
LU factorization with errors∗

Jean-Guillaume Dumas

Université Grenoble Alpes

Laboratoire Jean Kuntzmann, CNRS, UMR 5224

38058 Grenoble, cedex 9, France

Jean-Guillaume.Dumas@univ-grenoble-alpes.fr

Joris van der Hoeven

CNRS

Laboratoire d’informatique de l’École polytechnique

LIX, UMR 7161 CNRS, 91120 Palaiseau, France

vdhoeven@lix.polytechnique.fr

Clément Pernet

Université Grenoble Alpes

Laboratoire Jean Kuntzmann, CNRS, UMR 5224

38058 Grenoble, cedex 9, France

Clement.Pernet@univ-grenoble-alpes.fr

Daniel S. Roche

United States Naval Academy

Annapolis, Maryland, U.S.A.

roche@usna.edu

ABSTRACT
We present new algorithms to detect and correct errors in the lower-

upper factorization of a matrix, or the triangular linear system

solution, over an arbitrary field. Our main algorithms do not require

any additional information or encoding other than the original

inputs and the erroneous output. Their running time is softly linear

in the dimension times the number of errors when there are few

errors, smoothly growing to the cost of fast matrix multiplication

as the number of errors increases. We also present applications to

general linear system solving.

KEYWORDS
Error correction; matrix factorization; linear algebra; sparse inter-

polation; algorithms

ACM Reference Format:
Jean-Guillaume Dumas, Joris van der Hoeven, Clément Pernet, and Daniel

S. Roche. 2019. LU factorization with errors. In Proceedings of ACM ISSAC
(ISSAC’19), Manuel Kauers (Ed.). ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The efficient detection and correction of computational errors is

an increasingly important issue in modern computing. Such errors

can result from hardware failures, communication noise, buggy

software, or even malicious servers or communication channels.

The first goal for fault-tolerant computing is verification. Freivalds

presented a linear-time algorithm to verify the correctness of a sin-

gle matrix product [18]. Recently, efficient verification algorithms

for a wide range of computational linear algebra problems have

been developed [14–16, 24].

Here we go further and try to correct any errors that arise. This

approach is motived by the following scenarios:

∗
This work is partly funded by the OpenDreamKit Horizon 2020 European Research

Infrastructures project (#676541) and the French National Research Agency program

(ANR-15-IDEX-02).

This paper is authored by an employee(s) of the United States Government and is in

the public domain. Non-exclusive copying or redistribution is allowed, provided that

the article citation is given and the authors and agency are clearly identified as its

source.

ISSAC’19, July 2019,
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Large scale distributed computing. In high-performance comput-

ing, the failure of some computing nodes (fail stop) or the corrup-

tion of some bits in main memory by cosmic radiation (soft errors)

become relevant. The latter type can be handled by introducing

redundancy and applying classical error correction, either at the

hardware level (e.g., with ECC RAM), or integrated within the com-

putation algorithm, as in many instances of Algorithm Based Fault

Tolerance (ABFT) [4, 9, 11, 22].

Outsourcing computation. When running some computation on

one or several third-party servers, incorrect results may originate

from either failure or malicious corruption of some or all of the third

parties. The result obtained is then considered as an approximation

of the correct result.

Intermediate expression swell. It often happens that symbolic

computations suffer from requiring large temporary values, even

when both the input and output of a problem are small or sparse.

It can then be more efficient to use special methods that are able

to determine or guess the sparsity pattern and exploit this in the

computation. Sparse polynomial and rational function interpolation

has been developed [2, 23, 31, 33] as such a technique. The connec-

tion with error correction comes from the fact that we may regard

a sparse output as the perturbation of some trivial approximate

solution, such as zero or the identity matrix.

Fault-tolerant computer algebra. Some recent progress on fault

tolerant algorithms has been made for Chinese remaindering [3, 21,

28], system solving [5, 25], matrix multiplication and inversion [20,

30, 32], and function recovery [8, 26].

1.1 Our setting
In this paper, we focus on LU-factorization and system solving. We

will assume the input (such as amatrixA to be factored) is known, as

well as an approximate output (such as a candidate LU-factorization)
which may contain errors. We seek efficient algorithms to recover

the correct outputs from the approximate ones.

Our work can be seen as part of a wider effort to understand how

techniques for fault tolerance without extra redundancy extend

beyond basic operations such as matrix multiplication. It turns

out that the complexities for other linear algebra problems are

extremely sensitive to the precise way they are stated. For instance,

in the case of system solving, the complexities for error-correction

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://opendreamkit.org
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
http://cordis.europa.eu/project/rcn/198334_en.html
http://www.agence-nationale-recherche.fr/ProjetIA-15-IDEX-0002
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ISSAC’19, July 2019, Jean-Guillaume Dumas, Joris van der Hoeven, Clément Pernet, and Daniel S. Roche

are quite different if we assume the LU-factorization to be returned

along with the output, or not. The LU-factorization process itself

is very sensitive to pivoting errors; for this reason we will assume

our input matrix to admit a generic rank profile (GRP).

From an information theoretic point of view, it should be noted

that all necessary input information in order to compute the output

is known to the client. The approximate output is merely provided

by the server in order to make the problem computationally cheaper

for the client. In theory, if the client has sufficient resources, he could

perform the computation entirely by himself, while ignoring the

approximate output. Contrary to what happens in the traditional

theory of error correcting codes, it is therefore not required to

transmit the output data in a redundant manner (in fact, we might

even not transmit anything at all).

In our setting, unlike classical coding theory, it is therefore more

appropriate to measure the correction capacity in terms of the

amount of computational work for the decoding algorithm rather

than the amount of redundant information. We also put no a priori
restriction on the number of errors: ideally, the complexity should

increase with the number of errors and approach the cost of the

computation without any approximate output when the number of

errors is maximal.

As a consequence, the error-correcting algorithms we envision

can even be used in an extreme case of the second scenario: a mali-

cious third party might introduce errors according to patterns that

are impossible to correct using traditional bounded distance decod-

ing approaches. Concerning the third scenario, the complexity of

our error-correcting algorithms is typically sensitive to the sparsity

of a problem, both in the input and output.

Another general approach for error correction is discussed in

Section 2: if we allow the server to communicate some of the inter-

mediate results, then many linear algebra operations can be reduced

in a simple way to matrix multiplication with error correction.

