L,,|. Consequently, the spaces H,
H7 and the operator L ! are independent of the particular choice of L. We
may therefore define the distinguished right inverse K ! of K by K ! = L™!.

Putting everything together from the effective point of view, we have:

Theorem 3 There exists an algorithm which, given L € Cle™*|{F}} and g €
Cle™])%, computes the asymptotic expansion of L™1g.

Proof Using the algorithm from section 5.2, we start by computing an equiv-
alent standard basis L := ¥ o L for L and make the corresponding change
g := Y o g for g. We next test whether g is compatible with L using corollary
5. If so, and assuming that g # 0, we determine the dominant term cze of g
and compute the dominant term Ly, (c,)e of f = L~'g using the method
from section 4.2. Setting § = g — L(cype) and continuing the same procedure
with g instead of g, we obtain the asymptotic expansion of f. O

Remark 5 The theorem still works if we take ¢ € C[€]}, where C[€] =
Dece Ce.

Remark 6 Using the technique of Cartesian representations (van der Hoeven,
1997, 2006), it is possible to compute the full expansion of L~!g and not merely
the first w terms (as done by the above algorithm).
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