1.2 General outline and main results
General notations. Throughout our paper, F stands for an effective

field with #F ∈ N∪{∞} elements. Wewrite Fm×n for the set ofm×n
matrices with entries in F and #M for the number of non-zero entries

of a matrix M ∈ Fm×n . The soft-Oh notation Õ(. . .) is the same

as the usual big-Oh notation but ignoring sub-logarithmic factors:

f = Õ(д) if and only if f ∈O(д(logд)O (1)) for cost functions f and д.
Let ω be a constant between 2 and 3 such that two n×n matrices

can be multiplied usingO(nω). In practice, we have ω = 3 for small

dimensions n and ω ⩽ log
2
7 ≈ 2.81 for larger dimensions, using

Strassen multiplication (the precise threshold depends on the field

F; Strassen multiplication typically becomes interesting for n of the

order of a few hundred). The best asymptotic algorithm currently

gives ω < 2.3728639 [19]. From a practical point of view, the ω
notation indicates whether an algorithm is able to take advantage

of fast low-level matrix multiplication routines.

Generic solution. In Section 2, we first describe a generic strategy

for fault-tolerant computations in linear algebra. However, this

strategy may require the server to communicate certain results of

intermediate computations. In the remainder of the paper, we only

consider a stronger form of error correction, for which only the

final results need to be communicated.

LU-factorization. Let A ∈ Fn×n be an invertible matrix with

generic rank profile (GRP). Let L,U ∈ Fn×n be (resp.) lower- and

upper-triangular matrices that are “close to” the LU-factorization

of A: A ≈ LU. Specifically, suppose there exist sparse upper- and

lower-triangular error matrices E, F ∈ Fn×n with

A = (L + E)(U + F), #E + #F ⩽ k .

In the following we write the (possibly) faulty matrices in calli-

graphic fonts. We specify that L has 1’s on the diagonal, so that E
is strictly lower-triangular whereas F may have corrections on the

diagonal or above it.

Given A,L,U, the goal is to determine the true L = L + E
and U = U + F as efficiently as possible. Our main result is a

probabilistic Monte Carlo algorithm for doing this in time

Õ
(
t +min{kn,kω−2n4−ω }

)
,

for any constant probability of failure, where t is the number of

nonzero terms in all input matrices, k is the number of errors in

L orU, and n is the matrix dimension (see Theorem 3). Here we

measure the complexity in terms of he number of operations in F,
while assuming that random elements in F can be generated with

unit cost. Note that because the number of errors k cannot exceed

the total dense size n2, this complexity is never larger than Õ(nω),
which is the cost of re-computing the LU-factorization with no

approximate inputs, up to logarithmic factors. In Section 3.4, we

also show how to generalize our algorithm to rectangular, possibly

rank deficient matrices (still under the GRP assumption).

System solving. In Section 4, we turn to the problem of solving

a linear system XA = B, where A is as above and B is also given.

Given only possibly-erroneous solution X to such a system, we do

not know of any efficient method to correct the potential errors.

Still, we will show how errors can efficiently be corrected if we

require the server to return a few extra intermediate results.

More precisely, if B has few rows, then we require an approx-

imate LU-factorization A ≈ LU and an approximate solution to

the triangular system YU = B. If B has many rows (with respect

to the number of columns), then we require an approximate LU-

factorization A ≈ LU and an approximate inverse R ofU. Given

these data, we give algorithms to correct all errors in similar running

time as above, depending on the number of errors in all provided

inputs.

2 GENERIC SOLUTION
In [24, § 5] a generic strategy is described for verifying the result

of a linear algebra computation. The complexity of the verification

is the same as the complexity of the actual computation under the

assumption that matrix products can be computed in time Õ
(
n2

)
. In

this section, we show that a similar strategy can be used to correct

errors.

Let A be any algorithm which uses matrix multiplication. We

assume that A is deterministic; any random bits needed in the

computation should be pre-generated by the client and included

with the input. The server runs algorithm A and, each time it

performs any matrix multiplication, it adds that product to a list.

This list of all intermediate products is sent back to the client. We

assume that there may be a small number of errors in any of the

LU factorization with errors ISSAC’19, July 2019,

intermediate products, but that these errors do not propagate; that is,

the total number of erroneous entries in any intermediate product

is bounded by some k .
Next, to correct errors, the client also runs algorithm A, except

that every time it needs to multiply matrices, it performs error

correction instead, using the intermediate result sent by the server.

All other operations (additions, comparisons, etc.) are performed

directly by the client. The total cost for the server is the same as

the normal computation of A without error correction. The cost

for the client, as well as the communication, is the cost that the

algorithm would have if matrix multiplication could be performed

in O(n2) time. In particular, typical block matrix algorithms such

as LU factorization admit a worst case complexity of Õ(nω) for the
server and only Õ

(
n2

)
for the client (including communications).

The goal of this paper is to perform better, for instance when k
is a bound on the number of errors only in L andU and not of all

intermediate computations.

3 BLOCK RECURSIVE ALGORITHM
We will now describe an error cleaning algorithm emulating the

steps of an LU decomposition algorithm, where each computation

task is replaced by an error cleaning task.

The cleaning algorithm to be used needs to satisfy the following

properties:

(1) it has to be a block algorithm, gathering most operations into

matrix multiplications where error cleaning can be efficiently

performed by means of sparse interpolation, as in [30, 32];

(2) it has to be recursive in order to make an efficient usage of

fast matrix multiplication.

(3) each block operation must be between operands that are

submatrices of either the input matrix A or the approximate

L andU factors. Indeed, the only data available for the error

correction are these three matrices: the computation of any

intermediate results that cannot directly be extracted from

these matrices would be too expensive for achieving the

intended complexity bounds.

In the large variety of LU decomposition algorithms, iterative and

block iterative algorithms range in three main categories depending

on the scheduling of the update operation (see [10, § 5.4] and [12]

for a description): right-looking, left-looking and Crout.

The right-looking variant updates the trailing matrix immedi-

ately after a pivot or a block pivot is found, hence generating blocks

containing intermediate results, not satisfying (3). Differently, the

left-looking and the Crout variants proceed by computing directly

the output coefficients in L and U following a column shape (left-

looking) or arrow-head (Crout) frontier. Figure 1 summarizes these

3 variants by exposing the memory access patterns of one iteration.

The left-looking and the Crout schedules consist in delaying

the computation of the Gauss updates until the time where the

elimination front deals with the location under consideration. This

is precisely satisfying Condition (3). However these two schedules

are usually described in an iterative or block iterative setting. To the

best of our knowledge, no recursive variant has been proposed so

far. We introduce in Section 3.1 a recursive Crout LU decomposition

algorithm on which we will base the error-correction algorithm of

Figure 1: Access pattern of the left-looking (left), Crout (cen-
ter) and right-looking variants of an LU factorization. Diago-
nal stripes represent read-only accesses, crossed stripes read-
write accesses.

section 3.3. Interestingly, we could not succeed in writing a recur-

sive version of a left-looking algorithm preserving Condition (3).

We emphasize that, although our eventual error correction algo-
rithm will follow the recursive Crout variant, no assumption what-
soever is made on the algorithm used (e.g., by a remote server) to
produce the approximate LU decomposition used as input.

3.1 Recursive Crout LU decomposition
Algorithm 1 is a presentation of a Crout recursive variant of Gauss-

ian elimination, for a generic rank profile (GRP) matrix. It incorpo-

rates the delayed update schedule of the classical block iterative

Crout algorithm [10, 12] into a recursive algorithm dividing both

row and column dimensions. Note that due to the delayed updates,

the recursive algorithm need to be aware of the coefficients in L
and U previously computed, hence the entirety of the working

matrix has to be passed as input, contrarily to most recursive al-

gorithms [6, 17]. In a normal context, this algorithm could work

in-place, overwriting the input matrix A with both factors L andU
as the algorithm proceeds.

In our error-correcting context, the input will eventually consist

not only of A but also of the approximate L and U. Therefore,

in Algorithm 1 below, we treat the matrix A as an unmodified

input and fill in the resulting L and U into a separate matrixM . In

Algorithm 3, this matrixM will initially contain the approximate

L andU which will be overwritten by the correct L andU .

The main work of the Crout decomposition consists of dot prod-

ucts (in the base case), matrix multiplications and triangular solves.

We define TRSM as a triangular system solve with matrix right-

hand side, with some variants depending whether the triangular

matrix is lower (’L’) or upper (’U’) triangular, and whether the tri-

angular matrix is on the left (’L’, for X ← T−1A) or on the right

(’R’, for for X ← AT−1). These always work in-place, overwriting

the right-hand side with the solution. For instance:

• URTrsm(A,U) is a right solve with upper-triangularU which

transforms A to A′ such that A′U = A.
• LLTrsm(L,B) is a left solve with lower-triangular L which

transforms B to B′ such that LB′ = B.

In the algorithms, we use the subscript ♣ to denote “indices 2

and 3”, so for example n♣ = n2 + n3 and

A♣♣ =

[
A22 A23

A32 A33

]
.

Theorem 1. Crout(M,A, 0,n) overwritesM with a complete LU
factorization of A ∈ Fn×n in O(nω) operations.

ISSAC’19, July 2019, Jean-Guillaume Dumas, Joris van der Hoeven, Clément Pernet, and Daniel S. Roche

Algorithm 1 Crout(M,A♣♣,n1,n♣)

Require: M =
[
L11\U11 U1♣

L♣1

]
is (n1 + n♣) × (n1 + n♣)

Require: L11 (resp.U11) is unit lower (resp. upper) triangular

Require: A♣♣ is n♣ × n♣

Require: A =
[
L11U11 L11U1♣

L♣1U11 A♣♣

]
has GRP

Ensure: M =
[
L\U

]
such that A = L·U

1: if n♣ = 1 then
2: U♣♣ ← A♣♣ − L♣1·U1♣ ▷ dot product

▷ L♣♣ is implicitly [1]

3: else
4: Decompose n♣ = n2 + n3 with n2 = ⌈n♣/2⌉, n3 = ⌊n♣/2⌋

5: SplitM =


L11\U11 U12 U13

L21
L31


6: Split A♣♣ =

[
A22 A23

A32 A33

]
7: Crout

([
L11\U11 U12

L21

]
,A22,n1,n2

)
8: HereM =


L11\U11 U12 U13

L21 L22\U22

L31


9: U23 ← A23 − L21U13

10: LLTrsm(U23, L22) ▷ L22U23 = A23 − L21U13

11: L32 ← A32 − L31U12

12: URTrsm(L32,U22) ▷ L32U22 = A32 − L31U12

13: HereM =


L11\U11 U12 U13

L21 L22\U22 U23

L31 L32


14: Crout (M,A33,n1 + n2,n3)

15: HereM =


L11\U11 U12 U13

L21 L22\U22 U23

L31 L32 L33\U33


16: end if

Proof. Correctness is proven by induction on n♣. For n♣ = 1

we have[
L11 0

L2 1

] [
U11 U1♣

0 A♣♣ − L♣1U1♣

]
=

[
L11U11 L11U1♣

L♣1U11 A♣♣

]
.

For n♣ > 1, we have

LU =


L11U11 L11U12 L11U13

L21U11 L21U12 + L22U22 L21U13 + L22U23

L31U11 L31U12 + L32U22 L31U13 + L32U23 + L33U33

 .
After the first recursive call in step 7, we have L21U12+L22U22 = A22.

In step 10, we ensured thatA23 = L22U23 +L21U13. Similarly,A32 =

L32U22 + L31U12 from step 12. Finally, after the second recursive

call, we have A33 = L31U13 + L32U23 + L33U33. This concludes the

proof that A = LU at the end of the algorithm.

The complexity bound stems from the fact that the dot products

in step 2 costO(n2) overall, and that the matrix multiplications and

system solves require O(nω) [13]. □

3.2 Error-correcting triangular solves
The cost of Algorithm 1 is dominated by matrix-matrix products of

off-diagonal blocks of L andU and triangular solving in steps 9–12.

The first task in adapting this algorithm for error correction is to

perform error correction in this triangular solving step, treating

the right-hand side as an unevaluated black box matrix in order to

avoid the matrix-matrix multiplication.

We explain the process to correct errors inU23 (an equivalent

processworks in the transpose forL32): recall steps 9 and 10 of Algo-

rithm 1:U23 ← A23−L21U13 and LLTrsm(U23, L22). Mathematically,

these steps perform the computation: U23 ← L−1
22
(A23 − L21U13).

At this point in the error correction,A23 is part of the original input

matrix while L21,U13, and L22 have already been corrected by the

recursive calls.

The idea is to be able to correct the next parts of an approximate

U, namelyU23, without recomputing it. Algorithm 2 below does

this following the approach of [32]: for k ⩽ mn total errors within

c ⩽ n erroneous columns, less than c/2 columns can have more

than s = ⌊2k/c⌋ errors. Therefore, we start with a candidate for k ,
then try to correct s errors per erroneous column. If k is correct,

then they will be corrected in fewer than log(c) ⩽ log(n) iterations.
If fewer than c/2 columns are corrected on some step, this indicates

that the guess for k was too low, so we double the guess for k
and continue. This is shown in Algorithm 2, where as previously

mentioned, a normal font is an already correct matrix block and a

calligraphic font denotes a matrix block to be corrected. We also

recall that #X stands for the number of nonzero elements in X , and

define ColSupport of a matrix M to be the indices of columns of

M with any nonzero entries.

Due to the crucial use of sparse interpolation, we require a high-

order element θ in the underlying field F. If no such θ exists, we

simply replace F by an extension field. The cost of computing in

such an extension field will only induce a logarithmic overhead.

Theorem 2. For a failure bound 0 < ε < 1, A ∈ Fm×ℓ , B ∈ Fℓ×n ,
C ∈ Fm×n ,U ∈ Fn×n , R ∈ Fm×n , with total non-zero entries

t = max{#A, #B, #C, #U , #R} ⩽ (m + n)(ℓ + n),

and k errors in R, Algorithm 2 is correct and runs in time

Õ
(
(t + k +m)(1 + log

#F
1

ε) +max{n, ℓ} ·min{k,kω−2n3−ω }
)
.

Proof. Without loss of generality, we may assume thatm < #F
in step 3. Indeed, in the contrary case, arithmetic in Fqν is only

Õ(ν) = Õ(logm) times more expensive than arithmetic in Fq , which
is absorbed by the soft-Oh of the claimed complexity bound.

Define R as the correct output matrix such that RU = H and

consider the beginning of some iteration through the loop. Line 12

computes with high probability the column support of the remain-

ing errors R−(R+E), viewing this as a blackboxHU −1−R−E. We

project this blackbox on the left with a block of vectorsW using a

Freivalds check [18].

Hence P is a n × c submatrix of a permutation matrix selecting

the erroneous columns of R. Selecting the same rows and columns

LU factorization with errors ISSAC’19, July 2019,

Algorithm 2 URTrsmEC(R,H ,U ,m, ℓ,n, ε)

Require: R ism × n
Require: H ism × n presented as an unevaluated blackbox H =

C −AB where the inner dimension between A and B is ℓ

Require: U is n × n invertible upper triangular

Require: Failure bound 0 < ε < 1.

Ensure: R is updated in-place s.t. Pr[RU = H] ⩾ 1 − ε

1: k ← 1 ▷ how many errors exist

2: k ′ ← 0 ▷ how many errors have been corrected

3: if m ⩾ #F then F← Fqν (q = #F,ν = ⌈logq (m + 1)⌉) end if
4: Pick θ of order ⩾ m in F, with precomputed (θ j)0⩽j<m
5: λ←

⌈
log

#F
(
3n log

2
n/ε

)⌉
6: c ′ ← 2n
7: E ← 0

m×n

8: repeat
9: PickW ∈ Fλ×m uniformly at random.

10: X ←WC − (WA)B ▷ X =WH
11: URTrsm(X ,U) ▷ X =WHU −1

12: (j1, . . . , jc) ← ColSupport(X −WR −WE)
▷ columns of (R + E) with errors

13: Clear any entries of E from columns j1, . . . , jc
14: Update R ← R + E, k ′ ← k ′ + #E
15: if c > c ′/2 then k ← max(2k, c) end if

▷ too many errors; k must be wrong

16: c ′ ← c

17: s ← min

(
n,

⌈
2
k−k ′
c

⌉)
18: V ← (θ i j)0⩽i<2s ,0⩽j<m ▷ unevaluated

19: P ←
[
ej1 . . . ejc

]
▷ selects erroneous cols. of R

20: G ← V (CP) − (VA)(BP) − (VR)(UP)
21: URTrsm(G, P⊺UP) ▷ GP⊺UP = V (H − RU)P
22: Find S ∈ Fm×c s.t. VS = G by sparse interpolation

23: E ← SP⊺

24: until c = 0

inU yields a c×c matrix P⊺UP that is still triangular and invertible.

With this, one can form a new blackbox

S = (R − R)P = (H − RU) · P · (P⊺UP)−1,

using the fact that (R − R)PP⊺ = (R − R). The columns of this

blackbox S are viewed as c sparse polynomials whose evaluation at

powers of θ are used to recover them via sparse interpolation.

Note that only the columns with at most s nonzero entries are
correctly recovered by the sparse interpolation, so some columns of

S may still be incorrect. However, any incorrect ones are discovered

by the Freivalds check in the next round and never incorporated

intoR. From the definition of s , and the fact that sparse interpolation
works correctly for all s-sparse columns of R − R, we know that

every iteration results in either c reducing by half, or k doubling.

Therefore the total number of iterations is at most log
2
c + log

2
k ⩽

(1 + 2) log
2
n = 3 log

2
n.

According to [32, Lemma 4.1], the probability of failure in each

Frievalds check in step 12 is at most ε/n. By the union bound, the

probability of failure at any of the ⩽ 3 log
2
n iterations is therefore

at most ε , as required.

Now for the complexity, the calls to compute the ColSupport
on Lines 10 to 12 are all performed using sparse matrix-vector oper-

ations, takingO(λ(t +k)). From [32, Lemma 6.1], the multiplication

by the Vandermonde 2s ×n matrixV inV (CP),VA, andVR all take

Õ(t + k +m) operations.
The recovery of S by batched multi-sparse interpolation takes

Õ(sc +m logm) = Õ(k +m) operations [32, Theorem 5.2].

What remains are the cost of computing the following:

• The product (VA)(BP), which costs O(sℓc/min{s, ℓ, c}3−ω)
using fast matrix multiplication.

• The product (VR)(UP), which costsO(snc/min{s,n, c}3−ω).
• The subroutine URTrsm(G, P⊺UP), which costs the same as

it would be to multiplyG times P⊺UP ,O(sc2/min{s, c}3−ω).

From the definition of s we have sc ∈ O(k). Let N = max{n, ℓ}.
Since s, c ⩽ n and n, ℓ ⩽ N , all three costs are

O(Nk/min{s, c}3−ω). (1)

Until the algorithm terminates, we always have s, c ⩾ 1, so (1) is at

most O(Nk), proving the first part of the min in the complexity.

For the second part, observe that the number of erroneous columns

c must satisfy k/n ⩽ c ⩽ n, which means that min{s, c} ⩾ k/n
by the definition of s . Then the cost in (1) is bounded above by

O
(

Nk
(k/n)3−ω

)
⩽ O

(
N · kω−2 · n3−ω

)
. □

Remark 1. Since the inputmatrixU is notmodified by the algorithm,

some entries ofU may be defined implicitly — in particular, if the

matrix is unit diagonal and the 1’s are not explicitly stored.

Remark 2. Transposing the algorithm, we may also correct LR = G ,
where L is lower triangular:

LLTrsmEC(R,G, L,n, ℓ,m, ε) = (URTrsmEC(R⊺,G⊺, L⊺,m, ℓ,n, ε))⊺ .

Remark 3. There are two more triangular variants to consider.

Computing LRTrsmEC (or, with Remark 2, ULTrsmEC) could be done
exactly the same as in Algorithm 2, except that the two subroutine

calls, lines 11 and 21, would be to LRTrsm.

3.3 Correcting an invertible LU decomposition
We now have all the tools to correct an LU decomposition. We

suppose that the matrix A is non-singular and has generic rank

profile (thus there exist unique L and U such that A = LU). We

are given possibly faulty candidate matrices L, U and want to

correct them: for this we run Algorithm 1, but replace lines 9-12

by two calls to Algorithm 2. The point is to be able to have explicit

submatrices of A, L, U , L and U for the two recursive calls (no

blackbox, nothing unevaluated there), and that all the base cases

represent only a negligible part of the overall computations (the

base case is the part of the algorithm that is recomputed explicitly

when correcting). This is presented in Algorithm 3.

Theorem 3. For A ∈ Fn×n which has GRP, L ∈ Fn×n unit lower
triangular andU ∈ Fn×n upper triangular, with total non-zero entries
t = #A+#L+#U, failure bound 0 < ε < 1, and k errors in L andU,
Algorithm CroutEC(

[
L\U

]
,A, 0,n, ε) is correct and runs in time

Õ
(
(t + k)(1 + log

#F
1

ε) +min{kn,kω−2n4−ω }
)
.

ISSAC’19, July 2019, Jean-Guillaume Dumas, Joris van der Hoeven, Clément Pernet, and Daniel S. Roche

Algorithm 3 CroutEC(M,A♣♣,n1,n♣, ε)

Require: M =
[
L11\U11 U1♣

L♣1 L♣♣\U♣♣

]
is (n1 + n♣) × (n1 + n♣)

Require: L11 (resp.U11) is unit lower (resp. upper) triangular

Require: L♣♣,U♣♣ are n♣ × n♣ unit lower/upper triangular

Require: A♣♣ is n♣ × n♣

Require: A =
[
L11U11 L11U1♣

L♣1U11 A♣♣

]
has GRP

Require: Failure bound 0 < ε < 1

Ensure: M =
[
L\U

]
such that Pr[A = L·U] ⩾ 1 − ε

1: if n♣ = 1 then
2: U♣♣ ← A♣♣ − L♣1·U1♣ ▷ dot product

▷ L♣♣ is implicitly [1], must be correct

3: else
4: Decompose n♣ = n2 + n3 with n2 = ⌈n♣/2⌉, n3 = ⌊n♣/2⌋

5: SplitM =


L11\U11 U12 U13

L21 L22\U22 U23

L31 L32 L33\U33


6: Split A♣♣ =

[
A22 A23

A32 A33

]
7: CroutEC

([
L11\U11 U12

L21 L22\U22

]
,A22,n1,n2, ε/4

)
8: HereM =


L11\U11 U12 U13

L21 L22\U22 U23

L31 L32 L33\U33


9: LLTrsmEC(U23,A23 − L21U13, L22,n2,n1,n3, ε/4)

▷ A23 − L21U13 is left unevaluated

10: URTrsmEC(L32,A32 − L31U12,U22,n3,n1,n2, ε/4)
▷ A32 − L31U12 is left unevaluated

11: HereM =


L11\U11 U12 U13

L21 L22\U22 U23

L31 L32 L33\U33


12: CroutEC (M,A33,n1 + n2,n3, ε/4)

13: NowM =


L11\U11 U12 U13

L21 L22\U22 U23

L31 L32 L33\U33

 .
14: end if

Proof. Correctness follows from Theorems 1 and 2: we rewrite

Algorithm 1, but replace the intermediate two matrix multiplica-

tions and two Trsms by two calls, with blackboxes, to Algorithm 2.

Passing ε/4 to all subroutines ensures that the total probability of

failure in any Frievalds check in any TrsmEC is at most ε . Note that
the shrinking ε does not affect the soft-oh complexity, since at the

bottom level we will have ε ′ = ε/(4log2(n)) = ε/n2, and log
1

ε ′ is

O(log 1

ε + logn).
For the complexity, note that sinceA has GRP, #A ⩾ n. The stated

cost bound depends crucially on the following fact: in each level of

recursive calls to CroutEC, each call is correcting a single diagonal

block L♣♣\U♣♣ and uses only the parts ofM and A above and left

of that block.

This claim is true by inspection of the algorithm: the blocks

L22\U22 and L33\U33 being corrected in the two recursive calls

to CroutEC on Lines 7 and 12 are clearly disjoint diagonal blocks.

And we see also that the algorithm never uses the top-left part of

M , namely L11\U11; all arguments to the calls to TrsmEC on Lines 9

and 10 are (disjoint) submatrices above and left of L♣♣\U♣♣, as

shown, e.g., in Figure 2.

Figure 2: All updates at
the third recursion level at
step 9. The figure indicates
the locations of U23, L21,
andU13.

With this understanding, we can perform the analysis. The work

of the algorithm is entirely in the dot products in the base case, and

the calls to TrsmEC in the recursive case.

For the base case dot products, these are to correct the diagonal

entries ofU, using the diagonal ofA and disjoint, already-corrected

rows of L and columns of U . Therefore the total cost of the dot

products is O(t + k).
For the rest, consider the ith recursive level of calls to CroutEC,

where 0 ⩽ i < log
2
n. There will be exactly 2

i+1
calls to TrsmEC on

this level, whose inputs are all disjoint, from the claim above. Write

mi j , ℓi j , etc. for the parameters in the jth call to TrsmEC on level i ,

for 1 ⩽ j ⩽ 2
i+1

.

Every call to TrsmEC on the ith level satisfies:

• mi j ,ni j ∈ O(n/2
i);

• ℓi j ,Ni j = max{ni j ; ℓi j } ⩽ n;

• εi j = ε/4i , so that ⌈log
#F(1/εi j)⌉ is O((1 + log#F

1

ε) + logn);

•
∑
2
i+1

j=1 ti j ⩽ t because the submatrices are disjoint at the same

recursive level; and

•
∑log

2
n

i=0
∑
2
i+1

j=1 ki j ⩽ k because each error is only corrected

once.

Now we wish to compute the total cost of all calls to TrsmEC, which
by Theorem 2 and the notation just introduced, is soft-oh of

log
2
n∑

i=0

2
i+1∑
j=1

[
(ti j + ki j +mi j)(1 + log#F

1

εi j) + Ni j ·min{ki j ,k
ω−2
i j n3−ωij }

]
.

Taking the first term of the sum, this is

log
2
n∑

i=0

2
i+1∑
j=1
(ti j + ki j +

n
2
i)(1 + log#F

1

ε + logn)

⩽ O
(
(t logn + k + 2n logn)(1 + log

#F
1

ε + logn)
)

= Õ
(
(t + k + n)(1 + log

#F
1

ε)
)
,

which gives the first term in our stated complexity.

LU factorization with errors ISSAC’19, July 2019,

The second term of the sum simplifies to

n ·

log
2
n∑

i=0

2
i+1∑
j=1

min{ki j ,k
ω−2
i j (n/2

i)3−ω }. (2)

Now observe that, by definition, each individual summand is

less than or equal to both parts of the min expression. Therefore

we bound the sum of minima by the minimum of sums; that is, the

previous summation is at most

n ·min

{∑
i
∑
jki j ,

∑
i
∑
jk
ω−2
i j (n/2

i)3−ω
}
.

Because each error is only corrected once,

∑
i
∑
j ki j ⩽ k . Using

Hölder’s inequality and 0 ⩽ ω − 2 < 1, this yields

r∑
j=1

kω−2i j ⩽ r

(∑r
j=1 ki j

r

)ω−2
⩽ r3−ωkω−2,

for all r . Applying this to the second summation above gives

log
2
n∑

i=0

2
i+1∑
j=1

kω−2i j (n/2
i)3−ω = n3−ω

log
2
n∑

i=0
2
(ω−3)i

2
i+1∑
j=1

kω−2i j

⩽ n3−ω
log

2
n∑

i=0
2
(ω−3)i · 2(i+1)(3−ω) · kω−2

⩽ O(kω−2n3−ω logn).

Then the entirety of (2) becomes just Õ
(
min{kn,kω−2n4−ω }

)
,

which gives the second term in the stated complexity. □

3.4 Correcting a rectangular, rank-deficient LU
Form ⩽ n, assume first that A = [A1 A2] is a rectangularm×n
matrix such that A1 is squarem×m with GRP. Assume also that

[L\U1 U2] is an approximate LU decomposition. Then we may

correct potential errors as follows:

(1) CroutEC([L1\U1],A1, 0,n, ε/2); ▷ corrects L1\U1

(2) LLTrsmEC(U2,A2, L1,m,m,n −m, ε/2). ▷ correctsU2

Second, if A1 is rank deficient, but still GRP, then the first occur-

rence of a zero pivot U♣♣, line 2 in Algorithm 3, reveals the correct

rank: at this point L11, U11, and the upper (resp. left) part of L♣1
(resp.U1♣) are correct. It is thus sufficient to stop the elimination

there, and recover the remaining parts of

L =

[
L11
L♣1

]
∈ Fm×r , U =

[
U11 U1♣

]
∈ Fr×n,

using (corrected) triangular system solves, as follows:

(1) Let r = rank A and A =

[
A11 A1♣

A♣1 A♣♣

]
, where A11 is r×r .

(2) CroutEC(
[
L11\U11

]
,A11, 0, r , ε/3)

(3) LLTrsmEC(U1♣,A1♣, L11, r , r ,n − r , ε/3). ▷ correctsU1♣

(4) URTrsmEC(L♣1,A♣1,U11,m − r , r , r , ε/3). ▷ corrects L♣1

4 SYSTEM SOLVING
One application of LU factorization is linear system solving. Say A
is n×n invertible, and B ism×n. Ideally, correcting a solution X to

the linear system XA = B, should depend only on the errors in X.

Indeed, our algorithm URTrsmEC does exactly this in the special

case that A is upper-triangular.

Unfortunately, we do not know how to do this for a general

non-singular A using the previous techniques, as we for instance

do not know of an efficient way to compute the nonzero columns

of the erroneous entries in (X − X) = BA−1 − X.
By adding some data to the solution X (and therefore, unfortu-

nately, potentially more errors), there are several possibilities:

• Generically, a first solution is to proceed as in Section 2.

One can use [24], but then the complexity depends not only

on errors in X, but on errors in all the intermediate matrix

products.

• A second solution is to invert the matrix A using [32, Algo-

rithm 6] (InverseEC) and then multiply the right-hand side

using [32, Algorithm 5] (MultiplyEC). This requires some

extra data to correct, namely a candidate inverse matrix, and

the complexity depends on errors appearing now both in

the system solution and in that inverse candidate matrix as

follows:

(1) Z ← InverseEC(A,Z); ▷Z = A−1

(2) X ← MultiplyEC(B,Z ,X). ▷X = BA−1

Now, computing an inverse, as well as correcting it, is more

expensive than using an LU factorization: for the computation itself,

the inverse is more expensive by a constant factor of 3 (assuming

classic matrix arithmetic), and for InverseEC the complexity of [32,

Theorem 8.3] requires the fast selection of linearly independent

rows using [7], which might be prohibitive in practice.

For these reasons, we prefer to solve systems using an LU factor-

ization. The goal of the remainder of this section is to do this with

a similar complexity as for Algorithm 3 and while avoiding to rely

on the sophisticated algorithm from [7].

4.1 Small right-hand side
An intermediate solution, requiring the same amount of extra data

as the version with the inverse matrix, but using only fast routines,

can be as follows. Use as extra data a candidate factorization LU

and a candidate intermediate right-hand side Y of dimensionm×n,
such that Y,U are approximations to the true Y ,U with YU = B.
We simultaneously correct errors in X, L,U, and Y as follows:

(1) CroutEC(L\U,A, 0,n, ε/3); ▷ L andU with A = LU
(2) URTrsmEC(Y,B,U ,m, 0,n, ε/3); ▷ Y with YU = B
(3) LRTrsmEC(X,Y , L,m, 0,n, ε/3). ▷ X with XL = Y

Note, of course, that if the number of rowsm in B is very small,

say onlym ⩽ no(1), then it is faster to recover L and U only, by

running CroutEC, and then compute Y and X directly from the

corrected L andU with classical TRSMs.

4.2 Large right-hand side
If the row dimensionm of B is large with respect to the column

dimension n, then the matrix Y from above will be larger thanU.

The client can instead ask the server to provide as extra data R as a

candidate for U −1, to correct it withU , and then to use L and U −1

to correct X directly:

(1) CroutEC(L\U,A, 0,n, ε/3); ▷ L andU with A = LU
(2) TrInvEC(R,U ,n, ε/3); ▷R = U −1

(3) LRTrsmEC(X,BR, L,m,n,n, ε/3), ▷XL = BR = BU −1

ISSAC’19, July 2019, Jean-Guillaume Dumas, Joris van der Hoeven, Clément Pernet, and Daniel S. Roche

with TrInvEC a variant of InverseEC sketched below as Algo-

rithm 4 (where TRSV is a triangular system solve with a column

vector and TRMV is a matrix-vector multiplication). This does

not require the expensive algorithm of [7] to select independent

columns, as the matrix is triangular.

Note that, in the call to LRTrsmEC in the last step, the right-hand

side BR is left unevaluated, just as in the calls to TrsmEC from

Algorithm 3.

Algorithm 4 TrInvEC(U ,R,n, ε) corrects R + E = U −1

1: P J = ColSupport(U −1v − Rv); ▷ U −1v via TRSV withU , Rv
via TRMV with candidate

2: T = (PTJ UP J)
−1
; ▷ O(rω)

3: E ′ = (EP J) = (I − RU)P JT
−1
, so it can be recovered via multi-

sparse interpolation as VE ′ =
(
VP J − (VR)(UP J)

)
T−1.

5 CONCLUSION
We have shown how to efficiently correct errors in an LU factoriza-

tion, and how to apply this error correction to system solving.

A few remaining challenges are to:

• Generalize our error-correcting algorithms to matrices A
which do not have GRP, correcting more general factoriza-

tions such as A = PLUQ where P,Q are permutation ma-

trices. Our approach works directly if the permutations P
and Q are known to be error-free, but correcting erroneous

permutations P and Q is more difficult.

• Directly correct errors in L and R such that AR = L, i.e.,
R = U −1. This would be useful for system solving, as we

have seen above.

• More generally, correcting errors only in the solution X of a

linear system, without any extra information from the server,

would be an even more ambitious goal.

REFERENCES
[1] Carlos Arreche (Ed.). 2018. ISSAC’2018, New York, USA. ACM, New York.

[2] M. Ben-Or and P. Tiwari. 1988. A Deterministic Algorithm for Sparse Multivariate

Polynomial Interpolation. In STOC ’88: Proceedings of the twentieth annual ACM
symposium on Theory of computing. ACM Press, New York, NY, USA, 301–309.

[3] Janko Böhm, Wolfram Decker, Claus Fieker, and Gerhard Pfister. 2015. The use of

bad primes in rational reconstruction. Math. Comput. 84, 296 (2015), 3013–3027.
https://doi.org/10.1090/mcom/2951

[4] Aurelien Bouteiller, Thomas Herault, George Bosilca, Peng Du, and Jack Dongarra.

2015. Algorithm-Based Fault Tolerance for Dense Matrix Factorizations, Multiple

Failures and Accuracy. ACM Trans. Parallel Comput. 1, 2, Article 10 (Feb. 2015),
28 pages. https://doi.org/10.1145/2686892

[5] Brice Boyer and Erich L. Kaltofen. 2014. Numerical Linear System Solving with

Parametric Entries by Error Correction. In Proceedings of the 2014 Symposium
on Symbolic-Numeric Computation (SNC ’14). ACM, New York, NY, USA, 33–38.

https://doi.org/10.1145/2631948.2631956

[6] James R. Bunch and John E. Hopcroft. 1974. Triangular Factorization and In-

version by Fast Matrix Multiplication. Math. Comp. 28, 125 (1974), 231–236.

https://doi.org/10.1090/S0025-5718-1974-0331751-8

[7] Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. 2013. Fast Matrix Rank

Algorithms and Applications. J. ACM 60, 5 (Oct. 2013), 31:1–31:25. https:

//doi.org/10.1145/2528404

[8] Matthew T. Comer, Erich L. Kaltofen, and Clément Pernet. 2012. Sparse Poly-

nomial Interpolation and Berlekamp/Massey Algorithms That Correct Outlier

Errors in Input Values. In ISSAC’2012, Grenoble, France, Joris van der Hoeven

and Mark van Hoeij (Eds.). ACM, New York, 138–145. https://doi.org/10.1145/

2442829.2442852

[9] Teresa Davies and Zizhong Chen. 2013. Correcting Soft Errors Online in LU

Factorization. In Proceedings of the 22Nd International Symposium on High-
performance Parallel and Distributed Computing (HPDC ’13). ACM, New York, NY,

USA, 167–178. https://doi.org/10.1145/2493123.2462920

[10] Jack J. Dongarra, Lain S. Duff, Danny C. Sorensen, andHenkA. Vander Vorst. 1998.

Numerical Linear Algebra for High Performance Computers. SIAM, Philadelphia,

PA, USA. https://doi.org/10.1137/1.9780898719611

[11] P. Du, P. Luszczek, and J. Dongarra. 2011. High Performance Dense Linear

System Solver with Soft Error Resilience. In 2011 IEEE International Conference
on Cluster Computing. IEEE Computer Society, Washington, D.C., USA, 272–280.

https://doi.org/10.1109/CLUSTER.2011.38

[12] Jean-Guillaume Dumas, Thierry Gautier, Clément Pernet, and Ziad Sultan. 2014.

Parallel Computation of Echelon Forms. In Euro-Par 2014 Parallel Processing,
Fernando Silva, Inês Dutra, and Vítor Santos Costa (Eds.). Springer International

Publishing, Cham, 499–510. https://doi.org/10.1007/978-3-319-09873-9_42

[13] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. 2008. Dense Linear

Algebra over Prime Fields. ACM Trans. Math. Software 35, 3 (Nov. 2008), 1–42.
https://doi.org/10.1145/1391989.1391992

[14] Jean-Guillaume Dumas and Erich Kaltofen. 2014. Essentially Optimal Interactive

Certificates in Linear Algebra, See [29], 146–153. https://doi.org/10.1145/2608628.

2608644

[15] Jean-Guillaume Dumas, Erich Kaltofen, Emmanuel Thomé, and Gilles Villard.

2016. Linear Time Interactive Certificates for the Minimal Polynomial and the

Determinant of a Sparse Matrix. In ISSAC’2016, Waterloo, ON, Canada, Xiao-Shan
Gao (Ed.). ACM, New York, 199–206. https://doi.org/10.1145/2930889.2930908

[16] Jean-Guillaume Dumas, David Lucas, and Clément Pernet. 2017. Certificates for

Triangular Equivalence and Rank Profiles, See [34], 133–140. https://doi.org/10.

1145/3087604.3087609

[17] Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. 2013. Simultaneous

Computation of the Row and Column Rank Profiles, See [27], 181–188. https:

//doi.org/10.1145/2465506.2465517

[18] Rūsin, š Freivalds. 1979. Fast Probabilistic Algorithms. InMathematical Foundations
of Computer Science 1979 (Lecture Notes in Computer Science), J. Bečvář (Ed.),
Vol. 74. Springer-Verlag, Olomouc, Czechoslovakia, 57–69. https://doi.org/10.

1007/3-540-09526-8_5

[19] François Le Gall. 2014. Powers of Tensors and Fast Matrix Multiplication, See

[29], 296–303. https://doi.org/10.1145/2608628.2608664

[20] Leszek Gąsieniec, Christos Levcopoulos, Andrzej Lingas, Rasmus Pagh, and

Takeshi Tokuyama. 2017. Efficiently Correcting Matrix Products. Algorithmica
79, 2 (01 Oct 2017), 428–443. https://doi.org/10.1007/s00453-016-0202-3

[21] O. Goldreich, D. Ron, and M. Sudan. 2000. Chinese remaindering with errors.

IEEE Transactions on Information Theory 46, 4 (July 2000), 1330–1338. https:

//doi.org/10.1109/18.850672

[22] Kuang-HuaHuang and Jacob A. Abraham. 1984. Algorithm-Based Fault Tolerance

for Matrix Operations. IEEE Trans. Computers 33, 6 (1984), 518–528.
[23] E. Kaltofen and L. Yagati. 1988. Improved Sparse Multivariate Polynomial Inter-

polation Algorithms. In ISSAC ’88. Springer Verlag, Berlin, Heidelberg, 467–474.
[24] Erich L. Kaltofen, Michael Nehring, and B. David Saunders. 2011. Quadratic-Time

Certificates in Linear Algebra. In ISSAC’2011, San Jose, California, USA, Anton
Leykin (Ed.). ACM, New York, 171–176. https://doi.org/10.1145/1993886.1993915

[25] Erich L. Kaltofen, Clément Pernet, Arne Storjohann, and Cleveland Waddell.

2017. Early Termination in Parametric Linear System Solving and Rational

Function Vector Recovery with Error Correction, See [34], 237–244. https:

//doi.org/10.1145/3087604.3087645

[26] Erich L. Kaltofen and Zhengfeng Yang. 2013. Sparse Multivariate Function

Recovery from Values with Noise and Outlier Errors, See [27], 219–226. https:

//doi.org/10.1145/2465506.2465524

[27] Manuel Kauers (Ed.). 2013. ISSAC’2013, Boston, USA. ACM, New York.

[28] Majid Khonji, Clément Pernet, Jean-Louis Roch, Thomas Roche, and Thomas

Stalinski. 2010. Output-sensitive Decoding for Redundant Residue Systems. In

ISSAC’2010, Munich, Germany, Wolfram Koepf (Ed.). ACM, New York, 265–272.

https://doi.org/10.1145/1837934.1837985

[29] Katsusuke Nabeshima (Ed.). 2014. ISSAC’2014, Kobe, Japan. ACM, New York.

[30] Rasmus Pagh. 2013. Compressed Matrix Multiplication. ACM Trans. Comput.
Theory 5, 3, Article 9 (Aug. 2013), 17 pages. https://doi.org/10.1145/2493252.

2493254

[31] R. Prony. 1795. Essai expérimental et analytique sur les lois de la dilatabilité des

fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la

vapeur de l’alkool, à différentes températures. J. de l’École Polytechnique Floréal
et Plairial, an III 1, cahier 22 (1795), 24–76.

[32] Daniel S. Roche. 2018. Error Correction in Fast Matrix Multiplication and Inverse,

See [1], 343–350. https://doi.org/10.1145/3208976.3209001

[33] D. S. Roche. 2018. What Can (and Can’T) We Do with Sparse Polynomials?, See

[1], 25–30.

[34] Mohab Safey El Din (Ed.). 2017. ISSAC’2017, Kaiserslautern, Germany. ACM, New

York.

https://doi.org/10.1090/mcom/2951
https://doi.org/10.1145/2686892
https://doi.org/10.1145/2631948.2631956
https://doi.org/10.1090/S0025-5718-1974-0331751-8
https://doi.org/10.1145/2528404
https://doi.org/10.1145/2528404
https://doi.org/10.1145/2442829.2442852
https://doi.org/10.1145/2442829.2442852
https://doi.org/10.1145/2493123.2462920
https://doi.org/10.1137/1.9780898719611
https://doi.org/10.1109/CLUSTER.2011.38
https://doi.org/10.1007/978-3-319-09873-9_42
https://doi.org/10.1145/1391989.1391992
https://doi.org/10.1145/2608628.2608644
https://doi.org/10.1145/2608628.2608644
https://doi.org/10.1145/2930889.2930908
https://doi.org/10.1145/3087604.3087609
https://doi.org/10.1145/3087604.3087609
https://doi.org/10.1145/2465506.2465517
https://doi.org/10.1145/2465506.2465517
https://doi.org/10.1007/3-540-09526-8_5
https://doi.org/10.1007/3-540-09526-8_5
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1007/s00453-016-0202-3
https://doi.org/10.1109/18.850672
https://doi.org/10.1109/18.850672
https://doi.org/10.1145/1993886.1993915
https://doi.org/10.1145/3087604.3087645
https://doi.org/10.1145/3087604.3087645
https://doi.org/10.1145/2465506.2465524
https://doi.org/10.1145/2465506.2465524
https://doi.org/10.1145/1837934.1837985
https://doi.org/10.1145/2493252.2493254
https://doi.org/10.1145/2493252.2493254
https://doi.org/10.1145/3208976.3209001

	Abstract
	1 Introduction
	1.1 Our setting
	1.2 General outline and main results

	2 Generic solution
	3 Block recursive algorithm
	3.1 Recursive Crout LU decomposition
	3.2 Error-correcting triangular solves
	3.3 Correcting an invertible LU decomposition
	3.4 Correcting a rectangular, rank-deficient LU

	4 System solving
	4.1 Small right-hand side
	4.2 Large right-hand side

	5 Conclusion
	References

